# Further results on nearly Kirkman triple systems with subsystems 

Dameng Deng ${ }^{\mathrm{a}, 1}$, Rolf Rees ${ }^{\mathrm{b}, *, 2}$, Hao Shen ${ }^{\mathrm{a}, 1}$<br>${ }^{a}$ Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China<br>${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada AlC 5S7

Received 3 January 2002; received in revised form 10 July 2002; accepted 22 July 2002


#### Abstract

In this paper we further discuss the embedding problem for nearly Kirkman triple systems and get the result that: (1) For $u \equiv v \equiv 0(\bmod 6), v \geqslant 78$, and $u \geqslant 3.5 v$, there exists an $\operatorname{NKTS}(u)$ containing a sub-NKTS $(v)$. (2) For $v=18,24,30,36,42,48,54,60,66$ or 72 , there exists an NKTS $(u)$ containing a sub-NKTS $(v)$ if and only if $u \equiv 0(\bmod 6)$ and $u \geqslant 3 v$. (c) 2002 Elsevier B.V. All rights reserved.


## 1. Introduction

Let $v$ be a positive integer, and $K$ and $M$ be two sets of positive integers. A group divisible design $\operatorname{GD}(K, M ; v)$ is an ordered triple $(\mathbf{X}, \mathbf{G}, \mathbf{B})$ where $\mathbf{X}$ is a set with cardinality $v, \mathbf{G}$ is a set of subsets (called groups) of $\mathbf{X}$ such that $\mathbf{G}$ partitions $\mathbf{X}$ and $|G| \in M$ for each $G \in \mathbf{G}$, and $\mathbf{B}$ is a set of subsets (called blocks) of $\mathbf{X}$ such that $|B| \in K$ for each $B \in \mathbf{B}$, with the property that each pair of distinct elements of $\mathbf{X}$ is contained either in a unique group or in a unique block, but not both. The number $v$ is called the order of the group divisible design.

[^0]If $K=\{k\}$ and $M=\{m\}$, then a $\operatorname{GD}(\{k\},\{m\} ; v)$ is called uniform and is denoted $\mathrm{GD}(k, m ; v)$.
Let $(\mathbf{X}, \mathbf{G}, \mathbf{B})$ be a $\operatorname{GD}(K, M, v)$; it is sometimes called a $K$-GDD of group type $T$ where $T=\{|G|: G \in \mathbf{G}\}$ is a multiset. We also write $T=\prod_{i=1}^{s} m_{i}^{u_{i}}$ if $\mathbf{G}$ contains exactly $u_{i}$ groups of size $m_{i}, 1 \leqslant i \leqslant s$.

Now, we define the idea of a GDD with a hole. Informally, an incomplete GDD (IGDD) is a GDD from which a sub-GDD is missing (thus creating a "hole"). We give a formal definition. An IGDD is a quadruple ( $\mathbf{X}, \mathbf{Y}, \mathbf{G}, \mathbf{B}$ ) which satisfies the following properties:
(1) $\mathbf{X}$ is a set of points, and $\mathbf{Y} \subset \mathbf{X}$ ( $\mathbf{Y}$ is called the hole);
(2) $\mathbf{G}$ is a partition of $\mathbf{X}$ into groups;
(3) B is a set of subsets of $\mathbf{X}$ (blocks), each of which intersects each group in at most one point;
(4) no block contains two members of $\mathbf{Y}$;
(5) every pair of points $\{x, y\}$ from distinct groups, such that at least one of $x, y$ is in $\mathbf{X} \backslash \mathbf{Y}$, occurs in a unique block of $\mathbf{B}$.
We say that an $\operatorname{IGDD}(\mathbf{X}, \mathbf{Y}, \mathbf{G}, \mathbf{B})$ is a $K$-IGDD if $|B| \in K$ for every block $B \in \mathbf{B}$. The type of the IGDD is defined to be the multiset of ordered pairs $\{(|G|,|G \cap \mathbf{Y}|: G \in \mathbf{G}\}$. Note that if $\mathbf{Y}=\emptyset$, then the IGDD is a GDD.

Let $(\mathbf{X}, \mathbf{G}, \mathbf{B})$ be a $\operatorname{GD}(K, M ; v)$. A subset $P$ of $\mathbf{B}$ is called a parallel class if $P$ forms a partition of $\mathbf{X}$. A $\operatorname{GD}(K, M, v)$ is called resolvable and is denoted $\operatorname{RGD}(K, M ; v)$ if its block set can be partitioned into parallel classes. When $K=\{k\}$ and $M=\{m\}$ we may also denote an $\operatorname{RGD}(\{k\},\{m\} ; v)$ as a $\{k\}$-RGDD of type $m^{v / m}$. As two important special cases, an $\operatorname{RGD}(3,1 ; v)$ (or equivalently, an $\operatorname{RGD}(3,3 ; v)$ ) is usually known as a Kirkman triple system of order $v$ and is denoted $\operatorname{KTS}(v)$, and an $\operatorname{RGD}(3,2 ; v)$ is usually called a nearly Kirkman triple system of order $v$ and is denoted NKTS $(v)$. For the existence of Kirkman triple systems and nearly Kirkman triple systems, we have the following results:

Theorem 1.1 (Ray-Chaudhuri and Wilson [7]). There exists an $\operatorname{KTS}(v)$ if and only if $v \equiv 3(\bmod 6)$.

Theorem 1.2 (Baker and Wilson [1], Brouwer [3], Kotzig and Rosa [7] and Rees and Stinson [13]). There exists an $\operatorname{NKTS}(v)$ if and only if $v \equiv 0(\bmod 6), v \geqslant 18$.

Now let $\left(\mathbf{X}, \mathbf{G}_{1}, \mathbf{B}_{1}\right)$ be an $\operatorname{RGD}(K, M ; v)$ and $\left(\mathbf{Y}, \mathbf{G}_{2}, \mathbf{B}_{2}\right)$ be an $\operatorname{RGD}(K, M ; u)$. If $\mathbf{X} \subset \mathbf{Y}, \mathbf{G}_{1} \subset \mathbf{G}_{2}$ and each parallel class of $\mathbf{B}_{1}$ is a part of some parallel class of $\mathbf{B}_{2}$, then ( $\mathbf{X}, \mathbf{G}_{1}, \mathbf{B}_{1}$ ) is said to be embedded in $\left(\mathbf{Y}, \mathbf{G}_{2}, \mathbf{B}_{2}\right)$. If we allow a subdesign of an RGDD to be missing (i.e., creating a hole), we have an incomplete RGDD. Note that the subdesign need not exist. We will be exclusively concerned with constructing incomplete $\operatorname{RGD}(3,2 ; v) \mathrm{s}$, which we henceforth denote as $\operatorname{INKTS}(v, h), h$ being the number of points in the hole.

The problem of constructing Kirkman triple systems containing subsystems was studied by Rees and Stinson [9,10,12]. The obvious necessary conditions for the existence
of a $\operatorname{KTS}(u)$ containing a $\operatorname{KTS}(v)$ as a subsystem are $u \geqslant 3 v, u \equiv v \equiv 3(\bmod 6)$. In [9], it is shown that these necessary conditions are sufficient.

In this paper, we are interested in $\operatorname{NKTS}(u)$ which contain $\operatorname{NKTS}(v)$ as a subsystem. Here the obvious necessary conditions are that $u \geqslant 3 v, u \equiv v \equiv 0(\bmod 6)$ and $v \geqslant 18$. This problem has been studied in a couple of recent papers, and the following results have been proved:

Theorem 1.3 (Tang and Shen [13]). For any $v \equiv 0(\bmod 6)$ with $v \geqslant 18$ and any $k \geqslant 3$, there exists an $\operatorname{INKTS}(k v, v)$.

Theorem 1.4 (Deng et al. [4]). For each $h \in\{6,12\}$ there exists an $\operatorname{INKTS}(v, h)$ if and only if $v \equiv 0(\bmod 6)$ and $v \geqslant 3 h$.

Theorem 1.5 (Deng et al. [4]). (i) For $u \equiv v \equiv 0(\bmod 6), v \geqslant 48$ and $u \geqslant 4 v-18$, there exists an $\operatorname{NKTS}(u)$ containing a sub-NKTS(v).
(ii) For $v \in\{18,24,30,36,42\}$ and $u \equiv 0(\bmod 6), u \geqslant 3 v$, there exists an $\operatorname{NKTS}(u)$ containing a sub-NKTS $(v)$.

In this paper, we further discuss the embedding problem for nearly Kirkman triple systems and get the following result:

Theorem 1.6. (1) For $u \equiv v \equiv 0(\bmod 6), v \geqslant 78$, and $u \geqslant 3.5 v$, there exists an $\operatorname{NKTS}(u)$ containing a sub-NKTS $(v)$.
(2) For $v=18,24,30,36,42,48,54,60,66$ or 72 , there exists an $\operatorname{NKTS}(u)$ containing $a$ sub-NKTS $(v)$ if and only if $u \equiv 0(\bmod 6)$ and $u \geqslant 3 v$.

As in [4] the direct constructions for the designs appearing in this paper were obtained by appropriate adaptations of the standard backtracking algorithm, beginning with a feasible tactical configuration (subscript pattern) with respect to a particular automorphism group.

## 2. Constructions for nearly Kirkman triple systems containing subsystems

First we introduce the idea of Kirkman frames, which play a very important role in solving the embedding problem for nearly Kirkman triple systems. Here we give the definition [12].

Let $(\mathbf{X}, \mathbf{G}, \mathbf{B})$ be a $\operatorname{GD}(K, M ; v)$ and let $P$ be a subset of $\mathbf{B}$. If $P$ forms a partition of $\mathbf{X} \backslash G$ for some group $G \in \mathbf{G}$, then $P$ is called a holey parallel class with hole $G$. A $\operatorname{GD}(K, M ; v)$ is called a Kirkman $K$-frame if the block set $\mathbf{B}$ can be partitioned into holey parallel classes. For $K=\{3\}$, a Kirkman $\{3\}$-frame is called a Kirkman frame.

The following theorem gives a powerful construction for Kirkman frames from group divisible designs [12].

Theorem 2.1. Let $(\mathbf{X}, \mathbf{G}, \mathbf{B})$ be a group divisible design. Let $w: \mathbf{X} \rightarrow Z^{+} \cup\{0\}$ be a weight function on $\mathbf{X}$. Suppose that for each block $B \in \mathbf{B}$, there exists a Kirkman frame of type $\{w(x): x \in B\}$. Then there is a Kirkman frame of type $\left\{\sum_{x \in G} w(x)\right.$ : $G \in \mathbf{G}\}$.

The spectrum of uniform Kirkman frames has been completely determined [12].
Theorem 2.2. There exists a Kirkman frame of type $t^{u}$ if and only if $t \equiv 0(\bmod 2)$, $u \geqslant 4$ and $t(u-1) \equiv 0(\bmod 3)$.

The following "filling in holes" construction provides a powerful tool for the embedding problem for nearly Kirkman triple systems [13].

Construction 2.3. Suppose there is a Kirkman frame of type $T$ on $v$ points. If, for some $a>0$, there exists an $\operatorname{INKTS}(t+a, a)$ for all $t \in T$, then there is an INKTS $(v+a, a)$, and for every $t \in T$, an $\operatorname{INKTS}(v+a, t+a)$.

It will be necessary to build families of GDDs. Our basic construction for GDDs is a recursive one. It is usually referred to as the "Fundamental GDD construction" (see [3]).

Construction 2.4. Let $(\mathbf{X}, \mathbf{G}, \mathbf{B})$ be a group divisible design. Let $w: \mathbf{X} \rightarrow Z^{+} \cup\{0\}$ be a weight function on $\mathbf{X}$. Suppose that for each block $B \in \mathbf{B}$, there exists a $K$-GDD of type $\{w(x): x \in B\}$. Then there is a K-GDD of type $\left\{\sum_{x \in G} w(x): G \in \mathbf{G}\right\}$.

## 3. Applications of the constructions

We use the above constructions to discuss the embedding problem for nearly Kirkman triple systems. First, we present a specific construction using GDDs with block-size four.

Lemma 3.1. Suppose there is a $\operatorname{TD}(6, m), m \geqslant 5$ and $m \leqslant w \leqslant 2 m$. Let $a=6$ or 12 . Then there is an $\operatorname{NKTS}(36 m+6 w+a)$ containing $a$ sub-NKTS $(12 m+a)$.

Proof. Give points in four groups of the TD weight 3, give the points in the fifth group weight 3 or 6 , and give the points in the sixth group weight 6 . Apply Construction 2.4, filling in $\{4\}$-GDDs of type $3^{4} 6^{2}$ or $3^{5} 6^{1}$ [11], to get a $\{4\}$-GDD of type $(3 m)^{4}(6 m)^{1}(3 w)^{1}$. Give the points of the resultant GDD weight 2 , applying Theorems 2.1 and 2.2, to get a Kirkman frame of type $(6 m)^{4}(12 m)^{1}(6 w)^{1}$. Adjoin $a$ ideal points and apply Construction 2.3 and Theorem 1.4 to yield an $\operatorname{INKTS}(36 m+$ $6 w+a, 12 m+a)$. Now construct an $\operatorname{NKTS}(12 m+a)$ on the hole, giving rise to an $\operatorname{NKTS}(36 m+6 w+a)$ containing a sub-NKTS $(12 m+a)$.

Now we use the following corollaries to Lemma 3.1.

Lemma 3.2. Suppose $v \equiv 6(\bmod 12), v \geqslant 66, v \neq 78,126,174,222,270, u \equiv 0(\bmod 6)$, and $3.5 v-15 \leqslant u \leqslant 4 v-18$. Then there is an $\operatorname{INKTS}(u, v)$.

Proof. Apply Lemma 3.1 with $m=(v-6) / 12, w=(u-36 m-6) / 6$ and $a=6$. Then a $\operatorname{TD}(6, m)$ exists, and $m \leqslant w \leqslant 2 m$. This builds an $\operatorname{NKTS}(36 m+6 w+6)$ containing a sub-NKTS( $12 m+6$ ).

