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Abstract

This paper describes preliminary results on the application of statistical model-checking to systems described
with Stochastic CLS. Stochastic CLS is a formalism based on term rewriting that allows biomolecular
systems to be described by taking into account their structure and by allowing very general events to be
modelled. Statistical model-checking is an analysis technique that permits properties of a system to be
studied on the results of a number of stochastic simulations. We choose Real-Time Maude as a tool that
supports the modelling and analysis of systems with real-time properties. We adapt Gillespie’s algorithm
for simulating chemical systems into our approach. The resulting method is applied to analyse some simple
examples and a model of the lactose operon regulation in E.coli.

Keywords: Calculus of Looping Sequences, Maude, model-checking, biological system.

1 Introduction

In the last few years many formalisms have been either adapted or defined to model

biomolecular systems [20,19,8,11,6]. The use of formal means in the description of

biomolecular systems allows models to be constructed compositionally and unam-

biguously, and allows the application of analysis techniques that are common in

Computer Science, but almost unknown to biologists.

Biologists usually model biomolecular systems by means of differential equa-

tions. These can be studied analytically and numerically in order to understand,

for example, the average behaviour of a system and its sensitivity to perturbations

in the system parameters and in the initial conditions. Moreover, stochastic sim-

ulation has become recently a widely followed approach to study the behaviour

of biomolecular systems. Such a technique can be applied repeatedly to obtain a

number of possible behaviours of a system. The results of stochastic simulations
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are more accurate than those obtained by the numerical solution of the differential

equations, in particular when the number of components of the system is very small.

Model-checking is one of the analysis techniques commonly used in Computer

Science that could be applied to biomolecular systems. This technique permits the

verification of properties of a system (expressed as logical formulas) by exploring

all possible behaviours the system may have. To take into account all the pos-

sible behaviours of a system (each associated with a probability) a stochastic (or

probabilistic) tool has to be used, such as PRISM [14], Murphi [18] or PMaude [3].

In this paper we face the problem of applying model-checking to biomolecular

systems described with Stochastic CLS [5] and we show some preliminary results.

Stochastic CLS is the stochastic extension of the Calculus of Looping Sequences

(CLS), that is a formalism based on term rewriting that allows biomolecular systems

to be described by taking into account their structure and by allowing very general

events to be modelled. Among the tools we mentioned above, the most suitable

for the application to Stochastic CLS is PMaude. Such a tool is the probabilistic

extension of Maude [10], a rewrite-based modelling language. The other tools we

mentioned, namely PRISM and Murphi, are less suitable because they do not offer

a natural way to describe the structures considered in Stochastic CLS.

Unfortunately, the VESTA tool [1], the only model-checker for PMaude models

is not accessible due to a problem in the download procedure. Since PMaude does

not have model-checking capabilities, we will use Real-Time Maude [17] an exten-

sion of Maude with time rather than probabilities. We will follow the approach of

Thorvaldsen and Olveczky [16] to add probabilistic behaviour to a Real-Time Maude

specification: roughly speaking, we will exploit a pseudo-random number generator

to develop a stochastic simulation algorithm used by the engine of Real-Time Maude

to construct and analyse a possible behaviour of the system. Different behaviours

will be obtained by initializing the number generator with different seeds. A con-

sequence of this approach is that we will loose the completeness of the state space

exploration (we can no longer ensure that all possible behaviours are considered).

However, this approach may allow us to analyse very complex and infinite state

systems, as essentially we restrict the verification to a finite (arbitrary) number of

possible behaviours. This approach is also known as statistical model-checking [21].

As regards related work, Andrei, Ciobanu and Lucanu [4] define an operational

semantics of P systems which is used to give a translation of such systems into

Maude specifications. The aim of such a translation is to obtain executable speci-

fications of P systems (that can also be verified). Their work was very challenging

because P systems are based on a notion of maximal parallelism that is not easy

to implement in Maude. Our work has a different purpose. We are interested

in studying biomolecular systems and the major challenge, in our case, is to han-

dle stochasticity. Other examples of application of model-checking to biomolecular

systems are cited in the references [13,9]. An example of well-established formal

framework that can be used to model, simulate and model-check descriptions of bi-

ological systems is the PEPA process algebra and related tools [2]. Calder, Gilmore

and Hilston use the PEPA process algebra and its related tools to model and anal-
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yse the influence of Raf Kinase Inhibitor Protein (RKIP) on the Extracellular signal

Regulated Kinase (ERK) signalling pathway [7].

The rest of the paper is structured as follows. Section 2 contains a brief de-

scription of CLS and Stochastic CLS. Section 3 gives an overview of Maude and

Real-Time Maude and describe the translation of Stochastic CLS into the latter.

Section 4 shows the analysis of some examples and of a model of the lactose operon

regulation in E.coli. Section 5 concludes the paper with an overview of related work.

2 Calculi of Looping Sequences

In this section we recall the Calculus of Looping Sequences (CLS). We assume a

possibly infinite alphabet E of symbols ranged over by a, b, c, . . .

Definition 2.1 Terms T and Sequences S are given by the following grammar:

T ::= S
∣∣ (

T
)L

� T
∣∣ T | T S ::= ε

∣∣ a
∣∣ S · S

where a is a generic element of E , and ε represents the empty sequence. We denote

with T the infinite set of terms, and with S the infinite set of sequences.

In CLS we have a sequencing operator · , a parallel composition operator

| , a looping operator
( )L

and a containment operator � . Sequencing can be

used to concatenate elements of the alphabet E . The empty sequence ε denotes the

concatenation of zero symbols. By definition, looping and containment are always

applied together, hence we can consider them as a single binary operator
( )L

� .

Brackets can be used to indicate the order of application of the operators, and we

assume
( )L

� to have precedence over | .

Sequences of CLS can model DNA/RNA strands by describing each gene with a

symbol of the alphabet. Similarly, they can be used to model proteins by describing

protein interaction sites with alphabet symbols. Membranes are closed surfaces,

often interspersed with proteins, which may have a content. Looping and contain-

ment allow the representation of membranes with their contents. For example, the

term
(
a | b

)L
� c represents a membrane with the elements a and b on its surface

and containing the element c. Other macro–molecules can be modeled as single

alphabet symbols, or as short sequences. Finally, juxtaposition of entities can be

described by the parallel composition of their representations.

In CLS we may have syntactically different terms representing the same struc-

ture. We introduce a structural congruence relation to identify such terms.

Definition 2.2 The structural congruence relations ≡S and ≡ are the least con-

gruence relations on sequences and on terms, respectively, such that ≡ includes ≡S

and satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S

T1 | T2 ≡ T2 | T1 T1 | (T2 | T3) ≡ (T1 | T2) | T3 T | ε ≡ T
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Rules of the structural congruence state the associativity of · and | , the com-

mutativity of the latter and the neutral role of ε.

