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We develop the scattering theory for the Klein-Gordon equation. We follow 
the usual procedure of considering an equivalent equation, which is first order 
in time, in the Hilbert space of vector valued functions which have a finite 
energy norm. We prove existence and completeness of the wave operators, the 
intertwining relations, and the invariance principle as well. This is done for a 
large class of potentials. In particular, the magnetic potential may even be 
divergent at infinity. Electric and scalar potentials that behave at infinity as 
! N !-c-l, E > 0 are contained in our class. 

INTRODUCTION 

We develop the scattering theory for the Klein-Gordon equation [I]: 

hi(x) and qS(x) are real valued functions and m is a positive constant. The Klein- 
Gordon equation describes a relativistic spin zero particle of mass m in the 
presence of an electric potential &(x), a magnetic potential b,(x), 1 < i & n and 
qS(x) may be interpreted as a scalar potential. 

We follow the usual procedure of considering an equivalent equation, which 
is first order in time, in the Hilbert space of vector valued functions which have 
finite energy norm. 

In our main theorem (Theorem 5) we prove existence and completeness of 
the wave operators, the intertwining relations, and the invariance principle as 
well. This is done for a large class of potentials. In particular the magnetic 
potential, hi(x), 1 < i < n may even be divergent at infinity. Electric and scalar 
potentials that behave at infinity as [ x /--leC, E > 0 are contained in our class. 

The essential point in the proof of our main Theorems 1, 2, 3, and 5 is that 
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SCATTERING THEOR\ 101 

we show that the unperturbed and perturbed Hamiltonians are unitary equi- 
valent to pseudodifferential operators defined in Ya’ = .=P ~3 P. That allows 
us to use the methods developed for pseudodifferential operators in [S, 61. 

The Klein-Gordon equation has been studied by many authors. We will just 
mention the more recent results [2, 7, 8, 91, w h ere a list of references is given. 

Lundberg [2] considers the case n = 3, hi(x) :z 0, 1 -2 i :s< n and: 

(i) q,, and qs real valued, locally Holder continuous except at a finite 
number of singularities; 

(ii) b,‘(x), qy(x) square integrable; 

(iii) h,(x) and q,Jx) behave as O(i s I-a-$ E > 0 for ~ x + ;c; 

(iv) J’ &(--!J: + qs) / f(.v)]” 3 --01 s cZx(i Vf I’?. -J- m2 : .f I’), with 0 c< 
a < 1 and -f(x) E Cgm . 

Eckhardt [S] considers the case n > 3, b?(x) 5~: 0, 1 .:Y i ,< n. He assumes 
[2, IV] and conditions of Stummel type on q,?(x) and boz(.r); and some other 
conditions [7]. The method of the proof of [2, 81 is different from our method; 
they consider eigenfunction expansions, as in [lo]. Kako [9] considers the case 
71 =- 3, and hi(x) 0 cz i < n and qs(x) bounded, measurable, and satisfying: 

(1) ;&)j<c~i~--~, o<i<33; 

(2) bi(.y), 1 < i < 3 are differentiable and ~(?/~.YJ hi ’ :< C s ,--3--E: 

(3) q,< / < C j X im2+. 

All the functions we consider are assumed to be measurable. Since we are 
interested in scattering theory we did not obtain here the stronger possible local 
singularities in the potentials. See [15] concerning that question. 

1 

The Klein-Gordon equation [I] is the partial differential equation: 

hi(x), 0 < i .< n, and qs(x) are real valued functions, and m is a positive constant. 
The Klein-Gordon equation describes a relativistic spin zero particle of mass 

m in the presence of an electric potential b,(x), a magnetic potential b,(.r), 
1 :<i<n, and So may be interpreted as a scalar potential. 
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As is well known, Eq. (1 .l) together with the initial conditions 

define a well-posed initial value problem. Moreover, the energy integral 

&b) = j- d”x ji: IPi - bi)# I2 + ( 
i=l 

where q(x) = qS(x) - b,“(x), is constant in time. We will follow the usual 
procedure of reducing (1.1) to an equivalent equation which is first order in 
time. Let fi(x) = 4(x, t), f2 = ;(a/&) t&x, t), and f = (2). Then (1.1) is equi- 
valent to the equation 

where 

i(a/at) f = hf, (1.3) 

hzO l [ I L Q' 
D(h) = cy2, 

L = f: (Di - bi)2 + m2 + q(x), c?(X) = 9s - 4J2Y (1.4) 
61 

Q = 2b,(x). 

