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Abstract

In this paper we further discuss the embedding problem for nearly Kirkman triple systems and
get the result that: (1) For u ≡ v ≡ 0 (mod 6), v¿ 78, and u¿ 3:5v, there exists an NKTS(u)
containing a sub-NKTS(v). (2) For v = 18; 24; 30; 36; 42; 48; 54; 60; 66 or 72, there exists an
NKTS(u) containing a sub-NKTS(v) if and only if u ≡ 0 (mod 6) and u¿ 3v.
c© 2002 Elsevier B.V. All rights reserved.

1. Introduction

Let v be a positive integer, and K and M be two sets of positive integers.
A group divisible design GD(K;M ; v) is an ordered triple (X,G,B) where X is a set
with cardinality v, G is a set of subsets (called groups) of X such that G partitions X
and |G|∈M for each G∈G, and B is a set of subsets (called blocks) of X such that
|B|∈K for each B ∈ B, with the property that each pair of distinct elements of X is
contained either in a unique group or in a unique block, but not both. The number v
is called the order of the group divisible design.
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If K = {k} and M = {m}, then a GD({k}; {m}; v) is called uniform and is denoted
GD(k; m; v).
Let (X,G,B) be a GD(K;M; v); it is sometimes called a K-GDD of group type

T where T = {|G| :G ∈G} is a multiset. We also write T =
∏s
i=1 m

ui
i if G contains

exactly ui groups of size mi, 16i6s.
Now, we deFne the idea of a GDD with a hole. Informally, an incomplete GDD

(IGDD) is a GDD from which a sub-GDD is missing (thus creating a “hole”). We give
a formal deFnition. An IGDD is a quadruple (X,Y,G,B) which satisFes the following
properties:

(1) X is a set of points, and Y⊂X (Y is called the hole);
(2) G is a partition of X into groups;
(3) B is a set of subsets of X (blocks), each of which intersects each group in at most

one point;
(4) no block contains two members of Y;
(5) every pair of points {x; y} from distinct groups, such that at least one of x; y is

in X\Y, occurs in a unique block of B.

We say that an IGDD(X,Y,G,B) is a K-IGDD if |B|∈K for every block B∈B. The
type of the IGDD is deFned to be the multiset of ordered pairs {(|G|; |G ∩Y| :G∈G}.
Note that if Y= ∅, then the IGDD is a GDD.
Let (X,G,B) be a GD(K;M ; v). A subset P of B is called a parallel class if P forms

a partition of X. A GD(K;M; v) is called resolvable and is denoted RGD(K;M ; v) if
its block set can be partitioned into parallel classes. When K = {k} and M = {m} we
may also denote an RGD({k}; {m}; v) as a {k}-RGDD of type mv=m. As two important
special cases, an RGD(3; 1; v) (or equivalently, an RGD(3; 3; v)) is usually known as
a Kirkman triple system of order v and is denoted KTS(v), and an RGD(3; 2; v) is
usually called a nearly Kirkman triple system of order v and is denoted NKTS(v). For
the existence of Kirkman triple systems and nearly Kirkman triple systems, we have
the following results:

Theorem 1.1 (Ray-Chaudhuri and Wilson [7]). There exists an KTS(v) if and only if
v≡ 3 (mod 6).

Theorem 1.2 (Baker and Wilson [1], Brouwer [3], Kotzig and Rosa [7] and Rees and
Stinson [13]). There exists an NKTS(v) if and only if v≡ 0 (mod 6), v¿18.

Now let (X;G1;B1) be an RGD(K;M ; v) and (Y;G2;B2) be an RGD(K;M ; u). If
X⊂Y, G1 ⊂G2 and each parallel class of B1 is a part of some parallel class of B2,
then (X;G1;B1) is said to be embedded in (Y;G2;B2). If we allow a subdesign of
an RGDD to be missing (i.e., creating a hole), we have an incomplete RGDD. Note
that the subdesign need not exist. We will be exclusively concerned with constructing
incomplete RGD(3; 2; v)s, which we henceforth denote as INKTS(v; h), h being the
number of points in the hole.
The problem of constructing Kirkman triple systems containing subsystems was stud-

ied by Rees and Stinson [9,10,12]. The obvious necessary conditions for the existence
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of a KTS(u) containing a KTS(v) as a subsystem are u¿3v, u≡ v≡ 3 (mod 6). In [9],
it is shown that these necessary conditions are suKcient.
In this paper, we are interested in NKTS(u) which contain NKTS(v) as a subsystem.

Here the obvious necessary conditions are that u¿3v, u≡ v≡ 0 (mod 6) and v¿18.
This problem has been studied in a couple of recent papers, and the following results
have been proved:

Theorem 1.3 (Tang and Shen [13]). For any v≡ 0 (mod 6) with v¿18 and any k¿3,
there exists an INKTS(kv; v).

Theorem 1.4 (Deng et al. [4]). For each h∈{6; 12} there exists an INKTS(v; h) if
and only if v≡ 0 (mod 6) and v¿3h.

Theorem 1.5 (Deng et al. [4]). (i) For u≡ v≡ 0 (mod 6), v¿48 and u¿4v−18, there
exists an NKTS(u) containing a sub-NKTS(v).
(ii) For v∈{18; 24; 30; 36; 42} and u≡ 0 (mod 6), u¿3v, there exists an NKTS(u)

containing a sub-NKTS(v).

In this paper, we further discuss the embedding problem for nearly Kirkman triple
systems and get the following result:

Theorem 1.6. (1) For u≡ v≡ 0 (mod 6), v¿78, and u¿3:5v, there exists an NKTS(u)
containing a sub-NKTS(v).
(2) For v=18; 24; 30; 36; 42; 48; 54; 60; 66 or 72, there exists an NKTS(u) containing

a sub-NKTS(v) if and only if u≡ 0 (mod 6) and u¿3v.

As in [4] the direct constructions for the designs appearing in this paper were ob-
tained by appropriate adaptations of the standard backtracking algorithm, beginning
with a feasible tactical conFguration (subscript pattern) with respect to a particular
automorphism group.

2. Constructions for nearly Kirkman triple systems containing subsystems

First we introduce the idea of Kirkman frames, which play a very important role in
solving the embedding problem for nearly Kirkman triple systems. Here we give the
deFnition [12].
Let (X;G;B) be a GD(K;M ; v) and let P be a subset of B. If P forms a partition

of X\G for some group G∈G, then P is called a holey parallel class with hole G.
A GD(K;M ; v) is called a Kirkman K-frame if the block set B can be partitioned
into holey parallel classes. For K = {3}, a Kirkman {3}-frame is called a Kirkman
frame.
The following theorem gives a powerful construction for Kirkman frames from group

divisible designs [12].
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Theorem 2.1. Let (X;G;B) be a group divisible design. Let w :X→Z+ ∪{0} be a
weight function on X. Suppose that for each block B∈B, there exists a Kirkman
frame of type {w(x) : x∈B}. Then there is a Kirkman frame of type {∑x∈G w(x) :
G∈G}.