Rewrite rules will be defined essentially as pairs of terms, in which the first term

describes the portion of the system in which the event modeled by the rule may

occur, and the second term describes how that portion of the system changes when

the event occurs. In the terms of a rewrite rule we allow the use of variables. As a

consequence, a rule will be applicable to all terms which can be obtained by properly

instantiating its variables. Usually, CLS is defined by considering variables of three

kinds, namely term, sequence and element variables, that can be instantiated with

terms, sequences and individual alphabet symbols, respectively. Here, for the ease

of the translation into Maude, we consider only one type of variables, namely term

variabels. We assume a set of (term) variables V ranged over by X,Y,Z, . . .. A

pattern is a term which may include variables.

Definition 2.3 Patterns P of CLS are given by the following grammar:

P ::= S
∣∣ (

P
)L

� P
∣∣ P | P

∣∣ X

where a is a generic element of E and X is a generic element of V. We denote with

P the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to pat-

terns. An instantiation is a partial function σ : V → T . Given P ∈ P, with Pσ

we denote the term obtained by replacing each occurrence of each variable ρ ∈ V

appearing in P with the corresponding term σ(ρ). With Σ we denote the set of

all the possible instantiations and, given P ∈ P, with V ar(P ) we denote the set of

variables appearing in P . Now we define rewrite rules.

A rewrite rule is a pair of patterns (P1, P2), denoted with P1 �→ P2, where

P1, P2 ∈ P, P1 �≡ ε and such that V ar(P2) ⊆ V ar(P1). A rule P1 �→P2 states that a

term P1σ, obtained by instantiating variables in P1 by instantiation function σ, can

be transformed into the term P2σ. We give the semantics of CLS as a transition

system, in which states correspond to terms, and transitions correspond to rule

applications.

Definition 2.4 Given a finite set of rewrite rules R, the semantics of CLS is the

least transition relation → on terms closed under structural congruence ≡ and

satisfying the following inference rules:

1.
P1 �→P2 ∈ R P1σ �≡ ε σ ∈ Σ

P1σ → P2σ
2.

T1 → T2

T | T1 → T | T2

3.
T1 → T2(

T
)L

� T1 →
(
T

)L
� T2

4.
T1 → T2(

T1

)L
� T →

(
T2

)L
� T

A model in CLS is given by a term describing the initial state of the system and

by a set of rewrite rules describing all the events that may occur.
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Stochastic CLS is the extension of CLS with stochastic rates associated with

the application of rewrite rules. More precisely, rewrite rules in Stochastic CLS are

enriched with a rate constant that is multiplied, in the semantics, by the number of

different occurrences of instantiations of the left hand side of the rule in the term

to which the rule is applied. This corresponds to what usually done in chemical

kinetics, where the rate of occurrence of a chemical reaction is computed by multi-

plying the kinetic constant of the reaction by the number of possible combinations

of reactants. Rather than giving the (quite complex) definition of the semantics of

Stochastic CLS, we will directly show, in the following, how we compute the rate of

application of a Stochastic CLS rule in a Maude specification.

3 Translation of Stochastic CLS into Real-Time Maude

Maude [10] is a specification language equipped with efficient analysis tools, which

supports three modelling paradigms: algebraic style (via equations), rewrite logic

(via rewrite rules) and object-oriented paradigm (via classes and messages). System

components are modelled in Maude as modules. A functional module is a Maude

module that contains only the signature and equations of a system. The signature

specifies type structure (in terms of sorts, subsorts and kinds) and operators. Equa-

tions are applied from left to right to simplify expressions. Functional modules are

enclosed by keywords fmod and endfm. A system module is a functional module

enriched with rewrite rules. System modules are enclosed by keywords mod and

endm. An object-oriented module is basically a system module, equipped with a

richer syntax to define classes (and objects), messages and configurations of objects

and messages. Object-oriented modules are enclosed by keywords omod and endom.

Real-Time Maude [17] extends Maude by introducing two more kinds of mod-

ule, timed modules and object-oriented timed modules. Timed modules are enclosed

by keywords tmod and endtm, and object-oriented timed modules are enclosed by

keywords tomod and endtom. Any timed module or object-oriented timed module

automatically imports a predefined TIME module, which defines abstract time do-

mains. We can choose between two kinds of time domain: discrete time, which uses

natural numbers, and dense time, which uses positive rational numbers.

There are two kinds of rewrite rules in Real-Time Maude: instantaneous rules

and tick rules. Instantaneous (conditional) rewrite rules are written as

crl [l ] : t => t’ if cond .

where an analogous unconditional rule can be obtained by replacing crl with rl and

by omitting if cond . A conditional rewrite rule can only fire if the condition cond

is satisfied. Label l is the name of the rewrite rule, which is useful for debugging

purpose. Pattern t matches the system state and, after the rule is executed, changes

to t’. These rewrite rules take 0 time to occur. Tick rules are written as

crl [l ] : {t } => {t’ } in time τ if cond .

where τ denotes the duration of the rewrite.

Tick rules can be either deterministic or nondeterministic. Time-deterministic

tick rules have the following forms:
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crl [l ] : {t } => {t’ } in time c if cond .

where c is a constant.

Time-nondeterministic tick rules have one of the following forms:

crl [l ] : {t } => {t’ } in time x if cond /\ x r u /\ cond’

[nonexec] .

crl [l ] : {t } => {t’ } in time x if cond [nonexec] .

where x is a time variable which does not occur in t and which is not initialised in

the condition, and r is either < or <=. Attribute nonexec ensures that the rule is

not directly executed in Maude. In fact, variable x is not assigned to any value,

making nondeterministic tick rules nonexecutable in Maude. A time-sampling

strategy, which assigns a value to variable x, must be chosen by the user at run-time

to enable the execution of these rules.

In order to define the translation of Stochastic CLS into Real-Time Maude we

first give a formal translation of CLS into rewriting logic (the formalism underlying

Maude) in Section 3.1. After this, since Real-Time Maude is not stochastic, we show

in Section 3.2 how Gillespie’s stochastic simulation algorithm can be implemented

in Real-Time Maude so to add stochasticity to CLS models. This will require a

function to compute the number of occurrences of left-hand sides of CLS rewrite

rules in the term representing the current state of a stochastic simulation. Such a

function is given in Section 3.3. Finally, we show how Stochastic CLS terms are

rules can be actually represented in Real-Time Maude in Section 3.4.

3.1 Translation of CLS into Rewriting Logic

Rewriting logic is parametrized with respect to the version of the underlying equa-

tional logic. Since the abstract syntax of CLS consists of two different sorts (terms

and sequences), for a natural translation of CLS into rewriting logic we should con-

sider a many-sorted logic. However, since we defined CLS sequences in such a way

that they cannot contain variables, we can consider them as taken from a given

countably infinite set S. This permits us to rewrite the syntax of CLS terms and

patterns in the following equivalent (single sorted) way:

T ::= ε
∣∣ S

∣∣ (
T

)L
� T

∣∣ T | T

P ::= ε
∣∣ S

∣∣ (
P

)L
� P

∣∣ P | P
∣∣ X

where S ∈ S and X ∈ V.

Now, we recall from Marti-Oliet and Meseguer [15] the definition of rewriting

logic based on an unsorted equational logic and with unconditional rewrite rules.

