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Abstract

In this paper we further discuss the embedding problem for nearly Kirkman triple systems and
get the result that: (1) For u = v = 0(mod 6), v > 78, and u > 3.5v, there exists an NKTS(u)
containing a sub-NKTS(v). (2) For v = 18,24,30,36,42,48,54,60,66 or 72, there exists an
NKTS(u) containing a sub-NKTS(v) if and only if # = 0(mod 6) and u > 3v.
© 2002 Elsevier B.V. All rights reserved.

1. Introduction

Let v be a positive integer, and K and M be two sets of positive integers.
A group divisible design GD(K,M;v) is an ordered triple (X,G,B) where X is a set
with cardinality v, G is a set of subsets (called groups) of X such that G partitions X
and |G|eM for each G€G, and B is a set of subsets (called blocks) of X such that
|B|€K for each B € B, with the property that each pair of distinct elements of X is
contained either in a unique group or in a unique block, but not both. The number v
is called the order of the group divisible design.
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If K={k} and M ={m}, then a GD({k},{m};v) is called uniform and is denoted
GD(k, m;v).

Let (X,G,B) be a GD(K,M,v); it is sometimes called a K-GDD of group type
T where T={|G|:GeG} is a multiset. We also write 7= [[;_, m{" if G contains
exactly u; groups of size m;, 1 <i<s.

Now, we define the idea of a GDD with a hole. Informally, an incomplete GDD
(IGDD) is a GDD from which a sub-GDD is missing (thus creating a “hole”). We give
a formal definition. An IGDD is a quadruple (X,Y,G,B) which satisfies the following
properties:

(1) X is a set of points, and Y C X (Y is called the hole);

(2) G is a partition of X into groups;

(3) B is a set of subsets of X (blocks), each of which intersects each group in at most
one point;

(4) no block contains two members of Y;

(5) every pair of points {x,y} from distinct groups, such that at least one of x, y is
in X\Y, occurs in a unique block of B.

We say that an IGDD(X,Y,G,B) is a K-IGDD if |B|€K for every block B€B. The
type of the IGDD is defined to be the multiset of ordered pairs {(|G|,|GNY|: GeG}.
Note that if Y =), then the IGDD is a GDD.

Let (X,G,B) be a GD(K, M;v). A subset P of B is called a parallel class if P forms
a partition of X. A GD(K, M, v) is called resolvable and is denoted RGD(K, M;v) if
its block set can be partitioned into parallel classes. When K ={k} and M ={m} we
may also denote an RGD({k}, {m};v) as a {k}-RGDD of type m"™. As two important
special cases, an RGD(3, 1;v) (or equivalently, an RGD(3,3;v)) is usually known as
a Kirkman triple system of order v and is denoted KTS(v), and an RGD(3,2;v) is
usually called a nearly Kirkman triple system of order v and is denoted NKTS(v). For
the existence of Kirkman triple systems and nearly Kirkman triple systems, we have
the following results:

Theorem 1.1 (Ray-Chaudhuri and Wilson [7]). There exists an KTS(v) if and only if
v=3 (mod 6).

Theorem 1.2 (Baker and Wilson [1], Brouwer [3], Kotzig and Rosa [7] and Rees and
Stinson [13]). There exists an NKTS(v) if and only if v=0(mod6), v>18.

Now let (X,G,B;) be an RGD(K,M;v) and (Y, Gy,B;) be an RGD(K, M;u). If
X CY, G, CG; and each parallel class of By is a part of some parallel class of B,
then (X,G},B) is said to be embedded in (Y, G;,B;). If we allow a subdesign of
an RGDD to be missing (i.e., creating a hole), we have an incomplete RGDD. Note
that the subdesign need not exist. We will be exclusively concerned with constructing
incomplete RGD(3,2;v)s, which we henceforth denote as INKTS(v,%), # being the
number of points in the hole.

The problem of constructing Kirkman triple systems containing subsystems was stud-
ied by Rees and Stinson [9,10,12]. The obvious necessary conditions for the existence
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of a KTS(u) containing a KTS(v) as a subsystem are #>3v, u=v=3 (mod 6). In [9],
it is shown that these necessary conditions are sufficient.

In this paper, we are interested in NKTS(«) which contain NKTS(v) as a subsystem.
Here the obvious necessary conditions are that u>3v, u=v=0 (mod 6) and v>18.
This problem has been studied in a couple of recent papers, and the following results
have been proved:

Theorem 1.3 (Tang and Shen [13]). For any v=0 (mod 6) with v=18 and any k=3,
there exists an INKTS(kv,v).

Theorem 1.4 (Deng et al. [4]). For each he{6,12} there exists an INKTS(v,h) if
and only if v=0 (mod 6) and v=3h.

Theorem 1.5 (Deng et al. [4]). (i) For u=v=0 (mod6), v=>48 and u>=4v—18, there
exists an NKTS(u) containing a sub-NKTS(v).

(i) For v€{18,24,30,36,42} and u=0 (mod 6), u>=3v, there exists an NKTS(u)
containing a sub-NKTS(v).

In this paper, we further discuss the embedding problem for nearly Kirkman triple
systems and get the following result:

Theorem 1.6. (1) For u=v=0 (mod 6), v=78, and u>=3.5v, there exists an NKTS(u)
containing a sub-NKTS(v).