Lemma 3.3. Suppose $v \equiv 0(\bmod 12), v \geqslant 72, v \neq 84,132,180,228,276, u \equiv 0(\bmod 6)$, and $3.5 v-30 \leqslant u \leqslant 4 v-36$. Then there is an $\operatorname{INKTS}(u, v)$.

Proof. Apply Lemma 3.1 with $m=(v-12) / 12, w=(u-36 m-12) / 6$ and $a=12$. Then a $\operatorname{TD}(6, m)$ exists, and $m \leqslant w \leqslant 2 m$. This builds an $\operatorname{NKTS}(36 m+6 w+12)$ containing a sub-NKTS $(12 m+12)$.

Lemma 3.4. Suppose $v \in\{78,126,174,222,270\}, u \equiv 0(\bmod 6)$, and $3.5 v<u \leqslant 4 v+18$. Then there is an $\operatorname{INKTS}(u, v)$.

Proof. Let $m=(v-18) / 12+2$; then $m \in\{7,11,15,19,23\}$. Take a $\operatorname{TD}(6, m)$ and give all points on four of the groups weight 6 . On the fifth group give 2 of the points weight 6 and all remaining points weight 12 . Assign weight 6 or 12 to each point on the sixth group. Use Kirkman frames of type $6^{6}, 6^{5} 12^{1}$ and $6^{4} 12^{2}$, and adjoin 6 ideal points. This gives $\operatorname{INKTS}(u, v)$ where $v=12 m-6$ and $12 m-6+30 m \leqslant u \leqslant 12 m-6+36 m$, i.e. $3.5 v+15 \leqslant u \leqslant 4 v+18$.

To get $u=3.5 v+3$ and $3.5 v+9$ proceed as follows. Suppose first that $v \neq 78$. Let $m=(v-18) / 12$, then $m \in\{9,13,17,21\}$. Proceed as above, taking a $\operatorname{TD}(6, m)$ and giving all points on four of the groups weight 6 and giving all points on the fifth group weight 12. On the sixth group give either 8 or 9 of the points weight 12 and all remaining points weight 6 . Now adjoin 18 ideal points and apply Construction 2.3 with $a=18$ (see Theorem $1.5($ ii) ) to obtain an $\operatorname{INKTS}(u, v)$ where $v=12 m+18$ and $u=12 m+18+30 m+48$ or $12 m+18+30 m+54$, i.e. $u=3.5 v+3$ or $3.5 v+9$. Now let $v=78$. For $u=276$ adjoin 12 ideal points to a Kirkman frame of type $66^{4}$ and fill in $\operatorname{INKTS}(78,12) \mathrm{s}$ and an $\operatorname{NKTS}(78)$, while for $u=282$ take a $\{4\}$-GDD of type $18^{4} 30^{1} 36^{1}$ (see the appendix) and apply Theorem 2.1 and Construction 2.3, using weight 2 with $a=6$ ideal points.

Lemma 3.5. Suppose $v \in\{60,84,132,180,228,276\}, u \equiv 0(\bmod 6)$, and $3.5 v \leqslant u \leqslant 4 v$. Then there is an $\operatorname{INKTS}(u, v)$.

Proof. Let $m=(v-12) / 12+1$, then $m \in\{5,7,11,15,19,23\}$. Take a $\operatorname{TD}(6, m)$ and proceed as in the first part of Lemma 3.4, giving just one point on the fifth group weight 6 and adjoining 6 ideal points. This gives $\operatorname{INKTS}(u, v)$ where $v=12 m$, and $12 m+30 m \leqslant u \leqslant 12 m+36 m$, i.e. $3.5 v \leqslant u \leqslant 4 v$.

Lemma 3.6. Suppose $v \equiv 0(\bmod 12), v \geqslant 48$, and $u=4 v-30$ or $4 v-24$. Then there is an $\operatorname{INKTS}(u, v)$.

Proof. Here we just proceed as in Lemma 3.5, unless $v \in\{48,72,120,168,216,264\}$. For $v \in\{120,168,216,264\}$, take $m=(v-24) / 12+3$, then $m \in\{11,15,19,23\}$. Take a $\operatorname{TD}(6, m)$ and proceed as above, giving three points on the fifth group weight 6 and either 11 or 10 points on the sixth group weight 6 , adjoining 6 ideal points.

There remain $\operatorname{INKTS}(162,48), \operatorname{INKTS}(168,48), \operatorname{INKTS}(258,72)$ and $\operatorname{INKTS}(264,72)$.
For INKTS $\left(168,48\right.$ ), take a $\{4\}$-GDD of type $15^{4} 21^{1}$ (see [5]); apply Theorems 2.1 and Construction 2.3, using weight 2 with 6 ideal points.

For INKTS $\left(264,72\right.$ ), take a $\{4\}$-GDD of type $24^{4} 33^{1}$ (see [5]); apply weight 2 and adjoin 6 ideal points.

For $\operatorname{INKTS}(162,48)$ and $\operatorname{INKTS}(258,72)$, we present the following direct constructions:
$\operatorname{INKTS}(162,48)$. Point set: $(Z(38) \times Z(3)) \cup\left\{x_{1}, x_{2}, \ldots, x_{48}\right\}$. Groups: $\left\{0_{0}, 19_{0}\right\}$, $\left\{0_{1}, 19_{1}\right\},\left\{0_{2}, 19_{2}\right\} \bmod (38,-)$. Hole: $\left\{x_{1}, x_{2}, \ldots, x_{48}\right\}$.

Parallel classes of triples: Thirty-eight of them are obtained by developing the following triples $\bmod (38,-)$ :

$$
\begin{aligned}
& \left\{31_{0}, 35_{1}, 0_{2}\right\},\left\{22_{0}, 31_{1}, 37_{2}\right\},\left\{25_{0}, 37_{1}, 7_{2}\right\},\left\{0_{0}, 0_{1}, 17_{1}\right\},\left\{1_{1}, 1_{2}, 16_{2}\right\},\left\{2_{2}, 2_{0}, 15_{0}\right\}, \\
& \left\{1_{0}, 23_{1}, x_{1}\right\},\left\{3_{0}, 26_{1}, x_{2}\right\},\left\{4_{0}, 28_{1}, x_{3}\right\},\left\{5_{0}, 30_{1}, x_{4}\right\},\left\{6_{0}, 32_{1}, x_{5}\right\},\left\{7_{0}, 34_{1}, x_{6}\right\}, \\
& \left\{8_{0}, 36_{1}, x_{7}\right\},\left\{11_{0}, 2_{1}, x_{8}\right\},\left\{12_{0}, 4_{1}, x_{9}\right\},\left\{10_{0}, 3_{1}, x_{10}\right\},\left\{13_{0}, 7_{1}, x_{11}\right\},\left\{14_{0}, 9_{1}, x_{12}\right\}, \\
& \left\{9_{0}, 5_{1}, x_{13}\right\},\left\{16_{0}, 13_{1}, x_{14}\right\},\left\{17_{0}, 15_{1}, x_{15}\right\},\left\{19_{0}, 18_{1}, x_{16}\right\},\left\{6_{1}, 19_{2}, x_{17}\right\}, \\
& \left\{8_{1}, 22_{2}, x_{18}\right\},\left\{10_{1}, 27_{2}, x_{19}\right\},\left\{12_{1}, 28_{2}, x_{20}\right\},\left\{11_{1}, 29_{2}, x_{21}\right\},\left\{14_{1}, 33_{2}, x_{22}\right\}, \\
& \left\{16_{1}, 36_{2}, x_{23}\right\},\left\{20_{1}, 3_{2}, x_{24}\right\},\left\{21_{1}, 5_{2}, x_{25}\right\},\left\{19_{1}, 4_{2}, x_{26}\right\},\left\{22_{1}, 8_{2}, x_{27}\right\}, \\
& \left\{24_{1}, 11_{2}, x_{28}\right\},\left\{25_{1}, 13_{2}, x_{29}\right\},\left\{29_{1}, 18_{2}, x_{30}\right\},\left\{27_{1}, 17_{2}, x_{31}\right\},\left\{33_{1}, 24_{2}, x_{32}\right\}, \\
& \left\{20_{2}, 21_{0}, x_{33}\right\},\left\{25_{2}, 27_{0}, x_{34}\right\},\left\{30_{2}, 33_{0}, x_{35}\right\},\left\{32_{2}, 36_{0}, x_{36}\right\},\left\{31_{2}, 37_{0}, x_{37}\right\}, \\
& \left\{23_{2}, 30_{0}, x_{38}\right\},\left\{26_{2}, 35_{0}, x_{39}\right\},\left\{14_{2}, 24_{0}, x_{40}\right\},\left\{21_{2}, 32_{0}, x_{41}\right\},\left\{6_{2}, 23_{0}, x_{42}\right\}, \\
& \left\{15_{2}, 29_{0}, x_{43}\right\},\left\{10_{2}, 26_{0}, x_{44}\right\},\left\{9_{2}, 28_{0}, x_{45}\right\},\left\{35_{2}, 18_{0}, x_{46}\right\},\left\{12_{2}, 34_{0}, x_{47}\right\}, \\
& \left\{34_{2}, 20_{0}, x_{3}\right\}
\end{aligned} \text {. }
$$

Nineteen of them are obtained by adding $0,2,4, \ldots, 36$ to the following triples $\bmod (38,-)$ :
$\left\{16_{0}, 17_{1}, 18_{2}\right\},\left\{35_{0}, 36_{1}, 37_{2}\right\},\left\{17_{0}, 31_{1}, 2_{2}\right\},\left\{36_{0}, 12_{1}, 21_{2}\right\},\left\{14_{0}, 33_{1}, 6_{2}\right\}$, $\left\{33_{0}, 14_{1}, 25_{2}\right\},\left\{0_{0}, 1_{0}, x_{17}\right\},\left\{19_{0}, 20_{0}, x_{18}\right\},\left\{20,5_{0}, x_{19}\right\},\left\{21_{0}, 24_{0}, x_{20}\right\},\left\{3_{0}, 8_{0}, x_{21}\right\}$, $\left\{22_{0}, 27_{0}, x_{22}\right\},\left\{4_{0}, 11_{0}, x_{23}\right\},\left\{23_{0}, 30_{0}, x_{24}\right\},\left\{6_{0}, 15_{0}, x_{25}\right\},\left\{25_{0}, 34_{0}, x_{26}\right\},\left\{7_{0}, 18_{0}, x_{27}\right\}$, $\left\{26_{0}, 37_{0}, x_{28}\right\},\left\{12_{0}, 29_{0}, x_{29}\right\},\left\{31_{0}, 10_{0}, x_{30}\right\},\left\{13_{0}, 28_{0}, x_{31}\right\},\left\{32_{0}, 9_{0}, x_{32}\right\},\left\{0_{1}, 1_{1}, x_{33}\right\}$, $\left\{19_{1}, 20_{1}, x_{34}\right\},\left\{2_{1}, 5_{1}, x_{35}\right\},\left\{21_{1}, 24_{1}, x_{36}\right\},\left\{3_{1}, 8_{1}, x_{37}\right\},\left\{22_{1}, 27_{1}, x_{38}\right\},\left\{4_{1}, 11_{1}, x_{39}\right\}$, $\left\{23_{1}, 30_{1}, x_{40}\right\},\left\{6_{1}, 15_{1}, x_{41}\right\},\left\{25_{1}, 34_{1}, x_{42}\right\},\left\{7_{1}, 18_{1}, x_{43}\right\},\left\{26_{1}, 37_{1}, x_{44}\right\}$, $\left\{16_{1}, 29_{1}, x_{45}\right\},\left\{35_{1}, 10_{1}, x_{46}\right\},\left\{13_{1}, 28_{1}, x_{47}\right\},\left\{32_{1}, 9_{1}, x_{48}\right\},\left\{0_{2}, 1_{2}, x_{1}\right\}$, $\left\{19_{2}, 20_{2}, x_{2}\right\},\left\{4_{2}, 7_{2}, x_{3}\right\},\left\{23_{2}, 26_{2}, x_{4}\right\},\left\{8_{2}, 13_{2}, x_{5}\right\},\left\{27_{2}, 32_{2}, x_{6}\right\}$, $\left\{9_{2}, 16_{2}, x_{7}\right\},\left\{28_{2}, 35_{2}, x_{8}\right\},\left\{15_{2}, 24_{2}, x_{9}\right\},\left\{34_{2}, 5_{2}, x_{10}\right\},\left\{3_{2}, 14_{2}, x_{11}\right\}$, $\left\{22_{2}, 33_{2}, x_{12}\right\},\left\{17_{2}, 30_{2}, x_{13}\right\},\left\{36_{2}, 11_{2}, x_{14}\right\},\left\{12_{2}, 29_{2}, x_{15}\right\},\left\{31_{2}, 10_{2}, x_{16}\right\}$.