Csa is the space of infinitely differentiable functions of compact support on KY, 
and Cola = Cam @ Corn. 

We associate with the energy integral (1.2) a sesquilinear form, the energy 
sesquilinear form, defined in C772, namely, 

(f3 g)E = f (CDi - Ofi 7 tDi - bd&) + (Cm2 + 4)fi 9 &) + (f 2 P g2>7 (l.5) 
i=l 

f, g E C;12 (e, *) denotes the usual P scalar product, and q(x) = q8(x) - bo2(x). 
It is easy to verify that h is symmetric on the energy sesquilinear form, i.e., 

We consider first the free case, i.e., the situation where hi(x) E 0, q8(x) E 0. 
In this case the energy norm is given by 

(f, do = i Pifi 9 %J + m2(fi , h> + (f2 I g2>. (1.7) 
i=l 

Let X0 be the completion of Corn,’ with this norm. Clearly (*, *)e is equivalent 



SCATTERING THEORY 103 

with the norm of H1 @ 9, where H,T, s E R is the Sobolev space of order s. 

Equation (1.3) reduces to 

We prove in Section 2 that 

THEOREM 1. H,, is self-adjoint on X0 with domain D(H,) = H, @ H1 , and 
is essentially self-adjoint on Cz9’. It is absolutely continuous and a(H,,) = a,(H,) 

(--co, -m] U [m, co). a,(H,,) denotes the essential spectrum of I-I, . 

In the interacting case, i.e., the case where hi(x) and ys(x) are not identically 
zero, we introduce an assumption assuring that the energy sesquilinear form is 
strictly positive, i.e., it defines a norm. 

(A,,) There is a constant E > 0 such that 

y*(x) denotes the positive and negative parts of y(x). 
We give in the Appendix a necessary and sufficient condition for A, to be 

satisfied. Note that A, is weaker than [2, Condition iv]. Then (., .)s is a norm 
(see Lemma 2.1 of Section 2), and we denote by 9c the completion of C~,’ with 
the energy norm. 

We give our conditions in terms of the following quantities [3]: 

where 

w&c) := 1 x 1-n for 01 < n, 

=l -lg]xl for O[ = n, 

=l for N > n. 

We denote N,(y) =: n7,,r(y), and we say that y E N, if N,(y) < X. 
Our next assumptions are: 

(A,) For 1 < i < n, hi(x) E N2 and if n > 2 N,,,(Q -+)s+n 0. 

(AJ / y(~)lll” E Nz and if n 3 2 N,,,(y) sz 0. 

We prove in Lemma 2.4 that Aa - A, imply that the norm of Xc and Z0 
are equivalent, then they coincide as a set. Let J be the identification operator 
from X0 onto tiE . J, is a bijection. 
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We introduce three more assumptions: 

(Aa) C(X) = xi”=, ((a/&q) &(x)) E N4 and if n > 4 N4JC) ,- 0. 

(Ad) q(x) E N4 and if n 3 4 N4,(q) SyO 0, b? = CF=, bi2(zc) E N4, and if 
71 3 4 N,,,(b2) syo 0. 

(As) b,(x) E N2 and if 1~ 3 2 N2,,dbo) ;;* 0. 

W e prove in Section 2 that 

THEOREM 2. If A,-A, are satisjied h has a self-adjoint extension, H, in SE 
with domain 

D(H)-H,@H,. 

The wave operators are defined, when they exist in the following way: 

W* = ;;‘iig eiHtJewiHot, 

where s-lim means strong limit. Note that H,, is absolutely continuous, i.e., 

p&Jo) = 1. 

W* are said to be complete if their range coincides with the absolutely continu- 
ous subspace of H. In that case the scattering matrix, S, is defined as 

S= W+*W- and is unitary. 

We say that the intertwining relations hold is #(H) w+ = w&Ho) for each 
Bore1 function 9. The invariance principle holds for a class of functions q~ if 

for v in the class. 
We need four more assumptions: 

(A,) Let p(x) = (1 + 1 x I). Then (psbi) 0 < i < n belong to Nz , and 
(p8C) belongs to N4, 
n > 4 N,,,(C) + 0. 

for some s > &. If n > 2 N2,,(bi) $- 0, 0 < i < n. If 

S-10 

Note that A, implies A, , A3 , and A, . We define 

Then 

6%) N2,,W4 ,%zm 0; N4,&+C) - 0, and Ndq) ,3E.m 0, where Irl-m 
1 < i < n. Moreover, N&P) ,%;if, 0. 