The spectrum of uniform Kirkman frames has been completely determined [12].

Theorem 2.2. There exists a Kirkman frame of type t u if and only if t≡ 0 (mod 2),
u¿4 and t(u− 1) ≡ 0 (mod 3).

The following “Flling in holes” construction provides a powerful tool for the em-
bedding problem for nearly Kirkman triple systems [13].

Construction 2.3. Suppose there is a Kirkman frame of type T on v points. If, for
some a¿0, there exists an INKTS(t + a; a) for all t∈T , then there is an INKTS
(v+ a; a), and for every t∈T , an INKTS(v+ a; t + a).

It will be necessary to build families of GDDs. Our basic construction for GDDs
is a recursive one. It is usually referred to as the “Fundamental GDD construction”
(see [3]).

Construction 2.4. Let (X;G;B) be a group divisible design. Let w :X→Z+ ∪{0} be
a weight function on X. Suppose that for each block B∈B, there exists a K-GDD of
type {w(x) : x∈B}. Then there is a K-GDD of type {∑x∈G w(x) :G∈G}.

3. Applications of the constructions

We use the above constructions to discuss the embedding problem for nearly
Kirkman triple systems. First, we present a speciFc construction using GDDs with
block-size four.

Lemma 3.1. Suppose there is a TD(6; m), m¿5 and m6w62m. Let a=6 or 12.
Then there is an NKTS(36m+ 6w + a) containing a sub-NKTS(12m+ a).

Proof. Give points in four groups of the TD weight 3, give the points in the Ffth
group weight 3 or 6, and give the points in the sixth group weight 6. Apply Con-
struction 2.4, Flling in {4}-GDDs of type 3462 or 3561 [11], to get a {4}-GDD of
type (3m)4(6m)1(3w)1. Give the points of the resultant GDD weight 2, applying The-
orems 2.1 and 2.2, to get a Kirkman frame of type (6m)4(12m)1(6w)1. Adjoin a
ideal points and apply Construction 2.3 and Theorem 1:4 to yield an INKTS(36m +
6w + a; 12m + a). Now construct an NKTS(12m + a) on the hole, giving rise to an
NKTS(36m+ 6w + a) containing a sub-NKTS(12m+ a).

Now we use the following corollaries to Lemma 3.1.
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Lemma 3.2. Suppose v≡ 6 (mod 12), v¿66, v =78; 126; 174; 222; 270, u≡ 0 (mod 6),
and 3:5v− 156u64v− 18. Then there is an INKTS(u; v).

Proof. Apply Lemma 3.1 with m=(v − 6)=12, w=(u− 36m− 6)=6 and a=6. Then
a TD(6; m) exists, and m6w62m. This builds an NKTS(36m+ 6w + 6) containing a
sub-NKTS(12m+ 6).

Lemma 3.3. Suppose v≡ 0 (mod 12), v¿72, v =84; 132; 180; 228; 276, u≡ 0 (mod 6),
and 3:5v− 306u64v− 36. Then there is an INKTS(u; v).

Proof. Apply Lemma 3.1 with m=(v−12)=12, w=(u−36m−12)=6 and a=12. Then
a TD(6; m) exists, and m6w62m. This builds an NKTS(36m + 6w + 12) containing
a sub-NKTS(12m+ 12).

Lemma 3.4. Suppose v∈{78; 126; 174; 222; 270}, u≡ 0 (mod 6), and 3:5v¡u64v+18.
Then there is an INKTS(u; v).

Proof. Let m=(v− 18)=12+ 2; then m∈{7; 11; 15; 19; 23}. Take a TD(6; m) and give
all points on four of the groups weight 6. On the Ffth group give 2 of the points weight
6 and all remaining points weight 12. Assign weight 6 or 12 to each point on the sixth
group. Use Kirkman frames of type 66, 65121 and 64122, and adjoin 6 ideal points.
This gives INKTS(u; v) where v=12m − 6 and 12m − 6 + 30m6u612m − 6 + 36m,
i.e. 3:5v+ 156u64v+ 18.
To get u=3:5v + 3 and 3:5v + 9 proceed as follows. Suppose Frst that v =78.

Let m=(v− 18)=12, then m∈{9; 13; 17; 21}. Proceed as above, taking a TD(6; m) and
giving all points on four of the groups weight 6 and giving all points on the Ffth
group weight 12. On the sixth group give either 8 or 9 of the points weight 12 and
all remaining points weight 6. Now adjoin 18 ideal points and apply Construction 2.3
with a=18 (see Theorem 1:5(ii)) to obtain an INKTS(u; v) where v=12m + 18 and
u=12m + 18 + 30m + 48 or 12m + 18 + 30m + 54, i.e. u=3:5v + 3 or 3:5v + 9.
Now let v=78. For u=276 adjoin 12 ideal points to a Kirkman frame of type 664

and Fll in INKTS(78; 12)s and an NKTS(78), while for u=282 take a {4}-GDD of
type 184301361 (see the appendix) and apply Theorem 2.1 and Construction 2.3, using
weight 2 with a=6 ideal points.

Lemma 3.5. Suppose v∈{60; 84; 132; 180; 228; 276}, u≡ 0 (mod 6), and 3:5v6u64v.
Then there is an INKTS(u; v).

Proof. Let m=(v − 12)=12 + 1, then m∈{5; 7; 11; 15; 19; 23}. Take a TD(6; m) and
proceed as in the Frst part of Lemma 3.4, giving just one point on the Ffth group
weight 6 and adjoining 6 ideal points. This gives INKTS(u; v) where v=12m, and
12m+ 30m6u612m+ 36m, i.e. 3:5v6u64v.
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Lemma 3.6. Suppose v≡ 0 (mod 12), v¿48, and u=4v− 30 or 4v− 24. Then there
is an INKTS(u; v).