(2) For v=18,24,30,36,42,48,54,60,66 or 72, there exists an NKTS(u) containing
a sub-NKTS(v) if and only if u=0 (mod 6) and u>3v.

As in [4] the direct constructions for the designs appearing in this paper were ob-
tained by appropriate adaptations of the standard backtracking algorithm, beginning
with a feasible tactical configuration (subscript pattern) with respect to a particular
automorphism group.

2. Constructions for nearly Kirkman triple systems containing subsystems

First we introduce the idea of Kirkman frames, which play a very important role in
solving the embedding problem for nearly Kirkman triple systems. Here we give the
definition [12].

Let (X,G,B) be a GD(K,M;v) and let P be a subset of B. If P forms a partition
of X\G for some group GE€G, then P is called a holey parallel class with hole G.
A GD(K,M;v) is called a Kirkman K-frame if the block set B can be partitioned
into holey parallel classes. For K ={3}, a Kirkman {3}-frame is called a Kirkman
frame.

The following theorem gives a powerful construction for Kirkman frames from group
divisible designs [12].
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Theorem 2.1. Let (X,G,B) be a group divisible design. Let w:X—Z"U{0} be a
weight function on X. Suppose that for each block B€B, there exists a Kirkman
frame of type {w(x):x€B}. Then there is a Kirkman frame of type {>_ . w(x):
GeG}.

xeG

The spectrum of uniform Kirkman frames has been completely determined [12].

Theorem 2.2. There exists a Kirkman frame of type t" if and only if t=0 (mod?2),
u=4 and t(u — 1) = 0 (mod 3).

The following “filling in holes” construction provides a powerful tool for the em-
bedding problem for nearly Kirkman triple systems [13].

Construction 2.3. Suppose there is a Kirkman frame of type T on v points. If, for
some a>0, there exists an INKTS(¢ + a,a) for all t€T, then there is an INKTS
(v+ a,a), and for every t€T, an INKTS(v + a,t + a).

It will be necessary to build families of GDDs. Our basic construction for GDDs
is a recursive one. It is usually referred to as the “Fundamental GDD construction”

(see [3]).

Construction 2.4. Let (X,G,B) be a group divisible design. Let w:X —Z"U{0} be
a weight function on X. Suppose that for each block B€B, there exists a K-GDD of

type {w(x):x€B}. Then there is a K-GDD of type {d_ ., w(x):GeG}.

3. Applications of the constructions

We use the above constructions to discuss the embedding problem for nearly
Kirkman triple systems. First, we present a specific construction using GDDs with
block-size four.

Lemma 3.1. Suppose there is a TD(6,m), m=5 and m<w<2m. Let a=6 or 12.
Then there is an NKTS(36m + 6w + a) containing a sub-NKTS(12m + a).

Proof. Give points in four groups of the TD weight 3, give the points in the fifth
group weight 3 or 6, and give the points in the sixth group weight 6. Apply Con-
struction 2.4, filling in {4}-GDDs of type 3%6% or 3°6' [11], to get a {4}-GDD of
type (3m)*(6m)'(3w)'. Give the points of the resultant GDD weight 2, applying The-
orems 2.1 and 2.2, to get a Kirkman frame of type (6m)*(12m)'(6w)'. Adjoin a
ideal points and apply Construction 2.3 and Theorem 1.4 to yield an INKTS(36m +
6w + a,12m + a). Now construct an NKTS(12m + a) on the hole, giving rise to an
NKTS(36m + 6w + a) containing a sub-NKTS(12m +a). O

Now we use the following corollaries to Lemma 3.1.
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Lemma 3.2. Suppose v=6 (mod 12), v=66, v+#78,126,174,222,270, u=0 (mod 6),
and 3.5v — 15<u<4v — 18. Then there is an INKTS(u,v).

Proof. Apply Lemma 3.1 with m=(v — 6)/12, w=(u — 36m — 6)/6 and a =6. Then
a TD(6,m) exists, and m <w <2m. This builds an NKTS(36m + 6w + 6) containing a
sub-NKTS(12m + 6). O

Lemma 3.3. Suppose v=0 (mod 12), v=72, v+#84,132,180,228,276, u=0 (mod 6),
and 3.5v — 30 <u<4v — 36. Then there is an INKTS(u,v).

Proof. Apply Lemma 3.1 with m=(v—12)/12, w=(u—36m—12)/6 and a = 12. Then
a TD(6,m) exists, and m <w<2m. This builds an NKTS(36m + 6w + 12) containing
a sub-NKTS(12m + 12). O

Lemma 3.4. Suppose ve{78,126,174,222,270}, u=0 (mod 6), and 3.5v<u<4v+18.
Then there is an INKTS(u,v).

Proof. Let m=(v— 18)/12+ 2; then me{7,11,15,19,23}. Take a TD(6,m) and give
all points on four of the groups weight 6. On the fifth group give 2 of the points weight
6 and all remaining points weight 12. Assign weight 6 or 12 to each point on the sixth
group. Use Kirkman frames of type 6°, 6°12! and 6*122, and adjoin 6 ideal points.
This gives INKTS(u,v) where v=12m — 6 and 12m — 6 + 30m<u<12m — 6 + 36m,
ie. 3.5v+ 15<u<4v+18.