SCATTERING THEORT 105 

The last assumptions are 

(As) Let d denote any one of b,(x), 0 :< i -< 11; C(x); then 

f4.4 J’T-i<L i d(y)12 dy E 55’~ for some p I? 1, and CL satisfying 

(4 PW fl ‘-- I 2 y <1 j q(v)! dy E .Yz for some 13, I satisfying 1 .: 1 : X. 

/3 1, I - (2nj(l i n)p). 

Then we prove in Section 2. 

'~'HEOREM 3. Let A,, , AZ , A, , and A,-A, be satisjied. Then the wave operators 
us, exist and are isometries from X0 onto SE “. The intertwinilzg relations hold, and 
the invariance principle holds for all functions q~ satis@g 

and 

(4 

f 1.c 
--i,,S--itCL(.S) ds ’ dy --) 0 e as t --+ “L 

-ll r 

I 
e--itm(s) ds + 0 as f --f 7z 

r 

for any compact r contained in (-a,, -m) v (m, xj). The singular spectrum 
qf H has measure zero. 

We denote by SF the absolutely continuous subspace of H. For the defini- 
tions of the absolutely continuous and singular parts of a self-adjoint operator 
see [13]. 

Once Theorem 3 is proved the conditions on the magnetic potential hi(x) 
1 < i r-z _ n can be weakened in a considerable amount by the introduction of a 
Gauge transformation. In particular we can include magnetic potentials which 
are divergent at infinity. From now on we assume that hi(x) E J.Z$, , for 1 < i <tt, 
and, for simplicity, that n > 2. We define (Rot bjij =~: i’l,bjl where [ ] means the 
alternation of the indices i, j. We denote 

,4&r is the set of functions q such that M,,r(g) <.I x . \\‘c also say that Q is 
locally in MU,, if qq E M,,, for every q~ E C,,“. 

We introduce the assumption A r: Let b, , 1 :g i : : n be locally M,., and 
suppose that (Rot b), is a locally Holder continuous tensor such that 

I i, j 17, 

for each .x, where r := I .Y - y / . 
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LEMMA. If AT is satisfied 

b,(x) = V(X) + (w4 b(x), 1 <i<n, 
where 

b,‘(x) = K i (Rot b)ji((alaxj) y2-n) dy, 

c+(x) = s, (hi - biT) dsi, 

K = -r(&)/2(n - 2) 7r-. 

C is any curve from a fixed point to x (the integral is independent of the curve), and 
the summation convention is used. 

Proof. See [4, Lemma 2.11. A gauge transformation is a unitary trans- 
formation from a Klein-Gordon equation with magnetic potential b,(x), 
1 < i < n, to a Klein-Gordon equation with magnetic potential &r(x), 
1 < i < n. The point is that the b,‘(x) have a better behavior at infinity than 
the original hi(x). For example, the bi( x ma even be divergent at infinity while ) y 
the b,‘(x) go to zero at infinity faster than K/i x / . 

We introduce the following assumptions. 

(A,r) Cz E IV, and N2,JC$) Sz 0, 1 < i, j < n. 

A,r= A,: [ q lljz E IV, and N,,,(I q 11/2) -+0 0 and we define the energy 
norm for the b,‘(x): f, g E C,aT2, (f, g)T = CLj (toi - biT)fi > CDi - bil El) + 

Km2 + dh T gd + (f2 p g2). BY A0 (., ->T is a norm and let s?+ be the completion 
of Cz*” with this norm. As before A,r and A,* imply that the norm (., .)T 
is equivalent to the norm of Hl @ dp2. 

The Klein-Gordon equation with b,‘(x) is 

Lr =.: 5 (I& - hi32 + m2 + q(x). 
i=l 

Note that P(x) = xy=, (a/ax,) b,‘(x) = 0. Then we do not need an assumption 
like A, . 

(Asr) q(x) E IV4 and if n 3 4 N,,,(q) S- 0, (B ‘) = Cij (Cij)2 E N4 and 
if n > 4 N,,(B “) K;‘, 0. 