Proof. Here we just proceed as in Lemma 3.5, unless v∈{48; 72; 120; 168; 216; 264}.
For v∈{120; 168; 216; 264}, take m=(v − 24)=12 + 3, then m∈{11; 15; 19; 23}.
Take a TD(6; m) and proceed as above, giving three points on the Ffth group
weight 6 and either 11 or 10 points on the sixth group weight 6, adjoining 6 ideal
points.
There remain INKTS(162,48), INKTS(168,48), INKTS(258,72) and INKTS(264,72).
For INKTS(168; 48), take a {4}-GDD of type 154211 (see [5]); apply Theorems 2.1

and Construction 2.3, using weight 2 with 6 ideal points.
For INKTS(264; 72), take a {4}-GDD of type 244331 (see [5]); apply weight 2 and

adjoin 6 ideal points.
For INKTS(162; 48) and INKTS(258; 72), we present the following direct

constructions:
INKTS(162; 48). Point set: (Z(38)×Z(3))∪{x1; x2; : : : ; x48}. Groups: {00; 190},

{01; 191}, {02; 192} mod(38;−). Hole: {x1; x2; : : : ; x48}.
Parallel classes of triples: Thirty-eight of them are obtained by developing the

following triples mod(38;−):

{310; 351; 02}, {220; 311; 372}, {250; 371; 72}, {00; 01; 171}, {11; 12; 162}, {22; 20; 150},
{10; 231; x1}, {30; 261; x2}, {40; 281; x3}, {50; 301; x4}, {60; 321; x5}, {70; 341; x6},
{80; 361; x7}, {110; 21; x8}, {120; 41; x9}, {100; 31; x10}, {130; 71; x11}, {140; 91; x12},
{90; 51; x13}, {160; 131; x14}, {170; 151; x15}, {190; 181; x16}, {61; 192; x17},
{81; 222; x18}, {101; 272; x19}, {121; 282; x20}, {111; 292; x21}, {141; 332; x22},
{161; 362; x23}, {201; 32; x24}, {211; 52; x25}, {191; 42; x26}, {221; 82; x27},
{241; 112; x28}, {251; 132; x29}, {291; 182; x30}, {271; 172; x31}, {331; 242; x32},
{202; 210; x33}, {252; 270; x34}, {302; 330; x35}, {322; 360; x36}, {312; 370; x37},
{232; 300; x38}, {262; 350; x39}, {142; 240; x40}, {212; 320; x41}, {62; 230; x42},
{152; 290; x43}, {102; 260; x44}, {92; 280; x45}, {352; 180; x46}, {122; 340; x47},
{342; 200; x48}.

Nineteen of them are obtained by adding 0; 2; 4; : : : ; 36 to the following triples
mod(38;−):

{160; 171; 182}, {350; 361; 372}, {170; 311; 22}, {360; 121; 212}, {140; 331; 62},
{330; 141; 252}, {00; 10; x17}, {190; 200; x18}, {20; 50; x19}, {210; 240; x20}, {30; 80; x21},
{220; 270; x22}, {40; 110; x23}, {230; 300; x24}, {60; 150; x25}; {250; 340; x26}, {70; 180; x27},
{260; 370; x28}, {120; 290; x29}, {310; 100; x30}, {130; 280; x31}; {320; 90; x32}, {01; 11; x33},
{191; 201; x34}, {21; 51; x35}, {211; 241; x36}, {31; 81; x37}, {221; 271; x38}, {41; 111; x39},
{231; 301; x40}, {61; 151; x41}, {251; 341; x42}, {71; 181; x43}, {261; 371; x44},
{161; 291; x45}, {351; 101; x46}, {131; 281; x47}, {321; 91; x48}, {02; 12; x1},
{192; 202; x2}, {42; 72; x3}, {232; 262; x4}, {82; 132; x5}, {272; 322; x6},
{92; 162; x7}, {282; 352; x8}, {152; 242; x9}, {342; 52; x10}, {32; 142; x11},
{222; 332; x12}, {172; 302; x13}, {362; 112; x14}, {122; 292; x15}, {312; 102; x16}.
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Holey parallel classes of triples: Nineteen of them are obtained by adding 0; 2; 4; : : : ;
36 to the following triples mod(38;−):

{00; 60; 240}, {190; 250; 50}, {40; 80; 200}, {230; 270; 10}, {70; 90; 170}, {260; 280; 360},
{01; 61; 241}, {191; 251; 51}, {41; 81; 201}, {231; 271; 11}, {111; 131; 211}, {301; 321; 21},
{122; 182; 362}, {312; 372; 172}, {42; 82; 202}; {232; 272; 12}, {92; 112; 192}; {282; 302; 02},
{140; 161; 152}, {330; 351; 342}, {110; 141; 162}, {300; 331; 352}, {100; 151; 132},
{290; 341; 322}, {120; 181; 222}, {310; 371; 32}, {30; 101; 72}, {220; 291; 262},
{180; 281; 242}, {370; 91; 52}, {130; 261; 212}, {320; 71; 22}, {160; 311; 252},
{350; 121; 62}, {20; 221; 142}, {210; 31; 332}, {150; 361; 102},
{340; 171; 292}.
Four of them are obtained by developing each of the following triples mod(38;−):

{00; 81; 132}, {00; 111; 182}, {00; 161; 262}, {00; 181; 112}.
INKTS(258; 72). Point set: (Z(62)×Z(3))∪{x1; x2; : : : ; x72}. Groups: {00; 310},

{01; 311}, {02; 312} mod(62;−). Hole: {x1; x2; : : : ; x72}.
Parallel classes of triples: Sixty-two of them are obtained by developing the fol-

lowing triples mod(62;−):

{360; 520; 540}, {431; 531; 571}, {462; 502; 602}, {430; 551; 492}, {320; 511; 02},
{260; 331; 362}, {570; 11; 32}, {240; 271; 252}, {610; 31; 22}, {250; 301; 272},
{590; 51; 12}, {270; 361; 402}, {510; 611; 562}, {380; 491; 552}, {71; 262; x1},
{591; 172; x2},{91; 302; x3}; {111; 332; x4}, {151; 382; x5}, {131; 392; x6},
{171; 442; x7}, {191; 482; x8}, {211; 512; x9}, {231; 542; x10}, {251; 572; x11};
{261; 592; x12}; {241; 582; x13}; {311; 42; x14}, {321; 62; x15}; {341; 92; x16}, {291; 52; x17},
{351; 122; x18}, {371; 152; x19}; {281; 72; x20}, {391; 192; x21};
{411; 222; x22}, {471; 292; x23}, {451; 282; x24}, {312; 340; x25}, {242; 280; x26},
{322; 370; x27}, {342; 400; x28}, {372; 440; x29}, {412; 500; x30}, {472; 580; x31},
{432; 550; x32}, {422; 560; x33}, {452; 600; x34}, {142; 310; x35}, {352; 530; x36},
{182; 390; x37}, {102; 330; x38}, {212; 450; x39}, {232; 490; x40}, {202; 470; x41},
{162; 460; x42}, {112; 420; x43}, {82; 410; x44}, {132; 480; x45}; {612; 350; x46},
{532; 290; x47}; {522; 300; x48}, {00; 381; x49}; {10; 401; x50}, {20; 421; x51}, {30; 441; x52},
{40; 461; x53}, {50; 481; x54}, {60; 501; x55}, {70; 521; x56}, {80; 541; x57},
{90; 561; x58}, {100; 581; x59}, {110; 601; x60}, {120; 01; x61}, {130; 21; x62}, {140; 41; x63},
{150; 61; x64}, {160; 81; x65}, {170; 101; x66}, {180; 121; x67}, {190; 141; x68},
{200; 161; x69}, {210; 181; x70}, {220; 201; x71}, {230; 221; x72}.

