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Abstract

The notion of functionally graded materials (FGM) covers all domains of discrete and smooth gradation of material
microstructure designed in order to obtain macroscopic features suitable for a given application. A special class of multi-
phase materials with graded microstructure can be obtained at cryogenic temperatures as a result of smooth transition from
the parent phase to the secondary phase. The required continuously graded material features are obtained at low temper-
atures via the mechanism of controlled strain induced phase transformation from the purely austenitic to the martensitic
lattice (c! a 0). Several families of ductile materials are known to behave in a metastable way when strained at very low
temperatures. Among them the austenitic stainless steels are extensively used to construct components of the superconduc-
ting magnets, cryogenic transfer lines and other structural members loaded in cryogenic conditions. The constitutive model
used to describe mathematically the plastic strain induced phase transformation at low temperatures involves strain hard-
ening where two fundamental effects play an important role: interaction of dislocations with the martensite inclusions and
increase in material tangent stiffness due to the mixture of harder martensite with softer austenite. The interaction of dis-
locations with the martensite inclusions is reflected by the hardening modulus that depends on the volume fraction of mar-
tensite. Here, a linear approximation, based on the micro-mechanics analysis, is used. On the other hand, evaluation of the
material tangent stiffness of two-phase continuum is based on the classical homogenization scheme and takes into account
the local tangent moduli of the components, as postulated by Hill [Hill, R., 1965. A self consistent mechanics of composite
materials. J. Mech. Phys. Solids 13, 213–222]. In the present paper, the Mori–Tanaka homogenisation scheme is applied.
Both effects contribute to strong nonlinear hardening that occurs as soon as the phase transformation process begins.
The material model is suitable for a wide range of temperatures, however the best results are obtained at very low temper-
atures, where the linearized kinetic law of phase transformation is valid [Garion, C., Skoczeń B., 2002. Modeling of plastic
strain induced martensitic transformation for cryogenic applications. J. Appl. Mech. 69 (6), 755–762]. As the application
field the structural members in the form of rods (cylinders) of circular cross-section, used as parts of the carrying structures,
are analyzed. The required graded microstructure of the material is obtained by imposing torsion at cryogenic temperatures.
Both the intensity of the phase transformation and the depth of the transformed zone is obtained by suitable kinematic con-
trol (angle of twist). The closed form solutions for the stress state and torque as a function of the angle of twist are shown.
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1. Introduction

The concept of functionally graded materials was initiated and technologically developed in Japan (Koiz-
umi, 1992, 1997; Koizumi and Niino, 1995). Initially the effort was focused on development of thermally resis-
tant materials, in particular thermal barriers. Gradually, the notion of functionally graded materials covered
all domains of discrete and smooth gradation of material structure in order to obtain macroscopic features
necessary for a given application. The natural domains of application of the FGMs are the components con-
fronted with extreme temperatures in the aerospace industry, nuclear power plants, plasma containing devices,
fission and fusion reactors as well as the cryogenic installations including the superconducting magnets.

The attractive feature of the graded materials consists in the fact that the mathematically optimized mate-
rial microstructure can be manufactured by using sophisticated technologies that are now industrially avail-
able. Typical processing techniques used to obtain a graded microstructure are (cf. Kieback et al., 2003):
powder metallurgy, melt processing and processing of polymers. The manufacturing processes consist usually
of two stages: the process of constructing the graded material structure from the precursor components called
‘‘gradation’’ and the process of final aggregation of the bulk material called ‘‘consolidation’’. Typical consoli-
dation processes are sintering or solidification. The fundamental technological issues related to the production
of FGMs are the composition of powder, particle size and shape, packing density, porosity, grain size, etc.

As soon as the material microstructure is defined the problem of mathematical description arises. Standard
RVE approach to the description of highly inhomogeneous graded materials is based on the homogenization
techniques. The idea of homogenization postulates replacing a heterogeneous portion of the material, con-
tained in the representative volume element (RVE), by a quasi-homogeneous portion, response of which is
determined from a suitable averaging procedure. The well known homogenization schemes for two-phase con-
tinuum are the rule of mixtures, the self-consistent scheme (Hershey, 1954; Kröner, 1958; Hill, 1965) as well as
the Mori–Tanaka scheme (Mori and Tanaka, 1973). The homogenization schemes perform correctly under the
assumption that the elastic inclusions embedded into the elastic matrix can be regarded as ellipsoidal or spher-
ical in shape (Eshelby, 1957). The bounds on the equivalent moduli of the isotropic heterogeneous materials
were defined by Paul, 1960 and later by Hashin and Shtrikman, 1963. Here, the variational bounding tech-
niques of linear elasticity were used to obtain the estimates of the elastic moduli. The predictions of homog-
enization models have been thoroughly compared with the experimental data and finite element analysis by
Pierard et al., 2004. The authors took into account the following schemes for two-phase isothermal compos-
ites: Voigt and Reuss models, Mori–Tanaka model with the interpretation by Benveniste (1987), double-inclu-
sion model and the self-consistent scheme. In addition the homogenization of multi-phase isothermal
composites has been reviewed. An exact method of homogenization of an unbounded finitely deformed solid
containing the ellipsoidal inclusions, based on the generalized Eshelby tensor, has been developed by Nemat-
Nasser (1999, 2000). Another useful RVE based technique is the periodic homogenization combined with two-
scale asymptotic expansion method (cf. Alzina et al., 2006). All above mentioned techniques assume building a
mesoscopic representative volume element that is applied as an elementary brick to construct the macroscopic
response of the material. Such approach may face serious limitations in the case of fast evolution of material
properties or large field gradients developed in the material. It may generate high modeling errors especially in
the case of strong localization of strains and stresses. An improved, higher order theory taking into account
the micro-macrostructural coupling effect has been developed by Pindera and Dunn (1997) and Aboudi et al.
(1999). The approach is based on volumetric averaging of field quantities and imposition of boundary and
interfacial conditions between the sub-volumes defined within the FGM. An extension of the model including
the inelastic behaviour of constituent phases of multiphase periodic materials has been recently proposed by
Aboudi et al., 2003. The problem of homogenization of rate-independent elastic–plastic composites (cf. Dog-
hri and Ouaar, 2003) has been already solved by Hill, 1965, who linearized the constitutive equations and
defined the local elastic–plastic tangent moduli. Based on these moduli a classical homogenization scheme
(for instance the self consistent model) can be applied at every load step. Thus, the elastic–plastic analysis con-
sists in performing a sequence of homogenization operations on the step-by-step basis, including the constant-
ly evolving tangent moduli for all components of the composite. A similar approach has been applied by
Garion and Skoczeń (2002), to the elastic–plastic matrix containing elastic inclusions, with the application
of the Mori–Tanaka scheme. Finally, the macroscopic response of two-phase elastic–viscoplastic composites
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has been computed by using the improved affine formulation by Pierard and Doghri (2006). The elastic–visco-
plastic constitutive equations of each phase were linearized to obtain fictitious linear thermo-elastic relations
and the classical homogenization schemes were again applied. The authors indicate good performance of the
Mori–Tanaka scheme for the composite materials, confirmed by a comparison with the finite element analysis.