Given a signature (Σ, E), where Σ = {Σn | n ∈ IN} is a ranked alphabet and E is a

set of equations on Σ-terms, sentences of rewriting logic have the form [t]E −→ [t′]E ,

where t and t′ are Σ-terms possibly involving some variables from the countably

infinite set X = {x1, . . . , xn, . . .}, and [t]E and [t′]E are E-equivalence classes of t

and t′. In what follows we shall denote the set of all such equivalence classes with

TΣ,E(X) and we always omit the subscript E from the notation of E-equivalence

classes.
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A rewrite theory R is a 4-tuple R = (Σ, E, L,R) where (Σ, E) is a signature,

L is a set of labels and R ⊆ L × TΣ,E(X)2 is a set of rewrite rules. We denote a

rewrite rule (r, t, t′) with r : [t] −→ [t′].

A rewrite theory R entails a sequent [t] −→ [t′], namely R 	 [t] −→ [t′], if and

only if [t] −→ [t′] can be obtained by finite application of the following rules of

deduction:

(r1)
[t] −→ [t]

(r2)
[w1] −→ [w′

1] . . . [wn] −→ [w′
n]

[t(w1, . . . , wn/x1, . . . , xn)] −→ [t′(w′
1, . . . , w

′
n/x1, . . . , xn)]

(r3)
[t1] −→ [t′1] . . . [tn] −→ [t′n]

[f(t1, . . . , tn)] −→ [f(t′1, . . . , t
′
n)]

(r4)
[t1] −→ [t2] [t2] −→ [t3]

[t1] −→ [t2]

where (r2) applies for each rewrite rule r : [t(x1, . . . , xn)] −→ [t′(x1, . . . , xn)] in R.

The syntax and the structural congruence of CLS can be translated easily into

a signature (Σ, E). We have Σ = Σ0 ∪Σ2 where Σ0 = S ∪{ε}, Σ2 = {
( )L

� , | }

and E containing equations stating the commutativity and associativity of | and

the neutral role of ε with respect to | . The variables that can appear in Σ-terms

coincide with CLS variables. A set of CLS rewrite rules R can be translated into

a rewrite theory (Σ, E, L,R) as follows. Let us assume that R contains n rules,

(Σ, E) is the signature obtained from the syntax and the structural congruence of

CLE, L is the set of labels {R1, . . . , Rn} and each rule P1 �→ P2 in R (let us assume

it is the i-th rule of R) is translated into the rewrite rule Ri : [P1] −→ [P2] in R.

Now, by assuming →∗ to be the symmetric and transitive clousure of →, we can

prove the following results.

Lemma 3.1 Given T1, T2 ∈ T , it holds T1 → T2 =⇒ [T1] −→ [T2].

Proof. We prove the implication by induction on the derivation of the transition

relation of CLS. The base case is when the transition T1 → T2 is derived by applying

rule 1 of the semantics of CLS. In this case a CLS rewrite rule P1 �→ P2 has been

applied with P1σ ≡ T1 and P2σ ≡ T2. Such a rewrite rule has a corresponding

rewriting logic rewrite rule in R that can be applied by means of deduction rule (r2)

in order to obtain [T1] −→ [T2]. The induction cases are when the transition T1 → T2

is obtained by applying as the last deduction rule either rule 2, 3 or 4 of the CLS

semantics. In all these cases an equivalent rewriting logic transition can be derived

by applying deduction rule (r3). For instance, if T1 ≡ T ′
1 | T ′′

1 → T ′
2 | T ′′

1 ≡ T2,

namely rule 2 has been applied as the last one, we have that (r3) can be used with

premises [T ′
1] −→ [T ′

2] (to which the induction hypothesis applies) and [T ′′
1 ] −→ [T ′′

2 ]

in order to obtain [T1] −→ [T2]. �

Proposition 3.2 Given T1, T2 ∈ T , it holds T1 →∗ T2 ⇐⇒ [T1] −→ [T2].

Proof. The implication from left to right follows from Lemma 3.1 and from de-

duction rules (r1) and (r4) of rewriting logic that are reflexivity and transitivity

rules. The implication from right to left can be proved by induction on the deriva-

tion of the transition relation of rewriting logic. The only non-trivial aspect of this
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proof is that deduction rules (r2) and (r3) allow the simultaneous application of

two rewrite rules in two different positions of the current term. For instance, we

might have [T ′
1 | T ′′

1 ] −→ [T ′
2 | T ′′

2 ] by applying (r3) with premises [T ′
1] −→ [T ′

2] and

[T ′′
1 ] −→ [T ′′

2 ] with both T ′
1 �≡ T ′

2 and T ′′
1 �≡ T ′′

2 (namely, a rule has been applied to

T ′
1 and another one – possibly the same – to T ′

2). This problem can be solved by

observing that the two rules are applied to different (independent) subterms, hence

the simultaneous application can be simulated by a sequence of two rule applications

in the semantics of CLS. Hence we have that [T ′
1 | T ′′

1 ] −→ [T ′
2 | T ′′

2 ] corresponds to

T ′
1 | T ′′

1 → T ′
2 | T ′′

1 → T ′
2 | T ′′

2 , that is T ′
1 | T ′′

1 →∗ T ′
2 | T ′′

2 . �

We remark that the transition relation of rewriting logic contains transitions

between non-ground terms (namely patterns in P in which some variable occurs)

that have no corresponding transition in CLS semantics. However, these transitions

never arise when an initial ground term is considered.

3.2 Stochastic Simulation Algorithm

The most followed approach to the stochastic simulation of chemical reactions is the

one proposed by Gillespie [12]. Gillespie stated the problem as follows: A volume V

contains a mixture of N chemical species S1, . . . , SN which can interreact through

M chemical reaction channels (R1, . . . , RM ). Given the initial numbers of molecules

of each species, what will these molecular population levels be at any later time?

The state of the system is represented by a vector X(t) = (X1(t), · · · ,XN (t)),

where Xi(t) represents the number of Si molecules in V at time t. Gillespie assumed

that for every reaction channel Rμ, there is a constant cμ such that cμdt is the

average probability a particular combination of reactant molecules in Rμ will react

accordingly in the next infinitesimal time interval dt. To calculate the probability

that a reaction Rμ will occur in V in the next infinitesimal time interval (t, t + dt),

we must multiply cμdt by the total number of distinct combinations of Rμ reactant

molecules in V at time t.

Given that X(t) = x, the total number of distinct combinations of reactant

molecules in Rμ is denoted with hμ(x). Gillespie defined the propensity function

aμ(x) for reaction Rμ as the product of hμ(x) and cμ, such that aμ(x) dt is the

probability that one Rμ reaction will occur in the next infinitesimal time interval

[t, t+dt). Propensity functions are used by Gillespie to define the following stochas-

tic algorithm for the simulation of chemical reactions. Let a0(x) =
∑M

i=1 ai(x), and

let τ and μ be random numbers computed as follows:

τ =
1

a0(x)
ln(

1

r1
) (1)

μ = the integer for which

μ−1∑

v=1

av(x) < r2a0(x) ≤

μ∑

v=1

av(x) (2)

where r1, r2 ∈ [0, 1] are two real values generated by a random number generator.

