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KEYWORDS Abstract This paper presents a reference model-based approach for detection of different faults in

a wind turbine. Stochastic uncertainty has been considered in the model of wind turbine. The fault
detection scheme is so designed that the generated residual is robust against the uncertainty. For
residual evaluation purpose, generalized likelihood ratio (GLR) test has been performed. Threshold
is computed using the table of chi-square distribution with one degree of freedom. Occurrence of a
fault is concluded whenever evaluated residual crosses the threshold. Using this approach an actu-
ator and a sensor fault in the pitch system and a sensor fault in the drive train system are success-
fully detected. Results are compared with Combined Observer and Kalman Filter (COK) approach
(Chen et al. 2011) used for wind turbine fault detection with this approach requiring less detection
time thus providing a more useful solution to the wind industry.
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1. Introduction an important issue. A lot of work is being done to ensure ser-
vice reliability and performance (Parsa and Parand, 2012).
Reliability can be ensured using efficient fault detection meth-
ods. Wind turbine may work well even in the presence of mild
faults but severe faults should be detected as quickly as possi-
ble so as to prevent the wind turbine from any severe damage.

A three-blade horizontal-axis wind turbine is considered in

this paper. Blades of the turbine are facing the wind direction.

Wind turbines are used to convert wind energy into electrical
energy. Wind energy is clean and renewable. It contributes a
lot in the overall world’s energy demands. Now a days, wind
turbines in megawatt sizes are in operation throughout the
world. As sizes of wind turbines increase, reliability becomes
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These blades are connected to the rotor. As wind turns the
blades, they cause the rotor shaft or the low-speed shaft to
rotate. A gear box is used to upscale the speed to a level at which
generator can generate electricity. There are two regions of oper-
ation; partial load region and full load region. Power production
in partial load region is controlled by converter reference torque
control, where as in the full load region, the objective is achieved
with the help of pitching the blades of the wind turbine. Feed-
back mechanism (Elnaggar and Khalil, 2014) that is highly
developed is employed for the purpose.

1018-3639 © 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
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The last three decades witnessed tremendous efforts in the
area of fault detection and isolation both in academia and
application. For a good insight, the interested reader is
referred to Gertler et al. (1998), Blanke (2003), Ding (2008),
Isermann (2011), Khan (2011) and Chen and Patton (1999).
In the recent past, fault detection and tolerance of the wind
turbine has been the focus of attention of researcher commu-
nity. To this end, several techniques have been proposed. An
unknown input observer based design for diagnosing faults
in the wind turbine converter has been reported in Odgaard
and Stoustrup (2009). A set-membership approach has been
proposed in Tabatabaeipour et al. (2012). An observer based
scheme for estimating pitch sensor faults is described in Wei
et al. (2008) and for gearbox in Sheldon et al. (2014). A scheme
based on parity equations for fault detection of wind turbines
is presented in Dobrila and Stefansen (2007). A technique
using up—down counters for detection of various faults has
been presented in Ozdemir et al. (2011). A fault detection sys-
tem using data-driven technique is designed in Yin et al.
(2014). In Svéird et al. (2011), an automated design method
of fault detection and isolation of wind turbines is proposed.
A data-based approach has been presented in Laouti et al.
(2011) in which process knowledge is not required like the
other model based approaches.