1.1. Axisymmetric elastic structural components made of functionally graded materials

Among different structural members a special class of problems constitute the axisymmetric components
like disks, cylinders and cylindrical shells made of functionally graded materials. The rotationally symmetric
geometry is on one hand very convenient from the point of view of mathematical description and – on the
other hand – particularly useful in the technical applications. Stationary thermo-elastic analysis of function-
ally graded anisotropic cylinders subjected to temperature gradients and mechanical loads (tension, torsion,
shear and pressure load) has been carried out by Tarn (2001). Exact solutions for the temperature distribution,
stress and strain fields for inhomogeneous hollow and solid cylinders were presented by the author. The ther-
mo-elastic material moduli were assumed to vary as power functions of the cylinder radius. For more complex
functions representing the variation of material moduli a model based on a multilayer representation has been
suggested. The state space formalism to solve the problem of cylinders composed of n anisotropic layers sub-
jected to torsion and bending has been developed by Tarn and Wang (2001). The cases of generalized plane
strain and generalized torsion were thoroughly analyzed. The solution was presented separately for the axi-
symmetric state (axial tension, torsion, pressure and shear) as well as for the asymmetric case of bending.
The authors found interaction between the solutions corresponding to axial tension, torsion and pressure.
Another attempt to solve the B. de Saint-Venant problem comprising tension, bending and flexure of function-
ally graded cylinders made of elastic isotropic material with the elastic moduli varying across the cross-section
was presented by Rooney and Ferrari (2001). The lower bounds on the effective elastic moduli were derived.
The authors indicate that the elastic moduli are convex functions of the volume fractions. Moreover, the
authors demonstrate that if the structural member is subjected to bending then concentrating the phases with
higher Young’s modulus away from the neutral axis reduces the deformation under a given bending moment.
Another class of problems related to axisymmetric structures made of functionally graded materials emerges
from the stability analysis. Sofiyev and Schnack (2004), studied stability of functionally graded thin shells sub-
jected to torsional loading varying as a linear function of time. For the effective material properties the rule of
mixtures was applied. The volume fractions of the constituents were assumed to follow a simple power law.
The authors obtained analytical solutions for the dynamic critical torsional loads.

1.2. Axisymmetric elastic–plastic structural components made of non-homogeneous materials

Numerous papers are dedicated to elastic–plastic response of axisymmetric components (bars of circular
cross-section, cylinders, disks, circular plates and cylindrical shells) made of homogeneous materials. Howev-
er, the problem becomes much more complicated when the material non-homogeneity is assumed. Analysis of
non-homogeneous thick-walled cylinders under inner pressure and axial load was carried out by Olszak and
Urbanowski (1955). Another problem of non-homogeneous elastic–plastic orthotropic circular plates subject-
ed to bending was analyzed by Olszak and Murzewski (1957). Limit analysis and design of transversally non-
homogeneous axially symmetric shells was dealt with by Olszak and Sawczuk (1957). The equations of general
axisymmetric case in thick-walled tubes including the circularly symmetric plastic non-homogeneity (yield
stress being an arbitrary function of the radius) have been formulated by _Zyczkowski (1957a). The author
indicates that in some particular cases of plastic non-homogeneity, when the yield stress is inversely propor-
tional to the square of the radius or to the fourth power of radius, the solution for stresses reduces from the
hyper-elliptic to elliptic integrals. In the same year the limit states of the non-homogeneous rotating discs were
analyzed by _Zyczkowski (1957b). A theory of plastic-rigid solid reinforced by inextensible fibers was devel-
oped by Smith and Spencer (1970). In the framework of this theory the authors analyzed plastic deformations
of thick-walled cylinders reinforced by helical inextensible fibers. A random distributed non-homogeneity of
the material, combined with associated and non-associated flow rules, and applied to the limit analysis of
structures has been developed by Sacchi (1971). The problem of plastic torsion of non-homogeneous prismatic
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bars, both in the general case of transversal non-homogeneity and in the particular case when the yield stress is
a quadratic function of the radius, has been investigated by _Zyczkowski (1981). For the particular case the
closed form solutions were obtained and the limit carrying capacity of the cross-section has been determined.
It is worth pointing out, that already in the eighties _Zyczkowski introduced an idea of optimum material non-
homogeneity leading to the effect of uniform and simultaneous plastification at failure of the whole cross-sec-
tion. This idea can certainly be regarded as a precursor of the optimum functional distribution of the material
properties. Following this proposal two papers dealing with the problem of full plastification of circular non-
homogeneous cylinders were published by Kordas and Wróblewski (1987), as well as by Kordas and Dollar
(1990).

More recently analytical solutions for thermal stresses in the cylindrical joints made of functionally graded
materials were presented by Yang (2000). Both the elastic and the creep behavior of the material were ana-
lyzed. The author assumed that the creep response of the material is represented by the Norton’s law. For
the creep problem the asymptotic solution was shown. Finally, it is worth highlighting the recent effort to
obtain an optimum layout of volume fractions in a functionally graded material. A methodology of multi-ob-
jective optimization of volume fraction distribution for two-phase functionally graded materials subjected to
temperature fields and heat fluxes has been developed by Goupee and Vel (2006). The effective material prop-
erties were estimated by using the Mori–Tanaka and the self consistent homogenization schemes. The effective
yield stress for the metal–metal functionally graded materials was determined by using the Hashin–Shtrikman
bounds. For the optimization process the multi-objective genetic algorithms were used. The design objectives
were formulated either as minimum mass + minimum of the peak effective stress or as minimum mass + max-
imum of the safety factor. The authors indicate that the methodology is well suited for determining the Pareto-
optimum solutions when designing the material composition of functionally graded materials.

2. Functionally graded materials applied at cryogenic temperatures

A special class of multi-phase materials with graded microstructure can be obtained as a result of smooth
transition from the parent phase to the secondary phase. The required continuously graded material features
are obtained at low temperatures via the mechanism of controlled strain induced phase transformation from
the purely austenitic lattice (face cubic centred – FCC) to the martensitic lattice (body cubic centred – BCC).
Several families of ductile materials are known to behave in a metastable way when cooled down or strained at
very low temperatures. Among them the austenitic stainless steels are extensively used to construct pressure
and vacuum vessels, components of the superconducting magnets, components of the cryogenic transfer lines
and other structural members loaded in cryogenic conditions. Metastable ductile materials may undergo either
spontaneous phase transformation or strain induced transformation. The stainless steels commonly used for
low temperature applications (like 304L, 316L or 316LN) have the chemical structure tailored to eliminate the
spontaneous phase transformation. On the other hand, in the case of plastic straining at low temperatures the
strain induced martensitic transformation is inevitable and leads to creation of a two-phase heterogeneous
continuum where the initial austenitic c-phase has been locally replaced by the a 0 martensite inclusions.
The BCC lattice of the martensite inclusions is much harder when compared to the FCC austenitic lattice
and affects considerably the material behaviour. This feature is used to obtain a material with graded strength
function.

Another specific class of materials with the continuously graded microstructure form the so-called magnet-
ically graded materials (Watanabe and Sakai, 2003) obtained again by the c! a 0 phase transformation tech-
niques. A smooth distribution of the magnetisation function across the specimen is characteristic of this class
of materials. As the c phase is paramagnetic and the a 0 phase is ferromagnetic, the increase in martensite frac-
tion promoted by plastic deformation can be detected by measuring the magnetic permeability l. The results
of local measurements can be stored in order to obtain a profile of the magnetisation along the sample. How-
ever, it is necessary to control simultaneously the temperature and the strain distribution during the techno-
logical process.