Gillespie’s algorithm is as follows:
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Step 0 Input M values representing reaction constants c1, . . . , cM , and N values

representing initial molecular population numbers X1, . . . ,XN . Input total time

and initialise time variable t to 0.

Step 1 Calculate ai(x) for i = 1 to M . Calculate a0(x).

Step 2 Generate r1 and r2 and calculate τ and μ.

Step 3 Increase t by τ . If t > total time then stop simulation, otherwise execute

Rμ, update X1, . . . ,XN accordingly and return to Step 1.

Time progression in Real-Time Maude is controlled by tick rules. Deterministic

tick rules only allow us to set time progression to a constant value. Nondeterministic

tick rules give more flexibility by allowing us to set time progression to the value of

a variable. This variable is assigned to a value by using a time-sampling strategy,

which is chosen by the user at run-time. However, neither deterministic tick rules

nor nondeterministic ones are suitable for implementing Gillespie’s algorithm in

which time progression must be calculated as in Eq. (1). To solve this problem,

we add another time variable to Gillespie’s algorithm that is always incremented

by a fixed amount of time Δt. This new time variable is interpreted by Real-Time

Maude (and its analysis tools) as the simulation time. Note that the simulation

algorithm is still exact as the new time variable has no influence on the simulation.

For our purpose, we modify Gillespie’s algorithm as follows:

Step 0 Input M values representing reaction constants c1, . . . , cM , and N values

representing initial molecular population numbers X1, . . . ,XN . Input total time

and initialise time variable t to 0.

Step 1 Calculate ai for i = 1 to M . Calculate
∑M

v=1 av. Set τ and delta to 0.

Select a value to initialise seed.

Step 2 Generate r1 and calculate τ according to equation (1). Increase seed by 2.

Step 3 While t + τ ≥ tstep do increase tstep by Δt. If tstep > total time then

stop simulation. Otherwise generate r2 and select μ according to equation (2),

increase seed by 2 and increase t by τ .

Step 4 Execute Rμ. Update X1, . . . ,XN and a1, . . . , aN according to the execution

of Rμ.

Step 5 Calculate
∑M

v=1 av. Return to Step 2.

In this algorithm we use variable tstep to record the current time of the simula-

tion. Variable total time is used to limit the duration of simulation. Time is always

increased by Δt. Between two time progressions, several reactions may occur. Vari-

able t is used to record the real simulation time according to Gillespie’s algorithm.

Variable τ is used to record the time lapse until next reaction occurs. In step 3,

we compare t (after increased by τ) with tstep to check whether the next reaction

will occur within this interval, or within the next interval. If the next reaction will

not occur within the current interval, tstep should be continuously increased by

Δt until the correct time interval is found. We use the built-in random number

generator from Real Time Maude, which can be used to generate random numbers
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in [0,1]. Variable seed is a parameter of the random number generator. In order to

generate distinct random numbers, this variable must be updated after being used

to generate a random number.

3.3 Computing the Combinations of Reactants

We have seen that the combinations of reactants play a crucial role in Gillespie’s

algorithm. We have also seen that the analogous of the combinations of reactants

in Stochastic CLS are the different occurrences of the instantiations of a left hand

sides of rewrite rules. To count these occurrences we define a function occ(T, T ′)

that gives the number of occurrences of a term T in another term T ′. This function

will be used to compute the propensity function in our simulation algorithm.

To use the function in our simulation algorithm, we need to define it carefully

in order not to make the computation take too much time. Therefore we try to

minimise the recursive definition of the function. We start with an idea of grouping

parallel composition of similar terms. Let Grouped Terms GT and Base Terms BT

be given by the following grammar:

GT ::= {BT}N
∣∣ GT | GT BT ::=

(
GT

)L
� GT

∣∣ S

where S is as defined in Section 2 and N is a natural number greater than 0.

It is easy to see that every CLS term can be represented as a grouped term.

For example
(
a | b · b | b · b

)L
� (

(
c | c | c | c

)L
� (d · d | d · d | e)) can be

represented as {
(
{a}1 | {b ·b}2

)L
� ({

(
{c}4

)L
� ({d ·d}2 | {e}1)}1}1. Actually, more

than one grouped representations of a CLS term can be given. In the following

we shall assume always a minimal representation in which structurally congruent

terms that are composed in parallel are always grouped together. For instance,

as the only valid grouped representation of
(
a
)L

� (
(
b
)L

� (c | d) |
(
b
)L

� (d |

c)) we will always consider {
(
{a}1

)L
� ({

(
{b}1

)L
� ({c}1 | {d}1)}2)}1 and not

{
(
{a}1

)L
� ({

(
{b}1

)L
� ({c}1 | {d}1)}1|{

(
{b}1

)L
� ({d}1 | {c}1)}1)}1 since the two

inner loopings are structurally congruent and can be grouped together.

Definition 3.3 Grouped terms subset (⊆) is defined as follows:

(i) {BT} N ⊆ {BT} M | GT if N ≤ M

(ii) {BT} N | GT ⊆ {BT} M | GT1 if N ≤ M and GT ⊆ GT1

(iii) GT �⊆ GT1 if both (i) and (ii) are not satisfied

Now, by relying on the grouped representation of CLS terms we define a func-

tion occ that, given two (grouped) terms GT1 and GT2 computes the number of

occurrences of GT1 in GT2 (up to structural congruence).
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Definition 3.4 Relation occ(GT1, GT2) is recursively defined as follows:

occ(GT, ε) = 0 if GT �≡ ε occ(ε,GT ) = 1 (1-2)

occ(GT1, GT2) = occ(GT1, GT3) if GT2 ≡ GT3 (3)

occ({BT1}M |GT1, {BT2}N |GT2) =
“N

M

”
× occ′(GT1, GT2) + occ({BT1}M |GT1, GT2) (4)

if BT1 ≡ BT2

occ({BT}M |GT1, {
`
GT2

´
L
�GT3}N |GT4) =

N × (occ({BT}M |GT1, GT2) + occ({BT}M |GT1, GT3)) + occ({BT}M |GT1, GT4) (5)

if {BT}M �⊆ {
`
GT2

´L
�GT3}N |GT4

occ({BT}M |GT1, GT2) = 0 if {BT}M �⊆ GT2 and ∀GT3, GT4, N.{
`
GT3

´L
� GT4}N �⊆ GT2 (6)

where relation occ′(GT1, GT2) is recursively defined as follows:

occ′(GT, ε) = 0 if GT �≡ ε occ′(ε, GT ) = 1 (1’-2’)

occ′(GT1, GT2) = occ′(GT1, GT3) if GT2 ≡ GT3 (3’)

occ′({BT1}M |GT1, {BT2}N |GT2) =
“N

M

”
× occ′(GT1, GT2) if BT1 ≡ BT2 (4’)

occ′({BT}M |GT1, GT2) = 0 if {BT}M �⊆ GT2 (5’)

Let us consider a notion of set of layers of a term containing the term itself (called

first layer) and all its subterms that are operands of some looping and containment

operator. For instance, a |
(
b
)L

�
(
c
)L

� (d | d) has itself, b,
(
c
)L

� (d | d), c

and d | d as layers. Every computation of occ consists of two parts. The first part

computes the number of occurrences of a term in the same layer. The second part

computes the number of occurrences of a term in the inner layers. The function occ

calls occ′ to recursively compute the first part, while the second part is computed by

recursively calling occ itself. We give an example of computation of the occ function.