To get u=3.50 + 3 and 3.5v + 9 proceed as follows. Suppose first that v 78.
Let m=(v— 18)/12, then me {9,13,17,21}. Proceed as above, taking a TD(6,m) and
giving all points on four of the groups weight 6 and giving all points on the fifth
group weight 12. On the sixth group give either 8 or 9 of the points weight 12 and
all remaining points weight 6. Now adjoin 18 ideal points and apply Construction 2.3
with a =18 (see Theorem 1.5(ii)) to obtain an INKTS(u,v) where v=12m + 18 and
u=12m + 18 + 30m + 48 or 12m + 18 + 30m + 54, i.e. u=3.5v + 3 or 3.50 + 9.
Now let v=78. For u=276 adjoin 12 ideal points to a Kirkman frame of type 66*
and fill in INKTS(78,12)s and an NKTS(78), while for u =282 take a {4}-GDD of
type 18430'36! (see the appendix) and apply Theorem 2.1 and Construction 2.3, using
weight 2 with @ =6 ideal points. [J

Lemma 3.5. Suppose ve{60,84,132,180,228,276}, u=0 (mod 6), and 3.5v<u<4v.
Then there is an INKTS(u,v).

Proof. Let m=(v — 12)/12 + 1, then m€{5,7,11,15,19,23}. Take a TD(6,m) and
proceed as in the first part of Lemma 3.4, giving just one point on the fifth group
weight 6 and adjoining 6 ideal points. This gives INKTS(u,v) where v=12m, and
12m+30m<u<12m+ 36m, i.e. 3.5v<u<4v. O
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Lemma 3.6. Suppose v=0 (mod 12), v=>48, and u=4v — 30 or 4v — 24. Then there
is an INKTS(u,v).

Proof. Here we just proceed as in Lemma 3.5, unless ve€ {48,72,120,168,216,264}.
For v€{120,168,216,264}, take m=(v — 24)/12 + 3, then me{11,15,19,23}.
Take a TD(6,m) and proceed as above, giving three points on the fifth group
weight 6 and either 11 or 10 points on the sixth group weight 6, adjoining 6 ideal
points.

There remain INKTS(162,48), INKTS(168,48), INKTS(258,72) and INKTS(264,72).

For INKTS(168,48), take a {4}-GDD of type 15*21" (see [5]); apply Theorems 2.1
and Construction 2.3, using weight 2 with 6 ideal points.

For INKTS(264,72), take a {4}-GDD of type 24*33' (see [5]); apply weight 2 and
adjoin 6 ideal points.

For INKTS(162,48) and INKTS(258,72), we present the following direct
constructions:

INKTS(162,48). Point set: (Z(38)xZ(3))U{x1,x2,...,xa8}. Groups: {00,197},
{01, 191}, {02, 192} mod(38, 7). Hole: {xl,xz,. .. ,X4g}.

Parallel classes of triples: Thirty-eight of them are obtained by developing the
following triples mod(38, —):

{310,351,02}, {220,311,372}, {250,371,72}, {00,01,171}, {11, 15,162}, {22,20,150},
{10,231,)«71}, {30,261,)62}, {40,281,)«73}, {50,301,)64}, {60,321,)65}, {70,341,)66},
{80,361,)(?7}, {110,21,)(3}, {120,41,)(9}, {100,31,)(10}, {130,71,)(11}, {140,91,)612},
{90,51,X13}, {160,131,)(14}, {170,151,X15}, {190,181,)&?16}, {61,192,X17},
{81,222,)(?18}, {10],272,X19}, {121,282,)(20}, {111,292,)621}, {141,332,)&722},
{161,362,)623}, {201,32,X24}, {211,52,)625}, {191,42,X26}, {221,82,)627},
{241,112,)628}, {251,132,)629}, {291,182,)630}, {271,172,)631}, {331,242,)632},
{202,210,)(?33}, {252,270,)(34}, {302,330,)635}, {322,360,)(36}, {312,370,)(37},
{232,300,)(38}, {262,350,)(?39}, {142,240,)640}, {212,320,)641}, {62,230,)(42},
{152,290,)&'43}, {102,260,)(44}, {92,280,)(45}, {352,180,X46}, {122,340,)&?47},
{342,200,)(48}.

Nineteen of them are obtained by adding 0,2,4,...,36 to the following triples
mod(38, —):

{160, 171,185}, {350,361,372}, {170,311,2,2}, {360, 121,215}, {140,334,6,},
{330,141,252}, {Oo,lo,)&fn}, {190,200,)(]8}, {20,50,)&?]9}, {210,240,)(20}, {30,80,)(21},
{220,270,)(22}, {40, 110,)623}, {230,300,)(24}, {60, 150,)(525}, {250,340,X26}, {70, 180,XQ7},
{260,370,)628}, {120,290,)629}, {310, 100,)630}, {130,280,)631},{320,90,)632}, {01, 11,)633},
{191,201,)634}, {21,51,)635}, {211,241,)636}, {31,81,)(37}, {221,271,)638}, {41,111,)639},
{231,301,X40}, {61,151,)(41}, {251,341,)(42}, {71,181,)643}, {261,371,)644},
{161,291,)(45}, {351,101,X46}, {131,281,)647}, {321,91,X4g}, {02,12,)61},