Some of the FGMs applied at low temperatures are known to have a discretely graded microstructure. Such
a heterogeneous microstructure is well represented by the family of modern superconductors with a pro-
grammed redistribution of the flux pinning centres. Type II superconductors are characterised by the existence
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of the so-called mixed state, which allows the magnetic flux to penetrate the material. The flux forms an array
of individual flux lines (so-called fluxon lattice), which can be pinned against imperfections and inclusions
(Van Sciver, 1986). Flux pinning allows the superconductor to carry high currents in the magnetic fields close
to the upper critical field Hc2. Type II superconductors with the controlled redistribution of the flux pinning
centres can be classified as the FGMs with discretely graded microstructure.

Important class of functionally graded materials for low and ultra-low temperature applications comprises
thin films and coatings. Thin films are typically applied as the superconducting layers in the radio-frequency
accelerating cavities of the particle accelerators (Benvenuti et al., 1984, 1993). Here, the copper cavities coated
with a thin superconducting niobium film were successfully applied. Typical technology consists in 1.5-lm
thick niobium films grown by magnetron sputtering in argon atmosphere on oxidised copper substrates.
The superconducting niobium films operate at 4.2 K in liquid helium. Other superconducting materials such
as: NbTi, NbTiN or Nb3Sn, can also be used.

Another family of materials applied at low temperatures constitute graded coatings in the form of getters
and non-evaporable getters (NEG). They are used either in the form of graded strips or thin-film coatings.
These active materials provide the so-called linear distributed pumping (absorption of the residual molecular
gas) that allows extremely low pressures down to 10�14 mbar to be achieved under the static vacuum condi-
tions. Typical application the NEG materials find in the long vacuum chambers (made of copper or alumin-
ium) of the superconducting particle accelerators. The most common alloys used as the activated getters are
ZrAl, ZrVFe as well as TiZrV (Benvenuti et al., 2001). Thin films of getter material are coated on the inner
surface of the vacuum chambers by sputtering technology. Together with the base material of the vacuum
chamber they form graded layers characterised by smoothly evolving density and porosity.

One of the possible application fields both at low and at higher temperatures are structural members in the
form of rods (cylinders) of circular cross section, used as parts of the carrying structures. The required graded
structure of the material is obtained by imposing torsion at cryogenic temperatures. Both the intensity of the
phase transformation and the depth of the transformed zone is obtained by suitable kinematic control (angle
of twist). In the present paper, the constitutive model of c! a 0 plastic strain induced phase transformation
and its application to torsion at cryogenic temperatures are presented. The closed form solutions for the stress
state and torque as a function of the angle of twist are shown.

3. Plastic strain induced (c! a 0) phase transformation at cryogenic temperatures

3.1. Kinetics of phase transformation and related phenomena

The plastic strain induced c! a 0 phase transformation in metastable materials like stainless steels occurs in
a wide range of temperatures. For instance, it can be easily activated at 77 K, in liquid nitrogen. The process is
controlled via the transformation kinetics, represented by the phase transformation curve. Kinetics of c! a 0

phase transformation, developed by Olson and Cohen (1975), is reflected by a typical sigmoidal curve defining
the evolution of the martensite content (n) as a function of the plastic strain. Under isothermal conditions and
for a given strain rate, the classical sigmoidal curve has the form shown in Fig. 1. At very low temperatures the
phase transformation process can be subdivided into three stages: low rate transformation below the threshold
pn (stage I), fast transformation with a high and nearly constant transformation rate (stage II) and asymptot-
ically vanishing transformation with the rate decreasing to 0 and the volume fraction of martensite reaching a
maximum nL (stage III).

Constitutive modeling of the plastic strain induced c! a 0 phase transformation has already a long history.
A constitutive equation predicting the stress as a function of strain, strain rate and temperature for metastable
austenites has been derived by Narutani et al. (1982). The contributions of two major factors controlling the
flow stress: static hardening and dynamic softening were separated. The transformation strain corrected rule
of mixtures was used to describe the static hardening. The dynamic softening was derived by treating the mar-
tensitic transformation as a deformation mechanism. The quantitative description of both contributions to the
flow behaviour led to the constitutive model for which the knowledge of the transformation curves and the
flow properties of both phases was needed. Another constitutive model developed by Stringfellow et al.
(1992), for nonthermoelastic alloys introduced a generalized version of the Olson–Cohen transformation
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Fig. 1. Volume fraction of martensite versus accumulated plastic strain.
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kinetics, where the evolution of martensite was a function of temperature, plastic strain and the stress state.
The authors assumed that the transformation process generates a nucleation strain that can be decomposed
into the deviatoric and hydrostatic components. Isotropic hypoelastic formulation was applied to describe
the stress state evolution. The strain softening resulting from the transformation strain was incorporated into
the model. The self consistent approach describing the deviatoric plastic strain rate has been applied. The
Eshelby solutions for isotropic, incompressible spherical inclusions embedded in an infinitely extended incom-
pressible isotropic matrix were used as a basis for the localization law. The law has been extended to the case
of nonlinear viscous materials, for which the deformation within the inclusion was no longer uniform.

Another approach, based on microplasticity coupled with the phase transformation was proposed by
Fischer et al. (1998). The formulation was based on the conditional extremum problem. The dissipation
inequality under the yield and transformation constraints constitutes the core of the formulation. Full cou-
pling between the phase transformation and plasticity has been taken into account in the constitutive equa-
tions. A specific form of the Gibbs potential as well as the yield and transformation conditions have been
presented. A quantitative prediction of the volume fraction of martensite in austenitic stainless steel under
thermo-mechanical loading was derived by Diani and Parks (1998). The basic assumption of the Olson–Cohen
model has been adopted for each grain in the material. The authors assumed that the nucleation sites of the a 0

martensite within a grain are localized at the intersection of shear bands. Motion of dislocations on the slip
systems characteristic of the c austenite was analyzed. Further analysis was performed already on a polycrys-
talline aggregate. The shear intensity defined the evolution of volume fraction of martensite in each grain. The
model was checked on grade 304L stainless steel, typical of the low temperature applications. A mesoscopic
continuum thermo-mechanical approach applied to the strain induced martensitic transformation was devel-
oped by Levitas et al. (1999). Finite plastic and transformation strains and small elastic deformations were
taken into account. The model was based on the multiplicative decomposition of the total deformation gra-
dient into elastic, transformation and plastic parts. The generalized Prandtl-Reuss equations for isotropic elas-
to-plastic materials, including large plastic and transformation strains, were applied. Transformation criterion
and extremum principle for determination of location and volume of transformed domains were formulated.
A revised formulation of the transformation induced plasticity has been presented by Fischer et al. (2000).
Both the influence of transformation induced plastic strain and the influence of shear (orientation effect) on
the irreversible deformation were taken into account. A new constitutive description for the elasto-plastic
materials subjected to the phase transformation has been developed. A micromechanical analysis of the inter-
nal stress sources, resulting either from the incompatible transformation strain accompanying the phase trans-
formation or from the plastic flow of both phases due to the motion of dislocations has been developed by
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Cherkaoui et al. (2000). According to the authors the main complexity in the modeling of the behaviour of
TRIP steels consists in evaluation of the effect of internal stresses on the c! a 0 phase transformation. A
microscale mechanism of the martensitic phase transformation was taken into account. Formation of mar-
tensite microdomains with moving boundaries inside inhomogeneous plastic strain fields was assumed. Coher-
ent interfaces with discontinuities of stress and strain fields across the multiple moving boundaries were
introduced. As a potential describing the thermodynamic state of the two-phase system the Helmholtz free
energy was chosen. The morphology of microdomains was represented by the ellipsoidal inclusions with
one dimension much smaller when compared to the other two dimensions. The Eshelby description of an
inelastic ellipsoidal inclusion was applied. A suitable kinetics of the martensitic transformation was developed.
The constitutive model was applied to an austenitic single crystal. In order to make a transition to the poly-
crystalline TRIP steels an elasto-plastic self consistent algorithm was used.