Example 3.5 We compute the number of occurrences of term a | a | b in term

a | a |
(
c
)L

� (a | a | a | b) | b | b as follows:

occ({a}2 | {b}, {a}2 | {
`
{c}1

´
L
� ({a}3 | {b}1)}1 | {b}2)

=
“2

2

”
× occ′({b}1, {

`
{c}1

´
L
� ({a}3 | {b}1)}1 | {b}2) + occ({a}2 | {b}1, {

`
{c}1

´
L
� ({a}3 | {b}1)}1 | {b}2)

=
“2

2

”“2

1

”
+ occ({a}2 | {b}1, {

`
{c}1

´
L
� ({a}3 | {b}1)}1 | {b}2)

=
“2

2

”“2

1

”
+ occ({a}2 | {b}1, {c}1) + occ({a}2 | {b}1, {a}3 | {b}1) + +occ({a}2 | {b}1, {b}2)

=
“2

2

”“2

1

”
+ 0 +

“3

2

”“1

1

”
+ 0 = 2 + 3 = 5

We said that occ is a function, but this does not follow immediately from its

definition. Let us prove the following result.

Proposition 3.6 Relation occ is a total function.

Proof. We first prove that occ is total, namely it is defined for all possible pairs of

arguments (GT1, GT2). Rules (1) and (2) deal with the cases in which one of the

T.A. Basuki et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 37–58 47



two arguments is ε, rule (4) with the case in which the first base term of the first

argument occurs also in the first layer of the second argument (possibly repeated

a different number of times), and rules (5) and (6) with the case in which the

first base term of the first argument does not occur in the first layer of the second

argument. The difference between (5) and (6) is that in the former the second

arguement contains a looping while in the latter it does not. Rule (3) ensures that

if the two arguments are in the situation in which rule (4) should apply, then the

second argument can be rearranged in such a way that rule (4) becomes applicable.

A similar, but simpler, totality proof can be given for occ′.

Now we prove that occ is a function. Given GT1 and GT2 we might have more

than one ways of computing occ(GT1, GT2) mainly for two reasons: (i) if GT1 �⊆ GT2

but GT1 = {BT}N |GT ′
1 and GT2 ≡ {BT}M |GT ′

2 with N < M than both rule (4)

and one between (5) and (6) can be applied, and (ii) structural congruence applied

by means of rule (4) can change the order of the loopings to which rule (5) is applied.

We have to prove that in both cases (i) and (ii) all the different ways of computing

occ(GT1, GT2) lead to the same result. As regards (i), we only have to observe that

the binomial coefficient in (4) is equal to zero (by definition) when N < M and that

occ({BT1}M |GT1, GT2) essentially searches for occurrences of the first argument in

inner layers of GT2 as done by rule (5). As regards (ii), the result is the same thanks

to the commutativity of +. Similar considerations can be done on occ′. �

Now, the only problem we have is that CLS rewrite rules may contain variables.
(At the moment the occ function is defined only on ground terms.) For the sake
of simplicity we restrict here to rewrite rules in which the left hand side is either

ground or it has one of the following forms: either T1 |
(
T2 | X

)L
� T3, or T1 |(

T2

)L
� (T3 | X), or T1 |

(
T2 | X

)L
� (T3 | Y ). Under this restriction the occ

function can be extended to handle variables as follows:

occ({
`
GT1 | X

´
L
� GT2}1 | GT3, {

`
GT1 | GT4

´
L
� GT2}N | GT5) =

N × occ(GT1, GT1 | GT4) × occ′(GT3, GT5) + occ({
`
GT1 | X

´
L
� GT2}1 | GT3, GT5)

occ({
`
GT1

´
L
� (GT2 | X)}1 | GT3, {

`
GT1

´
L
� (GT2 | GT4)}N | GT5) =

N × occ(GT2, GT2 | GT4) × occ′(GT3, GT5) + occ({
`
GT1

´
L
� (GT2 | X)}1 | GT3, GT5)

occ({
`
GT1 | X

´
L
� (GT2 | Y )}1 | GT3, {

`
GT1 | GT4

´
L
� (GT2 | GT5)}N | GT6) =

N × occ(GT1, GT1 | GT4) × occ(GT2, GT2 | GT5) × occ′(GT3, GT6)+

occ({
`
GT1 | X

´
L
� (GT2 | Y )}1 | GT3, GT6)

We leave the definition of occ without restrictions on variables as future work.

3.4 Translation of Stochastic CLS terms and rewrite rules

We start by defining the syntax for CLS terms in the following module.

(omod CLS is
pr NAT .
sorts Elem Seq Term Loop .
subsorts Elem < Seq < Term .

op empty : -> Seq [ctor] .
op _._ : Seq Seq -> Seq [assoc gather (E e) id: empty ctor] .
op ‘{_‘}_ : Term Nat -> Term .
op ‘[_‘]LContains‘[_‘] : Term Term -> Term [prec 41 gather (& &) ctor] .
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op _|_ : Term Term -> Term [assoc comm prec 45 gather (E e) id: empty ctor] .
.
.
.

endom)

In this module we define CLS elements, sequences and terms, as well as all related

operators. The set of elements is defined as a subset of the set of sequences, and the

set of sequences is defined as a subset of the set of terms. We combine the looping

and containment operators into one operator, LContains. Keywords assoc and

comm are used to define associativity and commutativity of an operator. Keyword

id: is used to define the identity of an operator. Constructors are denoted by the

ctor attribute. Keyword prec is used to define the precedence of an operator. Key-

word gather is used to remove ambiguity in parsing, by indicating the precedence

of arguments in an operator definition. We give a sequence of as many E, e, or &

values as the number of arguments in the operator. An e value indicates that the

precedence of the argument must be lower than the precedence of the operator. An

E value indicates that the precedence of the argument must be lower than or equal

to the precedence of the operator. To allow any precedence for an argument, we

must use & in the gather attribute.

In module SCLS we define data structures needed by the simulation algorithm.

The term that models the state of the system is incorporated within class CLSTerm.

We also define another class, Admin, that records all variables in the algorithm. We

define the SCLS module as follows:
(tomod SCLS is

inc CLS .
sorts Propensity Propensities .
subsort Propensity < Propensities .

class CLSTerm | term : Term .
class Admin | seed : Nat, step : Nat, tau : Float, mu : Nat,

a : Propensities, acum : Propensities, tstep : Float, t : Float .

.

.

.
endom)

Attributes seed, step, tau, mu, tstep and t represent variables used by the al-

gorithm. We define Propensity as a sort to represent the index and value of a

propensity function. The list of all propensity functions are represented as a sort

Propensities. The attribute a represents the list of ai for i = 1 to M , while

attribute acum represents the list of
∑i

v=1 av for i = 1 to M .

We define rewrite rules in another module that imports the SCLS module. In

this module we define every chemical species involved in the system as a Maude

operator with Elem type. We explain this using the Lotka reactions [12].