Thirty-one of them are obtained by adding 0; 2; 4; : : : ; 60 to the following triples
mod(62;−):

{140; 281; 212}, {450; 591; 522}, {170; 451; 602}, {480; 141; 292}, {190; 501; 372},
{500; 191; 62}, {200; 561; 122}, {510; 251; 432}, {120; 240; 520}, {430; 550; 210},
{161; 461; 521}, {471; 151; 211}, {202; 502; 562}, {512; 192; 252}, {300; 310; x1},
{610; 00; x2}, {10; 40; x3}, {320; 350; x4}, {290; 340; x5}, {600; 30; x6}, {20; 90; x7},
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{330; 400; x8}, {280; 370; x9}, {590; 60; x10}, {50; 160; x11}, {360; 470; x12},
{260; 390; x13}, {570; 80; x14}, {70; 220; x15}, {380; 530; x16}, {270; 440; x17},
{580; 130; x18}, {230; 420; x19}, {540; 110; x20}, {250; 460; x21}, {560; 150; x22},
{180; 410; x23}, {490; 100; x24}, {01; 11; x25}, {311; 321; x26}, {301; 331; x27},
{611; 21; x28}, {31; 81; x29}, {341; 391; x30}, {291; 361; x31}, {601; 51; x32}, {41; 131; x33},
{351; 441; x34}, {61; 171; x35}, {371; 481; x36}, {71; 201; x37}; {381; 511; x38},
{91; 241; x39}, {401; 551; x40}, {101; 271; x41}, {411; 581; x42}, {231; 421; x43},
{541; 111; x44}, {221; 431; x45}, {531; 121; x46}, {261; 491; x47}, {571; 181; x48},
{02; 12; x49}, {312; 322; x50}, {22; 52; x51}, {332; 362; x52}, {32; 82; x53}, {342; 392; x54},
{42; 112; x55}, {352; 422; x56}, {72; 162; x57}, {382; 472; x58}, {132; 242; x59},
{442; 552; x60}, {92; 222; x61}, {402; 532; x62}, {262; 412; x63}, {572; 102; x64},
{282; 452; x65}, {592; 142; x66}, {302; 492; x67}, {612; 182; x68}, {272; 482; x69},
{582; 172; x70}, {232; 462; x71}, {542; 152; x72}.
Holey parallel classes of triples: Thirty-one of them are obtained by adding 0; 2;

4; : : : ; 60 to the following triples mod(62;−):

{180; 430; 510}, {490; 120; 200}, {280; 380; 420}, {590; 70; 110}, {90; 390; 450},
{400; 80; 140}, {131; 381; 461}, {441; 71; 151}, {181; 341; 361}, {491; 31; 51},
{111; 391; 511}, {421; 81; 201}, {112; 192; 442}, {422; 502; 132}, {22; 42; 202},
{332; 352; 512}, {62; 182; 462}, {372; 492; 152}, {40; 411; 252}, {350; 101; 562},
{220; 571; 122}, {530; 261; 432}, {130; 471; 322}, {440; 161; 12}, {160; 481; 02},
{470; 171; 312}, {230; 531; 392}, {540; 221; 82}, {210; 451; 362}, {520; 141; 52},
{290; 521; 412}, {600; 211; 102}, {60; 281; 402}, {370; 591; 92}, {30; 241; 142},
{340; 551; 452}, {190; 371; 472}, {500; 61; 162}, {270; 431; 522}, {580; 121; 212},
{250; 401; 482}, {560; 91; 172}, {100; 231; 302}, {410; 541; 612}, {300; 301; 501},
{610; 611; 191}, {00; 11; 251}; {310; 321; 561}, {20; 41; 311}; {330; 351; 01},
{291; 292; 532}, {601; 602; 222}, {21; 72; 272}, {331; 382; 582}, {271; 282; 552},
{581; 592; 242}, {262; 260; 460}, {572; 570; 150}, {232; 240; 480}, {542; 550; 170},
{32; 50; 320}, {342; 360; 10}.
Four of them are obtained by developing each of the following triples

mod(62;−):

{00; 171; 92}, {00; 261; 142}, {00; 271; 402}, {00; 331; 492}.
Thus we complete the proof.

The foregoing results give us our Frst part of the main theorem:

Theorem 3.7. For u≡ v≡ 0 (mod 6), v¿78, and u¿3:5v, there exists an NKTS(u)
containing a sub-NKTS(v).

We now consider INKTS(u; v), v∈{48; 54; 60; 66; 72} in detail.
For v=48, we have to consider INKTS(u; 48), u∈{144; 150; 156; 162; 168}.
Now u=144, 162 and 168 are covered by Theorem 1:3 and Lemma 3.6,

respectively.
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For u=156, take a {4}-GDD of type 94, apply Theorem 2.1 and Construction 2.3,
using weight 4 with 12 ideal points. This gives an INKTS(156; 48).
For u=150, we have the following lemma.

Lemma 3.8. There exists an INKTS(150; 48).

Proof. We present an INKTS(150; 48) as follows:
INKTS(150; 48). Point set: (Z(34)×Z(3))∪{x1; x2; : : : ; x48}. Groups: {00; 170},

{01; 171}, {02; 172} mod(34;−). Hole: {x1; x2; : : : ; x48}.
Parallel classes of triples: Thirty-four of them are obtained by developing the fol-

lowing triples mod(34;−):

{230; 311; 272}, {240; 331; 42}, {00; 181; x1}, {10; 201; x2}, {20; 221; x3}; {30; 241; x4},
{40; 261; x5}, {50; 281; x6}, {60; 301; x7}, {70; 321; x8}, {80; 01; x9}, {90; 21; x10},
{100; 41; x11}, {110; 61; x12}, {120; 81; x13}, {130; 101; x14}, {140; 121; x15}, {150; 141; x16},
{11; 102; x17}, {31; 132; x18}, {51; 162; x19}, {71; 202; x20}, {91; 232; x21},
{111; 282; x22}, {131; 292; x23}, {151; 332; x24}, {161; 12; x25}, {171; 32; x26},
{191; 62; x27}, {211; 92; x28}, {231; 122; x29}, {251; 152; x30}, {271; 182; x31},
{291; 212; x32}, {142; 160; x33}, {302; 330; x34}, {222; 260; x35}, {252; 300; x36},
{262; 320; x37}, {242; 310; x38}, {172; 250; x39}, {192; 290; x40}, {112; 220; x41},
{02; 170; x42}, {52; 190; x43}, {22; 180; x44}, {82; 270; x45}, {72; 280; x46}, {322; 200; x47},
{312; 210; x48}.