In this paper, reference model-based approach (Ding, 2008)
is exploited for fault detection in wind turbine. Standardized
wind turbine model (Odgaard et al., 2009), that is being used
by the researchers throughout the world, is used for the analy-
sis. As a result, improvements presented in this research are
likely to be adopted by the wind turbine industry. Two subsys-
tems; that is; drive train system and pitch system are consid-
ered. Stochastic uncertainty is considered in the parameters
of these systems. There are various causes of such model uncer-
tainities including manufacturing tolerances, aging, insect and
dirt contamination. Manufacturing tolerances mean that there
is always a difference between mathematical model and actual
process even when no fault is there. If the model uncertainities
are not countered false alarms or missing alarms may occur
that will seriously hinder the smooth operation of the wind tur-
bine. The proposed FD scheme is robust against model uncer-
tainty because of the reference model strategy. An optimal
reference residual model for wind turbine subsystems is devel-
oped and a fault detection filter is then designed with its gain
found using a series of LMI’s. LMI solution provides efficient
and reliable desirable RFDF filter. It is also interesting that
there is impulsive change in the residual against some faults
in the system. This, in practice, possesses difficulty in detecting
such fault. In order to enhance the detectability of these faults,
a post filter is proposed. Intuitively, the residual signal should
be zero for fault-free case and deviate from zero otherwise. It
is interesting to note that, in practice, the generated residual
is non-zero even in the absence of fault in the system. Further
processing of the residual is, therefore, needed. This stage
includes residual evaluation and threshold setting. A systematic
design of threshold for FD purpose has also been addressed in
the literature, see for instance, Ding (2008), Khan and Ding
(2011) and Abid et al. (2009). In this work, GLR has been used
for evaluation and threshold design purpose. Threshold is
found using the table of chi-square distribution with 1 degree
of freedom. Then GLR test is applied that is famous for change
detection. In this test, occurrence of a fault is declared whenever
evaluated residual crosses the pre-defined threshold.

The rest of the paper is organized as follows: Brief introduc-
tion to the wind turbine system and model of different subsys-
tems is given in Section 1. Reference model-based approach
has been presented in Section 2. Generalized likelihood ratio
test is given in Section 3. Simulation results to show the effec-
tiveness of the proposed approach are shown in Section 4.
Finally a conclusion is drawn in Section 5.

2. Mathematical model of wind turbine

A three-blade horizontal-axis wind turbine is considered in this
paper. This turbine works on the principle that wind acts on
the three blades of the turbine resulting in a motion of the
rotor shaft. The rotational speed is upscaled with the help of
a gear box to a speed at which generator can generate electric-
ity. Rotational speed is controlled in two ways: converter ref-
erence torque control and pitch angle control of the turbine
blades. Converter reference torque control is used in the partial
load region, whereas, pitch angle control is used in full load
region of operation of the wind turbine. Pitch angle is changed
using hydraulic actuators which turn the blades according to
the requirement. Sensors are used to measure the pitch system
position. For the drive train system, rotor and generator
speeds are also measured using sensors. In this section models
of different subsystems of the wind turbine including pitch sys-
tem and drive train system have been presented. These models
can be found in Odgaard et al. (2009).

2.1. Pitch system model

The pitch system controls the pitch angles of the blades of
wind turbine. Sensors are used to measure the blades position.
It is a hydraulic system with one hydraulic actuator for each
blade. The pitch actuator is modeled with a second order sys-
tem and its nominal dynamics are described as

B(s) o,
ﬁre_,»(s) T2+ 2w,s + ?

(1)

where B(¢) is pitch angle, () is the reference to the pitch
angle, w, is the natural frequency of the pitch actuator model,
{ is the damping ratio of the pitch actuator model. This trans-
fer function is discretized for use in the fault detection
approach. The discretized state space model is given as

x(k+1) = A,x(k) + Byu(k) (2)
y(k) = Cpx(k) + Dyu(k) 3)
where
. [ 0.0247 —5.536}
7710.04485  0.6226 | @)
B, = { 004485 } C,=[0 1234], D,=[0]
0.003058

2.2. Drive train model

Wind rotates the blades of the wind turbine. Drive train system
has gears in it to upscale the rotor speed to a level required by
the generator for generation of electricity.

The nominal dynamics of the drive train are described by
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Xar = AaXar + Byt (5)

Yar = Ca'rxa'r (6)

where the state vector x;, = [, @, 0,] includes the rotor
speed, the generator speed, and the torsion angle of the drive
train. The input vector uy, = [, 7, ] includes the aerodynamic
rotor torque and the generator torque. The output represents
measured speeds of the generator and the rotor.