{192,202,)&?2}, {42,72,X3}, {232,262,)(4}, {82,132,)&'5}, {272,322,)(6},

{92,162,)67}, {282,352,)68}, {152,242,)69}, {342,52,)(10}, {32,142,)611},

{222,332,)612}, {172,302,)613}, {362,112,)614}, {122,292,)615}, {312,102,)616}.
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Holey parallel classes of triples: Nineteen of them are obtained by adding 0,2,4,...,
36 to the following triples mod(38, —):

{00, 60,240}, {190,250,50}, {40,80,200}, {230,270, 10}> {70,90,170}, {260,280,360},
{01,61,241}, {191,251,51}, {41,81,20,}, {231,274, 11}, {11,131,211}, {304,321,2;},
{12,,182,36,}, {312,372, 17,2}, {42,82,20,},{232,272, 15}, {92, 112,192}, {28,,30,,0,},
{140,161, 152}, {33¢,351,34,}, {11¢,141,162}, {300,331,35,}, {100,151, 13,},
{290,341,32,}, {120,181,225}, {310,371,32}, {30,101,72}, {22¢,29,,26,},
{180,281,24,}, {370,91,52}, {130,261,212}, {320,71,22}, {160,311,25,},

{350,121, 62}, {20,221, 142}, {210,31,332}, {150,361, 10,},

{340,171,29,}.

Four of them are obtained by developing each of the following triples mod(38, —):

{00,81,135}, {00, 111,185}, {00,161,26,}, {00,181,115}.

INKTS(258,72). Point set: (Z(62)xZ(3))U{x1,x2,...,x72}. Groups: {09,310},
{01,311}, {02,312} mod(62,—). Hole: {xl,X2,...,X72}.

Parallel classes of triples: Sixty-two of them are obtained by developing the fol-
lowing triples mod(62, —):

{360,520,540}, {431,531,571}, {462,50,,60,}, {430,551,49,}, {32¢,51,,0,},
{260,331,362}, {570, 11,32}, {240,271,25,}, {610,31,22}, {250,301,27,},

{590,51, 12}, {270,361,40,}, {510,611,56,}, {380,491,55,}, {71,262,x1},
{591,172,X2},{91,302,X3},{111,332,)64}, {151,382,)(?5}, {131,392,)66},

{171,442,)67}, {191,482,)68}, {211,512,)69}, {231,542,)(1()}, {251,572,)(11},
{261,592,)&'12},{241,582,X13},{31],42,)(14}, {321,62,)€|5},{34],92,X16}, {291,52,)(]7},
{351,122,)(18}, {371,152,)C19}, {281,72,)620}, {391,192,)621},

{411,222,)622}, {471,292,)623}, {451,282,)624}, {312,340,)625}, {242,280,)626},
{322,370,)627}, {342,400,)628}, {372,440,)629}, {412,500,)630}, {472,580,)631},
{432,550,X32}, {422,560,)(33}, {452,600,)(34}, {142,310,)(35}, {352,530,)(?36},
{182,390,)(37}, {102,330,X3g}, {212,450,)639}, {232,490,)(40}, {202,470,X41},
{162,460,)(42}, {112,420,X43}, {82,410,)644}, {132,480,)C45},{612,350,X46},
{532,290,)647},{522,300,X4g}, {00,381,)649},{10,401,)650}, {20,421,)651}, {30,441,x52},
{40,461,x53}, {50,481,x54}, {60,501,x55}, {70,521, %56}, {80,541,%57},

{90,561,)(58}, {100,581,)659}, {110,601,X60}, {120,01,)(?61}, {130,21,)(62}, {140,41,)663},
{150,61,)(?64}, {160,81,)(65}, {170,101,x66}, {180,121,)(67}, {190,141,){?63},
{200,161,)&'69}, {210,181,)(70}, {220,20],){?71}, {230,221,)(72}.

Thirty-one of them are obtained by adding 0,2,4,...,60 to the following triples
mod(62, —):

{14¢,28,215}, {450,591,52,}, {170,451,60,}, {48¢,141,29,}, {19¢,501,37,},
{500, 191,65}, {200,561, 12,}, {510,251,43,}, {120,240,520}, {430,550,210},
{161,461,52,}, {471,151,21,}, {20,,50,,56,}, {512,192,25,}, {300,310,x1},
{610,00,)(?2}, {10,40,X3}, {320,350,)(?4}, {290,340,)65}, {600,30,)66}, {20,90,)C7},
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{330,400,)63}, {280,370,)69}, {590,60,)610}, {50, 160,)(,'11}, {360,470,)612},
{260,390,)613}, {570,80,)614}, {70,220,)615}, {380,530,)616}, {270,440,)617},
{580,130,X18}, {230,420,)(19}, {540,110,)620}, {250,460,)621}, {560,150,X22},
{180,410,){23}, {490,100,X24}, {01,11,X25}, {311,321,)&?26}, {301,331,)(27},
{611,21,X28}, {31,81,)(29}, {341,391,)(30}, {29],361,X31}, {601,51,X32}, {41,131,)(33},
{351,441,)634}, {61,171,X35}, {371,481,)(36}, {71,201,X37},{381,511,X38},
{91,241,)639}, {401,551,)640}, {101,271,)641}, {411,581,)642}, {231,421,)643},
{541,111,)(?44}, {221,431,X45}, {531,121,)646}, {261,491,)647}, {571,181,)(48},
{02, 12, x40}, {312,322,x50}, {22,52,%51}, {332,362,x52}, {32,82,x53}, {342,392, %54},
{42,112,x55}, {352,422,x56}, {72,162,)(57}, {382,472,)&?53}, {132,242,)(59},
{442,552,)(60}, {92,222,)%1}, {402,532,)(62}, {262,412,)663}, {572, 102,)664},
{282,452,)665}, {592, 142,)666}, {302,492,)667}, {612,182,)668}, {272,482,)669},
{582,172,)67()}, {232,462,)671}, {542, 152,)672}.