A new and broader constitutive description including the effect of strain rate, temperature as well as the
applied stress has been presented by Tomita and Iwamoto (2001). The model was tested on grade 304 austen-
itic stainless steel and for the temperature range 77–353 K. The phase transformation (evolution of martensite)
has been described as a function of temperature, prestrain, applied stress as well as the stress range. Numerical
tests on steel bars with ringed notches under cyclic loads were performed. A general formulation of the finite
thermoplasticity model including the phase transformation has been presented by Dachowski and Boehm
(2004). The model is based on the concept of isomorphism of elastic ranges. The evolution of different phases
is described in terms of the mass fractions, treated as the internal variables. As the model is general, it can be
used to describe different types of thermo-mechanical processes where the phase transformation takes place. A
microstructure based computational model has been developed by Han et al. (2004). Again the shear band
intersections were assumed as the locations of the martensite nucleation sites. The activation of the nucleation
sites was function of the interaction energy between the stress state and the lattice deformation. A self-consis-
tent approach was applied to describe the deformation behaviour of each material phase. The uniaxial tension
and simple shear were used as the test cases for comparison between the experiments and the numerical sim-
ulation. Another constitutive model has been recently developed by Iwamoto (2004), who focused on defor-
mation behaviour of TRIP steel with growth of martensite sites due to the phase transformation. The effect of
the geometrical configuration of martensite sites on the macroscopic behaviour of TRIP steels was investigat-
ed. Growth of ellipsoidal martensitic inclusion embedded in the austenitic matrix has been analyzed using a
homogenization technique. The author assumed that the mechanical properties of TRIP steels can be
enhanced due to controlled geometrical characteristics of the martensite fraction in the austenitic matrix.
In the model the transformation-thermo-coupled asymptotic homogenization was applied. The model includ-
ed the transformation strain rate and latent heat induced by the phase transformation.
3.2. Formulation of the constitutive model

If the plastic strain induced phase transformation occurs at very low temperatures (typically liquid helium
4.2 K or liquid nitrogen 77 K) then the steep part of the transformation curve (Fig. 1, stage II) remains in the
domain of relatively small strains (below 0.2). In this case the constitutive modeling can be considerably sim-
plified and stays within the scope of the classical rate independent theory of plasticity. A simplified evolution
law for the volume fraction of martensite has been introduced for the linear part (II) of the sigmoidal curve by
Garion and Skoczeń (2002)
_n ¼ AðT ; _ep; rÞ _pHððp � pnÞðnL � nÞÞ ð1Þ
where _p denotes the rate of the accumulated plastic strain, defined as
_p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_ep : _ep

r
ð2Þ
Here, n denotes the volume fraction of martensite, A(..) is a function of temperature, stress state (Stringfellow
et al., 1992) and strain rate (Levitas et al., 1999), pn denotes the accumulated plastic strain threshold (to trigger
the formation of martensite), nL stands for the martensite content limit and H represents the Heaviside func-
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tion. The phase transformation from the FCC to BCC lattice is driven by the accumulated plastic strain ob-
tained by monotonic or cyclic straining at low temperatures.

The constitutive model applied in the present paper describes behaviour of a ductile material in which the
phase transformation occurs. The model is based on the following assumptions:

• two-phase continuum consists of the austenitic matrix and martensite platelets represented by small
Eshelby type ellipsoidal inclusions randomly distributed and randomly oriented in the matrix,

• the austenitic matrix is assumed elasto-plastic, whereas the inclusions show purely elastic response (the yield
stress of martensite fraction is much higher than the yield stress of austenite),

• rate independent plasticity is applied: it is assumed that the influence of the strain rate _ep is small for the
range of temperatures 2–77 K (cf. Hecker et al., 1982) and function A(..) depends on the temperature
and stress state only,

• small strains are assumed: the accumulated plastic strain p does not exceed 0.2,
• mixed isotropic/kinematic hardening affected by the presence of martensite fraction is included,
• the two-phase material obeys the associated flow rule.

It is worth pointing out that even if the current model is valid under the assumption of small strains, there is
no fundamental difficulty to extend the model for large strains. The limitation of the accumulated plastic strain
to 0.2 has a meaning for monotonic loads, whereas for cyclic loads the limitation should rather be imposed on
maximum strains on cycle and not on the accumulated plastic strain (the Odqvist parameter), that may sub-
stantially increase from cycle to cycle. A generalization of the model to large strains leads inevitably to the
application of different strain measure (for instance the Hencky measure). However, it is worth stressing that
the current model yields correct results (as shown in the course of the paper) even for the values of the accu-
mulated plastic strain exceeding 0.2, in the case of monotonic loading.

Another important problem is related to the shape of martensite inclusions. The ellipsoidal Eshelby type
representation has the feature of being general enough to cover different shapes of martensite variant. Indeed,
by choosing the appropriate parameters a flat platelet can be easily obtained. However, if the phase transfor-
mation process is not massive and much less than 50% of the parent volume is consumed by the new phase,
even a spherical representation is reasonable as the average distance between the inclusions is large enough
and the effect of mutual interaction of the strain fields produced by the neighbouring inclusions becomes less
important. In such a case, both the self consistency method and the Mori–Tanaka homogenization scheme can
be applied.

The following set of constitutive equations has been developed for the two-phase (c + a 0) isotropic and duc-
tile material (Garion and Skoczeń, 2002).

The kinetics of martensitic transformation takes the form
_n ¼ AðT ; rÞ _pHððp � pnÞðnL � nÞÞ ð3Þ
The general constitutive law includes plastic, thermal and transformation strains
r ¼ E : ðe� ep � eth � nebsÞ ð4Þ
where ep is the plastic strain tensor, ebs ¼ 1
3
DtI denotes the free deformation called bain strain, expressed in

terms of the relative volume change D t, eth stands for the thermal strain tensor and E is the fourth-rank elas-
ticity tensor. It is assumed that the mesoscopic strain tensor ebs is obtained by integrating the microscopic ei-
gen-strain tensor ebs

l over the RVE
ebs ¼ 1

V

Z
V

ebs
l dV ð5Þ
The above integral can be presented in the following way:
ebs ¼ V c

V
1

V c

Z
V c

ebs
l dV þ V a

V
1

V a

Z
V a

ebs
l dV ð6Þ
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where Vc,Va denote the volume occupied by the austenite and the volume occupied by the martensite in the
RVE, respectively. Assuming that the microscopic eigen-strain in the austenitic phase is equal to zero
ebs
l ¼ 0 ð7Þ
one obtains the following equation:
ebs ¼ V a