Holey parallel classes of triples: Nineteen of them are obtained by adding $0,2,4, \ldots$, 36 to the following triples $\bmod (38,-)$ :
$\left\{0_{0}, 6_{0}, 24_{0}\right\},\left\{19_{0}, 25_{0}, 5_{0}\right\},\left\{4_{0}, 8_{0}, 20_{0}\right\},\left\{23_{0}, 27_{0}, 1_{0}\right\},\left\{7_{0}, 9_{0}, 17_{0}\right\},\left\{26_{0}, 28_{0}, 36_{0}\right\}$, $\left\{0_{1}, 6_{1}, 24_{1}\right\},\left\{19_{1}, 25_{1}, 5_{1}\right\},\left\{4_{1}, 8_{1}, 20_{1}\right\},\left\{23_{1}, 27_{1}, 1_{1}\right\},\left\{11_{1}, 13_{1}, 21_{1}\right\},\left\{30_{1}, 32_{1}, 2_{1}\right\}$, $\left\{12_{2}, 18_{2}, 36_{2}\right\},\left\{31_{2}, 37_{2}, 17_{2}\right\},\left\{4_{2}, 8_{2}, 20_{2}\right\},\left\{23_{2}, 27_{2}, 1_{2}\right\},\left\{9_{2}, 11_{2}, 19_{2}\right\},\left\{28_{2}, 30_{2}, 0_{2}\right\}$, $\left\{14_{0}, 16_{1}, 15_{2}\right\},\left\{33_{0}, 35_{1}, 34_{2}\right\},\left\{11_{0}, 14_{1}, 16_{2}\right\},\left\{30_{0}, 33_{1}, 35_{2}\right\},\left\{10_{0}, 15_{1}, 13_{2}\right\}$, $\left\{29_{0}, 34_{1}, 32_{2}\right\},\left\{12_{0}, 18_{1}, 22_{2}\right\},\left\{31_{0}, 37_{1}, 3_{2}\right\},\left\{30,10_{1}, 7_{2}\right\},\left\{22_{0}, 29_{1}, 26_{2}\right\}$, $\left\{18_{0}, 28_{1}, 24_{2}\right\},\left\{37_{0}, 9_{1}, 5_{2}\right\},\left\{13_{0}, 26_{1}, 21_{2}\right\},\left\{32_{0}, 7_{1}, 2_{2}\right\},\left\{16_{0}, 31_{1}, 25_{2}\right\}$, $\left\{35_{0}, 12_{1}, 6_{2}\right\},\left\{2_{0}, 22_{1}, 14_{2}\right\},\left\{21_{0}, 3_{1}, 33_{2}\right\},\left\{15_{0}, 36_{1}, 10_{2}\right\}$,
$\left\{34_{0}, 17_{1}, 29_{2}\right\}$.
Four of them are obtained by developing each of the following triples $\bmod (38,-)$ :

$$
\left\{0_{0}, 8_{1}, 13_{2}\right\},\left\{0_{0}, 11_{1}, 18_{2}\right\},\left\{0_{0}, 16_{1}, 26_{2}\right\},\left\{0_{0}, 18_{1}, 11_{2}\right\} .
$$

$\operatorname{INKTS}(258,72)$. Point set: $(Z(62) \times Z(3)) \cup\left\{x_{1}, x_{2}, \ldots, x_{72}\right\}$. Groups: $\left\{0_{0}, 31_{0}\right\}$, $\left\{0_{1}, 31_{1}\right\},\left\{0_{2}, 31_{2}\right\} \bmod (62,-)$. Hole: $\left\{x_{1}, x_{2}, \ldots, x_{72}\right\}$.

Parallel classes of triples: Sixty-two of them are obtained by developing the following triples $\bmod (62,-)$ :

$$
\begin{aligned}
& \left\{36_{0}, 52_{0}, 54_{0}\right\},\left\{43_{1}, 53_{1}, 57_{1}\right\},\left\{46_{2}, 50_{2}, 60_{2}\right\},\left\{43_{0}, 55_{1}, 49_{2}\right\},\left\{32_{0}, 51_{1}, 0_{2}\right\} \text {, } \\
& \left\{26_{0}, 33_{1}, 36_{2}\right\},\left\{57_{0}, 1_{1}, 3_{2}\right\},\left\{24_{0}, 27_{1}, 25_{2}\right\},\left\{61_{0}, 3_{1}, 2_{2}\right\},\left\{25_{0}, 30_{1}, 27_{2}\right\} \text {, } \\
& \left\{59_{0}, 5_{1}, 1_{2}\right\},\left\{27_{0}, 36_{1}, 40_{2}\right\},\left\{51_{0}, 61_{1}, 56_{2}\right\},\left\{38_{0}, 49_{1}, 55_{2}\right\},\left\{7_{1}, 26_{2}, x_{1}\right\} \text {, } \\
& \left\{59_{1}, 17_{2}, x_{2}\right\},\left\{9_{1}, 30_{2}, x_{3}\right\},\left\{11_{1}, 33_{2}, x_{4}\right\},\left\{15_{1}, 38_{2}, x_{5}\right\},\left\{13_{1}, 39_{2}, x_{6}\right\} \text {, } \\
& \left\{17_{1}, 44_{2}, x_{7}\right\},\left\{19_{1}, 48_{2}, x_{8}\right\},\left\{21_{1}, 51_{2}, x_{9}\right\},\left\{23_{1}, 54_{2}, x_{10}\right\},\left\{25_{1}, 57_{2}, x_{11}\right\} \text {, } \\
& \left\{26_{1}, 59_{2}, x_{12}\right\},\left\{24_{1}, 58_{2}, x_{13}\right\},\left\{31_{1}, 4_{2}, x_{14}\right\},\left\{32_{1}, 6_{2}, x_{15}\right\},\left\{34_{1}, 9_{2}, x_{16}\right\},\left\{29_{1}, 5_{2}, x_{17}\right\} \text {, } \\
& \left\{35_{1}, 12_{2}, x_{18}\right\},\left\{37_{1}, 15_{2}, x_{19}\right\},\left\{28_{1}, 7_{2}, x_{20}\right\},\left\{39_{1}, 19_{2}, x_{21}\right\} \text {, } \\
& \left\{41_{1}, 22_{2}, x_{22}\right\},\left\{47_{1}, 29_{2}, x_{23}\right\},\left\{45_{1}, 28_{2}, x_{24}\right\},\left\{31_{2}, 34_{0}, x_{25}\right\},\left\{24_{2}, 28_{0}, x_{26}\right\} \text {, } \\
& \left\{32_{2}, 37_{0}, x_{27}\right\},\left\{34_{2}, 40_{0}, x_{28}\right\},\left\{37_{2}, 44_{0}, x_{29}\right\},\left\{41_{2}, 50_{0}, x_{30}\right\},\left\{47_{2}, 58_{0}, x_{31}\right\} \text {, } \\
& \left\{43_{2}, 55_{0}, x_{32}\right\},\left\{42_{2}, 56_{0}, x_{33}\right\},\left\{45_{2}, 60_{0}, x_{34}\right\},\left\{14_{2}, 31_{0}, x_{35}\right\},\left\{35_{2}, 53_{0}, x_{36}\right\} \text {, } \\
& \left\{18_{2}, 39_{0}, x_{37}\right\},\left\{10_{2}, 33_{0}, x_{38}\right\},\left\{21_{2}, 45_{0}, x_{39}\right\},\left\{23_{2}, 49_{0}, x_{40}\right\},\left\{20_{2}, 47_{0}, x_{41}\right\} \text {, } \\
& \left\{16_{2}, 46_{0}, x_{42}\right\},\left\{11_{2}, 42_{0}, x_{43}\right\},\left\{82,41_{0}, x_{44}\right\},\left\{13_{2}, 48_{0}, x_{45}\right\},\left\{61_{2}, 35_{0}, x_{46}\right\} \text {, } \\
& \left\{53_{2}, 29_{0}, x_{47}\right\},\left\{52_{2}, 30_{0}, x_{48}\right\},\left\{0_{0}, 38_{1}, x_{49}\right\},\left\{1_{0}, 40_{1}, x_{50}\right\},\left\{2_{0}, 42_{1}, x_{51}\right\},\left\{3_{0}, 44_{1}, x_{52}\right\} \text {, } \\
& \left\{4_{0}, 46_{1}, x_{53}\right\},\left\{5_{0}, 48_{1}, x_{54}\right\},\left\{6_{0}, 50_{1}, x_{55}\right\},\left\{7_{0}, 52_{1}, x_{56}\right\},\left\{8_{0}, 54_{1}, x_{57}\right\} \text {, } \\
& \left\{9_{0}, 56_{1}, x_{58}\right\},\left\{10_{0}, 58_{1}, x_{59}\right\},\left\{11_{0}, 60_{1}, x_{60}\right\},\left\{12_{0}, 0_{1}, x_{61}\right\},\left\{13_{0}, 2_{1}, x_{62}\right\},\left\{14_{0}, 4_{1}, x_{63}\right\} \text {, } \\
& \left\{15_{0}, 6_{1}, x_{64}\right\},\left\{16_{0}, 8_{1}, x_{65}\right\},\left\{17_{0}, 10_{1}, x_{66}\right\},\left\{18_{0}, 12_{1}, x_{67}\right\},\left\{19_{0}, 14_{1}, x_{68}\right\} \text {, } \\
& \left\{20_{0}, 16_{1}, x_{69}\right\},\left\{21_{0}, 18_{1}, x_{70}\right\},\left\{22_{0}, 20_{1}, x_{71}\right\},\left\{23_{0}, 22_{1}, x_{72}\right\} \text {. }
\end{aligned}
$$

Thirty-one of them are obtained by adding $0,2,4, \ldots, 60$ to the following triples $\bmod (62,-)$ :
$\left\{14_{0}, 28_{1}, 21_{2}\right\},\left\{45_{0}, 59_{1}, 52_{2}\right\},\left\{17_{0}, 45_{1}, 60_{2}\right\},\left\{48_{0}, 14_{1}, 29_{2}\right\},\left\{19_{0}, 50_{1}, 37_{2}\right\}$, $\left\{50_{0}, 19_{1}, 6_{2}\right\},\left\{20_{0}, 56_{1}, 12_{2}\right\},\left\{51_{0}, 25_{1}, 43_{2}\right\},\left\{12_{0}, 24_{0}, 52_{0}\right\},\left\{43_{0}, 55_{0}, 21_{0}\right\}$, $\left\{16_{1}, 46_{1}, 52_{1}\right\},\left\{47_{1}, 15_{1}, 21_{1}\right\},\left\{20_{2}, 50_{2}, 56_{2}\right\},\left\{51_{2}, 19_{2}, 25_{2}\right\},\left\{30_{0}, 31_{0}, x_{1}\right\}$, $\left\{61_{0}, 0_{0}, x_{2}\right\},\left\{1_{0}, 4_{0}, x_{3}\right\},\left\{32_{0}, 35_{0}, x_{4}\right\},\left\{29_{0}, 34_{0}, x_{5}\right\},\left\{60_{0}, 3_{0}, x_{6}\right\},\left\{2_{0}, 9_{0}, x_{7}\right\}$,


```
{2\mp@subsup{6}{0}{},3\mp@subsup{9}{0}{},\mp@subsup{x}{13}{}},{5\mp@subsup{7}{0}{},\mp@subsup{8}{0}{},\mp@subsup{x}{14}{}},{\mp@subsup{7}{0}{},2\mp@subsup{2}{0}{},\mp@subsup{x}{15}{}},{3\mp@subsup{8}{0}{},5\mp@subsup{3}{0}{},\mp@subsup{x}{16}{}},{2\mp@subsup{7}{0}{},4\mp@subsup{4}{0}{},\mp@subsup{x}{17}{}},
{580,130, x 18},{230,420,\mp@subsup{x}{19}{}},{540,1\mp@subsup{1}{0}{},\mp@subsup{x}{20}{}},{2\mp@subsup{5}{0}{},4\mp@subsup{6}{0}{},\mp@subsup{x}{21}{}},{5\mp@subsup{6}{0}{},1\mp@subsup{5}{0}{},\mp@subsup{x}{22}{}},
{180,410, \mp@subsup{x}{23}{}},{490,1\mp@subsup{0}{0}{},\mp@subsup{x}{24}{}},{\mp@subsup{0}{1}{},\mp@subsup{1}{1}{},\mp@subsup{x}{25}{}},{3\mp@subsup{1}{1}{},3\mp@subsup{2}{1}{},\mp@subsup{x}{26}{}},{3\mp@subsup{0}{1}{},3\mp@subsup{3}{1}{},\mp@subsup{x}{27}{}},
```





```
{54, ,1\mp@subsup{1}{1}{},\mp@subsup{x}{44}{}},{2\mp@subsup{2}{1}{},4\mp@subsup{3}{1}{},\mp@subsup{x}{45}{}},{5\mp@subsup{3}{1}{},1\mp@subsup{2}{1}{},\mp@subsup{x}{46}{}},{2\mp@subsup{6}{1}{},4\mp@subsup{9}{1}{},\mp@subsup{x}{47}{}},{5\mp@subsup{7}{1}{},1\mp@subsup{8}{1}{},\mp@subsup{x}{48}{}},
```



```
{42,112, x55 }, {352,422, x56 }, {72,162, x 57}, {382,472, x58 }, {132,242, x59},
{442, 55 2, x 60}, {92,2\mp@subsup{2}{2}{},\mp@subsup{x}{61}{}},{4\mp@subsup{0}{2}{},5\mp@subsup{3}{2}{2},\mp@subsup{x}{62}{}},{2\mp@subsup{6}{2}{},4\mp@subsup{1}{2}{},\mp@subsup{x}{63}{}},{572,1\mp@subsup{0}{2}{},\mp@subsup{x}{64}{}},
{282,452, x65 }, {592,142, x66 }, {302,492,\mp@subsup{x}{67}{}},{612,182,\mp@subsup{x}{68}{}},{272,482,\mp@subsup{x}{69}{}},
{582,172, x 隹},{232,46 , x x 
```