The Drive train system has unknown aerodynamic rotor
torque as one of its input. It is difficult to estimate it because
it involves wind speed which has a very high noise in it. This
issue has been resolved by using an approach presented in
Zhang et al. (2011). We note that in drive train model, the
matrices By and C,, are of the following forms.

1
5z 0 5% O
0 0 0
100
Cy = 8
@ {o 1 o} ®)

We observe that the aerodynamic torque only directly affects
the first state variable; that is; rotor speed, which is measured.
Therefore after partitioning the matrix 4, into

A A
Ad/ _ |: drl dr2:| (9)
Ad13 Ad/4
where, Ay € R>2and A, € R, give
@) @)
.g :Ad[4|: g:| +B1'L'g+BzC!)r (]0)
0, 0,

. 1
with B, = [—J—g
tor z;, = [w, 0,] and taking into account the measurable
generator speed, we have

0} and B, = A,3. By defining the state vec-

2&[/ = At[/4ZtI/ + B] Tg + BZwr (1 1)

u)g = Z‘d,Zd[ (12)

where C;, = [1 0]. Now the inputs are generator torque and
the rotor speed. We have converted the system into a form in
which aerodynamic rotor torque is not present.

The continuous time state space model of drive train system
is discretized with the state space model given as

.X(k + 1) = ADTX(k) + BDTu(k) (13)
y(k) = Cprx(k) (14)
where

—0.9111 1036

ADT - 5
~0.0001543  —0.9094
 [~3.758¢—005 181.4

PT1 6.926e — 008 0.01495

(15)
:|, CDT:[l 0}

2.3. Faults considered

Two type of faults have been considered; sensor and actuator
faults. Motivation for the considered faults is largely
proprietary.

2.3.1. Sensor faults

Sensor fault changes the output of the system. It might become
more severe, when the sensor information are feedback to con-
troller. Sensors are used at different points in a wind turbine,
for instance, for the pitch angle measurement and rotor speed
measurement. Sensor faults may either be electrical like an off-
set in the measurement, gain factor on the measurement or
they may be mechanical like a sensor break. Mathematically,
the fault is represented as

sensor fault = sensor offset + scaling

X measurement from sensor

Two sensor faults (fault 1 and fault 2) are considered. Fault 1
is related to the sensor of pitch system. This fault can result in
unbalanced rotation of rotor. The fault should be detected
before a large error in the pitch angle measurement in order
to avoid permanent damage to the wind turbine. Fault 2 is
related to the sensor measuring the rotor speed. The fault
detection system is required to detect this fault before this mea-
surement error reaches some alarming value. Table 1 shows the
type of sensor that may go faulty in each case.

2.3.2. Actuator faults

As the name indicates that an actuator fault occurs in the actu-
ator of the system. Wind turbine has three pitch actuators
which may all fail at once or anyone of them may fail. There
failure may be a result of oil leakage from the hydraulic system
resulting in low oil pressure. This is an incipient fault and once
introduced can not be reversed without the system repair. Con-
sequences of this fault may be a slower actuator response,
improper rotation of the blades or even a break in severe cases.
So this fault should be detected before the pressure drops to a
very low value. This fault is modeled by a change in system
parameters. One actuator fault (fault 3) is considered. Table 2
indicates the type of actuator that may go faulty in case of con-
sidered fault.

The faults are listed below:

Fault 1: Gain factor sensor fault of magnitude 1.2 in pitch
position sensor in the time period 2300-2400 s.

Fault 2: Gain factor sensor fault of magnitude 1.4 in rotor
speed sensor in the time period 1500-1600 s.

Fault 3: Actuator fault in pitch actuator caused by low oil
pressure due to hydraulic leakage in the time period 3500—
3600 s.

Table 3 shows how the parameters are effected when a fault
occurs.

3. Problem formulation

In this section, we use reference model-based approach (Ding,
2008) to design a fault detection scheme for pitch and drive
train system. In what follows, we present briefly the reference
model approach. The interested reader is referred to Ding
(2008) for detailed study.

Consider a discrete time uncertain system having both dis-
turbance and fault in it.

(16)
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Table 1 Fault with associated sensor.