Holey parallel classes of triples: Thirty-one of them are obtained by adding 0,2,
4,...,60 to the following triples mod(62, —):

{180,430,510}, {490, 120,200}, {280,380,420}, {59, 70,110}, {90,390,450},
{400, 80, 140}, {131,381,46,}, {441,71,15,}, {181,341,36,}, {491,31,5:},
{111,391,511}, {421,81,20,}, {115,19,,44,}, {42,,50,, 135}, {22,42,20,},
{33,,352,515}, {62,18,,46,}, {37,,49,,15,}, {40,411,25,}, {350, 101,565},
{220,571, 125}, {530,261,43,}, {130,471,32,2}, {440,161, 15}, {160,481,0,},
{470,171,312}, {230,531,392}, {540,221,82}, {210,451,362}, {520,141,5,},
{290,52,41,}, {600,211,10,}, {60,281,40,}, {370,591,92}, {30,241, 14,},
{340,551,45:}, {190,371,472}, {500, 61,162}, {270,431,52,}, {580,121,21,},
{25¢,40,,48,}, {560,91,172}, {100,23,,30,}, {410,541,612}, {300,30,,50,},
{610,611,191}, {00, 11,25:},{310,321,561}, {20,41,311},{330,351,0:},
{291,29,,53,}, {601,60,,22,}, {21,72,272}, {331,382,582}, {271,282,55,},
{581,592,24,}, {262,260,460}, {572,570,150}, {232,240,480}, {542,550,170},
{32,50,320}, {342,360, 10}

Four of them are obtained by developing ecach of the following triples
mod(62, —):

{007171,92}9 {0072613142}7 {00’2719402}) {009331>492}~
Thus we complete the proof. []

The foregoing results give us our first part of the main theorem:

Theorem 3.7. For u=v=0 (mod6), v=78, and u>3.5v, there exists an NKTS(u)
containing a sub-NKTS(v).

We now consider INKTS(u,v), ve {48,54,60,66,72} in detail.

For v =48, we have to consider INKTS(u,48), uc {144,150, 156,162,168}.

Now u=144, 162 and 168 are covered by Theorem 1.3 and Lemma 3.6,
respectively.
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For u= 156, take a {4}-GDD of type 9*, apply Theorem 2.1 and Construction 2.3,
using weight 4 with 12 ideal points. This gives an INKTS(156,48).
For u=150, we have the following lemma.

Lemma 3.8. There exists an INKTS(150,48).

Proof. We present an INKTS(150,48) as follows:
INKTS(150,48). Point set: (Z(34)xZ(3))U{x1,x2,...,xa8}. Groups: {0¢,17¢},
{01, 171 }, {02, 172} mod(34, —). Hole: {xl,xz, e ,)C4g}.

Parallel classes of triples: Thirty-four of them are obtained by developing the fol-
lowing triples mod(34, —):

{230,311,272}, {240,331,42}, {00,181,X1}, {10,201,)(2}, {20,221,)(3},{30,241,)(4},
{40,261,)(?5}, {50,281,)(?6}, {60,301,)(?7}, {70,321,X3}, {80,01,)69}, {90,21,)610},
{100,41,)(?11}, {110,61,)(?12}, {120,81,)(13}, {130, 101,)(14}, {140, 12],){7]5}, {150, 141,)(?16},
{11,102, x17}, {31, 132,318}, {51,162, x10}, {71,202,%20}, {91,232,%21 },

{111,282,)622}, {131,292,)623}, {151,332,)624}, {161,12,)625}, {171,32,)626},
{191,62,)627}, {211,92,)628}, {231,122,)629}, {251,152,X30}, {271,182,)631},
{291,212,)632}, {142,160,)(33}, {302,330,)(34}, {222,260,)635}, {252,300,)(?36},
{262,320,)&'37}, {242,310,)&?33}, {172,250,)639}, {192,290,)(40}, {112,220,)641},
{02,170,X42}, {52, 190,)643}, {22, 180,)C44}, {82,270,)645}, {72,280,)646}, {322,200,)647},
{312,210,)648}.