Holey parallel classes of triples: Thirty-one of them are obtained by adding 0,2 , $4, \ldots, 60$ to the following triples $\bmod (62,-)$ :

$$
\begin{aligned}
& \left\{18_{0}, 43_{0}, 51_{0}\right\},\left\{49_{0}, 12_{0}, 20_{0}\right\},\left\{28_{0}, 38_{0}, 42_{0}\right\},\left\{59_{0}, 7_{0}, 11_{0}\right\},\left\{9_{0}, 39_{0}, 45_{0}\right\} \text {, } \\
& \left\{40_{0}, 8_{0}, 14_{0}\right\},\left\{13_{1}, 38_{1}, 46_{1}\right\},\left\{44_{1}, 7_{1}, 15_{1}\right\},\left\{18_{1}, 34_{1}, 36_{1}\right\},\left\{49_{1}, 3_{1}, 5_{1}\right\} \text {, } \\
& \left\{11_{1}, 39_{1}, 51_{1}\right\},\left\{42_{1}, 8_{1}, 20_{1}\right\},\left\{11_{2}, 19_{2}, 44_{2}\right\},\left\{42_{2}, 50_{2}, 13_{2}\right\},\left\{2_{2}, 4_{2}, 20_{2}\right\} \text {, } \\
& \left\{33_{2}, 35_{2}, 51_{2}\right\},\left\{6_{2}, 18_{2}, 46_{2}\right\},\left\{37_{2}, 49_{2}, 15_{2}\right\},\left\{4_{0}, 41_{1}, 25_{2}\right\},\left\{35_{0}, 10_{1}, 56_{2}\right\} \text {, } \\
& \left\{22_{0}, 57_{1}, 12_{2}\right\},\left\{53_{0}, 26_{1}, 43_{2}\right\},\left\{13_{0}, 47_{1}, 32_{2}\right\},\left\{44_{0}, 16_{1}, 1_{2}\right\},\left\{16_{0}, 48_{1}, 0_{2}\right\} \text {, } \\
& \left\{47_{0}, 17_{1}, 31_{2}\right\},\left\{23_{0}, 53_{1}, 39_{2}\right\},\left\{54_{0}, 22_{1}, 8_{2}\right\},\left\{21_{0}, 45_{1}, 36_{2}\right\},\left\{52_{0}, 14_{1}, 55_{2}\right\} \text {, } \\
& \left\{29_{0}, 52_{1}, 41_{2}\right\},\left\{60_{0}, 21_{1}, 10_{2}\right\},\left\{6_{0}, 28_{1}, 40_{2}\right\},\left\{37_{0}, 59_{1}, 9_{2}\right\},\left\{3_{0}, 24_{1}, 14_{2}\right\} \text {, } \\
& \left\{34_{0}, 55_{1}, 45_{2}\right\},\left\{19_{0}, 37_{1}, 47_{2}\right\},\left\{50_{0}, 6_{1}, 16_{2}\right\},\left\{27_{0}, 43_{1}, 52_{2}\right\},\left\{58_{0}, 12_{1}, 21_{2}\right\} \text {, } \\
& \left\{25_{0}, 40_{1}, 48_{2}\right\},\left\{56_{0}, 9_{1}, 17_{2}\right\},\left\{10_{0}, 23_{1}, 30_{2}\right\},\left\{41_{0}, 54_{1}, 61_{2}\right\},\left\{30_{0}, 30_{1}, 50_{1}\right\} \text {, } \\
& \left\{61_{0}, 61_{1}, 19_{1}\right\},\left\{0_{0}, 1_{1}, 25_{1}\right\},\left\{31_{0}, 32_{1}, 56_{1}\right\},\left\{2_{0}, 4_{1}, 31_{1}\right\},\left\{33_{0}, 35_{1}, 0_{1}\right\} \text {, } \\
& \left\{29_{1}, 29_{2}, 53_{2}\right\},\left\{60_{1}, 60_{2}, 22_{2}\right\},\left\{2_{1}, 7_{2}, 27_{2}\right\},\left\{33_{1}, 38_{2}, 58_{2}\right\},\left\{27_{1}, 28_{2}, 55_{2}\right\} \text {, } \\
& \left\{58_{1}, 59_{2}, 24_{2}\right\},\left\{26_{2}, 26_{0}, 46_{0}\right\},\left\{57_{2}, 57_{0}, 15_{0}\right\},\left\{23_{2}, 24_{0}, 48_{0}\right\},\left\{54_{2}, 55_{0}, 17_{0}\right\} \text {, } \\
& \left\{3_{2}, 5_{0}, 32_{0}\right\},\left\{34_{2}, 36_{0}, 1_{0}\right\} \text {. }
\end{aligned}
$$

Four of them are obtained by developing each of the following triples $\bmod (62,-)$ :
$\left\{0_{0}, 17_{1}, 9_{2}\right\},\left\{0_{0}, 26_{1}, 14_{2}\right\},\left\{0_{0}, 27_{1}, 40_{2}\right\},\left\{0_{0}, 33_{1}, 49_{2}\right\}$.
Thus we complete the proof.
The foregoing results give us our first part of the main theorem:
Theorem 3.7. For $u \equiv v \equiv 0(\bmod 6), v \geqslant 78$, and $u \geqslant 3.5 v$, there exists an $\operatorname{NKTS}(u)$ containing a sub-NKTS(v).

We now consider $\operatorname{INKTS}(u, v), v \in\{48,54,60,66,72\}$ in detail.
For $v=48$, we have to consider $\operatorname{INKTS}(u, 48), u \in\{144,150,156,162,168\}$.
Now $u=144,162$ and 168 are covered by Theorem 1.3 and Lemma 3.6, respectively.

For $u=156$, take a $\{4\}$-GDD of type $9^{4}$, apply Theorem 2.1 and Construction 2.3, using weight 4 with 12 ideal points. This gives an $\operatorname{INKTS}(156,48)$.

For $u=150$, we have the following lemma.
Lemma 3.8. There exists an $\operatorname{INKTS}(150,48)$.
Proof. We present an $\operatorname{INKTS}(150,48)$ as follows:
$\operatorname{INKTS}(150,48)$. Point set: $(Z(34) \times Z(3)) \cup\left\{x_{1}, x_{2}, \ldots, x_{48}\right\}$. Groups: $\left\{0_{0}, 17_{0}\right\}$, $\left\{0_{1}, 17_{1}\right\},\left\{0_{2}, 17_{2}\right\} \bmod (34,-)$. Hole: $\left\{x_{1}, x_{2}, \ldots, x_{48}\right\}$.

Parallel classes of triples: Thirty-four of them are obtained by developing the following triples $\bmod (34,-)$ :

$$
\begin{aligned}
& \left\{23_{0}, 31_{1}, 27_{2}\right\},\left\{24_{0}, 33_{1}, 4_{2}\right\},\left\{0_{0}, 18_{1}, x_{1}\right\},\left\{1_{0}, 20_{1}, x_{2}\right\},\left\{2_{0}, 22_{1}, x_{3}\right\},\left\{3_{0}, 24_{1}, x_{4}\right\} \text {, } \\
& \left\{4_{0}, 26_{1}, x_{5}\right\},\left\{5_{0}, 28_{1}, x_{6}\right\},\left\{6_{0}, 30_{1}, x_{7}\right\},\left\{7_{0}, 32_{1}, x_{8}\right\},\left\{8_{0}, 0_{1}, x_{9}\right\},\left\{9_{0}, 2_{1}, x_{10}\right\} \text {, } \\
& \left\{10_{0}, 4_{1}, x_{11}\right\},\left\{11_{0}, 6_{1}, x_{12}\right\},\left\{12_{0}, 8_{1}, x_{13}\right\},\left\{13_{0}, 10_{1}, x_{14}\right\},\left\{14_{0}, 12_{1}, x_{15}\right\},\left\{15_{0}, 14_{1}, x_{16}\right\} \text {, } \\
& \left\{1_{1}, 10_{2}, x_{17}\right\},\left\{3_{1}, 13_{2}, x_{18}\right\},\left\{5_{1}, 16_{2}, x_{19}\right\},\left\{7_{1}, 20_{2}, x_{20}\right\},\left\{9_{1}, 23_{2}, x_{21}\right\} \text {, } \\
& \left\{11_{1}, 28_{2}, x_{22}\right\},\left\{13_{1}, 29_{2}, x_{23}\right\},\left\{15_{1}, 33_{2}, x_{24}\right\},\left\{16_{1}, 1_{2}, x_{25}\right\},\left\{17_{1}, 3_{2}, x_{26}\right\} \text {, } \\
& \left\{19_{1}, 6_{2}, x_{27}\right\},\left\{21_{1}, 9_{2}, x_{28}\right\},\left\{23_{1}, 12_{2}, x_{29}\right\},\left\{25_{1}, 15_{2}, x_{30}\right\},\left\{27_{1}, 18_{2}, x_{31}\right\} \text {, } \\
& \left\{29_{1}, 21_{2}, x_{32}\right\},\left\{14_{2}, 16_{0}, x_{33}\right\},\left\{30_{2}, 33_{0}, x_{34}\right\},\left\{22_{2}, 26_{0}, x_{35}\right\},\left\{25_{2}, 30_{0}, x_{36}\right\} \text {, } \\
& \left\{26_{2}, 32_{0}, x_{37}\right\},\left\{24_{2}, 31_{0}, x_{38}\right\},\left\{17_{2}, 25_{0}, x_{39}\right\},\left\{19_{2}, 29_{0}, x_{40}\right\},\left\{11_{2}, 22_{0}, x_{41}\right\} \text {, } \\
& \left\{0_{2}, 17_{0}, x_{42}\right\},\left\{5_{2}, 19_{0}, x_{43}\right\},\left\{2_{2}, 18_{0}, x_{44}\right\},\left\{8_{2}, 27_{0}, x_{45}\right\},\left\{7_{2}, 28_{0}, x_{46}\right\},\left\{32_{2}, 20_{0}, x_{47}\right\} \text {, } \\
& \left\{31_{2}, 21_{0}, x_{48}\right\} \text {. }
\end{aligned}
$$

Seventeen of them are obtained by adding $0,2,4, \ldots, 32$ to the following triples $\bmod (34,-)$ :
$\left\{7_{0}, 24_{1}, 32_{2}\right\},\left\{24_{0}, 7_{1}, 15_{2}\right\},\left\{0_{0}, 1_{0}, x_{17}\right\},\left\{17_{0}, 18_{0}, x_{18}\right\},\left\{2_{0}, 5_{0}, x_{19}\right\},\left\{19_{0}, 22_{0}, x_{20}\right\}$, $\left\{3_{0}, 8_{0}, x_{21}\right\},\left\{20_{0}, 25_{0}, x_{22}\right\},\left\{4_{0}, 11_{0}, x_{23}\right\},\left\{21_{0}, 28_{0}, x_{24}\right\},\left\{6_{0}, 15_{0}, x_{25}\right\},\left\{23_{0}, 32_{0}, x_{26}\right\}$, $\left\{16_{0}, 27_{0}, x_{27}\right\},\left\{33_{0}, 10_{0}, x_{28}\right\},\left\{13_{0}, 26_{0}, x_{29}\right\},\left\{30_{0}, 9_{0}, x_{30}\right\},\left\{14_{0}, 29_{0}, x_{31}\right\}$, $\left\{31_{0}, 12_{0}, x_{32}\right\},\left\{0_{1}, 1_{1}, x_{33}\right\},\left\{17_{1}, 18_{1}, x_{34}\right\},\left\{2_{1}, 5_{1}, x_{35}\right\},\left\{19_{1}, 22_{1}, x_{36}\right\},\left\{3_{1}, 8_{1}, x_{37}\right\}$, $\left\{20_{1}, 25_{1}, x_{38}\right\},\left\{4_{1}, 11_{1}, x_{39}\right\},\left\{21_{1}, 28_{1}, x_{40}\right\},\left\{6_{1}, 15_{1}, x_{41}\right\},\left\{23_{1}, 32_{1}, x_{42}\right\}$, $\left\{16_{1}, 27_{1}, x_{43}\right\},\left\{33_{1}, 10_{1}, x_{44}\right\},\left\{13_{1}, 26_{1}, x_{45}\right\},\left\{30_{1}, 9_{1}, x_{46}\right\},\left\{14_{1}, 2_{1}, x_{47}\right\}$, $\left\{31_{1}, 12_{1}, x_{48}\right\},\left\{0_{2}, 1_{2}, x_{1}\right\},\left\{17_{2}, 18_{2}, x_{2}\right\},\left\{2_{2}, 5_{2}, x_{3}\right\},\left\{19_{2}, 22_{2}, x_{4}\right\},\left\{3_{2}, 8_{2}, x_{5}\right\}$, $\left\{20_{2}, 25_{2}, x_{6}\right\},\left\{16_{2}, 23_{2}, x_{7}\right\},\left\{33_{2}, 6_{2}, x_{8}\right\},\left\{12_{2}, 21_{2}, x_{9}\right\},\left\{29_{2}, 4_{2}, x_{10}\right\},\left\{13_{2}, 24_{2}, x_{11}\right\}$, $\left\{30_{2}, 7_{2}, x_{12}\right\},\left\{14_{2}, 27_{2}, x_{13}\right\},\left\{31_{2}, 10_{2}, x_{14}\right\},\left\{11_{2}, 26_{2}, x_{15}\right\},\left\{28_{2}, 9_{2}, x_{16}\right\}$.

Holey parallel classes of triples: Seventeen of them are obtained by adding $0,2,4$, $\ldots, 32$ to the following triples $\bmod (34,-)$ :
$\left\{0_{0}, 2_{0}, 10_{0}\right\},\left\{17_{0}, 19_{0}, 27_{0}\right\},\left\{3_{0}, 11_{0}, 21_{0}\right\},\left\{20_{0}, 28_{0}, 4_{0}\right\},\left\{0_{1}, 2_{1}, 10_{1}\right\},\left\{17_{1}, 19_{1}, 27_{1}\right\}$, $\left\{3_{1}, 11_{1}, 21_{1}\right\},\left\{20_{1}, 28_{1}, 4_{1}\right\},\left\{4_{2}, 6_{2}, 14_{2}\right\},\left\{21_{2}, 23_{2}, 31_{2}\right\},\left\{12_{2}, 20_{2}, 30_{2}\right\},\left\{29_{2}, 3_{2}, 13_{2}\right\}$, $\left\{9_{0}, 14_{1}, 17_{2}\right\},\left\{26_{0}, 31_{1}, 0_{2}\right\},\left\{7_{0}, 13_{1}, 10_{2}\right\},\left\{24_{0}, 30_{1}, 27_{2}\right\},\left\{15_{0}, 22_{1}, 26_{2}\right\},\left\{32_{0}, 5_{1}, 9_{2}\right\}$, $\left\{16_{0}, 26_{1}, 32_{2}\right\},\left\{33_{0}, 9_{1}, 15_{2}\right\},\left\{12_{0}, 25_{1}, 19_{2}\right\},\left\{29_{0}, 8_{1}, 2_{2}\right\},\left\{6_{0}, 6_{1}, 18_{1}\right\},\left\{23_{0}, 23_{1}, 1_{1}\right\}$, $\left\{14_{0}, 15_{1}, 29_{1}\right\},\left\{31_{0}, 32_{1}, 12_{1}\right\},\left\{16_{1}, 16_{2}, 28_{2}\right\},\left\{33_{1}, 33_{2}, 11_{2}\right\},\left\{7_{1}, 8_{2}, 22_{2}\right\},\left\{24_{1}, 25_{2}\right.$, $\left.5_{2}\right\},\left\{1_{2}, 1_{0}, 13_{0}\right\},\left\{18_{2}, 18_{0}, 30_{0}\right\},\left\{7_{2}, 8_{0}, 22_{0}\right\},\left\{24_{2}, 25_{0}, 5_{0}\right\}$.