Moreover, 

A,r = AS: 4, E N2 and ~2,,Po) z. 0. 

Now Theorem 2 implies (note that brz = xy=, bT2 < KBr2) 
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THEOREM 4. Let A,, A, and A,T-A,= be satis$ed. Then h, has a self-adjoint 
extension, HT in ST , with domain D(H) -= Hz @ HI 

We define 2” to be the following Hilbert space: 

with the scalar product (f, g)E = (fr, gr)T, where U -tf’(~) == eei6trnlfr(x). 
XE is, clearly, the completion of ~J-K’,“~” with the energy norm (IS), because 

U is a unitary operator from SfPE onto &$ by construction. Moreover, 
H := L7-IHTU is a self-adjoint extension of h (as defined in 1.4). 

Then U is a gauge transformation, i.e., a unitary transformation from Eq. 
(1.3) in ~6~ with magnetic potential b,(x), 1 < i < n onto a Klein-Gordon Eq. 
(1.9) in ST with magnetic potential b,‘(x) 1 < i < n. 

The identification operator from tiO onto ZE is given by J = U-l]= , where 
JT is the identification operator from Z’ onto ~6~. The wave operators are 
given by: 

iHot = s-lim ~-leitH~e-iH,t 

t-, k P 

Then the existence of the urT = s-lim,,+, eitHre8fHo implies the existence of 
the W* , and moreover W& = U-Lhtr. Then we assume: 

A,T, A6’r, A,T, and AsT: Assume that -4, , A,, As, and A, hold with 
6, , 1 < i :< n replaced by Cii 1 < i, j < n. Note that Cy=, (DibiT) c 0, i.e., 
the assumptions concerning C in A6-A9 are excluded. In A, we replace bP by 
R,?. 

THEOREM 5. Let A,, AT, A,=, AZ=, and A,T-A,= be satisfied. Then all the 
conclusions of Theorem 3 hold true. 

Proof. By Theorem 3 the w+= exists, then w& C,‘-L.IT Moreover the A . 
W+~ are isometries from 2, onto S;‘. Then the W+ are isometries from ZO 
onto &!‘ac. By the same argument the intertwining relations and the invariance 
principle hold. Q.E.D. 

We note that since w* = U-lw+T the S matrix 5’ = w+*w- = o?“*w-~ = ST-, 
i.e., the scattering matrix is gauge invariant, as one should expect. 
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2 

In Section 2 we prove Theorems 1, 2, and 3. Let s denote the space of 
Schwartz. By H, , the Sobolev space of order, s, s E R, we denote the completion 
of Cam with the norm 

llfll, = ll(l + Iv 12>,‘2FfII 9 fE corn, 
where F denotes the Fourier transform, and ]I ]I denotes the g2 norm. 

Proof of Theorem 1. We denote g2” = 9 @ 9. Let U,, be the operator 

1 
uo = pF-l ( 

(72 + m2)l12 
(172 + m2)1/2 ‘)F. 

-1 

U, is a unitary operator from ZO onto 9”. Moreover H,, = U%&U, where 

I?,, = F-l(q2 + rn2)li2 FM, 

Now by [5, Lemma 1.2 and Theorem 1.71 Z&, is self-adjoint on HI @ HI and 
essentially self-adjoint on C~Y2 and o(&) = o,(&,) = (-co, -m] u [m, co). 
&a is clearly absolutely continuous. The statement of the theorem follows from 
the unitary equivalence of H,, and fi,, . 

Now we prove that if A,, is satisfied the energy sesquilinear form is positive. 

LEMMA 2.1. Let A,, be satis$ed. Then 

(f,f>E 3 4fi A> + (f2 ,fiN> fe com~2. 

Proof. It follows from A, and [3, Lemma 1.2, p. 1681 that 

(Q-f1 ,fd G i$ ll(oi + bi)f, II2 + (m2 - 6) llfi 112, fe Corn- 

Then 

(fI ,f )E 2 <(fi ,fd + (fi ,fi) 3 dfi ,fi) + (fi >fi)>* 

Note that we can always take E < 1. 

The following two lemmas have been proved by Schechter [3]. 

Q.E.D. 

LEMMA 2.2. Suppose q E N,, for some s > 0, and if n > 2s assume that 
N,,,,(q) s~O 0. Then fw each E > 0 there is a constant K, such that 

II~fll~~llflls+~~llfll~ fEG"- 
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Proof. See 13, Lemma 7.5, p. 1401. 