Seventeen of them are obtained by adding 0; 2; 4; : : : ; 32 to the following triples
mod(34;−):

{70; 241; 322}, {240; 71; 152}, {00; 10; x17}, {170; 180; x18}, {20; 50; x19}, {190; 220; x20},
{30; 80; x21}, {200; 250; x22}, {40; 110; x23}, {210; 280; x24}, {60; 150; x25}, {230; 320; x26},
{160; 270; x27}, {330; 100; x28}, {130; 260; x29}, {300; 90; x30}, {140; 290; x31},
{310; 120; x32}, {01; 11; x33}, {171; 181; x34}, {21; 51; x35}, {191; 221; x36}, {31; 81; x37},
{201; 251; x38}, {41; 111; x39}, {211; 281; x40}, {61; 151; x41}, {231; 321; x42},
{161; 271; x43}, {331; 101; x44}, {131; 261; x45}, {301; 91; x46}, {141; 291; x47},
{311; 121; x48}, {02; 12; x1}, {172; 182; x2}, {22; 52; x3}, {192; 222; x4}, {32; 82; x5},
{202; 252; x6}, {162; 232; x7}, {332; 62; x8}, {122; 212; x9}, {292; 42; x10}, {132; 242; x11},
{302; 72; x12}, {142; 272; x13}, {312; 102; x14}, {112; 262; x15}, {282; 92; x16}.

Holey parallel classes of triples: Seventeen of them are obtained by adding 0; 2; 4;
: : : ; 32 to the following triples mod(34;−):

{00; 20; 100}, {170; 190; 270}, {30; 110; 210}, {200; 280; 40}, {01; 21; 101}, {171; 191; 271},
{31; 111; 211}, {201; 281; 41}, {42; 62; 142}; {212; 232; 312}, {122; 202; 302}; {292; 32; 132},
{90; 141; 172}, {260; 311; 02}, {70; 131; 102}; {240; 301; 272}, {150; 221; 262}; {320; 51; 92},
{160; 261; 322}, {330; 91; 152}, {120; 251; 192}, {290; 81; 22}, {60; 61; 181}, {230; 231; 11},
{140; 151; 291}, {310; 321; 121}, {161; 162; 282}, {331; 332; 112}, {71; 82; 222}, {241; 252;
52}, {12; 10; 130}, {182; 180; 300}, {72; 80; 220}, {242; 250; 50}.
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Six of them are obtained by developing each of the following triples mod(34;−):

{00; 21; 12}, {00; 31; 52}, {00; 41; 22}, {00; 111; 62}, {00; 141; 212}, {00; 161; 92}.

We thus obtain:

Theorem 3.9. For all v≡ 0 (mod 6) with v¿144, there exists an NKTS(v) containing
a sub-NKTS(48).

For v=54, we have to consider INKTS(u; 54), u∈{162; 168; 174; 180; 186; 192}.
Now u=162 is covered by Theorem 1:3.
For u∈{174; 186; 192} apply Theorem 2.1 and Construction 2.3, using weight 2 with

6 ideal points, to {4}-GDDs of types 125241 (see [5]), 68181241 or 68211241 (see the
appendix), respectively. For u=180 proceed similarly, starting with a TD(4,7) and
using weight 6 with 12 ideal points.
For u=168 we have the following lemma.

Lemma 3.10. There exists an INKTS(168; 54).

Proof. We present an INKTS(168; 54) as follows:
INKTS(168; 54). Point set: (Z(38)×Z(3))∪{x1; x2; : : : ; x54}. Groups: {00; 190}, {01;

191}, {02; 192} mod(38;−). Hole: {x1; x2; : : : ; x54}.
Parallel classes of triples: Thirty-eight of them are obtained by developing the fol-

lowing triples mod(38;−):

{00; 01; 02}, {220; 341; 42}, {10; 211; x1}, {20; 231; x2}, {30; 251; x3}, {40; 271; x4},
{50; 291; x5}, {60; 311; x6}, {70; 331; x7}, {80; 351; x8}, {90; 371; x9}, {100; 11; x10},
{110; 31; x11}, {120; 51; x12}, {130; 71; x13}, {140; 91; x14}, {150; 111; x15};
{160; 131; x16}, {170; 151; x17}, {180; 171; x18}, {21; 152; x19}, {41; 182; x20}, {61; 212; x21},
{81; 242; x22}, {101; 272; x23}, {121; 302; x24}, {141; 332; x25}, {161; 362; x26},
{181; 12; x27}; {191; 32; x28}, {201; 52; x29}, {221; 82; x30}, {241; 112; x31},
{261; 142; x32}, {281; 172; x33}, {301; 202; x34}, {321; 232; x35}, {361; 282; x36},
{192; 200; x37}, {312; 330; x38}, {342; 370; x39}, {322; 360; x40},
{252; 300; x41}, {292; 350; x42}, {262; 340; x43}, {222; 310; x44}, {102; 210; x45},
{162; 290; x46}, {92; 230; x47}, {122; 280; x48}, {72; 240; x49}, {132; 320; x50},
{62; 270; x51}; {352; 190; x52}, {22; 260; x53}, {372; 250; x54}.

Nineteen of them are obtained by adding 0; 2; 4; : : : ; 36 to the following triples
mod(38;−):

{170; 361; 102}, {360; 171; 292}, {00; 10; x19}, {190; 200; x20}, {20; 50; x21}, {210; 240; x22},
{30; 80; x23}, {220; 270; x24}, {40; 110; x25}, {230; 300; x26}, {60; 150; x27}, {250; 340; x28},
{70; 180; x29}, {260; 370; x30}, {160; 290; x31}, {350; 100; x32}, {130; 280; x33},
{320; 90; x34}, {140; 310; x35}, {330; 120; x36}, {01; 11; x37}, {191; 201; x38},
{21; 51; x39}, {211; 241; x40}, {31; 81; x41}, {221; 271; x42}, {41; 111; x43},
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{231; 301; x44}, {61; 151; x45}, {251; 341; x46}, {71; 181; x47}, {261; 371; x48},
{161; 291; x49}, {351; 101; x50}, {131; 281; x51}, {321; 91; x52}, {141; 311; x53},
{331; 121; x54}, {02; 12; x1}, {192; 202; x2}, {22; 52; x3}, {212; 242; x4}, {32; 82; x5},
{222; 272; x6}, {42; 112; x7}, {232; 302; x8}, {72; 162; x9}, {262; 352; x10}, {142; 252; x11},
{332; 62; x12}, {182; 312; x13}, {372; 122; x14}, {132; 282; x15}, {322; 92; x16},
{172; 342; x17}, {362; 152; x18}.