Six of them are obtained by developing each of the following triples $\bmod (34,-)$ :
$\left\{0_{0}, 2_{1}, 1_{2}\right\},\left\{0_{0}, 3_{1}, 5_{2}\right\},\left\{0_{0}, 4_{1}, 2_{2}\right\},\left\{0_{0}, 11_{1}, 6_{2}\right\},\left\{0_{0}, 14_{1}, 21_{2}\right\},\left\{0_{0}, 16_{1}, 9_{2}\right\}$.
We thus obtain:

Theorem 3.9. For all $v \equiv 0(\bmod 6)$ with $v \geqslant 144$, there exists an $\operatorname{NKTS}(v)$ containing a sub-NKTS(48).

For $v=54$, we have to consider $\operatorname{INKTS}(u, 54), u \in\{162,168,174,180,186,192\}$.
Now $u=162$ is covered by Theorem 1.3.
For $u \in\{174,186,192\}$ apply Theorem 2.1 and Construction 2.3, using weight 2 with 6 ideal points, to $\{4\}$-GDDs of types $12^{5} 24^{1}$ (see [5]), $6^{8} 18^{1} 24^{1}$ or $6^{8} 21^{1} 24^{1}$ (see the appendix), respectively. For $u=180$ proceed similarly, starting with a $\operatorname{TD}(4,7)$ and using weight 6 with 12 ideal points.

For $u=168$ we have the following lemma.

Lemma 3.10. There exists an $\operatorname{INKTS}(168,54)$.
Proof. We present an $\operatorname{INKTS}(168,54)$ as follows:
$\operatorname{INKTS}(168,54)$. Point set: $(Z(38) \times Z(3)) \cup\left\{x_{1}, x_{2}, \ldots, x_{54}\right\}$. Groups: $\left\{0_{0}, 19_{0}\right\},\left\{0_{1}\right.$, $\left.19_{1}\right\},\left\{0_{2}, 19_{2}\right\} \bmod (38,-)$. Hole: $\left\{x_{1}, x_{2}, \ldots, x_{54}\right\}$.

Parallel classes of triples: Thirty-eight of them are obtained by developing the following triples $\bmod (38,-)$ :

$$
\begin{aligned}
& \left\{0_{0}, 0_{1}, 0_{2}\right\},\left\{22_{0}, 34_{1}, 4_{2}\right\},\left\{1_{0}, 21_{1}, x_{1}\right\},\left\{2_{0}, 23_{1}, x_{2}\right\},\left\{3_{0}, 25_{1}, x_{3}\right\},\left\{4_{0}, 27_{1}, x_{4}\right\}, \\
& \left\{5_{0}, 29_{1}, x_{5}\right\},\left\{6_{0}, 31_{1}, x_{6}\right\},\left\{7_{0}, 33_{1}, x_{7}\right\},\left\{8_{0}, 35_{1}, x_{8}\right\},\left\{9_{0}, 37_{1}, x_{9}\right\},\left\{10_{0}, 1_{1}, x_{10}\right\}, \\
& \left\{11_{0}, 3_{1}, x_{11}\right\},\left\{12_{0}, 5_{1}, x_{12}\right\},\left\{13_{0}, 7_{1}, x_{13}\right\},\left\{14_{0}, 9_{1}, x_{14}\right\},\left\{15_{0}, 11_{1}, x_{15}\right\}, \\
& \left\{16_{0}, 13_{1}, x_{16}\right\},\left\{17_{0}, 15_{1}, x_{17}\right\},\left\{18_{0}, 11_{1}, x_{18}\right\},\left\{2_{1}, 15_{2}, x_{19}\right\},\left\{4_{1}, 18_{2}, x_{20}\right\},\left\{6_{1}, 21_{2}, x_{1}\right\},
\end{aligned}
$$

Nineteen of them are obtained by adding $0,2,4, \ldots, 36$ to the following triples $\bmod (38,-)$ :
$\left\{17_{0}, 36_{1}, 10_{2}\right\},\left\{36_{0}, 17_{1}, 29_{2}\right\},\left\{0_{0}, 1_{0}, x_{19}\right\},\left\{19_{0}, 20_{0}, x_{20}\right\},\left\{2_{0}, 5_{0}, x_{21}\right\},\left\{21_{0}, 24_{0}, x_{22}\right\}$, $\left\{3_{0}, 8_{0}, x_{23}\right\},\left\{22_{0}, 27_{0}, x_{24}\right\},\left\{4_{0}, 11_{0}, x_{25}\right\},\left\{23_{0}, 30_{0}, x_{26}\right\},\left\{6_{0}, 15_{0}, x_{27}\right\},\left\{25_{0}, 34_{0}, x_{28}\right\}$, $\left\{7_{0}, 18_{0}, x_{29}\right\},\left\{26_{0}, 37_{0}, x_{30}\right\},\left\{16_{0}, 29_{0}, x_{31}\right\},\left\{35_{0}, 10_{0}, x_{32}\right\},\left\{13_{0}, 28_{0}, x_{33}\right\}$, $\left\{32_{0}, 9_{0}, x_{34}\right\},\left\{14_{0}, 31_{0}, x_{35}\right\},\left\{33_{0}, 12_{0}, x_{36}\right\},\left\{0_{1}, 1_{1}, x_{37}\right\},\left\{19_{1}, 20_{1}, x_{38}\right\}$, $\left\{2_{1}, 5_{1}, x_{39}\right\},\left\{21_{1}, 24_{1}, x_{40}\right\},\left\{3_{1}, 8_{1}, x_{41}\right\},\left\{22_{1}, 27_{1}, x_{42}\right\},\left\{4_{1}, 11_{1}, x_{43}\right\}$,

```
{231, 301, x44}, {\mp@subsup{6}{1}{},1\mp@subsup{5}{1}{},\mp@subsup{x}{45}{}},{2\mp@subsup{5}{1}{},3\mp@subsup{4}{1}{},\mp@subsup{x}{46}{}},{\mp@subsup{7}{1}{},1\mp@subsup{8}{1}{},\mp@subsup{x}{47}{}},{2\mp@subsup{6}{1}{},3\mp@subsup{7}{1}{},\mp@subsup{x}{48}{}},
```



```
{3\mp@subsup{3}{1}{},1\mp@subsup{2}{1}{},\mp@subsup{x}{54}{}},{0\mp@subsup{0}{2}{},\mp@subsup{1}{2}{},\mp@subsup{x}{1}{}},{1\mp@subsup{9}{2}{},2\mp@subsup{0}{2}{},\mp@subsup{x}{2}{}},{2\mp@subsup{2}{2}{},\mp@subsup{5}{2}{},\mp@subsup{x}{3}{}},{2\mp@subsup{1}{2}{},2\mp@subsup{4}{2}{},\mp@subsup{x}{4}{}},{\mp@subsup{3}{2}{},\mp@subsup{8}{2}{},\mp@subsup{x}{5}{}},
{2\mp@subsup{2}{2}{},2\mp@subsup{7}{2}{},\mp@subsup{x}{6}{}},{42,1\mp@subsup{1}{2}{},\mp@subsup{x}{7}{}},{2\mp@subsup{3}{2}{},3\mp@subsup{0}{2}{},\mp@subsup{x}{8}{}},{7\mp@subsup{7}{2}{},1\mp@subsup{6}{2}{},\mp@subsup{x}{9}{}},{2\mp@subsup{6}{2}{},3\mp@subsup{5}{2}{},\mp@subsup{x}{10}{}},{1\mp@subsup{4}{2}{},2\mp@subsup{5}{2}{},\mp@subsup{x}{11}{}},
{332,\mp@subsup{6}{2}{},\mp@subsup{x}{12}{}},{182,3\mp@subsup{1}{2}{},\mp@subsup{x}{13}{}},{3\mp@subsup{7}{2}{},1\mp@subsup{2}{2}{},\mp@subsup{x}{14}{}},{1\mp@subsup{3}{2}{},2\mp@subsup{8}{2}{},\mp@subsup{x}{15}{}},{3\mp@subsup{2}{2}{},\mp@subsup{9}{2}{},\mp@subsup{x}{16}{}},
```



Holey parallel classes of triples: Nineteen of them are obtained by adding $0,2,4, \ldots$, 36 to the following triples $\bmod (38,-)$ :
$\left\{0_{0}, 6_{0}, 24_{0}\right\},\left\{19_{0}, 25_{0}, 5_{0}\right\},\left\{4_{0}, 8_{0}, 20_{0}\right\},\left\{23_{0}, 27_{0}, 1_{0}\right\},\left\{7_{0}, 9_{0}, 17_{0}\right\},\left\{26_{0}, 28_{0}, 36_{0}\right\}$, $\left\{0_{1}, 6_{1}, 24_{1}\right\},\left\{19_{1}, 25_{1}, 5_{1}\right\},\left\{4_{1}, 8_{1}, 20_{1}\right\},\left\{23_{1}, 27_{1}, 1_{1}\right\},\left\{7_{1}, 9_{1}, 17_{1}\right\},\left\{26_{1}, 28_{1}, 36_{1}\right\}$, $\left\{4_{2}, 10_{2}, 28_{2}\right\},\left\{23_{2}, 29_{2}, 9_{2}\right\},\left\{8_{2}, 12_{2}, 24_{2}\right\},\left\{27_{2}, 31_{2}, 55_{2}\right\},\left\{1_{2}, 3_{2}, 11_{2}\right\},\left\{20_{2}, 22_{2}, 30_{2}\right\}$, $\left\{11_{0}, 12_{1}, 13_{2}\right\},\left\{30_{0}, 31_{1}, 32_{2}\right\},\left\{13_{0}, 15_{1}, 14_{2}\right\},\left\{32_{0}, 34_{1}, 33_{2}\right\},\left\{10_{0}, 13_{1}, 15_{2}\right\}$, $\left\{29_{0}, 32_{1}, 34_{2}\right\},\left\{14_{0}, 18_{1}, 21_{2}\right\},\left\{33_{0}, 37_{1}, 2_{2}\right\},\left\{16_{0}, 21_{1}, 19_{2}\right\},\left\{35_{0}, 2_{1}, 0_{2}\right\}$, $\left\{3_{0}, 11_{1}, 16_{2}\right\},\left\{22_{0}, 30_{1}, 35_{2}\right\},\left\{12_{0}, 22_{1}, 18_{2}\right\},\left\{31_{0}, 33_{1}, 37_{2}\right\},\left\{18_{0}, 29_{1}, 36_{2}\right\}$, $\left\{37_{0}, 10_{1}, 17_{2}\right\},\left\{2_{0}, 16_{1}, 25_{2}\right\},\left\{21_{0}, 35_{1}, 6_{2}\right\},\left\{15_{0}, 33_{1}, 26_{2}\right\}$, $\left\{34_{0}, 14_{1}, 7_{2}\right\}$.

Seven of them are obtained by developing each of the following triples $\bmod (38,-)$ :
$\left\{0_{0}, 6_{1}, 10_{2}\right\},\left\{0_{0}, 7_{1}, 4_{2}\right\},\left\{0_{0}, 9_{1}, 15_{2}\right\},\left\{0_{0}, 13_{1}, 8_{2}\right\},\left\{0_{0}, 15_{1}, 9_{2}\right\},\left\{0_{0}, 16_{1}, 26_{2}\right\}$, $\left\{0_{0}, 17_{1}, 28_{2}\right\}$.

We thus obtain:
Theorem 3.11. For all $v \equiv 0(\bmod 6)$ with $v \geqslant 162$, there exists an $\operatorname{NKTS}(v)$ containing $a$ sub-NKTS(54).

For $v=60$, we have to consider $\operatorname{INKTS}(u, 60), u \in\{180,186,192,198,204\}$ (see Lemma 3.5).

Now $u=180$ is covered by Theorem 1.3.
For $u=186$, take a $\mathrm{TD}(4,21)$ and apply Theorem 2.1 and Construction 2.3, using weight 2 with $a=18$ ideal points. For $u=192$ proceed similarly, starting with a $\{4\}-G D D$ of type $6^{9} 12^{1} 27^{1}$ (see the appendix), using weight 2 with 6 ideal points, while for $u=204$ take a \{4\}-GDD of type $6^{4} 9^{1}$ (see [4]) and use weight 6 with 6 ideal points.

For $u=198$ we have the following lemma.
Lemma 3.12. There exists an $\operatorname{INKTS}(198,60)$.
Proof. We present an $\operatorname{INKTS}(198,60)$ as follows:
$\operatorname{INKTS}(198,60)$. Point set: $(Z(46) \times Z(3)) \cup\left\{x_{1}, x_{2}, \ldots, x_{60}\right\}$. Groups: $\left\{0_{0}, 23_{0}\right\}$, $\left\{0_{1}, 23_{1}\right\},\left\{0_{2}, 23_{2}\right\} \bmod (46,-)$. Hole: $\left\{x_{1}, x_{2}, \ldots, x_{60}\right\}$.