Fault No. Sensor type
Fault 1 Encoder
Fault 2 Speed encoder

Table 2 Fault with associated actuator.

Fault No.
Fault 3

Actuator type

Hydraulic actuator

Table 3 Variation in system parameters due to the occurrence
of a fault.

Fault No. Without fault With fault

Fault 1 B 1.28

Fault 2 W, 1.4w,

Fault 3 wn=11.11, {=0.6 wp =342, (=09
where
A=A+nrA, B=B+AB, C=C+AC (17)
D=D+AD, E,=E,+AE, F;=F,+AF (18)

where AA,AB,AC,AD, AE,;, AF, represent model uncertain-
ties that satisfy the relationship.

AA AB AE ! A; B E
-y pi(k) (19)

AC AD AF —~\|LC D; F
where p;(k) represent model uncertainties and is expressed as a
stochastic process with mean= (0 and variance =

diag{a,,02,...... o;}. The matrices A;,B;,C;,D;, E;, F; are
known. The fault detection filter is given by

X(k+1) = Ax(k) + Bu(k) + L(y(k) — p(k))

Y(k) = Cx(k) + Du(k),  r(k) = V(y(k) — p(k)) (20)
where L and V represent gain of filter and post filter respec-
tively. (k) is the residual signal. Let

e(k) = x(k) — x(k) (21)
The residual generator for (16) is given as:

e(k+1) i(z — LC)e(k) + EE, — LF)f(k) — LF,d(k) (22)
r(k) = V(Ce(l) + Ff(0) + Fud(k)

Our objective is to minimize the performance index.

J = E[(r(k) = reg(k))" (r(k) — rpes(K))] (23)

This minimization is performed with a proper selection of L
and V. In the above equation r,, stands for the reference
model given by

-xref(k + 1) = Arcj/'-xref(k) + E/lr'ef(k) + Ed,re/d(k) (24)
Fref(K) = Crepxyef(K) + Fyres(K) + Furepd(K) (25)
where Ar’e/’ =A- LoptC7 E,/lre_/’ = Ef - LoptF/’a Ed.re_/' = E;—

LaptEh C,ef: Vapt C7 Ffle/ = VoptF/'7 Fd,ref = Vnpth~ The filter
parameters V,,, and L,, are known as reference parameters

and by solving the following coupled Ricatti equation for X,

and L,.
AXgA" = Xy + EiE; AX,CT + EgFy { 1 } =0 (26)
CXyAT + FiEY CX,CT+ FuFy | [Le|

and then we find a matrix H by solving HH" = CX,C" + F,FY.
Once H is found, W, is computed by taking the left inverse of
the H matrix. Finally L,, and V,, are found as
Loy = —L;, Vopr = Wa. This reference model has the ability
that it provides disturbance attenuation and fault sensitivity
over the whole frequency ranges. It means that the filter thus
designed provides maximum robustness against disturbances
and enhances sensitivity to faults.

3.1. Residual generation

As discussed above, we are interested to design a residual gen-
erator by keeping in view the reference model so that the fol-
lowing performance index is minimized

J = E[(r(k) = rg(k))" (r(k) — rpes(K))] (27)

To this end, the results of the following theorem (Ding, 2008)
are important.

Theorem 3.1. Consider the uncertain system (16), the residual
generator (22), and the reference model (24 ). The minimization
problem  (27) is solvable if there exist matrices
V,Y,Pi =PI >0,P, =Pl >0,P;=P >0,00>0 and
oy > 0 such that the following LMIs are solvable

P] 0 E] 0 Ez E%
* Pz 0 E4 E5 E6
*x *x P 0 0 0
>0 (28)
* * * P2 0 0
* o« x x I 0
| * * * * * I |
rp, 0 CtyT
x P fCrTef >0 (29)
R -
(10 Fiv'—Fp,]
Ty, T T
« I F V' —F | 2 0 (30)
L% % o3l
[—P NIP NTP ]
x —P 0 <0 (31)
| * x  —o7°P ]
-_V%F CrT.o CrT,l |
* -1 0 <0 (32)
| * * —61’21_
-nl T
72 rl (33)
|+ —o21
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Fig. 1 Residual for gain factor sensor fault in pitch system.
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Fig. 2 GLR test result (E.R = evaluated residual) for gain factor sensor fault in pitch system with false alarm rate of .0003 ensured.