Holey parallel classes of triples: Nineteen of them are obtained by adding 0; 2; 4; : : : ;
36 to the following triples mod(38;−):

{00; 60; 240}, {190; 250; 50}, {40; 80; 200}, {230; 270; 10}, {70; 90; 170}, {260; 280; 360},
{01; 61; 241}, {191; 251; 51}, {41; 81; 201}, {231; 271; 11}, {71; 91; 171}, {261; 281; 361},
{42; 102; 282}, {232; 292; 92}, {82; 122; 242}, {272; 312; 52}, {12; 32; 112}, {202; 222; 302},
{110; 121; 132}, {300; 311; 322}, {130; 151; 142}, {320; 341; 332}, {100; 131; 152},
{290; 321; 342}, {140; 181; 212}, {330; 371; 22}, {160; 211; 192}, {350; 21; 02},
{30; 111; 162}, {220; 301; 352}, {120; 221; 182}, {310; 31; 372}, {180; 291; 362},
{370; 101; 172}, {20; 161; 252}, {210; 351; 62}, {150; 331; 262},
{340; 141; 72}.

Seven of them are obtained by developing each of the following triples
mod(38;−):

{00; 61; 102}, {00; 71; 42}, {00; 91; 152}, {00; 131; 82}, {00; 151; 92}, {00; 161; 262},
{00; 171; 282}.

We thus obtain:

Theorem 3.11. For all v≡ 0 (mod 6) with v¿162, there exists an NKTS(v) containing
a sub-NKTS(54).

For v=60, we have to consider INKTS(u; 60), u∈{180; 186; 192; 198; 204} (see
Lemma 3.5).
Now u=180 is covered by Theorem 1:3.
For u=186, take a TD(4; 21) and apply Theorem 2.1 and Construction 2.3, us-

ing weight 2 with a=18 ideal points. For u=192 proceed similarly, starting with a
{4}-GDD of type 69121271 (see the appendix), using weight 2 with 6 ideal points,
while for u=204 take a {4}-GDD of type 6491 (see [4]) and use weight 6 with 6
ideal points.
For u=198 we have the following lemma.

Lemma 3.12. There exists an INKTS(198; 60).

Proof. We present an INKTS(198; 60) as follows:
INKTS(198; 60). Point set: (Z(46)×Z(3))∪{x1; x2; : : : ; x60}. Groups: {00; 230},

{01; 231}, {02; 232} mod(46;−). Hole: {x1; x2; : : : ; x60}.
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Parallel classes of triples: Forty-six of them are obtained by developing the following
triples mod(46;−):

{390; 421; 402}, {310; 361; 332}, {280; 341; 352}, {320; 401; 362}, {340; 441; 392},
{200; 381; 02}, {450; 251; x1}, {00; 271; x2}, {440; 261; x3}, {10; 301; x4}, {400; 241; x5},
{20; 331; x6}, {30; 351; x7}, {40; 371; x8}, {50; 391; x9}, {60; 411; x10}, {70; 431; x11},
{80; 451; x12}, {90; 11; x13}, {100; 31; x14}, {110; 51; x15}, {120; 71; x16},
{130; 91; x17}, {140; 111; x18}, {150; 131; x19}, {160; 151; x20}, {01; 122; x21},
{21; 152; x22}, {41; 182; x23}, {61; 212; x24}, {81; 242; x25}, {101; 272; x26},
{121; 302; x27}, {141; 342; x28}, {161; 372; x29}, {171; 412; x30}, {181; 432; x31},
{191; 452; x32}, {201; 12; x33}, {211; 32; x34}, {221; 52; x35}, {231; 72; x36},
{281; 132; x37}, {311; 172; x38}, {291; 162; x39}, {321; 222; x40}, {142; 170; x41},
{192; 230; x42}, {202; 250; x43}, {232; 290; x44}, {112; 180; x45}, {252; 330; x46},
{282; 370; x47}, {312; 410; x48}, {322; 430; x49}, {262; 380; x50}, {292; 420; x51},
{42; 190; x52}, {62; 240; x53}, {22; 210; x54}, {82; 300; x55}, {102; 350; x56},
{92; 360; x57}; {442; 260; x58}, {382; 220; x59}, {422; 270; x60}.
Twenty-three of them are obtained by adding 0; 2; 4; : : : ; 44 to the following triples

mod(46;−):

{210; 421; 72}, {440; 191; 302}, {140; 371; 262}, {370; 141; 32}, {190; 441; 322},
{420; 211; 92}, {00; 10; x21}, {230; 240; x22}, {20; 50; x23}, {250; 280; x24}, {30; 80; x25},
{260; 310; x26}, {40; 110; x27}, {270; 340; x28}, {60; 150; x29}, {290; 380; x30}, {70; 180; x31};
{300; 410; x32}, {90; 220; x33}, {320; 450; x34}, {200; 350; x35}, {430; 120; x36},{160; 330; x37},
{390; 100; x38}, {170; 360; x39}, {400; 130; x40}, {01; 11; x41}, {231; 241; x42},
{21; 51; x43}, {251; 281; x44}, {31; 81; x45}, {261; 311; x46}, {41; 111; x17},
{271; 341; x48}, {61; 151; x49}, {291; 381; x50}, {71; 181; x51}, {301; 411; x52},
{91; 221; x53}, {321; 451; x54}, {201; 351; x55},{431; 121; x56}, {161; 331; x57},
{391; 101; x58}, {171; 361; x59}, {401; 131; x60}, {02; 12; x1}, {232; 242; x2},
{22; 52; x3}, {252; 282; x4}, {62; 112; x5}, {292; 342; x6}, {102; 172; x7},
{332; 402; x8}, {122; 212; x9}, {352; 442; x10}, {42; 152; x11}, {272; 382; x12},
{182; 312; x13}, {412; 82; x14}, {222; 372; x15}, {452; 142; x16},
{192; 362; x17}, {422; 132; x18}, {202; 392; x19}, {432; 162; x20}.
Holey parallel classes of triples: Twenty-three of them are obtained by adding

0; 2; 4; : : : ; 44 to the following triples mod(46;−):