We consider the simple irreversible isomerisation reaction and the Lotka reac-

tions as case studies. The simple irreversible isomerisation reaction is defined as

S1
k
→ S2 (3)

where k = 0.5. The Lotka reactions are defined as follows:

S1
k1→ S1|S1 S1|S2

k2→ S2|S2 S2
k3→ ε (4)
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where k1 = 10, k2 = 0.01 and k3 = 10.

For each case study we define a module that imports the previously defined

CLS and SCLS modules. Then we implement step 0 and step 1 of the algorithm by

defining equations and rewrite rules that initialise the system as follows.
ops S1 S2 : -> Elem .
ops lotka Adm : -> Oid .
op INIT : Term -> GlobalSystem .
op ReactionNum : -> Nat .

eq ReactionNum = 3 .
eq INIT(T) =

{ < lotka : CLSTerm | term : T >
< Adm : Admin | seed : 0, t : 0.0, step : 1, tstep : 0.0,

a : ([1 (10 * occ({ S1 } 1,T))] [2 (occ({ S1 } 1 | { S2 } 1,T) / 100)]
[3 (10 * occ({ S2 } 1,T))]),

acumm : ([1 0] [2 0] [3 0]), tau : 0.0, mu : 0 >
} .

rl [ initialise1 ] :
< Adm : Admin | step : 1, a : P, acumm : P’ >

=>
< Adm : Admin | seed : random(1), step : 2, a : P, acumm : sum(P’,P,1,ReactionNum) > .

.

.

.
rl [ initialise100 ] :

< Adm : Admin | step : 1, a : P, acum : P’ >
=>

< Adm : Admin | seed : random(100), step : 2, a : P, acum : sum(P’,P,1,ReactionNum) > .

The operators lotka and Adm represent objects instantiated from classes

CLSTerm and Admin. The operator ReactionNum represents the number of reaction

channels M . The occ function is used to define the propensity of each reaction.

The rules initialise1 to initialise100 perform two things: calculating the cu-

mulative propensity acum using function sum (which is defined in module SCLS),

and initialising the random number generator with 100 distinct numbers. It models

nondeterminism in the system by allowing the simulation to run in 100 different

behaviours.

We notice from the above rewrite rules that in object-oriented modules, only

relevant attributes are shown in the left-hand side of the rules. In the right-hand

side of the rules, only attributes whose values are changed are needed.

Step 2 of the algorithm can be defined using the following rewrite rule.

rl [ calculate-tau ] :
< Adm : Admin | step : 2, acum : (P [ReactionNum F1]), seed : M >

=>
< Adm : Admin | step : 3, tau : ((- log(float(rand(M)))) / float(F1)), seed : (M + 2) > .

Step 3 of the algorithm can be defined using the following rewrite rules.

crl [ select-mu ] :
< Adm : Admin | step : 3, acum : (P [ReactionNum F1]), tau : F’’,

tstep : F’, seed : M, t : F >
=>

< Adm : Admin | step : 4, mu : findmu(rand(M) * F1,P [3 F1],3),
seed : (M + 2), t : (F’’ + F) >

if F + F’’ < F’ .

crl [ tick ] :
{ < Adm : Admin | step : 3, tau : F’’, tstep : F’, t : F, acum : (P [3 F1]), seed : M >
C:Configuration }

=>
{ < Adm : Admin | step : 4, tstep : (F’ + float(R)), seed : (M + 2), t : (F’’ + F)

mu : findmu(rand(M) * F1,P [ReactionNum F1],ReactionNum) >
C:Configuration} in time R

if F + F’’ >= F’ [nonexec] .
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Function findmu(R,P,M) is a function that chooses the next reaction (μ) in accor-

dance with equation (2). The second rule is not directly executable in MAUDE,

since variable R is not yet assigned to any value. Real-Time MAUDE allows the

user to choose a time-sampling strategy (or tick mode) for instantiating variable

R in each tick rule application. In the following we choose the default mode to

instantiate variable R with 1/100.

(set tick def 1/100 .)

The execution of Lotka reactions (step 4 of the algorithm) can be defined as

follows:
crl [ S1 ] :

< O : CLSTerm | term : (T | { S1 } i) >
< Adm : Admin | a : ([1 F1] [2 F2] P), mu : 1, step : 4 >

=>
< O : CLSTerm | term : (T | { S1 } (i + 1)) >
< Adm : Admin | a : ([1 (occ({ S1 } 1,T | { S1 } (i + 1)) * 10)]

[2 (occ({ S1 } 1 | { S2 } 1,T | { S1 } (i + 1)) / 100)]
P),

step : 5 >
if i > 0 .

crl [ S2 ] :
< O : CLSTerm | term : (T | { S1 } i | { S2 } M) >
< Adm : Admin | mu : 2, step : 4 >

=>
< O : CLSTerm | term : (T | { S1 } sd(i,1) | { S2 } (M + 1)) >
< Adm : Admin | a : ([1 (occ({ S1 } 1,T | { S1 } sd(i,1) | { S2 } (M + 1)) * 10)]

[2 (occ({ S1 } 1 | { S2 } 1,T | { S1 } sd(i,1) | { S2 } (M + 1)) / 100)]
[3 (occ({ S2 } 1,T | { S1 } sd(i,1) | { S2 } (M + 1)) * 10)]),

step : 5 >
if i > 0 /\ M > 0 .

crl [ S3 ] :
< O : CLSTerm | term : (T | { S2 } i) >
< Adm : Admin | a : ([2 F2] [3 F3] P), mu : 3, step : 4 >

=>
< O : CLSTerm | term : T | { S2 } sd(i,1)>
< Adm : Admin | a : ([2 (occ({ S1 } 1 | { S2 } 1,T | { S2 } sd(i,1)) / 100)]

[3 (occ({ S2 } 1,T | { S2 } sd(i,1)) * 10)] P),
step : 5 >

if i > 0 .

where sd(i,1) is equal to i−1. Again here we use the occ function to calculate

the propensity of each reaction. To optimise the performance of the simulation,

we modify the algorithm such that in every application of a rule (that represents a

reaction occurs) we only need to recalculate the propensity of reactions that have

been modified by the application of the rule.

Step 5 of the algorithm is defined as follows:

rl [ summing-propensities ] :
< Adm : Admin | a : P’, acumm : P, step : 5 >

=>
< Adm : Admin | a : P’, acumm : sum(P,P’,1,3), step : 2 > .

where sum(acum,a,1,M) is a function to modify acumm based on new values in a.

4 Applications

In this section we show the application of Real-Time Maude analysis tools to models

obtained from the translation of Stochastic CLS models.
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Fig. 1. Simple irreversible isomerisation reaction with 1000, 5000 molecules and the Lotka reactions with
1000 molecules

4.1 Lotka reactions

The first way to analyse reactions using our approach is to run a simulation of

their Maude model. Maude has no features to visualise the result of a simulation.

Therefore we try to plot charts representing simulation results, and compare our

chart to similar charts from previous works (see [12]).

The following command shows a simulation of the Lotka reactions with 100

molecules of S1 and 100 molecules of S2 in 1/10 time units. The simulation is

performed using 1/100 as a tick value.