where
E\=PA-YC, E=PE;—YF, E=PE-YF,

E4 = PZAW_)‘H ES = PZEd,reﬁ E6 = PZEf,rc_'f

_ P; 0
P= >0

0 P
P00 O
s_|0 100
001710
000 1
N4 0B K E,
|0 4-LC 0 E,—LF, E—LF,

|:A,' O Bi E,‘ 0:|
N,':

0 A, —LC, B.—LD; E —LF, 0

Co=[0 V C].

Once the LMIs are solved, the filter gain is set L = Pl’l Y.

After applying this technique, residual for an actuator and
a sensor fault in the pitch system and a sensor fault in the drive
train system of the wind turbine has been obtained. In the next
subsection residual evaluation is explained along with thresh-
old setting that are helpful in on-line fault detection.

3.2. Residual evaluation and threshold setting

This stage is very important in an FD process. It is worth
noticing that due to uncertainty and unknown disturbances,
the generated residual is non-zero even in fault-free case. In
order to infer the presence of fault, residual evaluation is per-
formed. An appropriate threshold is computed and then the
evaluated residual is compared with the threshold. Fault alarm
is raised in case the evaluated residual exceeds the threshold
value. The problem residual evaluation and threshold setting
has been extensively studies in Ding (2008) for linear system
and Khan and Ding (2011) and Abid et al. (2009) for nonlinear
systems. For our purpose, motivated from Ding (2008), GLR
test is utilized in the following way in order to compute the
evaluated residual.
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Fig. 4 GLR test result (E.R = evaluated residual) for actuator fault in pitch system with false alarm rate of .0003 ensured.
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1 T
S — o SF 1+ (1—a) (Vy’kﬂ — Ey“l) “/7[)’/<+1 (34) Table 4 L,, and V,, values for pitch system faults.
Fault No. Loy Vopt

Here S**' represents (k + 1)th sample o.f evaluateq residual. Fault 1 00448 0.1653
Vs represents (k+ 1)th sample of residual obtained from 0.0054
robust observer.

— k. — . Fault 3 —0.0448 0.1653

0= Fs Vyskat = Vpok T Vi {0.0054 }

where

(35)

k
y'\:ak = <Zy,>7 k = 17 .......
i=1

Using this recursive algorithm, evaluated residual $**' is com-
puted and compared with a threshold. An important step in
finding the threshold is to find a tolerant limit for disturbances
and model uncertainties under fault free operation. Threshold
is found using the table of chi-square distribution with one
degree of freedom. At the instant we get evaluated residual
greater then the threshold, it is declared that a fault has
occurred and an alarm is generated.

4. Simulation results

In this section simulation results are shown. The simulation
run time is 4400 s.

4.1. Results for pitch system

Fig. 1 shows the residual plot for the case of a gain factor sen-
sor fault of magnitude 1.2 inserted in the pitch system mea-
surement at the time interval of 2300-2400 [s]. From the plot
of residual it can be easily seen that the residual remains
around zero before and after the occurrence of fault but during
the fault interval the residual rises significantly. Also from
Fig. 2, it is observed that evaluated residual crosses the thresh-
old after the occurrence of fault. This fault is detected at the
time instant 2316 s, i.e 16 s after the occurrence of fault.