{00; 40; 60}, {230; 270; 290}, {10; 110; 190}, {240; 340; 420}, {210; 410; 70}, {440; 180; 300},
{01; 21; 61}, {231; 251; 291}, {11; 111; 191}, {241; 341; 421}, {81; 201; 401},
{311; 431; 171}, {02; 42; 62}, {232; 272; 292}, {12; 92; 192}, {242; 322; 422},
{32; 152; 352}, {262; 382; 122}, {170; 211; 202}, {400; 441; 432}, {50; 121; 162},
{280; 351; 392}, {200; 331; 402}, {430; 101; 172}, {30; 181; 112}, {260; 411; 342},
{130; 301; 222}, {360; 71; 452}, {160; 161; 321}, {390; 391; 91}, {140; 151; 361},
{370; 381; 131}, {20; 41; 261}, {250; 271; 31}, {221; 252; 412}, {451; 22; 182},
{141; 142; 362}, {371; 372; 132}, {51; 72; 282}, {281; 302; 52}, {212; 220; 380},
{442; 450; 150}, {102; 120; 310}, {332; 350; 80}, {82; 100; 320}, {312; 330; 90}.
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Six of them are obtained by developing each of the following triples mod(46;−):

{00; 91; 142}, {00; 111; 172}, {00; 121; 62}, {00; 141; 232}, {00; 191; 102},
{00; 201; 302}.

We thus obtain:

Theorem 3.13. For all v≡ 0 (mod 6) with v¿180, there exists an NKTS(v) containing
a sub-NKTS(60).

For v=66, we have to consider INKTS(u; 66), u∈{198; 204; 210} (see Lemma
3.2).
Now u=198 is covered by Theorem 1:3.
For u=210, take a {4}-GDD of type 6491; apply Theorem 2.1 and Construction

2.3, using weight 6 with 12 ideal points. This gives an INKTS(210; 66).
For u=204, we have the following lemma.

Lemma 3.14. There exists an INKTS(204; 66).

Proof. We present an INKTS(204; 66) as follows:
INKTS(204; 66). Point set: (Z(46)×Z(3))∪{x1; x2; : : : ; x66}. Groups: {00; 230},

{01; 231}, {02; 232} mod(46;−). Hole: {x1; x2; : : : ; x66}.
Parallel classes of triples: Forty-six of them are obtained by developing the following

triples mod(46;−):

{380; 421; 402}, {320; 441; 42}, {450; 231; x1}, {00; 251; x2}, {440; 241; x3}, {10; 281; x4},
{400; 221; x5}, {20; 311; x6}, {30; 331; x7}, {40; 351; x8}, {50; 371; x9}, {60; 391; x10},
{70; 411; x11}, {80; 431; x12}, {90; 451; x13}, {100; 11; x14}, {110; 31; x15},
{120; 51; x16}, {130; 71; x17}, {140; 91; x18}, {150; 111; x19}, {160; 131; x20},
{170; 151; x21}; {180; 171; x22}, {01; 132; x23}, {21; 162; x24}, {41; 192; x25},
{61; 222; x26}, {81; 252; x27}, {101; 282; x28}, {121; 312; x29}, {141; 342; x30},
{161; 372; x31}, {181; 422; x32}, {191; 442; x33}, {201; 02; x34}, {211; 22; x35},
{261; 82; x36}, {271; 102; x37}, {301; 142; x38}, {321; 172; x39}, {291; 152; x40},
{341; 212; x41}, {361; 242; x42}, {381; 272; x43}, {401; 302; x44}, {182; 200; x45},
{322; 350; x46}, {352; 390; x47}, {382; 430; x48}, {362; 420; x49}, {292; 360; x50},
{332; 410; x51}, {122; 210; x52}, {232; 330; x53}, {262; 370; x54}, {72; 190; x55},
{202; 340; x56}, {52; 230; x57}, {92; 280; x58}, {112; 310; x59}, {12; 220; x60},
{62; 300; x61}, {32; 290; x62}, {452; 260; x63}, {412; 240; x64}, {432; 270; x65},
{392; 250; x66}.
Twenty-three of them are obtained by adding 0; 2; 4; : : : ; 44 to the following triples

mod(46;−):

{140; 331; 432}, {370; 101; 202}, {00; 10; x23}, {230; 240; x24}, {20; 50; x25}, {250; 280; x26},
{30; 80; x27}, {260; 310; x28}, {40; 110; x29}, {270; 340; x30}, {60; 150; x31}, {290; 380; x32},
{70; 180; x33}, {300; 410; x34}, {90; 220; x35}, {320; 450; x36}, {200; 350; x37}, {430; 120; x38},
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{160; 330; x39}, {390; 100; x40}, {170; 360; x41}, {400; 130; x42}, {210; 420; x43},
{440; 190; x44}, {01; 11; x45}, {231; 241; x46}, {21; 51; x47}, {251; 281; x48},
{31; 81; x49}, {261; 311; x50}, {41; 111; x51}, {271; 341; x52}, {61; 151; x53},
{291; 381; x54}, {71; 181; x55}, {301; 411; x56}, {91; 221; x57}, {321; 451; x58},
{201; 351; x59}, {431; 121; x60}, {191; 361; x61}, {421; 131; x62}, {211; 401; x63},
{441; 171; x64}, {161; 371; x65}, {391; 141; x66}, {02; 12; x1}, {232; 242; x2},
{22; 52; x3}, {252; 282; x4}, {32; 82; x5}, {262; 312; x6}, {42; 112; x7}, {272; 342; x8},
{62; 152; x9}, {292; 382; x10}, {102; 212; x11}, {332; 442; x12}, {192; 322; x13},
{422; 92; x14}, {72; 222; x15}; {302; 452; x16}, {182; 352; x17}, {412; 122; x18},
{172; 362; x19}, {402; 132; x20}, {162; 372; x21}, {392; 142; x22}.
Holey parallel classes of triples: Twenty-three of them are obtained by adding

0; 2; 4; : : : ; 44 to the following triples mod(46;−):

{40; 80; 100}, {270; 310; 330}, {30; 130; 210}, {260; 360; 440}, {190; 390; 50},
{420; 160; 280}, {61; 81; 121}, {291; 311; 351}, {201; 301; 381}, {431; 71; 151},
{131; 331; 451}, {361; 101; 221}, {112; 152; 172}, {342; 382; 402}, {212; 312; 392},
{442; 82; 162}, {02; 202; 322}, {232; 432; 92}, {120; 141; 132}, {350; 371; 362},
{150; 181; 192}; {380; 411; 422}, {110; 171; 142}, {340; 401; 372}, {200; 271; 302},
{430; 41; 72}, {90; 191; 242}, {320; 421; 12}, {170; 321; 412}, {400; 91; 182},
{140; 341; 452}, {370; 111; 222}, {220; 441; 352}, {450; 211; 122}, {00; 01; 161},
{230; 231; 391}, {10; 21; 241}, {240; 251; 11}, {31; 102; 262}, {261; 332; 32}, {51; 52; 272},
{281; 282; 42}, {22; 20; 180}, {252; 250; 410}, {62; 70; 290}, {292; 300; 60}.
Nine of them are obtained by developing each of the following triples mod(46;−):

{00; 51; 72}, {00; 81; 122}, {00; 91; 52}, {00; 111; 62}, {00; 131; 212}, {00; 141; 82},
{00; 171; 92}, {00; 181; 112}, {00; 211; 332}.