LEMMA 2.3. Let q E N,, , s > 0 and let I~zp,L(q) ,:0 0, then q(x) is a compact 
operator from Ii, to 9. 

Proof. This follows as in [3, p. 1451. 

LEnfMa 2.4. Let A,, , A, , L?\f be satisfied. Then there exisfs C, , C, >- 0 such 
that 

C2(ilfl iif --+ 1; f2 iI”) :< (f,f)B -2.; C,( fi if .- FJ? I’“). 

Proof. 

where we applied Lemma 2.2. Moreover 

> il // Difi II2 - E’ i/ fi 11: - K’ jj fi j/ {- j: f2 11’ 

by the same argument. Then 

(1 - 4(llfi IiT + llfi II") G (f,f)E + K(f, ,fJ 

< C(f,f)E t C ’ 0. Q.E.D. 

Lemma 2.4 implies that the norm of 2, and the norm of HI @ Zr%” are 
equivalent, and that they coincide as a set. Then 8” and XE coincide as a set. 

LEMMA 2.5. If A,, -4,) and A, are satisfied L is self-adjoint in ZtpL with 
domain H, and essentially self-adjoint on Corn. 

Proof. Lf = (-A + m2 + V + b2 + q) f, f E Corn, where C’ y--= 2 Cy=, b,D, A- 
Z;=, (Dibi), b2 = ‘& bt. By Lemma 2.2 we have for any l ;> 0 
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and 

Then VE > 0 there exists I& such that l\(V + b2 + q)fll < E llfi12 + K, l/fll . 
This implies that V2 + b2 + 4 is --d + m2 bounded with relative bound zero, 
and the statements of the theorem follow from the Kato-Rellich theorem. 

Q.E.D. 

Proof of Theorem 2. L is, clearly, the operator associated with the closed 
form 

4fi , gl) = i Wi + bi)fl y (Q + bi)g,) + ((m2 + dfi y gA 
i=l 

D(E) = HI . The positivity assumption A,, implies that (see Lemma 2.1): 
Z(fi , fJ > c(fl , fi), fi E D(1). Then L > E > 0 and D(L’/“) = HI . Moreover 
l(fi , gr) = (L1/2fl , L1/“gl), f, g E HI . It follows that 

(f, g)E = (L?fl 7 L1i2g1) + (f2 r g2>, f, g E @3 ’ 

We define the operator: 

U is a unitary operator from Sx onto Y22 = .5Z2 @ .Y2. 
We define the pseudodifferential operator I? in Z2 

A=ir,+Q; fil = (L;’ -g2,9 Q = 2bo (-; -;,. 

fiI is self-adjoint on D(I?r) = HI @ HI . By As and Lemma 2.2, Q is fir- 
bounded with relative bound equal to zero. Then I? = fir + Q is self-adjoint 
on HIgHI. But 

is a self-adjoint extension of h with domain D(H) = U-lo(A) = (H, @HI). 
Q.E.D. 

Remark 2.7. H can be written in the following way: 

H = I&, -j- 7, 

where 
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Clearly D(fi,J C D(P), then for any x E p(H) n p(H,) 

R(a) R,(z) - R(z) &R,(z) ::=: R”(Z) - R”(Z) Qzqz), 

where 

Z?(z) =--. (H - a)-~*, R,(z) = (R,, - z)- ‘. 

I,et J be the identification operator from x, onto XE . Then we have 

&(4 - ww J = a4 Ql-W) J 

:= pR(z) J@t,(z), 

where 

R,(z) = (Ho - z)-1. 

So Ii, and H satisfy a second resolvent equation. , 
Now we are ready to prove Theorem 3. I\‘e will obtain the proof by showing 

that the conditions of an abstract theorem in scattering by Schechter arc satis- 
fied. To be self-contained we will include the statements of the Theorem: 

Let ZO(ZI) be Hilbert spaces, and let H,, be a self-adjoint operator on it 
with spectral family {E,(X)}, ((E,(X)}). Put K,(z) : (z ~- If”) * and R,(z) 
(AZ - 11,)--l. Suppose: 

(a) There is a linear bijective operator from ri;, to ~XI 

(b) There is a Hilbert space K and closed linear operators -4, B from 
Jv;, to K such that A is injective and fl(H,) C D(A) n r)(B). 