Parallel classes of triples: Forty-six of them are obtained by developing the following triples $\bmod (46,-)$ :

$$
\begin{aligned}
& \left\{39_{0}, 42_{1}, 40_{2}\right\},\left\{31_{0}, 36_{1}, 33_{2}\right\},\left\{28_{0}, 34_{1}, 35_{2}\right\},\left\{32_{0}, 40_{1}, 36_{2}\right\},\left\{34_{0}, 44_{1}, 39_{2}\right\} \text {, } \\
& \left\{20_{0}, 38_{1}, 0_{2}\right\},\left\{45_{0}, 25_{1}, x_{1}\right\},\left\{0_{0}, 27_{1}, x_{2}\right\},\left\{44_{0}, 26_{1}, x_{3}\right\},\left\{1_{0}, 30_{1}, x_{4}\right\},\left\{40_{0}, 24_{1}, x_{5}\right\} \text {, } \\
& \left\{2_{0}, 33_{1}, x_{6}\right\},\left\{3_{0}, 35_{1}, x_{7}\right\},\left\{4_{0}, 37_{1}, x_{8}\right\},\left\{5_{0}, 39_{1}, x_{9}\right\},\left\{6_{0}, 41_{1}, x_{10}\right\},\left\{7_{0}, 43_{1}, x_{11}\right\} \text {, } \\
& \left\{8_{0}, 45_{1}, x_{12}\right\},\left\{9_{0}, 1_{1}, x_{13}\right\},\left\{10_{0}, 3_{1}, x_{14}\right\},\left\{11_{0}, 5_{1}, x_{15}\right\},\left\{12_{0}, 7_{1}, x_{16}\right\} \text {, } \\
& \left\{13_{0}, 9_{1}, x_{17}\right\},\left\{14_{0}, 11_{1}, x_{18}\right\},\left\{15_{0}, 13_{1}, x_{19}\right\},\left\{16_{0}, 15_{1}, x_{20}\right\},\left\{0_{1}, 12_{2}, x_{21}\right\} \text {, } \\
& \left\{2_{1}, 15_{2}, x_{22}\right\},\left\{4_{1}, 18_{2}, x_{23}\right\},\left\{6_{1}, 21_{2}, x_{24}\right\},\left\{8_{1}, 24_{2}, x_{25}\right\},\left\{10_{1}, 27_{2}, x_{26}\right\} \text {, } \\
& \left\{12_{1}, 30_{2}, x_{27}\right\},\left\{14_{1}, 34_{2}, x_{28}\right\},\left\{16_{1}, 37_{2}, x_{29}\right\},\left\{17_{1}, 41_{2}, x_{30}\right\},\left\{18_{1}, 43_{2}, x_{31}\right\} \text {, } \\
& \left\{19_{1}, 45_{2}, x_{32}\right\},\left\{20_{1}, 1_{2}, x_{33}\right\},\left\{21_{1}, 3_{2}, x_{34}\right\},\left\{22_{1}, 5_{2}, x_{35}\right\},\left\{23_{1}, 7_{2}, x_{36}\right\} \text {, } \\
& \left\{28_{1}, 13_{2}, x_{37}\right\},\left\{31_{1}, 17_{2}, x_{38}\right\},\left\{29_{1}, 16_{2}, x_{39}\right\},\left\{32_{1}, 22_{2}, x_{40}\right\},\left\{14_{2}, 17_{0}, x_{41}\right\} \text {, } \\
& \left\{19_{2}, 23_{0}, x_{42}\right\},\left\{20_{2}, 25_{0}, x_{43}\right\},\left\{23_{2}, 29_{0}, x_{44}\right\},\left\{11_{2}, 18_{0}, x_{45}\right\},\left\{25_{2}, 33_{0}, x_{46}\right\} \text {, } \\
& \left\{28_{2}, 37_{0}, x_{47}\right\},\left\{31_{2}, 41_{0}, x_{48}\right\},\left\{32_{2}, 43_{0}, x_{49}\right\},\left\{26_{2}, 38_{0}, x_{50}\right\},\left\{29_{2}, 42_{0}, x_{51}\right\} \text {, } \\
& \left\{4_{2}, 19_{0}, x_{52}\right\},\left\{6_{2}, 24_{0}, x_{53}\right\},\left\{2_{2}, 21_{0}, x_{54}\right\},\left\{8_{2}, 30_{0}, x_{55}\right\},\left\{10_{2}, 35_{0}, x_{56}\right\} \text {, } \\
& \left\{9_{2}, 36_{0}, x_{57}\right\},\left\{44_{2}, 26_{0}, x_{58}\right\},\left\{38_{2}, 22_{0}, x_{59}\right\},\left\{42_{2}, 27_{0}, x_{60}\right\} \text {. }
\end{aligned}
$$

Twenty-three of them are obtained by adding $0,2,4, \ldots, 44$ to the following triples $\bmod (46,-)$ :
$\left\{21_{0}, 42_{1}, 7_{2}\right\},\left\{44_{0}, 19_{1}, 30_{2}\right\},\left\{14_{0}, 37_{1}, 26_{2}\right\},\left\{37_{0}, 14_{1}, 3_{2}\right\},\left\{19_{0}, 44_{1}, 32_{2}\right\}$, $\left\{42_{0}, 21_{1}, 9_{2}\right\},\left\{0_{0}, 1_{0}, x_{21}\right\},\left\{23_{0}, 24_{0}, x_{22}\right\},\left\{2_{0}, 5_{0}, x_{23}\right\},\left\{25_{0}, 28_{0}, x_{24}\right\},\left\{3_{0}, 8_{0}, x_{25}\right\}$, $\left\{26_{0}, 31_{0}, x_{26}\right\},\left\{4_{0}, 11_{0}, x_{27}\right\},\left\{27_{0}, 34_{0}, x_{28}\right\},\left\{6_{0}, 15_{0}, x_{29}\right\},\left\{29_{0}, 38_{0}, x_{30}\right\},\left\{7_{0}, 18_{0}, x_{31}\right\}$, $\left\{30_{0}, 41_{0}, x_{32}\right\},\left\{9_{0}, 22_{0}, x_{33}\right\},\left\{32_{0}, 45_{0}, x_{34}\right\},\left\{20_{0}, 35_{0}, x_{35}\right\},\left\{43_{0}, 12_{0}, x_{36}\right\},\left\{16_{0}, 33_{0}, x_{37}\right\}$, $\left\{39_{0}, 10_{0}, x_{38}\right\},\left\{17_{0}, 36_{0}, x_{39}\right\},\left\{40_{0}, 13_{0}, x_{40}\right\},\left\{0_{1}, 1_{1}, x_{41}\right\},\left\{23_{1}, 24_{1}, x_{42}\right\}$, $\left\{2_{1}, 5_{1}, x_{43}\right\},\left\{25_{1}, 28_{1}, x_{44}\right\},\left\{3_{1}, 8_{1}, x_{45}\right\},\left\{26_{1}, 31_{1}, x_{46}\right\},\left\{4_{1}, 11_{1}, x_{17}\right\}$, $\left\{27_{1}, 34_{1}, x_{48}\right\},\left\{6_{1}, 15_{1}, x_{49}\right\},\left\{29_{1}, 38_{1}, x_{50}\right\},\left\{7_{1}, 18_{1}, x_{51}\right\},\left\{30_{1}, 41_{1}, x_{52}\right\}$, $\left\{9_{1}, 22_{1}, x_{53}\right\},\left\{32_{1}, 45_{1}, x_{54}\right\},\left\{20_{1}, 35_{1}, x_{55}\right\},\left\{43_{1}, 12_{1}, x_{56}\right\},\left\{16_{1}, 33_{1}, x_{57}\right\}$, $\left\{39_{1}, 10_{1}, x_{58}\right\},\left\{17_{1}, 36_{1}, x_{59}\right\},\left\{40_{1}, 13_{1}, x_{60}\right\},\left\{0_{2}, 1_{2}, x_{1}\right\},\left\{23_{2}, 24_{2}, x_{2}\right\}$, $\left\{2_{2}, 5_{2}, x_{3}\right\},\left\{25_{2}, 28_{2}, x_{4}\right\},\left\{6_{2}, 11_{2}, x_{5}\right\},\left\{29_{2}, 34_{2}, x_{6}\right\},\left\{10_{2}, 17_{2}, x_{7}\right\}$,
$\left\{33_{2}, 40_{2}, x_{8}\right\},\left\{12_{2}, 21_{2}, x_{9}\right\},\left\{35_{2}, 44_{2}, x_{10}\right\},\left\{4_{2}, 15_{2}, x_{11}\right\},\left\{27_{2}, 38_{2}, x_{12}\right\}$, $\left\{18_{2}, 31_{2}, x_{13}\right\},\left\{41_{2}, 8_{2}, x_{14}\right\},\left\{22_{2}, 37_{2}, x_{15}\right\},\left\{45_{2}, 14_{2}, x_{16}\right\}$,
$\left\{19_{2}, 36_{2}, x_{17}\right\},\left\{42_{2}, 13_{2}, x_{18}\right\},\left\{20_{2}, 39_{2}, x_{19}\right\},\left\{43_{2}, 16_{2}, x_{20}\right\}$.
Holey parallel classes of triples: Twenty-three of them are obtained by adding $0,2,4, \ldots, 44$ to the following triples $\bmod (46,-)$ :
$\left\{0_{0}, 4_{0}, 6_{0}\right\},\left\{23_{0}, 27_{0}, 29_{0}\right\},\left\{1_{0}, 11_{0}, 19_{0}\right\},\left\{24_{0}, 34_{0}, 42_{0}\right\},\left\{21_{0}, 41_{0}, 7_{0}\right\},\left\{44_{0}, 18_{0}, 30_{0}\right\}$, $\left\{0_{1}, 2_{1}, 6_{1}\right\},\left\{23_{1}, 25_{1}, 29_{1}\right\},\left\{1_{1}, 11_{1}, 19_{1}\right\},\left\{24_{1}, 34_{1}, 42_{1}\right\},\left\{8_{1}, 20_{1}, 40_{1}\right\}$, $\left\{31_{1}, 43_{1}, 17_{1}\right\},\left\{0_{2}, 4_{2}, 6_{2}\right\},\left\{23_{2}, 27_{2}, 29_{2}\right\},\left\{1_{2}, 9_{2}, 19_{2}\right\},\left\{24_{2}, 32_{2}, 42_{2}\right\}$, $\left\{3_{2}, 15_{2}, 35_{2}\right\},\left\{26_{2}, 38_{2}, 12_{2}\right\},\left\{17_{0}, 21_{1}, 20_{2}\right\},\left\{40_{0}, 44_{1}, 43_{2}\right\},\left\{5_{0}, 12_{1}, 16_{2}\right\}$, $\left\{28_{0}, 35_{1}, 39_{2}\right\},\left\{20_{0}, 33_{1}, 40_{2}\right\},\left\{43_{0}, 10_{1}, 17_{2}\right\},\left\{3_{0}, 18_{1}, 11_{2}\right\},\left\{26_{0}, 41_{1}, 34_{2}\right\}$, $\left\{13_{0}, 30_{1}, 22_{2}\right\},\left\{36_{0}, 7_{1}, 45_{2}\right\},\left\{16_{0}, 16_{1}, 32_{1}\right\},\left\{39_{0}, 39_{1}, 9_{1}\right\},\left\{14_{0}, 15_{1}, 36_{1}\right\}$, $\left\{37_{0}, 38_{1}, 13_{1}\right\},\left\{2_{0}, 4_{1}, 26_{1}\right\},\left\{25_{0}, 27_{1}, 3_{1}\right\},\left\{22_{1}, 25_{2}, 41_{2}\right\},\left\{45_{1}, 2_{2}, 18_{2}\right\}$, $\left\{14_{1}, 14_{2}, 36_{2}\right\},\left\{37_{1}, 37_{2}, 13_{2}\right\},\left\{5_{1}, 7_{2}, 28_{2}\right\},\left\{28_{1}, 30_{2}, 5_{2}\right\},\left\{21_{2}, 22_{0}, 38_{0}\right\}$, $\left\{44_{2}, 45_{0}, 15_{0}\right\},\left\{10_{2}, 12_{0}, 31_{0}\right\},\left\{33_{2}, 35_{0}, 8_{0}\right\},\left\{8_{2}, 10_{0}, 32_{0}\right\},\left\{31_{2}, 33_{0}, 9_{0}\right\}$.

Six of them are obtained by developing each of the following triples $\bmod (46,-)$ :
$\left\{0_{0}, 9_{1}, 14_{2}\right\},\left\{0_{0}, 11_{1}, 17_{2}\right\},\left\{0_{0}, 12_{1}, 6_{2}\right\},\left\{0_{0}, 14_{1}, 23_{2}\right\},\left\{0_{0}, 19_{1}, 10_{2}\right\}$, $\left\{0_{0}, 20_{1}, 30_{2}\right\}$.

We thus obtain:
Theorem 3.13. For all $v \equiv 0(\bmod 6)$ with $v \geqslant 180$, there exists an $\operatorname{NKTS}(v)$ containing $a$ sub-NKTS(60).

For $v=66$, we have to consider $\operatorname{INKTS}(u, 66), u \in\{198,204,210\}$ (see Lemma 3.2).

Now $u=198$ is covered by Theorem 1.3.
For $u=210$, take a $\{4\}$-GDD of type $6^{4} 9^{1}$; apply Theorem 2.1 and Construction 2.3 , using weight 6 with 12 ideal points. This gives an $\operatorname{INKTS}(210,66)$.