We thus obtain:

Theorem 3.15. For all v≡ 0 (mod 6) with v¿198, there exists an NKTS(v) containing
a sub-NKTS(66).

For v=72, no exceptions are left after applying Theorem 1:3 and Lemmas 3.3 and
3.6. Thus we have

Theorem 3.16. For all v≡ 0 (mod 6) with v¿216, there exists an NKTS(v) containing
a sub-NKTS(72).

The foregoing results give us the second part of our main theorem:

Theorem 3.17. For v=18; 24; 30; 36; 42; 48; 54; 60; 66 or 72, and u≡ 0 (mod 6), there
exists an NKTS(u) containing a sub-NKTS(v) if and only if u¿3v.

Theorem 1:6 now follows from Theorems 3.7 and 3.17.
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Appendix

{4}-GDD of type 68211241: We construct a {3; 4}-GDD of type 68211 with the
property that its set of triples can be partitioned into 24 parallel classes. By adding 24
inFnite points, we get the desired GDD.
Point set: (Z(24)×{1; 2})∪{x1; x2; : : : ; x19}∪ ({a}×Z(2)).
Groups: {x1; x2; : : : ; x19; a0; a1}, with {01; 81; 161; 02; 82; 162} mod(24;−).
Blocks of size four: Develop {01; 121; 12; 132}, {01; 11; 31; 71}, {02; 12; 32; 72}

mod(24;−).
Parallel classes of triples:

{121; 231; a0}, {132; 02; a1}, {171; 221; 71}, {172; 222; 72}, {01; 22; x1}, {11; 42; x2},
{21; 62; x3}, {31; 82; x4}, {41; 102; x5}, {51; 122; x6}, {61; 152; x7}, {91; 192; x8},
{101; 212; x9}, {111; 232; x10}, {131; 32; x11}, {141; 52; x12}, {81; 12; x13}, {151; 92; x14},
{161; 112; x15}, {181; 142; x16}, {191; 162; x17}, {201; 182; x18}, {211; 202; x19}
mod(24;−).

The subscripts on a are to be developed mod 2.
{4}-GDD of type 184301361: We construct a {3; 4}-GDD of type 184301 with the

property that its set of triples can be partitioned into 36 parallel classes. By adding 36
inFnite points, we get the desired GDD.
Point set: (Z(36)×{1; 2})∪{x1; x2; : : : ; x20}∪ ({a; b; c; d; e}×Z(2)).
Groups: {x1; x2; : : : ; x20; a0; a1; b0; b1; c0; c1; d0; d1; e0; e1}, with {{0j; 2j; 4j; : : : ; 34j},

{1j; 3j; 5j; : : : ; 35j}: j=1; 2}.
Blocks of size four: Develop {01; 151; 02; 172}, {01; 171; 12; 162} mod(36;−).
Parallel classes of triples:

{141; 172; 182}, {171; 222; 252}, {61; 71; 132}, {161; 191; 282}, {01; 102; x1}, {11; 122; x2},
{341; 112; x3}, {21; 162; x4}, {351; 142; x5}, {31; 212; x6}, {321; 152; x7}; {41; 262; x8},
{331; 202; x9}, {51; 292; x10}, {91; 342; x11}, {101; 02; x12}, {181; 92; x13}, {111; 32; x14},
{81; 12; x15}, {121; 62; x16}, {291; 242; x17}, {231; 192; x18}, {301; 272; x19}, {251; 232; x20},
{211; 261; a0}, {201; 271; b0}, {221; 311; c0}, {131; 241; d0}, {151; 281; e0}, {352; 42; a1},
{312; 22; b1}, {322; 52; c1}, {332; 82; d1}, {302; 72; e1} mod(36;−).

The subscripts on a; b; c; d and e are to be developed mod 2.
{4}-GDD of type 68181241: We construct a {3; 4}-GDD of type 68181 with the

property that its set of triples can be partitioned into 24 parallel classes. By adding 24
inFnite points, we get the desired GDD.
Point set: (Z(24)×{1; 2})∪{x1; x2; : : : ; x15}∪ ({a}×Z(3)).
Groups: {x1; x2; : : : ; x15; a0; a1; a2}, with {0j; 4j; 8j; 12j; 16j; 20j} mod(24;−) for

j=1; 2.
Blocks of size four: Develop {01; 51; 72; 102}, {01; 61; 122; 192} mod(24;−).
Parallel classes of triples:

{121; 131; a0}, {01; 42; a1}, {122; 222; a2}, {81; 111; 181}, {61; 151; 171}, {172; 182; 232},
{192; 212; 62}, {11; 12; x1}, {21; 32; x2}, {231; 22; x3}, {31; 112; x4}, {221; 72; x5},
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{41; 152; x6}, {201; 102; x7}, {51; 202; x8}, {211; 132; x9}, {71; 02; x10}, {141; 82; x11},
{91; 52; x12}, {191; 162; x13}, {161; 142; x14}, {101; 92; x15} mod(24;−).

The subscripts on a are to be developed mod 3.
{4}-GDD of type 69121271: We construct a {3; 4}-GDD of type 69121 with the

property that its set of triples can be partitioned into 27 parallel classes. By adding 27
inFnite points, we get the desired GDD.
Point set: (Z(27)×{1; 2})∪{x1; x2; : : : ; x12}.
Groups: {x1; x2; : : : ; x12}, with {01; 91; 181; 02; 92; 182} mod(27;−).
Blocks of size four: Develop {01; 131; 82; 192} mod(27;−).
Parallel classes of triples:

{91; 151; 191}, {111; 121; 141}, {51; 101; 171}, {242; 12; 72}, {232; 252; 262},
{62; 132; 182}, {201; 222; 32}, {131; 162; 22}, {81; 161; 92}, {221; 61; 02},
{01; 42; x1}, {11; 82; x2}, {261; 102; x3}, {21; 142; x4}, {251; 112; x5}, {31; 172; x6},
{241; 122; x7}; {41; 212; x8}, {231; 192; x9}, {181; 152; x10}, {71; 52; x11},
{211; 202; x12} mod(27;−).
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