(set tick max def 1/100 .)
(tfrew INIT({S1} 100 |{S2} 100) in time <= 1/10 .)
rewrites: 1000656 in 6094650579ms cpu (97927ms real) (0 rewrites/second)

Timed fair rewrite INIT({S1}100 |{S2}100)in MODEL-CHECK-LOTKA with mode
maximal time increase with default 1/100 in time <= 1/10

Result ClockedSystem :
{< Adm : Admin | a :([1 2480]([2 2976/25][3 480](),acumm :([1 2480]([2
64976/25][3 76976/25](),t : 9.9892214323839157e-2,
.
.
.
in time 1/10

The above simulation shows that within 1/10 time units (e.g. after 0.0999 time

units) the Lotka reactions will stop because the next tick rule execution will increase

time so that it is greater than the time limit (1/10 time units). Using attribute a,

we can calculate the number of molecules of each reactant that are present at the

end of the simulation.

Figure 1 shows simulation results for the simple irreversible isomerisation reac-

tion and the Lotka reactions. It shows that our model behaves similarly to Gillespie’s

one [12].

By using the search command, we can check all possible behaviours of the

system. We have defined 100 rules to initialise the random number generator with

100 distinct random numbers. This allows Maude engine to explore a state space

with 100 different behaviours. Although this approach cannot cover all possible

behaviours of the system, it yields a significant sample of behaviours. The following

example shows the use of a search command initialised with 4 molecules of S1 and

4 molecules of S2, and limited to the first 10 states where no more occurrences of

S2 are available in the system.

(tsearch [10] INIT({S1} 4 | {S2} 4) =>* {< O:Oid : CLSTerm | term : T:Term > C:Configuration}
such that occ({ S2 } 1,T:Term) = 0 in time <= 1/10 .)
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Timed search [10] in MODEL-CHECK-LOTKA
INIT({S1}4 |{S2}4)=>* {< O:Oid : CLSTerm | term : T:Term > C:Configuration}

in time <= 1/10 and with mode maximal time increase with default 1/100 :

Solution 1
C:Configuration --> < Adm : Admin | a :([1 50]([2 0][3 0](),acumm :([1 50]([2

1001/20][3 1201/20](),t : 7.8293318117206676e-2,
.
.
.

Solution 10
C:Configuration --> < Adm : Admin | a :([1 80]([2 0][3 0](),acumm :([1 80]([2

80][3 80](),t : 5.6307289864345335e-2

Another interesting search command is the find earliest command, which

searches for the earliest time when a given state is reached. The following example

shows that the earliest time S2 vanishes from a system initialised with 4 molecules

of S1 and 4 molecules of S2 occurs within 3/50 time units (e.g. after 0.0563 time

units).

(find earliest INIT({S1} 4 | {S2} 4) =>* {< O:Oid : CLSTerm | term : T:Term >
C:Configuration} such that occ({ S2 } 1,T:Term) == 0 .)

Find earliest {< O:Oid : CLSTerm | term : T:Term > C:Configuration} in MODEL-CHECK-LOTKA
such that INIT({S1}4 |{S2}4)=>* {< O:Oid : CLSTerm | term : T:Term > C:Configuration}

with mode maximal time increase with default 1/100 :

Result: {< Adm : Admin | a :([1 80]([2 0][3 0](),acumm :([1 80]([2 2002/25][3 2252/25](),
t : 5.6307289864345335e-2,mu : 3,seed : 1646868826,step : 5,tstep : 6.0e-2,
tau : 1.3291670449923896e-3 > < lotka : CLSTerm | term :({S1}8)>} in time 3/50

To perform model-checking we define another module as follows:

(tomod MODEL-CHECK-LOTKA is
inc TIMED-MODEL-CHECKER .
pr LOTKA-INIT .

op vanished : Term -> Prop .
op IsLessThan : Term Term -> Prop .

eq { < O : CLSTerm | term : T’ > C} |= vanished(T) = (occ(T,T’) == 0) .
eq { < O : CLSTerm | term : T’’ > C} |= IsLessThan(T,T’) = (occ(T,T’’) < occ(T’,T’’)) .

.

.

.
endtom)

In the above module, we define some properties of the system, using our occ

function:

vanished(T) indicates that term T has vanished from the system,

IsLessThan(T,T’) indicates that the number of occurences of term T in the sys-

tem behaviour is less than the number of occurences of T’.

We give two examples of model-checking for Lotka reactions with 4 molecules of

S1 and 4 molecules of S2 as initial states. The first example shows that S2 will

eventually vanish from the system in 1 time unit. The second example shows that

the amount of S2 will become eventually less than the amount of S1 in the system

in 1 time unit.
(mc INIT({S1} 4 | {S2} 4) |=t <> vanished({ S2 } 1) in time <= 1 .)

Model check INIT({S1}4 |{S2}4) |=t <> vanished({S2}1)in MODEL-CHECK-LOTKA in time
<= 1 with mode maximal time increase with default 1/100

Result Bool :
true
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Fig. 2. The regulation process in the Lac Operon.

(mc INIT({S1} 4 | {S2} 4) |=t <> IsLessThan({ S2 } 1,{ S1 } 1) in time <= 1 .)

Model check INIT({S1}4 |{S2}4) |=t <> IsLessThan({S2}1,{S1}1)in MODEL-CHECK-LOTKA in time
<= 1 with mode maximal time increase with default 1/100

Result Bool :
true

Maude uses Linear Temporal Logic (LTL) as the logic to express properties

in model checking. The <> p formula is an LTL formula that means eventually

property p will hold in the system.

4.2 The lactose operon

The lactose operon is a sequence of six genes of the E.coli bacterium that are

responsible for producing three enzymes for lactose degradation, namely the lactose

permease, which is incorporated in the membrane of the bacterium and actively

transports the sugar into the cell, the beta galactosidase, which splits lactose into

glucose and galactose, and the transacetylase, whose role is marginal. The first

three genes of the operon (i,p,o) regulate the production of the enzymes, and the

last three (z,y,a), called structural genes, are transcribed (when allowed) into the

mRNA for beta galactosidase, lactose permease and transacetylase, respectively.

The regulation process is as follows (see Figure 2): gene i encodes the lac Repres-

sor, which, in the absence of lactose, binds to gene o (the operator). Transcription

of structural genes into mRNA is performed by the RNA polymerase enzyme, which

usually binds to gene p (the promoter) and scans the operon from left to right by

transcribing the three structural genes z, y and a into a single mRNA fragment.

When the lac Repressor is bound to gene o, it becomes an obstacle for the RNA

polymerase, and transcription of the structural genes is not performed. On the

other hand, when lactose is present inside the bacterium, it binds to the Repressor

and this cannot stop anymore the activity of the RNA polymerase. In this case the

transcription is performed and the enzymes for lactose degradation are synthesized.