For $u=204$, we have the following lemma.
Lemma 3.14. There exists an $\operatorname{INKTS}(204,66)$.
Proof. We present an $\operatorname{INKTS}(204,66)$ as follows:
INKTS $(204,66)$. Point set: $(Z(46) \times Z(3)) \cup\left\{x_{1}, x_{2}, \ldots, x_{66}\right\}$. Groups: $\left\{0_{0}, 23_{0}\right\}$, $\left\{0_{1}, 23_{1}\right\},\left\{0_{2}, 23_{2}\right\} \bmod (46,-)$. Hole: $\left\{x_{1}, x_{2}, \ldots, x_{66}\right\}$.
Parallel classes of triples: Forty-six of them are obtained by developing the following triples $\bmod (46,-)$ :

$$
\begin{aligned}
& \left\{38_{0}, 42_{1}, 40_{2}\right\},\left\{32_{0}, 44_{1}, 4_{2}\right\},\left\{45_{0}, 23_{1}, x_{1}\right\},\left\{0_{0}, 25_{1}, x_{2}\right\},\left\{44_{0}, 24_{1}, x_{3}\right\},\left\{1_{0}, 28_{1}, x_{4}\right\} \text {, } \\
& \left\{40_{0}, 22_{1}, x_{5}\right\},\left\{2_{0}, 31_{1}, x_{6}\right\},\left\{3_{0}, 33_{1}, x_{7}\right\},\left\{4_{0}, 35_{1}, x_{8}\right\},\left\{5_{0}, 37_{1}, x_{9}\right\},\left\{6_{0}, 39_{1}, x_{10}\right\} \text {, } \\
& \left\{7_{0}, 41_{1}, x_{11}\right\},\left\{8_{0}, 43_{1}, x_{12}\right\},\left\{9_{0}, 45_{1}, x_{13}\right\},\left\{10_{0}, 1_{1}, x_{14}\right\},\left\{11_{0}, 3_{1}, x_{15}\right\} \text {, } \\
& \left\{12_{0}, 5_{1}, x_{16}\right\},\left\{13_{0}, 7_{1}, x_{17}\right\},\left\{14_{0}, 9_{1}, x_{18}\right\},\left\{15_{0}, 11_{1}, x_{19}\right\},\left\{16_{0}, 13_{1}, x_{20}\right\} \text {, } \\
& \left\{17_{0}, 15_{1}, x_{21}\right\},\left\{18_{0}, 17_{1}, x_{22}\right\},\left\{0_{1}, 13_{2}, x_{23}\right\},\left\{2_{1}, 16_{2}, x_{24}\right\},\left\{4_{1}, 19_{2}, x_{25}\right\} \text {, } \\
& \left\{6_{1}, 22_{2}, x_{26}\right\},\left\{8_{1}, 25_{2}, x_{27}\right\},\left\{10_{1}, 28_{2}, x_{28}\right\},\left\{12_{1}, 31_{2}, x_{29}\right\},\left\{14_{1}, 34_{2}, x_{30}\right\} \text {, } \\
& \left\{16_{1}, 37_{2}, x_{31}\right\},\left\{18_{1}, 42_{2}, x_{32}\right\},\left\{19_{1}, 44_{2}, x_{33}\right\},\left\{20_{1}, 0_{2}, x_{34}\right\},\left\{21_{1}, 2_{2}, x_{35}\right\} \text {, } \\
& \left\{26_{1}, 8_{2}, x_{36}\right\},\left\{27_{1}, 10_{2}, x_{37}\right\},\left\{30_{1}, 14_{2}, x_{38}\right\},\left\{32_{1}, 17_{2}, x_{39}\right\},\left\{29_{1}, 15_{2}, x_{40}\right\} \text {, } \\
& \left\{34_{1}, 21_{2}, x_{41}\right\},\left\{36_{1}, 24_{2}, x_{42}\right\},\left\{38_{1}, 27_{2}, x_{43}\right\},\left\{40_{1}, 30_{2}, x_{44}\right\},\left\{18_{2}, 20_{0}, x_{45}\right\} \text {, } \\
& \left\{32_{2}, 35_{0}, x_{46}\right\},\left\{35_{2}, 39_{0}, x_{47}\right\},\left\{38_{2}, 43_{0}, x_{48}\right\},\left\{36_{2}, 42_{0}, x_{49}\right\},\left\{29_{2}, 36_{0}, x_{50}\right\} \text {, } \\
& \left\{33_{2}, 41_{0}, x_{51}\right\},\left\{12_{2}, 21_{0}, x_{52}\right\},\left\{23_{2}, 33_{0}, x_{53}\right\},\left\{26_{2}, 37_{0}, x_{54}\right\},\left\{7_{2}, 19_{0}, x_{55}\right\} \text {, } \\
& \left\{20_{2}, 34_{0}, x_{56}\right\},\left\{5_{2}, 23_{0}, x_{57}\right\},\left\{9_{2}, 28_{0}, x_{58}\right\},\left\{11_{2}, 31_{0}, x_{59}\right\},\left\{1_{2}, 22_{0}, x_{60}\right\} \text {, } \\
& \left\{6_{2}, 30_{0}, x_{61}\right\},\left\{3_{2}, 29_{0}, x_{62}\right\},\left\{45_{2}, 26_{0}, x_{63}\right\},\left\{41_{2}, 24_{0}, x_{64}\right\},\left\{43_{2}, 27_{0}, x_{65}\right\} \text {, } \\
& \left\{39_{2}, 25_{0}, x_{66}\right\} \text {. }
\end{aligned}
$$

Twenty-three of them are obtained by adding $0,2,4, \ldots, 44$ to the following triples $\bmod (46,-)$ :
$\left\{14_{0}, 33_{1}, 43_{2}\right\},\left\{37_{0}, 10_{1}, 20_{2}\right\},\left\{0_{0}, 1_{0}, x_{23}\right\},\left\{23_{0}, 24_{0}, x_{24}\right\},\left\{22_{0}, 5_{0}, x_{25}\right\},\left\{25_{0}, 28_{0}, x_{26}\right\}$, $\left\{3_{0}, 8_{0}, x_{27}\right\},\left\{26_{0}, 31_{0}, x_{28}\right\},\left\{4_{0}, 11_{0}, x_{29}\right\},\left\{27_{0}, 34_{0}, x_{30}\right\},\left\{6_{0}, 15_{0}, x_{31}\right\},\left\{29_{0}, 38_{0}, x_{32}\right\}$, $\left\{7_{0}, 18_{0}, x_{33}\right\},\left\{30_{0}, 41_{0}, x_{34}\right\},\left\{9_{0}, 22_{0}, x_{35}\right\},\left\{32_{0}, 45_{0}, x_{36}\right\},\left\{20_{0}, 35_{0}, x_{37}\right\},\left\{43_{0}, 12_{0}, x_{38}\right\}$,
$\left\{16_{0}, 33_{0}, x_{39}\right\},\left\{39_{0}, 10_{0}, x_{40}\right\},\left\{17_{0}, 36_{0}, x_{41}\right\},\left\{40_{0}, 13_{0}, x_{42}\right\},\left\{21_{0}, 42_{0}, x_{43}\right\}$, $\left\{44_{0}, 19_{0}, x_{44}\right\},\left\{0_{1}, 1_{1}, x_{45}\right\},\left\{23_{1}, 24_{1}, x_{46}\right\},\left\{2_{1}, 5_{1}, x_{47}\right\},\left\{25_{1}, 28_{1}, x_{48}\right\}$, $\left\{3_{1}, 8_{1}, x_{49}\right\},\left\{26_{1}, 31_{1}, x_{50}\right\},\left\{4_{1}, 11_{1}, x_{51}\right\},\left\{27_{1}, 34_{1}, x_{52}\right\},\left\{6_{1}, 15_{1}, x_{53}\right\}$, $\left\{29_{1}, 38_{1}, x_{54}\right\},\left\{7_{1}, 18_{1}, x_{55}\right\},\left\{30_{1}, 41_{1}, x_{56}\right\},\left\{9_{1}, 22_{1}, x_{57}\right\},\left\{32_{1}, 45_{1}, x_{58}\right\}$, $\left\{20_{1}, 35_{1}, x_{59}\right\},\left\{43_{1}, 12_{1}, x_{60}\right\},\left\{19_{1}, 36_{1}, x_{61}\right\},\left\{42_{1}, 13_{1}, x_{62}\right\},\left\{21_{1}, 40_{1}, x_{63}\right\}$, $\left\{44_{1}, 17_{1}, x_{64}\right\},\left\{16_{1}, 37_{1}, x_{65}\right\},\left\{39_{1}, 14_{1}, x_{66}\right\},\left\{0_{2}, 1_{2}, x_{1}\right\},\left\{23_{2}, 24_{2}, x_{2}\right\}$, $\left\{2_{2}, 5_{2}, x_{3}\right\},\left\{25_{2}, 28_{2}, x_{4}\right\},\left\{3_{2}, 8_{2}, x_{5}\right\},\left\{26_{2}, 31_{2}, x_{6}\right\},\left\{4_{2}, 11_{2}, x_{7}\right\},\left\{27_{2}, 34_{2}, x_{8}\right\}$, $\left\{6_{2}, 15_{2}, x_{9}\right\},\left\{29_{2}, 38_{2}, x_{10}\right\},\left\{10_{2}, 21_{2}, x_{11}\right\},\left\{33_{2}, 44_{2}, x_{12}\right\},\left\{19_{2}, 32_{2}, x_{13}\right\}$, $\left\{42_{2}, 9_{2}, x_{14}\right\},\left\{7_{2}, 22_{2}, x_{15}\right\},\left\{30_{2}, 45_{2}, x_{16}\right\},\left\{18_{2}, 35_{2}, x_{17}\right\},\left\{41_{2}, 12_{2}, x_{18}\right\}$, $\left\{17_{2}, 36_{2}, x_{19}\right\},\left\{40_{2}, 13_{2}, x_{20}\right\},\left\{16_{2}, 37_{2}, x_{21}\right\},\left\{39_{2}, 14_{2}, x_{22}\right\}$.

Holey parallel classes of triples: Twenty-three of them are obtained by adding $0,2,4, \ldots, 44$ to the following triples $\bmod (46,-)$ :

$$
\begin{aligned}
& \left\{4_{0}, 8_{0}, 10_{0}\right\},\left\{27_{0}, 31_{0}, 33_{0}\right\},\left\{3_{0}, 13_{0}, 21_{0}\right\},\left\{22_{0}, 36_{0}, 44_{0}\right\},\left\{19_{0}, 39_{0}, 5_{0}\right\}, \\
& \left\{42_{0}, 16_{0}, 28_{0}\right\},\left\{6_{1}, 8_{1}, 12_{1}\right\},\left\{29_{1}, 31_{1}, 35_{1}\right\},\left\{20_{1}, 30_{1}, 38_{1}\right\},\left\{43_{1}, 7_{1}, 15_{1}\right\}, \\
& \left\{13_{1}, 33_{1}, 45_{1}\right\},\left\{36_{1}, 10_{1}, 22_{1}\right\},\left\{11_{2}, 15_{2}, 17_{2}\right\},\left\{32_{2}, 38_{2}, 40_{2}\right\},\left\{21_{2}, 31_{2}, 39_{2}\right\}, \\
& \left\{44_{2}, 8_{2}, 16_{2}\right\},\left\{0_{2}, 20_{2}, 32_{2}\right\},\left\{23_{2}, 43_{2}, 9_{2}\right\},\left\{12_{0}, 14_{1}, 13_{2}\right\},\left\{35_{0}, 37_{1}, 36_{2}\right\}, \\
& \left\{15_{0}, 18_{1}, 19_{2}\right\},\left\{38_{0}, 41_{1}, 42_{2}\right\},\left\{11_{0}, 17_{1}, 14_{2}\right\},\left\{34_{0}, 40_{1}, 37_{2}\right\},\left\{20_{0}, 27_{1}, 32_{2}\right\}, \\
& \left\{43_{0}, 4_{1}, 7_{2}\right\},\left\{9_{0}, 19_{1}, 24_{2}\right\},\left\{32_{0}, 42_{1}, 1_{2}\right\},\left\{17_{0}, 32_{1}, 41_{2}\right\},\left\{40_{0}, 9_{1}, 18_{2}\right\}, \\
& \left\{14_{0}, 34_{1}, 45_{2}\right\},\left\{37_{0}, 11_{1}^{1}, 22_{2}\right\},\left\{22_{0}, 44_{1}, 35_{2}\right\},\left\{45_{0}, 21_{1}, 12_{2}\right\},\left\{0_{0}, 0_{1}, 16_{1}\right\}, \\
& \left\{23_{0}, 23_{1}, 39_{1}\right\},\left\{1_{0}, 2_{1}, 24_{1}\right\},\left\{24_{0}, 25_{1}, 1_{1}\right\},\left\{3_{1}, 10_{2}, 26_{2}\right\},\left\{26_{1}, 33_{2}, 3_{2}^{2},\left\{5_{1}, 5_{2}, 27_{2}\right\},\right. \\
& \left.\left\{28_{1}, 28_{2}, 4_{2}\right\},\left\{2_{2}, 2_{0}, 18_{0}\right\},\left\{25_{2}, 25_{0}, 41_{0}\right\},\left\{6_{2}, 7_{0}, 29_{0}\right\},\left\{29_{2}, 30_{0}, 6_{0}\right\}\right\} .
\end{aligned}
$$

Nine of them are obtained by developing each of the following triples $\bmod (46,-)$ :
$\left\{0_{0}, 5_{1}, 7_{2}\right\},\left\{0_{0}, 8_{1}, 12_{2}\right\},\left\{0_{0}, 9_{1}, 5_{2}\right\},\left\{0_{0}, 11_{1}, 6_{2}\right\},\left\{0_{0}, 13_{1}, 21_{2}\right\},\left\{0_{0}, 14_{1}, 8_{2}\right\}$, $\left\{0_{0}, 17_{1}, 9_{2}\right\},\left\{0_{0}, 18_{1}, 11_{2}\right\},\left\{0_{0}, 21_{1}, 33_{2}\right\}$.

We thus obtain:
Theorem 3.15. For all $v \equiv 0(\bmod 6)$ with $v \geqslant 198$, there exists an $\operatorname{NKTS}(v)$ containing $a$ sub-NKTS(66).