(c) D(H,) C ZI(Ajm*) n D(BJ*), and 

R”(Z) - J--lR,(z) J =~ [R,(z) B*] ill-‘R,(z) J 

=: [J-‘&(z) JB”] AR,,(“n)~ 

where [W] means the closure of the operator W 

(d) There is a zU in p(Ho) such that BR,,(a,,) [R,(z) .4”] is ;I compact 
operator on K for all nonreal u”. 

(e) Q(z) =: [B&(z) A*] is bounded on K for one 2 in p(H,,), and u(z) 
1 -c- Q(z) has a bounded inverse on K for some nonreal z. 

(f) There are an open set A of real numbers and functions Q=(A) which 
are continuous from A to B(K) (the set of bounded operators on K) such that 
Q(X & in) converges in norm to &(A) as a - 0 for each X in il. 

.580/27/1-S 
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(g) There is a function M(X) from A to B(K) which is locally square 
integrable and such that i[AR,(h + Cz) - R(X - Gz) A*] p converges weakly to 
2rM(h) p in K as a + 0 for each p in K and almost every h in A. 

(h) There is a closed set e of measure zero such that [J*J - J] E(F) is a 
compact operator for each interval r C (A\e) (I’C A\e means that the closure 
of r is compact and contained in A\e). 

THEOREM 5 (Schechter). Under hypotheses (a)-(h) the strong limits 

exist. 

of = jyrn eitHIJe-itHoE~C(A)f 

The operators w+ are isometrics from Er(A) SO onto E:‘(A) HI . The inter- 
twining relation holds, i.e., 

and 

holds for all function $ satisfying 

and 

co 

I IS 
--iTM--itW(d ds ’ dv - 0 e as t--+cX, 

0 r 

s 
e -itO ds ---f 0 as t+ccl, 

r 

for any compact F contained in A. 

Proof. See [ll, Theorem 3.11. 

Proof of Theorem 3. Take K = .JZ~~ @ 9.” @ LZz2 @ YS2. We define 

A: r% - KWf > = {A,f, Azf, Asf, A4f 1 

and 

where 

B: &, - V!f 1 = P,f, Bzf, Baf, BJf > 

and A, [ sig Q 1 4 11/2 = 0 0 1 0’ 

B, = [; pJ, B, = [i ,i,J, B, = [i i], and B, = [i ’ ‘:“I. 
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By A, and AJ D(H,,) C D(A) n D(B). Then (b) is satisfied. Moreover 

then by Remark 2.7 (c) is satisfied. 
B&(z) is bounded. Moreover 

where ~(9) = (--d + m” - 9)-l. I?,(z) is bounded from H, @ HI into 

Hz $jJ HI and A,, 1 < i < 4 is compact from ri, @ HI into SAz by A, and 
Lemma 2.3. Then AR,(z) is compact from X’ into K, and (d) is satisfied. 

Clearly BR,A* = @z=, BiRo(z) A,*, in an obvious notation. (e) will bc 
proved if we find a x E p(H,) such that // BiR,(x) Ai* /I < 1 as operator from 
.Ez2 ---f 5E2”, for 1 < i < 4. But 

B,R,A,* = 
[ 
pr(z2)(pW)* 0 

0 1 0’ 

B,R,4,* = 
C 

0 0 
‘ 

2p”boY(x2)p-” I 2zp”b,r(z”)p--” ’ 

bY(Z”)b 0 
Ww%* = o [ o]’ 

and 

B,R,A,* = 
[ 
1 q 11/2 ~(2~) sig q j q /iii 0 

0 0’ 1 

We have 

11 BIRoA,* /I < II[,J”VY(Z~)]* 11 =- :j pqVr(z’); . 

But p”V is compact from H2 to 9. Then VG > 0 there exists a K, such that 

11 psVr(zz)fjj < E I/ ~(z’)f~~~ + Kc!1 1(2).f 1 . 