In Stochastic CLS we can model the membrane of the bacterium as the looping(
m

)L
, where the alphabet symbol m generically denotes the whole membrane sur-

face in normal conditions. Moreover, we model the lactose operon as the sequence

lacI · lacP · lacO · lacZYA (lacI−A for short), in which each symbol corresponds
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lacI−A
0.02
	−→ lacI−A | Irna (R1)

Irna
0.1
	−→ Irna | repr (R2)

polym | lacI · lacP · x · lacZYA
0.1
	−→ lacI · PP · x · lacZYA (R3)

lacI · PP · x · lacZYA
0.01
	−→ polym | lacI · lacP · x · lacZYA (R4)

lacI · PP · lacO · lacZYA
20.0
	−→ polym | Rna | lacI−A (R5)

Rna
0.1
	−→ Rna | betagal | perm | transac (R6)

repr | lacI · y · lacO · lacZYA
1.0
	−→ lacI · y · RO · lacZYA (R7)

lacI · y · RO · lacZYA
0.01
	−→ repr | lacI · y · lacO · lacZYA (R8)

repr | LACT
0.005
	−→ RLACT (R9)

RLACT
0.1
	−→ repr | LACT (R10)

`
X

´
L
� (perm | Y )

0.1
	→

`
perm | X

´
L
� Y (R11)

LACT |
`
perm | X

´
L
� Y

0.001
	→

`
perm | X

´L
� (LACT |Y ) (R12)

betagal | LACT
0.001
	→ betagal | GLU | GAL (R13)

perm
0.001
	→ ε Irna

0.001
	→ ε transac

0.001
	→ ε (R14-R16)

repr
0.002
	→ ε betagal

0.01
	→ ε Rna

0.01
	→ ε (R17-R19)

RLACT
0.002
	→ LACT (R20)

Fig. 3. Rewrite rules of the Stochastic CLS model of the lactose operon.

to a gene (apart from the last three genes that are grouped together in the symbol

lacZYA). We replace lacO with RO in the sequence when the lac Repressor is bound

to gene o, and lacP with PP when the RNA polymerase is bound to gene p. When

the lac Repressor and the RNA polymerase are unbound, they are modeled by the

symbols repr and polym, respectively. We model the mRNA of the lac Repressor

as the symbol Irna, a molecule of lactose as the symbol LACT , and beta galactosi-

dase, lactose permease and transacetylase enzymes as symbols betagal, perm and

transac, respectively. Finally, since the three structural genes are transcribed into

a single mRNA fragment, we model such mRNA as a single symbol Rna.

The initial state of the bacterium when no lactose is present in the environment

and when 100 molecules of lactose are present are modeled by the following terms

(where n × T stands for a parallel composition T | . . . | T of length n):

Ecoli ::=
(
m

)L
� (lacI−A | 30 × polym | 1 × repr) (5)

EcoliLact ::= Ecoli | 100 × LACT (6)

The dynamics of the system is modeled by the rules in Figure 3, where x can be

either lacO or RO and y either lacP or PP . A rule with one of these placeholders

can be implemented in Maude either by writing two different rules or by using

conditional rules.

Rules (R1) and (R2) describe the transcription and translation of gene i into the

lac Repressor. Rules (R3) and (R4) describe binding and unbinding of the RNA

polymerase to gene p. Rules (R5) and (R6) describe the transcription and trans-
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lation of the three structural genes. Transcription of such genes can be performed

only when the sequence contains lacO instead of RO, that is when the lac Repressor

is not bound to gene o. Rules (R7) and (R8) describe binding and unbinding of

the lac Repressor to gene o. Finally, rules (R9) and (R10) describe the binding and

unbinding, respectively, of the lactose to the lac Repressor.

Rule (R11) describes the incorporation of the lactose permease in the membrane

of the bacterium, rule (R12) the transportation of lactose from the environment to

the interior performed by the lactose permease, and rule (R13) the decomposition of

the lactose into glucose (denoted GLU) and galactose (denoted GAL) performed by

the beta galactosidase. Finally, rules from (R14) to (R20) describe the degradation

of all the proteins and pieces of mRNA involved in the process:

We translate the Stochastic CLS model into Maude and analyse it. The simu-

lation runs quite fast and produces similar behaviour as the result in the work by

Barbuti, Carvagna, Maggiolo-Schettini, Milazzo and Pardini [6]. Our intention in

this paper is to show that we can also perform not only chart-based analysis, but

can also perform analysis on some logical properties of the system. We show that

by analysing two properties of this case study.

The first property is related with the amount of enzymes (beta galactosidase

and lactose permease) in the absence of lactose in the environment. The amount

of such enzymes (in number of molecules) should always below some limit. Here

we show that our model satisfies this property, with 20 as the limit. We use the

Maude search command to check whether there is a state where the number of beta

galactosidase or lactose permease is greater than 20. The Maude engine shows No

solution as the answer, which means that there is no such state.

(tsearch INIT({ [{ m } 1] LContains [{ laci . lacp . laco . lacz . lacy . laca } 1 |
{ polym } 30 | { repr } 1] } 1) =>* {< O:Oid : CLSTerm | term : T:Term > C:Configuration}
such that occ({ perm } 1,T:Term) > 20 or occ({ betagal } 1,T:Term) > 20 in time <= 1500 .)

Timed search in MODEL-CHECK-LOTKA
INIT({[{m}1]LContains[{laci . lacp . laco . lacz . lacy . laca}1 |{
polym}30 |{repr}1]}1)=>* {< O:Oid : CLSTerm | term : T:Term >
C:Configuration}

in time <= 1500 and with mode maximal time increase with default 1 :

No solution

The second property is related with the amount of of enzymes beta galactosidase

and lactose permease in the presence of lactose. We want to show that with the

presence of lactose, the number of such enzymes will eventually be greater than 20.

Now we use the Maude model check command to verify this property. The result

shows that this property holds in our system.

((mc INIT({ [{ m } 1] LContains [{ laci . lacp . laco . lacz . lacy . laca } 1 |{ polym } 30 |
{ repr } 1] } 1 | { LACT } 100) |=t (<> IsGreaterThanN({ betagal } 1,20)) /\
(<> IsGreaterThanN({ perm } 1,20)) in time <= 1500 .)

Model check INIT({[{m}1]LContains[{laci . lacp . laco . lacz . lacy . laca}1 |{
polym}30 |{repr}1]}1 |{LACT}100) |=t <> IsGreaterThanN({betagal}1,20)/\ <>
IsGreaterThanN({perm}1,20)in MODEL-CHECK-LOTKA in time <= 1500 with mode
maximal time increase with default 1

Result Bool :
true
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5 Conclusions and Future Work

We have proposed an approach to study Stochastic CLS specifications of biological

systems by making use of Real-Time Maude. Our approach can be used to analyse a

biological system not only by observing the chart representing the simulation result,

but also by means of logical formulae. We show the applicability of our approach

by verifying two properties of the lac operon model.

For our future work, we are interested to explore more about probabilistic model

checking. In this paper we analyse properties that can only have boolean values. It

will be interesting to extend the language to support answering queries with numeric

values, such as probability of an event occur in a period of time. Currently only

queries related with time can be answered, for instance finding the earliest time an

event occurs.

As we see in Section 3.3, the definition of occ still has restriction on the use of

variables. In the future we are interested to define occ without any restriction on

the variables used.
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