V
1

V a

Z
V a

ebs
l dV ¼ n

1

V a

Z
V a

ebs
l dV ¼ nhebs

l i ð8Þ
where hebs
l i denotes the average (over the RVE) of eigen-strain in the martensitic phase. In the case of displa-

cive transformation the eigen-strain tensor takes the following form (Wechsler et al., 1953; Fischer, 1997):
ebs
l ¼

0 0 c
2

0 0 0
c
2

0 Dt

0
B@

1
CA
ð~x;~y;~zÞ

ð9Þ
where~x;~y;~z stands for the local coordinate system. The habit plane of the martensite variant is represented by
ð~x;~yÞ, whereas~z is the normal vector. The transformation shear is denoted by c and the volume change by Dt.
Owing to the fact that the orientation of martensite platelets is determined with respect to the orientation of
the grains, that are randomly oriented in the initial austenitic structure, one can expect a random orientation
of martensite inclusions in the RVE. Therefore, by integrating the microscopic eigen-strain over the RVE one
obtains a purely isotropic tensor
ebs
l

D E
¼ 1

3
DtI ð10Þ
Finally, the mesoscopic free strain tensor is equal to
ebs ¼ n
1

3
DtI ð11Þ
For convenience of description it is assumed that the elastic stiffness tensor is expressed by
KJkE μ23 += ð12Þ
where tensors KJ , , are volumetric and deviatoric 4th rank projectors, respectively
IIJ =
3
1   ;  JIK −=⊗ ð13Þ
In the standard notation one obtains:
J ijkl ¼
1

3
dijdkl; I ijkl ¼

1

2
ðdikdjl þ dildjkÞ ð14Þ
Here, symbol � denotes the dyadic product, dij is the Kronecker symbol and k,l denote the bulk and the shear
moduli, respectively.

As the model is based on the rate independent plasticity, the yield surface has the form
fy r;X ;R
� �

¼ J 2ðr� X Þ � ry � R ð15Þ
where
J 2ðr� X Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ðs� X Þ : ðs� X Þ

r
ð16Þ
is the second invariant of the stress tensor. Here, s,X denote the deviatoric stress and the back stress tensors,
whereas ry,R are the yield stress and the isotropic hardening variable, respectively. In the current approach it
is assumed that the quasi-isotropic two-phase continuum obeys the associated flow rule
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dep ¼ ofy

or
dk ð17Þ
with the yield function postulated as the potential of plasticity. The hardening model is represented by the fol-
lowing equations:
_X ¼ 2

3
CX _ep ¼ 2

3
gðnÞ_ep ð18Þ

_R ¼ CR _p ¼ f ðnÞ _p ð19Þ
Since the hardening variables R and X are affected by the presence of martensite, the corresponding evolution
laws are postulated in the following incremental form:
dX ¼ dX a þ dX aþm ¼
2

3
CðnÞdep þ GðnÞdep ¼ 2

3
gðnÞdep ð20Þ

dR ¼ f ðnÞdp ð21Þ

It is assumed that the back stress increment is composed of the classical term which corresponds to the behav-
ior of the austenitic phase dXa in the presence of localized small inclusions, uniformly distributed and random-
ly oriented in the RVE and a term related to the combination of austenite and martensite via the
homogenization algorithm (dXa+m). Furthermore, it is assumed that the mechanism of plastic flow at low tem-
peratures is based on the motion of dislocations in the lattice. If the massive motion of dislocations occurs they
are stopped by the martensite inclusions and the corresponding local stress fields (Fig. 2).

The principal components that constitute the two-phase material model are the elasto-plastic matrix (aus-
tenite) and the highly localized elastic inclusions (martensite platelets). Linear kinematic hardening law is
applied to model the plastic behavior of the pure austenite
dX a0 ¼
2

3
C0 dep ð22Þ
where C0 is the hardening modulus of the original non-transformed purely austenitic phase. For the two-phase
transformed material, the hardening modulus C0 is replaced by the modulus C, that is higher than C0 because
of the interactions between the dislocations in the austenite and the martensite inclusions
C ¼ C0uðnÞ for 0 6 n 6 nL; uð0Þ ¼ 1 ð23Þ

It can be easily shown that the shear stress necessary for a dislocation to pass across two inclusions of the
average size d, separated by the distance l, depends roughly linearly on the volume fraction of martensite n
sp ¼
lb
d

6n0

p

� �1
3

1þ n� n0

3n0

� �
ð24Þ
τ

b

l+d

Fig. 2. Interaction between dislocation and inclusions – the Orowan mechanism.
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where l denotes the shear modulus of the austenite, b is the length of the Burgers vector and n0 stands for the
initial volume fraction of inclusions. Here, for the sake of simplicity, an assumption has been made that the
average size of inclusions (d) is constant and much smaller than the distance between two inclusions (d� l). In
the light of Eq. (24), the function u(n) takes the linear form
uðnÞ ¼ hnþ 1 ð25Þ

where h is a material dependent parameter. The function u (n) can be interpreted as this part of the hardening
process that corresponds to the increase in volume fraction of martensite and enhanced probability that a dis-
location will stack on an inclusion. The back stress increment corresponding to the behavior of austenite in the
presence of highly localized martensite inclusions can be decomposed in the following way:
dX a ¼ dX a0 þ dX an ¼
2

3
C0 dep þ 2

3
C0hndep ¼ 2

3
CðnÞdep ð26Þ
where dXan corresponds to the interactions between the dislocations in the austenitic matrix and the martens-
ite inclusions.

The second contribution to the hardening model is based on the principle of homogenization applied on the
step-by-step basis to the current linearized tangent stiffness moduli of the matrix and the inclusions (Fig. 3). As
the matrix (c-phase) is elastic–plastic, the relevant local linearized tangent stiffness tensor is derived. The inclu-
sions are assumed to be ellipsoidal in shape and elastic (Eshelby, 1957), therefore, the elastic tangent stiffness is
applied. The process of step-by-step homogenization based on the local tangent stiffness moduli follows the
concept introduced by Hill (1965).

For the pure austenitic phase, a linearization of the stress/strain relations in the vicinity of the current state
is expressed by
Dra ¼ tE : De ð27Þ
where tE is the tangent stiffness tensor. A similar principle can be applied to the two-phase continuum. How-

ever, the tangent stiffness tensor is obtained by the homogenization process
Draþm ¼ HE : De ð28Þ
The additional hardening increment induced by the presence of the martensite is given by
strain

st
re

ss

pure austenite 
(no phase transformation)

austenite+martensite
(active phase transformation)

current point
on the equilibrium path )

)

Fig. 3. The principle of homogenization based on the local tangent stiffness moduli.
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Dr ¼ Draþm � Dra ¼ : De ð29Þ
Here, the same ‘‘trial’’ strain increment has been assumed for pure austenite and for the homogenized two-
phase continuum in order to compute the macroscopic stress response in the case of strain controlled process.
In the next chapters mainly kinematically controlled c! a 0 phase transformation processes will be analyzed.
The local linearized stiffness of the austenite can be described by the following tangent stiffness tensor:
KJkE tatata μ23 += ð30Þ
where
lta ¼
Et