Fig. 3 shows the residual for the case of an actuator fault in
pitch actuator caused by low oil pressure in the time period
3500-3600 [s]. From the plot of residual, it can be seen that

as the fault occurs, the residual rises in the form of a very thin
impulse. Fault detection devices require that the width of that
impulse should be enough so that they can easily detect that
rise. Also from Fig. 4, we can see that this fault is not detected
successfully as the threshold is not being crossed at the fault
instant. What we require is to increase the width of that
impulse, so that detection becomes possible. For this purpose
we propose a filter given as

TdS

Gz =——F7—
: 1 +9Tys

(36)
After the use of that filter with proper tuning, we get the resid-
ual as shown in Fig. 5. Now we see that the width of the resid-
ual at the fault instant has increased and now the fault is easily
detected. This is also shown by the GLR test result in Fig. 6.
This fault is detected 27 s after the occurrence of fault with
an ensured false alarm rate less then .0003. L,,, and V,,, for
the considered faults in pitch system are enlisted in Table 4
and the values of threshold are listed in Table 5.

4.2. Results for drive train system

A gain factor rotor sensor fault of magnitude 1.4 is inserted in
rotor speed measurement in the time interval 1500-1600 s. The
plot of residual is shown in Fig. 7 clearly indicating that it
remains nearly zero before the occurrence of fault. As the fault
occurs residual rises and reaches a significant height. After the
fault interval residual again drops to a very low value indicat-
ing no fault. Fig. 8 is the GLR test result plot indicating eval-
uated residual around zero before the fault. As the fault is

8 T T T T T T
E.R
E ----lJth [ NN NN N NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN N M A S .
56 i
52
7]
¢
o 4F -
f
s
=
=
m 20 '
0 1 | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (sec)

Fig. 6 GLR test result (E.R = evaluated residual) for actuator fault in pitch system after the use of proposed filter with false alarm rate

of .0003 ensured.
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Table 5 Threshold (J;;) values for pitch system faults. Table 6 L, and V,, values for drive train system faults.
Fault No. Ju Fault No. Lop: Vopt
Fault 1 6.425 Fault 2 —0.8076 0.0189
Fault 3 6.425 —0.0002

introduced in the subsystem, it rises and crosses the threshold. Table 7 Threshold (J,,) value for drive train fault.

This fault is detected at the time instant 1511 s, i.e 11 s after the
occurrence of fault.

Table 6 enlists the value of V,, and L,, for this fault. Fault 2 3.9395
Threshold computed for the considered fault in drive train sys-
tem is given in Table 7.

The results generated by applying reference model-based

Fault No. Jn

(RMB) fault detection algorithm on the wind turbine bench- Table 8 Results of COK and RMB in terms of detection time
mark have been compared with Combined Observer and Kal- ).

man Filter (COK) approach (Chen et al., 2011). Fault Approach COK (s) RMB (s)
detection times (in s) of both of these works are listed in Fault 1 19.24 16
Table 8. From the table, it can be seen that we got improved Fault 2 17.67 11
results for Fault 2 (Gain factor sensor fault of magnitude 1.2 Fault 3 34 7

in pitch 2 position sensor), Fault 4 (Gain factor sensor fault
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25 £ .
2L =
g 15} .
S
05 .
0 Ef R rachi s s li bl s OEES s Mn sl
05 1 1 1 1 1 1 1 1
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Time {sec)
Fig. 7 Residual for gain factor sensor fault in drive train system.
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Fig.8 GLR test result (E.R = evaluated residual) for gain factor sensor fault in drive train system with false alarm rate of .005 ensured.
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of magnitude 1.4 in rotor speed sensor) and Fault 7 (Actuator
fault in pitch actuator 3 caused by low oil pressure). The com-
parison shows that reference model-based approach is quite
efficient in detecting these faults.

5. Conclusion

In this paper, reference model-based approach is utilized to
address robust fault detection problem in a wind turbine.
Stochastic uncertainty is considered in the model of wind tur-
bine subsystems. The proposed FD scheme is robust against
disturbances and model uncertainties and sensitive against
faults. After residual generation, GLR is used for residual eval-
uation purpose. An actuator and a sensor fault in the pitch sys-
tem and a sensor fault in the drive train system are successfully
detected. Results are compared with Combined Observer and
Kalman Filter (COK) approach for wind turbine fault detec-
tion. Results show that the detection time of the aforemen-
tioned faults has been improved with reference model-based
approach. The proposed post filter enhanced the fault detec-
tion capability.
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