Take z = iar, a. > 0. Then 

Then ‘V’E > 0 there exists a 01~ such that // B,R,,A,* !/ :< E if 01 > cq, . Moreover 

I/ B,R,A,* jl < 23/2 I/ .zp”b,r(z’) p-” j’ 

< 23/z II p860(y)li” 1: * 
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But by A, and Lemma 2.2 VE > 0 there is a q, such that ]I psb,,(r)1/2 I/ < l /23/2, 
for 01 > 01~ , and then jj B,R,A,* jl < E. By a similar argument 

II WW,” II < 6, II B&4* II < ~9 

and (e) is satisfied. 
We take /l = (-CO, -m) u (m, co). Since H, is absolutely continuous 

Er(fl) = II. By [I 1, Lemmas 3.3 and 3.41 (f) and (g) will be satisfied if we 
prove that 

and 

; (-%(A) A *v, A *w)o = (M(+, W)K , 

$ (4,@) B*v, A*w)o = (W)v, W)K , 

where M(X), N(X) are locally Holder continuous functions from /l to B(K). 
We denote by C* and one of A* or B*. Then 

; (E,(h) C*v, A*w)~ = $ (U,,E,,(/\) C*v, A*w), 

where U, is the unitary operator from X0 onto 922 introduced in the proof of 
Theorem 1. We consider h > m, for h < -m is similar. Then 

2 (E,(X) C*v, A*w), = & (&,(h) MU,C*v, U,,A*w) 

where M = [i -3 (see the proof of Theorem l), where I&(h) is the spectral 
family of the operator F-1(72 + m2)1/2 F. 

Then 

$ (&(A) C*V, A*u)o = g $ (~%O(~)(Ut&‘*~)lj vjn, (UoA*“h QJ~*) 
nm 

where 

4 4 
v = @ v, w = @ uPa, vn, IJP E P22. 

n=l rn=l 

But if A, and A, are satisfied we prove as in [6] (see also [12]) that 
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where M$,,,,,,, is a locally Hijlder continuous function from (m, ~0) to B(K). 
This gives the proof of(f) and (g). It remains to prove h, but 

J*/ - 1 = (V + b2 + q) Y(0) 

I’r(O), 6%(O), qr(0) are compact by Lemma 2.3. Q.E.D. 

APPENDIX 

M’e give a necessary and sufficient condition for A, to be satisfied. We define 

u41 

where G,,,(X) is the inverse Fourier transform of 

Then 

(2Tr-‘@ (A + 1 ‘7 ,y, x ;so. 

h3IILIA A. 1. A, is satisfied if and only if B,(q-) -:I I for some h < m2. 

l’roof A,, is equivalent to 

W.f>f) G K--d + 4f7.0, fE G’ 

and h ~=; m2 - E; then the lemma follows from [14, Theorem 5.21. 

b\‘e define 

Clearly B,(q) < S,(q); then A, is satisfied if S,,(q-) < 1 for some /\ 
the case n = 3 this takes a particularly simple form, because 

I 
G,,^(x) = 4rr , x: , exp[--X’s’” 1 x i], 12 ~- 3. 

Then A, is satisfied if 

sup i 
I 

4-W , x _ y / (exp --h’ ’ j X --y 1) (IJ 47? 
R - 

for some X -:I Nz’?. 

< 

Q&D. 

m2. In 
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In the case when q(x) is of Coulomb type, i.e., q(x) = --e/j x j , e > 0, we get 

e s &- , x 2 y , (exp -P I x - y 1) dy < 4~. 

By taking polar coordinates and explicit integration we get: e/h1/2 < 1; then A,, 
is satisfied if e < m. Eckardt [8] obtained in this case 

e < min 
i 

1 2m2 
~ 
6(31'2) ' 25(31'2) > ' 

which is clearly a stronger condition. In the case of a electric potential of 
Coulomb type, i.e., qs = 0, and b,(x) = e/l x I, one could use the necessary and 
sufficient condition given in Lemma A.l, but it is easier to use, in this case, 
Hardy’s inequality. A, is satisfied if and only if 

e2 I -j-$ If(4l” d3x < 1 (a2 + 8 I F.(fl)12 d3k 

but by Hardy’s inequality: 

s 
& , f(x)12 d3x < 4 1 k2 1 Ff(n)j2 d3k. 

We see that A,, is satisfied if 

lel<&. 
It is known that the constant in Hardy’s inequality is the best possible. Returning 
to the ordinary system of units, 1 e 1 < 8 corresponds to the condition 1 z / < 
68.5, z being the atomic number. These results can be generalized in a trivial 
way to the case 71 3 3; we obtain ] e ] < ((n - 2)/2), 7t > 2. 
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