2ð1þ mÞ ; kta ¼
Et

3ð1� 2mÞ ; Et ¼
EC

E þ C
ð31Þ
As the tangent operator for plastically active processes contains a dyadic square product of the vector normal
to the yield surface in the stress space which makes the operator anisotropic, a linearization based on the qua-
si-isotropic operator is particularly justified in the case when the absolute values of the principal stresses are
close to each other. When compared to the matrix the inclusions are isotropic and elastic (their yield point is
much higher than for the pure austenite) and the corresponding elastic stiffness tensor is given by:
KJkE mmm μ23 += ð32Þ
where
lm ¼
E

2ð1þ mÞ ; km ¼
E

3ð1� 2mÞ ð33Þ
The inclusions are assumed ellipsoidal and uniformly distributed in the matrix. Application of the Mori–Ta-
naka homogenization scheme yields
KJkEE MTMTMTH μ23 +== ð34Þ
with MTE obtained from the following relation:
∑
=

−−

⎥⎦
⎤

⎢⎣
⎡ +=⎥⎦

⎤
⎢⎣
⎡ +

mai
iiMT EEfEE

,

1

*

1

* ð35Þ
where fi is the volume fraction of the component ‘‘i’’ and E* stands for the Hill influence tensor. After some
rearrangements the following equations are obtained:
3kMT þ 3k� ¼ 1� n
3ðkta þ k�Þ þ

n
3ðkm þ k�Þ

� ��1

2lMT þ 2l� ¼ 1� n
2ðlta þ l�Þ þ

n
2ðlm þ l�Þ

� ��1

ð36Þ

k� ¼ 4

3
lta; 2l� ¼ ltað9kta þ 8ltaÞ

3ðkta þ 2ltaÞ
As the strain increment is mainly due to the plastic strains: D e ffi Dep, Eq. (29) becomes
Dr ¼ tMT E E − : Dep ð37Þ
The plastic strains are represented by a deviatoric tensor, therefore
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J : Dep ¼ 0; K : Dep ¼ Dep ð38Þ
Finally, the additional stress increment due to the presence of martensite in the austenitic matrix is equal
to
Dr ¼ 2ðlMT � ltaÞDep ð39Þ
If pure kinematic hardening is considered, the evolution of the back stress for two-phase continuum obeys the
following equation:
DX aþm ¼ Dr ð40Þ
or in the incremental form
dX aþm ¼ 2 lMT � ltað Þdep ð41Þ
On the other hand, if pure isotropic hardening is considered, the evolution of the hardening parameter is ob-
tained by imposing the suitable norm on the stress tensor:
DR ¼ DRaþm ¼ kDrk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dr : Dr

q
¼ 2ðlMT � ltaÞDp ð42Þ
where Dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
Dep : Dep

q
. In the incremental form one obtains:
dR ¼ dRaþm ¼ 2ðlMT � ltaÞdp ð43Þ

Thus, for a unidirectional process of monotonic loading the stress increments corresponding to the same incre-
ment of plastic strain are identical both for the kinematic hardening and for the isotropic hardening models.
This linearized approach to the evolution of isotropic hardening is replaced by a more general nonlinear for-
mulation, suitable for higher martensite content:
dR ¼ ðR1ðnÞ � RÞdp ð44Þ

where R1 is the parameter that defines the ultimate size of the yield surface:
R1ðnÞ ¼ 2ðlMT � ltaÞ ð45Þ

Eq. (44) can be reduced to Eq. (43) in the vicinity of the initial state.

In order to establish a proportion between the kinematic and the isotropic hardening the Baushinger
parameter b is introduced (parametrization after _Zyczkowski, 1981):
b ¼ r0 þ r0�

2ðr0 � r0Þ
; 0 6 b 6 1 ð46Þ
where (r 0) denotes the stress level at unloading and (r 0�) is the stress level corresponding to the reverse active
process. The parameter varies between 0 for the isotropic hardening (no Bauschinger effect) and 1 for the kine-
matic hardening (perfect Bauschinger effect).

Finally, the mixed hardening is described by the following model:
dX ¼ 2

3
CX dep ¼ 2

3
½CðnÞ þ 3bbðnÞðlMT � ltaÞ�dep ð47Þ

dR ¼ CRdp ¼bðnÞð1� bÞðR1ðnÞ � RÞdp ð48Þ
The relaxation term b(n) = 1 � n has been added in order to compensate for the assumption that the martens-
ite inclusions are elastic, whereas – in reality – they behave in elastic–plastic way. The process of phase trans-
formation induced strain hardening stops when n = 1.

The above presented mixed hardening model has the following advantages:

1. the model involves both the mesoscopic and the macroscopic levels,
2. the principal constituents of the two-phase material model are the elasto-plastic matrix (austenite) and the

elastic inclusions (martensite platelets),
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3. the evolution of back stress is partially driven by the interaction between the dislocations and the martensite
sites dispersed in the austenitic matrix (the approach justified by microscopic considerations),

4. the evolution of back stress depends significantly on the properties and amount of both fractions via the
Mori–Tanaka homogenization,

5. the Mori–Tanaka homogenization is performed by using the tangent stiffness of both constituents
(austenite and martensite) obtained via the linearization in the vicinity of the current state (cf. Hill,
1965),

6. the isotropic hardening parameter tends asymptotically to the value determined by the ultimate size of the
yield surface,

7. the ultimate size of yield surface is a function of the properties and amount of both fractions (c,a 0) via the
Mori–Tanaka homogenization.

8. proportion between the kinematic and the isotropic hardening is defined by the Bauschinger parameter.

It is worth pointing out that the model is attractive in view of its simplicity and relatively small number of
parameters to be identified at cryogenic temperatures. The experiments carried out in liquid helium or nitrogen
are laborious, expensive and usually require complex cryogenic installations to maintain stable conditions
(constant temperature). Therefore, any justified simplification leading to reduction of the number of param-
eters to be determined is of great importance.

3.3. Experimental validation of the constitutive model

In order to validate the model (cf. Garion and Skoczeń, 2002), it has been confronted with the exper-
imental results obtained by Morris et al. (1992) on 304L samples tested at 77 K under tensile monotonic
loading (Fig. 4). Identification of the material parameters was based on two curves: stress versus strain
(tensile test) and volume fraction of martensite versus plastic strain. The first curve has been obtained
from a simple tensile test at 77 K. Simultaneously, the magnetic permeability of the sample has been mea-
sured under a predefined magnetic field. A correlation between the volume fraction of martensite (a 0

phase is ferromagnetic) and the magnetic permeability of the sample provides the necessary information
for construction of the second curve: volume fraction of martensite versus plastic strain. The numerical
simulation has been terminated just after having reached the strain level 0.2, which in this particular case
corresponds approximately to the martensite content saturation level (end of region II). Typical set of
material data, characteristic of grade 304L stainless steel, needed for the numerical analysis, is shown
in Table 1.
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Fig. 4. Stress and martensite content versus strain for the grade 304L stainless steel at 77 K.

Table 1
Set of data for grade 304L stainless steel at 77 K (*based on Suzuki et al., 1988)

E (GPa) m ry (MPa) C0 (MPa) h A pn nL b* Dv

190 0.3 580 750 1.9 4.23 0.004 0.9 0.45 0.05
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Fig. 5. Identification of parameters for grade 316L stainless steel at 77 K.