Seventeen of them are obtained by adding 0,2,4,...,32 to the following triples
mod(34, —):

{70,241,322}, {240,71,152}, {00,10,)617}, {170,180,)&?18}, {20,50,)(?19}, {190,220,)(20},
{30,80,)&721}, {200,250,)(22}, {40,110,)(23}, {210,280,)(24}, {60,150,)(25}, {230, 320,)(26},
{160,270, x27}, {330, 100,28}, {130,260,x20}, {300,9,x30}, {140,29,x31},

{310,120, x32}, {01, 11, x33}, {171,181, X34}, {21, 51, %35}, {191,221, %36}, {31,81,%37},
{201,251,)(?38}, {41,111,)639}, {211,281,)(40}, {61,151,X41}, {231,321,)642},
{161,271,)643}, {331,101,)(?44}, {131,261,)(45}, {301,91,)(?46}, {141,291,)647},
{311,121,)&'48}, {02,12,)(1}, {172,182,)(2}, {22,52,)(3}, {192,222,)(4}, {32,82,)(5},
{202,252,)(6}, {162,232,)(7}, {332,62,)(3}, {122,212,X9}, {292,42,X10}, {132,242,)(]1},
{302,72,)612}, {142,272,)613}, {312,102,)614}, {112,262,)615}, {282,92,)616}.

Holey parallel classes of triples: Seventeen of them are obtained by adding 0, 2,4,
...,32 to the following triples mod(34, —):

{00,20, 100}, {170,190,270}, {30, 110,210}, {200,280,40}, {01,21,10;}, {171,191,27,},
{31, 111,211}, {201,281,41}, {42,62,14,},{21,,23,5,315}, {125,20,,30,},{29,, 35,135},
{90, 141,175}, {260,311,0,}, {70, 131,10, },{240,301,275}, {150,221,262},{320,51,92},
{160,261,32,}, {330,91, 152}, {120,251,192}, {290,81,22}, {60, 61,181}, {230,231, 11},
{140,151,291}, {310,32,12;}, {161,162,28,}, {331,332, 115}, {71,82,22,}, {244,25,,
52}, {12, 10,130}, {182,180,300}, {72,80,220}, {242,250,50}.
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Six of them are obtained by developing each of the following triples mod(34, —):
100,21, 12}, {00,31,52}, {00,41,22}, {00, 111,62}, {00, 141,215}, {00,161,9,}. O

We thus obtain:

Theorem 3.9. For all v=0 (mod 6) with v=144, there exists an NKTS(v) containing
a sub-NKTS(48).

For v=>54, we have to consider INKTS(u, 54), uc{162,168,174,180,186,192}.

Now u =162 is covered by Theorem 1.3.

For ue€{174,186,192} apply Theorem 2.1 and Construction 2.3, using weight 2 with
6 ideal points, to {4}-GDDs of types 12524! (see [5]), 6818'24! or 6821!24! (see the
appendix), respectively. For u =180 proceed similarly, starting with a TD(4,7) and
using weight 6 with 12 ideal points.

For u =168 we have the following lemma.

Lemma 3.10. There exists an INKTS(168,54).

Proof. We present an INKTS(168,54) as follows:

INKTS(168,54). Point set: (Z(38)x Z(3))U{x1,x2,...,xs54}. Groups: {09, 19}, {01,
191}, {02, 192} mod(38, —). Hole: {xl,xz, Ce ,)C54}.

Parallel classes of triples: Thirty-eight of them are obtained by developing the fol-
lowing triples mod(38, —):

{00,01,02}, {220,341,42}, {10,211,)(1}, {20,231,)62}, {30,251,)63}, {40,271,)(?4},
{50,291,)(?5}, {60,311,)(?6}, {70,331,X7}, {80,351,X3}, {90,371,)&?9}, {100,11,)&?10},
{110,31,X1|}, {120,51,)(12}, {130,71,)(]3}, {140,91,)614}, {150,111,X15},

{160, 131,)(16}, {170, 151,X17}, {180, 171,)613}, {21, 152,)619}, {41, 182,)620}, {61,212,)621},
{81,242,)622}, {101,272,)623}, {121,302,)624}, {141,332,)625}, {161,362,)626},
{181,12,X27},{191,32,X28}, {201,52,)629}, {221,82,)630}, {241,112,)631},
{261,142,)632}, {281,172,)(?33}, {301,202,)(34}, {321,232,)635}, {361,282,)(?36},
{192,200,)&'37}, {312,330,X3g}, {342,370,)(39}, {322,360,)(40},

{252,300,)(41}, {292,350,X42}, {262,340,X43}, {222,310,)644}, {102,210,)645},
{162,290,)646}, {92,230,)647}, {122,280,)648}, {72,240,)(349}, {132,32(),)650},
{62,270,)651},{352, 19(),)652}, {22,260,)653}, {372,250,)654}.