For $v=72$, no exceptions are left after applying Theorem 1.3 and Lemmas 3.3 and 3.6. Thus we have

Theorem 3.16. For all $v \equiv 0(\bmod 6)$ with $v \geqslant 216$, there exists an $\operatorname{NKTS}(v)$ containing $a$ sub-NKTS(72).

The foregoing results give us the second part of our main theorem:
Theorem 3.17. For $v=18,24,30,36,42,48,54,60,66$ or 72 , and $u \equiv 0(\bmod 6)$, there exists an $\operatorname{NKTS}(u)$ containing $a$ sub-NKTS $(v)$ if and only if $u \geqslant 3 v$.

Theorem 1.6 now follows from Theorems 3.7 and 3.17.

## Appendix

$\{4\}$-GDD of type $6^{8} 21^{1} 24^{1}$ : We construct a $\{3,4\}$-GDD of type $6^{8} 21^{1}$ with the property that its set of triples can be partitioned into 24 parallel classes. By adding 24 infinite points, we get the desired GDD.
Point set: $(Z(24) \times\{1,2\}) \cup\left\{x_{1}, x_{2}, \ldots, x_{19}\right\} \cup(\{a\} \times Z(2))$.
Groups: $\left\{x_{1}, x_{2}, \ldots, x_{19}, a_{0}, a_{1}\right\}$, with $\left\{0_{1}, 8_{1}, 16_{1}, 0_{2}, 8_{2}, 16_{2}\right\} \bmod (24,-)$.
Blocks of size four: Develop $\left\{0_{1}, 12_{1}, 1_{2}, 13_{2}\right\},\left\{0_{1}, 1_{1}, 3_{1}, 7_{1}\right\},\left\{0_{2}, 1_{2}, 3_{2}, 7_{2}\right\}$ $\bmod (24,-)$.

Parallel classes of triples:

$$
\begin{aligned}
& \left\{12_{1}, 23_{1}, a_{0}\right\},\left\{13_{2}, 0_{2}, a_{1}\right\},\left\{17_{1}, 22_{1}, 7_{1}\right\},\left\{17_{2}, 22_{2}, 7_{2}\right\},\left\{0_{1}, 2_{2}, x_{1}\right\},\left\{1_{1}, 4_{2}, x_{2}\right\}, \\
& \left\{2_{1}, 6_{2}, x_{3}\right\},\left\{3_{1}, 8_{2}, x_{4}\right\},\left\{4_{1}, 10_{2}, x_{5}\right\},\left\{5_{1}, 12_{2}, x_{6}\right\},\left\{6_{1}, 15_{2}, x_{7}\right\},\left\{9_{1}, 19_{2}, x_{8}\right\}, \\
& \left\{10_{1}, 21_{2}, x_{9}\right\},\left\{11_{1}, 23_{2}, x_{10}\right\},\left\{13_{1}, 3_{2}, x_{11}\right\},\left\{14_{1}, 5_{2}, x_{12}\right\},\left\{8_{1}, 1_{2}, x_{13}\right\},\left\{15_{1}, 9_{2}, x_{14}\right\}, \\
& \left\{16_{1}, 11_{2}, x_{15}\right\},\left\{18_{1}, 14_{2}, x_{16}\right\},\left\{19_{1}, 16_{2}, x_{17}\right\},\left\{20_{1}, 18_{2}, x_{18}\right\},\left\{21_{1}, 20_{2}, x_{19}\right\} \\
& \bmod (24,-) .
\end{aligned}
$$

The subscripts on $a$ are to be developed $\bmod 2$.
$\{4\}$-GDD of type $18^{4} 30^{1} 36^{1}$ : We construct a $\{3,4\}$-GDD of type $18^{4} 30^{1}$ with the property that its set of triples can be partitioned into 36 parallel classes. By adding 36 infinite points, we get the desired GDD.

Point set: $(Z(36) \times\{1,2\}) \cup\left\{x_{1}, x_{2}, \ldots, x_{20}\right\} \cup(\{a, b, c, d, e\} \times Z(2))$.
Groups: $\left\{x_{1}, x_{2}, \ldots, x_{20}, a_{0}, a_{1}, b_{0}, b_{1}, c_{0}, c_{1}, d_{0}, d_{1}, e_{0}, e_{1}\right\}$, with $\left\{\left\{0_{j}, 2_{j}, 4_{j}, \ldots, 34_{j}\right\}\right.$, $\left.\left\{1_{j}, 3_{j}, 5_{j}, \ldots, 35_{j}\right\}: j=1,2\right\}$.
Blocks of size four: Develop $\left\{0_{1}, 15_{1}, 0_{2}, 17_{2}\right\},\left\{0_{1}, 17_{1}, 1_{2}, 16_{2}\right\} \bmod (36,-)$.
Parallel classes of triples:
$\left\{14_{1}, 17_{2}, 18_{2}\right\},\left\{17_{1}, 22_{2}, 25_{2}\right\},\left\{6_{1}, 7_{1}, 13_{2}\right\},\left\{16_{1}, 19_{1}, 28_{2}\right\},\left\{0_{1}, 10_{2}, x_{1}\right\},\left\{1_{1}, 12_{2}, x_{2}\right\}$, $\left\{34_{1}, 11_{2}, x_{3}\right\},\left\{2_{1}, 16_{2}, x_{4}\right\},\left\{35_{1}, 14_{2}, x_{5}\right\},\left\{3_{1}, 21_{2}, x_{6}\right\},\left\{32_{1}, 15_{2}, x_{7}\right\},\left\{4_{1}, 26_{2}, x_{8}\right\}$, $\left\{33_{1}, 20_{2}, x_{9}\right\},\left\{5_{1}, 29_{2}, x_{10}\right\},\left\{9_{1}, 34_{2}, x_{11}\right\},\left\{10_{1}, 0_{2}, x_{12}\right\},\left\{18_{1}, 9_{2}, x_{13}\right\},\left\{11_{1}, 3_{2}, x_{14}\right\}$, $\left\{8_{1}, 1_{2}, x_{15}\right\},\left\{12_{1}, 6_{2}, x_{16}\right\},\left\{29_{1}, 24_{2}, x_{17}\right\},\left\{23_{1}, 19_{2}, x_{18}\right\},\left\{30_{1}, 27_{2}, x_{19}\right\},\left\{25_{1}, 23_{2}, x_{20}\right\}$, $\left\{21_{1}, 26_{1}, a_{0}\right\},\left\{20_{1}, 27_{1}, b_{0}\right\},\left\{22_{1}, 31_{1}, c_{0}\right\},\left\{13_{1}, 24_{1}, d_{0}\right\},\left\{15_{1}, 28_{1}, e_{0}\right\},\left\{35_{2}, 4_{2}, a_{1}\right\}$, $\left\{31_{2}, 2_{2}, b_{1}\right\},\left\{32_{2}, 5_{2}, c_{1}\right\},\left\{33_{2}, 8_{2}, d_{1}\right\},\left\{30_{2}, 7_{2}, e_{1}\right\} \bmod (36,-)$.

The subscripts on $a, b, c, d$ and $e$ are to be developed $\bmod 2$.
$\{4\}$-GDD of type $6^{8} 18^{1} 24^{1}$ : We construct a $\{3,4\}$-GDD of type $6^{8} 18^{1}$ with the property that its set of triples can be partitioned into 24 parallel classes. By adding 24 infinite points, we get the desired GDD.
Point set: $(Z(24) \times\{1,2\}) \cup\left\{x_{1}, x_{2}, \ldots, x_{15}\right\} \cup(\{a\} \times Z(3))$.
Groups: $\left\{x_{1}, x_{2}, \ldots, x_{15}, a_{0}, a_{1}, a_{2}\right\}$, with $\left\{0_{j}, 4_{j}, 8_{j}, 12_{j}, 16_{j}, 20_{j}\right\} \bmod (24,-)$ for $j=1,2$.

Blocks of size four: Develop $\left\{0_{1}, 5_{1}, 7_{2}, 10_{2}\right\},\left\{0_{1}, 6_{1}, 12_{2}, 19_{2}\right\} \bmod (24,-)$.
Parallel classes of triples:

$$
\begin{aligned}
& \left\{12_{1}, 13_{1}, a_{0}\right\},\left\{0_{1}, 4_{2}, a_{1}\right\},\left\{12_{2}, 22_{2}, a_{2}\right\},\left\{8_{1}, 11_{1}, 18_{1}\right\},\left\{6_{1}, 15_{1}, 17_{1}\right\},\left\{17_{2}, 18_{2}, 23_{2}\right\}, \\
& \left\{19_{2}, 21_{2}, 6_{2}\right\},\left\{1_{1}, 1_{2}, x_{1}\right\},\left\{2_{1}, 3_{2}, x_{2}\right\},\left\{23_{1}, 2_{2}, x_{3}\right\},\left\{3_{1}, 11_{2}, x_{4}\right\},\left\{22_{1}, 7_{2}, x_{5}\right\},
\end{aligned}
$$

$\left\{4_{1}, 15_{2}, x_{6}\right\},\left\{20_{1}, 10_{2}, x_{7}\right\},\left\{5_{1}, 20_{2}, x_{8}\right\},\left\{21_{1}, 13_{2}, x_{9}\right\},\left\{7_{1}, 0_{2}, x_{10}\right\},\left\{14_{1}, 8_{2}, x_{11}\right\}$, $\left\{9_{1}, 5_{2}, x_{12}\right\},\left\{19_{1}, 16_{2}, x_{13}\right\},\left\{16_{1}, 14_{2}, x_{14}\right\},\left\{10_{1}, 9_{2}, x_{15}\right\} \bmod (24,-)$.

The subscripts on $a$ are to be developed mod 3 .
$\{4\}$-GDD of type $6^{9} 12^{1} 27^{1}$ : We construct a $\{3,4\}$-GDD of type $6^{9} 12^{1}$ with the property that its set of triples can be partitioned into 27 parallel classes. By adding 27 infinite points, we get the desired GDD.
Point set: $(Z(27) \times\{1,2\}) \cup\left\{x_{1}, x_{2}, \ldots, x_{12}\right\}$.
Groups: $\left\{x_{1}, x_{2}, \ldots, x_{12}\right\}$, with $\left\{0_{1}, 9_{1}, 18_{1}, 0_{2}, 9_{2}, 18_{2}\right\} \bmod (27,-)$.
Blocks of size four: Develop $\left\{0_{1}, 13_{1}, 8_{2}, 19_{2}\right\} \bmod (27,-)$.
Parallel classes of triples:
$\left\{9_{1}, 15_{1}, 19_{1}\right\},\left\{11_{1}, 12_{1}, 14_{1}\right\},\left\{5_{1}, 10_{1}, 17_{1}\right\},\left\{24_{2}, 1_{2}, 7_{2}\right\},\left\{23_{2}, 25_{2}, 26_{2}\right\}$,
$\left\{6_{2}, 13_{2}, 18_{2}\right\},\left\{20_{1}, 22_{2}, 3_{2}\right\},\left\{13_{1}, 16_{2}, 2_{2}\right\},\left\{8_{1}, 16_{1}, 9_{2}\right\},\left\{22_{1}, 6_{1}, 0_{2}\right\}$, $\left\{0_{1}, 4_{2}, x_{1}\right\},\left\{1_{1}, 8_{2}, x_{2}\right\},\left\{26_{1}, 10_{2}, x_{3}\right\},\left\{2_{1}, 14_{2}, x_{4}\right\},\left\{25_{1}, 11_{2}, x_{5}\right\},\left\{3_{1}, 17_{2}, x_{6}\right\}$, $\left\{24_{1}, 12_{2}, x_{7}\right\},\left\{4_{1}, 21_{2}, x_{8}\right\},\left\{23_{1}, 19_{2}, x_{9}\right\},\left\{18_{1}, 15_{2}, x_{10}\right\},\left\{7_{1}, 5_{2}, x_{11}\right\}$, $\left\{21_{1}, 20_{2}, x_{12}\right\} \bmod (27,-)$.

## References

[1] R.D. Baker, R.M. Wilson, Nearly Kirkman triple systems, Utilitas Math. 11 (1977) 289-296.
[2] A.E. Brouwer, Two new nearly Kirkman triple systems, Utilitas Math. 13 (1978) 311-314.
[3] C.J. Colbourn, J.H. Dinitz (Eds.), Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 1996.
[4] D. Deng, R. Rees, H. Shen, On the existence and application of incomplete nearly Kirkman triple systems with a hole of size 6 or 12, Discrete Math., to appear.
[5] G. Ge, R. Rees, On group-divisible designs with block size four and group-type $g^{u} m^{1}$, Designs Codes Cryptogr. 27 (2002) 5-24.
[6] A. Kotzig, A. Rosa, Nearly Kirkman systems, Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing, 1974, pp. 607-614.
[7] D.K. Ray-Chaudhuri, R.M. Wilson, Solution of Kirkman's schoolgirl problem, Amer. Math. Soc. Symp. Pure Math. 19 (1971) 187-203.
[8] R. Rees, D.R. Stinson, On resolvable group-divisible designs with block size three, Ars Combin. 23 (1987) 107-120.
[9] R. Rees, D.R. Stinson, On the existence of Kirkman triple systems containing Kirkman subsystems, Ars Combin. 26 (1988) 3-16.
[10] R. Rees, D.R. Stinson, Kirkman triple systems with maximum subsystems, Ars Combin. 25 (1988) 125-132.
[11] R. Rees, D.R. Stinson, On the existence of incomplete designs of block size four having one hole, Utilitas Math. 35 (1989) 119-152.
[12] D.R. Stinson, Frames for Kirkman triple systems, Discrete Math. 65 (1987) 289-300.
[13] S. Tang, H. Shen, Embedding of nearly Kirkman triple systems, J. Statist. Plann. Inference 94 (2001) 327-333.


[^0]:    * Corresponding author.

    E-mail address: rolf@math.mun.ca (R. Rees).
    ${ }^{1}$ Research work supported by NSFC Grant 19831050.
    ${ }^{2}$ Research work supported in part by the NSERC Grant OGP0107993.