Table 2
Parameters of phase transformation identified for grade 316L at three temperature levels

Temperature pn A

RT 0.39 0.023
77 K 0.09 4.37
4.2 K 0.08 5.1
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Fig. 7. Slope (A) of the martensitic transformation as a function of temperature.
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Another example of experimental validation consists in identification of the parameters for grade 316L
stainless steel at three temperature levels (RT, 77 K, 4.2 K). Typical evolution of martensite content as a func-
tion of accumulated plastic strain at 77 K is shown in Fig. 5.



Table 3
Set of material parameters identified for grade 316L stainless steel at 77 K

E (GPa) m ry (MPa) C0 (MPa) h A pn Dv

206 0.3 630 1680 2.7 4.37 0.09 0.05
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The evolution of two fundamental parameters: the phase transformation threshold pn and the slope A, as a
function of temperature, is presented in Table 2 and illustrated in Figs. 6 and 7.

An example of stress–strain curve obtained for grade 316L at 77 K (cf. Garion et al., 2006) and compared
with the curve computed from the previously identified set of material parameters (presented in Table 3) is
shown in Fig. 8. C0 has been identified in the range, where the martensitic transformation is low (p < 0.1).
Parameter h has been identified as the best fit between the experiment and the numerical simulation.
4. Phase transformation induced by elastic–plastic torsion at low temperatures

Consider the case of pure shear represented by the non-zero component of the strain tensor:
Fig. 9.
et al.,
e23 ¼
c23

2
ð49Þ
where c23 = c is the angle of shear. The shear strain is accompanied by the shear stress:
Example of graded microstructure: 316L, strain 6.5%, T = 4.2 K, martensite concentrated below the white boundary (cf. Garion
2006).



shear strain

sh
ea

r 
st

re
ss

Linear

Interaction

Homogenization

Elastic Elastic-plastic Phase transformation

Fig. 10. Three domains of physical behaviour of the two-phase continuum.
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s23 ¼ s ð50Þ
Thus, the pair of variables c,s represents the strain and the stress in the case of pure torsion. Given the possible
three domains of physical behaviour of the material, illustrated in Fig. 10, the following constitutive model is
applied:
s ¼ Gc; c < c0 ð51Þ
s ¼ s0 þ C0ðc� c0Þ; c0 6 c < cn ð52Þ
ds ¼ dslin þ dsint þ dsMT ð53Þ
dslin ¼ C0 dc ð54Þ
dsint ¼ C0hndc ð55Þ
dsMT ¼ CMT dc ð56Þ
where G = la denotes the shear modulus of pure austenite (elastic domain), C0 is the basic linear hardening
modulus of pure austenite and C0hn is the hardening modulus of two-phase continuum, related to the inter-
action between the dislocations and the martensite inclusions. Here, CMT stands for the hardening modulus
that reflects the stiffness of the continuum containing combined austenitic and martensitic phases and c0,cn

are the plastic and the phase transformation thresholds, respectively.
Thus, the stress increment during the phase transformation process reads:
ds ¼ C0ð1þ hnÞdcþ CMT dc; c P cn ð57Þ
Expressing the general kinetic law of phase transformation (Eq. (1)) in terms of the shear strain one derives:
dn ¼ AðT ÞdcpH ½ðc� cnÞðnL � nÞ� ð58Þ
where cp is the shear plastic strain. Assuming an isothermal process for which A(T) = const and integrating
Eq. (58) one obtains:
nð~cÞ ¼
Z ~c

cn

AðT Þdc ¼ AðT Þð~c� cnÞ ð59Þ
The above formula corresponds to the linearized part II of the sigmoidal curve as shown in Figs. 1 and 11.
Inserting Eq. (59) into Eq. (57) leads to the following formula for the stress increment:
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ds ¼ C0½1þ hAðT Þðc� cnÞ�dcþ CMT dc ¼ dsp1 þ dsp2; c P cn ð60Þ
Integration of dsp1 over the range (cn;~c) yields the following total stress increment:
Dsp1ð~cÞ ¼
Z ~c

cn

C0½1þ hAðT Þðc� cnÞ�dc ¼ C0 Dcþ h
2

AðT ÞðDcÞ2
� �

ð61Þ
where:
Dc ¼ ~c� cn ð62Þ
The second portion dsp2 of the total stress increment is related to the Mori–Tanaka homogenization. The gen-
eral equations were presented in the previous chapter. For the austenite the following tangent moduli are
defined:
lta ¼
Et

2ð1þ mÞ ; Et ¼
ECðnÞ

E þ CðnÞ ð63Þ
where E,C(n) are the Young modulus (identical for austenite and martensite) and the current hardening mod-
ulus. The shear modulus for the martensite inclusions is expressed by:
lm ¼ l ¼ E
2ð1þ mÞ ¼ G ð64Þ
Following Eq. (39) in its incremental form, the stress increment related to the Mori–Tanaka homogenization is
equal to:
dsp2 ¼ ðlMT � ltaÞdcp ¼ CMT dcp ð65Þ

Assuming for the plastic strains the incompressibility one obtains:
CMT ¼
5

2

lg
1þ g

n

1þ 5
2
g

	 

� n

ð66Þ
where:
g ¼ C0ð1þ hnÞ
E

ð67Þ
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Making the following additional assumptions:
g� 1; 1þ g � 1; 1þ 5

2
g � 1 ð68Þ
which is justified by the hardening parameter being two orders of magnitude smaller when compared to the
Young modulus. This simplification leads to the following conclusion:
CMT ¼
5

2
lg0

ð1þ hnÞn
1� n

ð69Þ
where:
g0 ¼
C0

E
ð70Þ
Developing Eq. (69) in Taylor series with respect to n one obtains:
CMT ¼
5

2
lg0½nþ ð1þ hÞn2 þ ð1þ hÞn3� ð71Þ
Integration of dsp2 over the range (cn;~c) yields the following formula for stress increment:
Dsp2ð~cÞ ¼
Z ~c

cn

CMTðnÞdcp ¼ 5

2
Gg0 AðT Þ ðDcÞ2

2
þ ð1þ hÞA2ðT Þ ðDcÞ3

3
þ ð1þ hÞA3ðT Þ ðDcÞ4

4

" #
ð72Þ
where:
Dc ¼ ~c� cn ð73Þ
Here, the Lame constant l has been replaced by the shear modulus G (see Eq. (64)).
Finally, the total shear stress in the phase transformation range (c P cn) is equal to:
sp ¼ sn þ Dsp1 þ Dsp2

¼ sn þ C0 Dcþ h
2

AðT ÞðDcÞ2
� �

þ 5

2
Gg0 AðT Þ ðDcÞ2

2
þ ð1þ hÞA2ðT Þ ðDcÞ3

3
þ ð1þ hÞA3ðT Þ ðDcÞ4

4

" #
ð74Þ
where:
sn ¼ s0 þ C0ðcn � c0Þ ð75Þ
Here, the stress increment above the phase transformation threshold (cn,sn) is composed of three components
(Fig. 10):

• linear hardening
Dslinear ¼ C0Dc ð76Þ

• hardening due to interaction of dislocations with the martensite inclusions
Dsinteraction ¼ C0

h
2

AðT ÞðDcÞ2 ð77Þ
• hardening due to enhanced stiffness of two-phase continuum (M-T homogenization)
DsMT ¼
5