Nineteen of them are obtained by adding 0,2,4,...,36 to the following triples
mod(38, —):

{170,361,102}, {369,171,29:}, {00, Lo, X19}, {190,200,X20}, {20, S0, %21}, {210,240, %22},
{30.80.x23}, {220,270, 224}, {40, 110,x25}, {230,300,x26}, {60, 150,27}, {250,340, X258},
{70, 180,)629}, {260,370,)630}, {160,290,)(31}, {350, 100,)632}, {130,280,)633},
{320,90,)(34}, {140,310,)635}, {330,120,)(36}, {01,11,)637}, {191,201,)638},

{21,51,x30}, {211,241, x50}, {31,810, 341}, {221,271, x40}, {41, 111,343},
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{231,301,)644}, {61,151,X45}, {251,341,)646}, {71,181,)647}, {261,371,X48},
{161,291,)649}, {351,101,)650}, {131,281,)651}, {321,91,)652}, {141,311,)653},
{331,121,)&?54}, {02,12,)61}, {192,202,)62}, {22,52,)(3}, {212,242,)64}, {32,82,)(5},
{222,272,)66}, {42,112,367}, {232,302,Xg}, {72,162,X9}, {262,352,)(10}, {142,252,)(11},
{332,62,X12}, {182,312,X13}, {372,122,)(14}, {132,282,)(15}, {322,92,)(16},
{172,342,x17}, {362,152, x18}

Holey parallel classes of triples: Nineteen of them are obtained by adding 0,2,4,...,
36 to the following triples mod(38, —):

{00, 60,240}, {190,250,50}> {40,80,200}, {230,270, 10}, {70,900, 170}, {260,280,36¢},
{01,61,241}, {191,251,51}, {41,81,20:}, {231,271, 11}, {71,91,171}, {261,28,36,},
{4,,10,,28,}, {235,29,,9,}, {82, 125,245}, {272,315,5,}, {12,32, 115}, {20,,22,,30,},
{110,124, 135}, {300,311,325}, {13¢,151,14,2}, {320,341,332}, {100, 131, 15,},
{290,321,34,}, {14¢,181,212}, {330,371,22}, {160,211,19,}, {35¢,21,0,},

{30, 114,16}, {220,304,35,}, {120,22,18,}, {310,31,372}, {180,29;,36,},
{370,101, 172}, {20,161,25,}, {210,351,62}, {150,331,26,},

{34¢,141,72}.

Seven of them are obtained by developing ecach of the following triples
mod(38, —):

{00,61,10,}, {00,71,42}, {00,91,152}, {00,131,85}, {00,151,9,}, {00,161,26,},
{00,17,,28,}. 01

We thus obtain:

Theorem 3.11. For all v=0 (mod 6) with v>162, there exists an NKTS(v) containing
a sub-NKTS(54).

For v=60, we have to consider INKTS(u,60), uc{180,186,192,198,204} (sce
Lemma 3.5).

Now u =180 is covered by Theorem 1.3.

For u=186, take a TD(4,21) and apply Theorem 2.1 and Construction 2.3, us-
ing weight 2 with a=18 ideal points. For u =192 proceed similarly, starting with a
{4}-GDD of type 6°12'27' (see the appendix), using weight 2 with 6 ideal points,
while for u =204 take a {4}-GDD of type 6*9' (see [4]) and use weight 6 with 6
ideal points.

For u =198 we have the following lemma.

Lemma 3.12. There exists an INKTS(198,60).
Proof. We present an INKTS(198,60) as follows:

INKTS(198,60). Point set: (Z(46)xZ(3))U{x1,x2,...,x60}. Groups: {00,230},
{01,231}, {0,,23,} mod(46,—). Hole: {x1,x2,...,X60}-



110 D. Deng et al. | Discrete Mathematics 270 (2003) 99—114

Parallel classes of triples: Forty-six of them are obtained by developing the following
triples mod(46, —):

{39¢,421,40,}, {310,361,332}, {28¢,341,35,}, {320,401,36,}, {34¢,441,39,},
{200,381,02}, {450,251,)(?1}, {00,271,)(?2}, {440,261,)(3}, {10,301,)64}, {400,241,)65},
{20,331,)(?6}, {30,351,)(?7}, {40,371,)(?3}, {50,391,X9}, {60,411,)&?10}, {70,431,)611},
{80,451, x12}, {90, 11,313}, {100,31,x14}, {110,51,x15}, {120, 71,X16},
{130,91,)617}, {140,111,X13}, {150,131,)(19}, {160,151,)620}, {01,122,X21},

{21, 152,)622}, {41, 182,)623}, {61,212,)624}, {81,242,)625}, {101,272,)626},
{121,302,)(?27}, {141,342,)628}, {161,372,)629}, {171,412,)630}, {181,432,)631},
{191,452,)632}, {201,12,)633}, {211,32,X34}, {221,52,)(35}, {231,72,)(?36},
{281,132,)&'37}, {311,172,X3g}, {29],162,)(39}, {321,222,)(40}, {142,170,)641},
{192,230,)(42}, {202,250,)€43}, {232,290,X44}, {112,180,)(45}, {252,330,)C4()},
{282,370,)647}, {312,410,)648}, {322,430,)649}, {262,380,)65()}, {292,420,)651},
{42,190,)652}, {62,240,)653}, {22,210,)654}, {82,300,)(55}, {102,350,)655},
{92,360,)(?57},{442,260,)(53}, {382,220,)(59}, {422,270,)(?60}.