2
Gg0 AðT Þ ðDcÞ2

2
þ ð1þ hÞA2ðT Þ ðDcÞ3

3
þ ð1þ hÞA3ðT Þ ðDcÞ4

4

" #
ð78Þ
Assume the classical case of torsion where the shear strain c is a function of the radius q:
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c ¼ #q ð79Þ

and # denotes the unit angle of twist. The torque can be obtained by integrating the shear stress multiplied by
the current radius over the surface of the cross-section:
Ms ¼
ZZ

A
sqdA ð80Þ
Given all the components of the stress profile one obtains:
Ms

2p
¼
Z qe

0

G#q3 dqþ
Z R

qe

s0 þ C0 #q� c0ð Þ½ �q2 dqþ
Z R

qn

C0

h
2

AðT Þð#q� cnÞ
2q2 dq

þ
Z R

qn

5

2
Gg0 AðT Þ

ð#q� cnÞ
2

2
þ ð1þ hÞA2ðT Þ

ð#q� cnÞ
3

3
þ ð1þ hÞA3ðT Þ

ð#q� cnÞ
4

4

" #
q2 dq ð81Þ
where qe denotes the outer radius of the elastic zone and inner radius of the plastic zone, whereas, qn denotes
the outer radius of the plastic zone and the inner radius of the phase transformation zone. Both radii can be
computed from the corresponding shear strain limits:
qe ¼
c0

#
; qn ¼

cn

#
ð82Þ
Assuming that the phase transformation process has already started from the outer radius of the circular
cross-section (Ms P Mn), the torque is expressed by:
Ms

2p
¼ Gc4

0

4#3
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3
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where:
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Plotting the torque against the unit angle of twist Ms = Ms (#) (Fig. 12) one has to specify the transition form
purely elastic to the elastic–plastic response:
�Ms ¼
p
2

s0R3 ð87Þ
as well as the transition from the elastic–plastic to the phase transformation regime:
Mn ¼
p
6

s0R3ð4� v3Þ þ C0R3 3cnð1� v4Þ � 4c0ð1� v3Þ
� � �

ð88Þ
where:
v ¼ c0

cn

ð89Þ
The field of the residual stresses can be easily obtained by applying the following equations of elastic
unloading:
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Fig. 12. Torque as a function of the unit angle of twist.
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sr � si ¼ Gðcr � ciÞ ð90Þ

M r ¼
ZZ

A
srqdA ¼ 0 ð91Þ
where ci,si,cr,sr,Mr denote the initial shear strain and stress fields (before unloading), the residual shear strain
and stress fields (after unloading) and the residual torque, respectively. Eq. (91) corresponds to the total
unloading process.

5. Structural members with the functionally graded microstructure

Assume a structural member made of stainless steel (for instance grade 316L) subjected to torsion at low
temperature, as shown in Fig. 13.

In order to obtain a functionally graded structure of the material the following condition has to be fulfilled:
Ms > Mn ð92Þ

which means that the phase transformation zone has started propagating towards the centre of the cross-sec-
tion, as illustrated in Fig. 14.

Using the previously identified material properties of the grade 316L stainless steel at 77 K:
c0 ¼0:0046; s0 ¼ 363:7½MPa�; cn ¼ 0:156; sn ¼ 617:9½MPa� ð93Þ
G ¼79230:8½MPa�; C0 ¼ 1680½MPa�; h ¼ 2:7; A ¼ 4:4; g0 ¼ 0:0082 ð94Þ
one obtains the shear stress profile is shown in Fig. 15.
Fig. 13. Structural member subjected to torsion at low temperatures (liquid nitrogen or helium).



Fig. 14. Functionally graded structure of the structural member.
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Fig. 15. Shear stress profile in the structural member subjected to elastic–plastic torsion.

B. Skoczeń / International Journal of Solids and Structures 44 (2007) 5182–5207 5203
Here, the shear stress is presented as a function of the shear strain s = s(c), however, by using the relation
(79) it can easily be transformed to the function s = s(q). In the present example the phase transformation
limit nL has been set – for the sake of simplicity – to 1. The profile of the volume fraction of martensite is
shown in Fig. 16.

It is worth pointing out that the material structure is functionally graded in terms of the volume fraction of
martensite starting from the radius qn towards the outer radius of the structural member. This zone constitutes
simultaneously a zone of substantial hardening of the material. All three components of the hardening induced
by the c! a 0 phase transformation:

• basic linear hardening,
• hardening due to interaction of dislocations with the martensite inclusions,
• hardening reflected by the enhanced stiffness of two-phase continuum (Mori–Tanaka homogenization),

are plotted in Fig. 17. It is certainly worth emphasizing that the most pronounced contribution to the material
hardening comes from the enhanced stiffness of the two-phase continuum due to the Mori–Tanaka
homogenization (mixture of hard a 0 phase and soft c phase). Thanks to the functionally graded material
structure the outside surface of the structural member becomes much harder when compared to the soft
elastic–plastic core. A micro-graph corresponding approximately to the functionally graded material structure
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5204 B. Skoczeń / International Journal of Solids and Structures 44 (2007) 5182–5207
is shown in Fig. 9. Finally, torque as a function of angle of twist per unit length has been plotted in Fig. 18 for
the angle ranging from 0 to p. The radius of the structural member equal to 0.1 has been assumed in the
numerical analysis.
6. Conclusions

In the present paper, a method of creating a functionally graded structural member by transforming its
material at cryogenic temperatures has been shown. The technique is fairly simple and consists in imposing
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on a stainless steel bar kinematically controlled torsion until the phase transformation threshold is reached
and the material starts transforming itself close to the outside radius of the bar. The depth of the transformed
zone is controlled by the angle of twist. In the transformed zone the face cubic centred (FCC) austenitic lattice
is gradually replaced by the body cubic centred (BCC) martensitic structure of the material. The profile of the
volume fraction of martensite in the transformed zone is linear and corresponds to the concept of functionally
graded material (FGM). Thanks to the plastic strain induced phase transformation and the strain hardening
the outside surface of the bar becomes much harder than the elastic–plastic core. A real gain in the overall
stability of the bar under the axial compressive load and better protection of the outside surface against
the mechanical damage are expected. The implications of the evolution of material structure for the stability
of the structural member will be shown in a separate paper.

The constitutive model used to describe mathematically the plastic strain induced phase transformation at
low temperatures involves strain hardening where two fundamental effects play an important role: interaction
of dislocations with the martensite inclusions and increase in material tangent stiffness due to the mixture of
harder martensite with softer austenite. The interaction of dislocations with the martensite inclusions is reflect-
ed by the hardening modulus that depends on the volume fraction of martensite. Here, a linear approximation,
based on the micro-mechanics analysis, has been used. Evaluation of the resulting material tangent stiffness
based on the classical homogenization scheme and taking into account the local tangent moduli of the com-
ponents of two-phase continuum follows the concept by Hill, 1965. In the present paper, the Mori–Tanaka
homogenisation scheme has been applied. Both effects contribute to strong nonlinear hardening as soon as
the phase transformation process begins. The material model is suitable for a wide range of temperatures,
however the best results are obtained at very low temperatures where the linearized kinetic law of phase trans-
formation is valid. For the process of monotonic loading (torsion) the closed form solutions for the stress pro-
file and torque are obtained.

Finally, it is worth pointing out that the proposed functionally graded structural members can be applied
both at low and at higher temperatures since the plastic strain induced phase transformation occurring in
metastable stainless steels (304L, 316L, etc.) at low temperatures transforms the material structure in an irre-
versible way.
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