Twenty-three of them are obtained by adding 0,2,4,...,44 to the following triples
mod(46, —):

{210,421,72}, {440,191,302}, {140,371,262}, {370,141,32}, {190,441,32,},
{420,211,92}, {00,10,)(21}, {230,240,)(22}, {20,50,)(23}, {250,280,)&?24}, {30,80,)(25},
{260,310,x26}, {40, 110,27}, {270.340,x28}, {60, 150,%20}, {290, 380,30}, {70, 180,31},
{300,410,)632}, {90,220,)633}, {320,450,)634}, {200, 350,)635}, {430, 120,)636},{160, 330,)637},
{390,100,)(?38}, {170,360,)(39}, {400,130,)640}, {01,11,X41}, {231,241,)642},

{21,510, a3}, {251,281, %44}, {31,81,x45}, {261,311,x46}, {41, 111,x17},

{271,341,)(48}, {6],15],)(49}, {291,381,)(50}, {71,18],)&?51}, {30],411,)(52},
{91,221,)653}, {321,451,X54}, {201,351,)(55},{431,121,X56}, {161,331,)657},
{391,101,)658}, {171,361,)659}, {401,131,)660}, {02,12,)(31}, {232,242,)62},

{22,52,)63}, {252,282,)64}, {62,112,)«75}, {292,342,)66}, {102,172,)67},

{332,402,)63}, {122,212,)69}, {352,442,)(10}, {42,152,)(?11}, {272,382,)612},
{182,312,)(13}, {412,82,)614}, {222,372,)(15}, {452,142,X16},

{192,362,)(17}, {422,132,X13}, {202,392,X19}, {432,162,)(20}.

Holey parallel classes of triples: Twenty-three of them are obtained by adding
0,2,4,...,44 to the following triples mod(46, —):

{00,40,60},{230,270,2%}, {10, 110,190}, {240,340,420}, {210,410, 70}, {440, 180,300},
{01,21,61}, {231,251,29¢}, {11, 111,19}, {241,34,,42,}, {81,201,40,},
{31,431,171}, {02,42,62}, {232,272,29,}, {12,92,19,}, {24,,32,,42,},
{32,152,35,}, {262,38,,12,}, {170,21,,20,}, {400,44,,43,}, {50,12,16,},
{280,351,392}, {200,33,,40,}, {430,101,172}, {30,181, 112}, {26¢,41,,34,},
{13¢,301,22,}, {36¢,71,45:}, {160,161,321}, {390,391,9:}, {140,151,36,},
{370,381, 131}, {20,41,261}, {250,271,31}, {221,25,,41,}, {451,2,,18,},
{141,14,,36,}, {371, 372, 132}, {51, 72, 282}, {281, 302,52}, {212,220,380},
{447,450, 150}, {102,120,310}, {332,350,80}, {82,100,320}, {312,330,%7}-
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Six of them are obtained by developing each of the following triples mod(46, —):

{00,91,145}, {00,111,17,}, {00,121,62}, {00, 141,232}, {00,191,10,},
{00,20,,30,}. [

We thus obtain:

Theorem 3.13. For all v=0 (mod 6) with v=180, there exists an NKTS(v) containing
a sub-NKTS(60).

For v=66, we have to consider INKTS(u,66), uc{198, 204, 210} (see Lemma
3.2).

Now u =198 is covered by Theorem 1.3.

For u=210, take a {4}-GDD of type 6*9'; apply Theorem 2.1 and Construction
2.3, using weight 6 with 12 ideal points. This gives an INKTS(210, 66).

For u=204, we have the following lemma.

Lemma 3.14. There exists an INKTS(204,66).

Proof. We present an INKTS(204,66) as follows:

INKTS(204,66). Point set: (Z(46)x Z(3))U{x1,x2,...,%66}. Groups: {09,230},
{01, 231 }, {02, 232} mod(46, —). Hole: {xl,X2, Cen ,x66}.

Parallel classes of triples: Forty-six of them are obtained by developing the following
triples mod(46, —):

{380,421,402}, {320,441,42}, {450,231,X1}, {00,251,)(2}, {440,241,)(3}, {10,281,)64},
{400,221,)65}, {20,311,)66}, {30,331,)67}, {40,351,)63}, {50,371,)69}, {60,391,)610},
{70,411, x11}, {80,431,x12}, {90,451, x13}, {100, 11,x14}, {110,31,x15},
{120,51,)(?16}, {130,71,)617}, {140,91,)(18}, {150,111,)(19}, {160,131,)620},
{170,151,)(2]},{180,171,)(?22}, {0],132,)(23}, {21,162,)&?24}, {41,192,X25},
{61,222,)(?26}, {81,252,)(27}, {101,282,)(28}, {121,312,XQ9}, {141,342,X30},
{161,372,)631}, {181,422,)632}, {191,442,X33}, {201,02,)634}, {211,22,)635},
{261,82,)636}, {271,102,)637}, {301,142,)(38}, {321,172,)639}, {291,152,)640},
{341,212,)641}, {361,242,)(42}, {381,272,)643}, {401,302,)(44}, {182,200,)(45},
{322,350,)646}, {352,390,X47}, {382,430,)643}, {362,420,)649}, {292,360,)(?50},
{332,410,xs51}, {122,210,x50}, {232,330,x53}, {262,370,x54}, {72,190, %55},
{202,340,x56 }, {52,230,%57}, {92,280, %58}, {112,310,X50}, {12,220,%60},
{62,300,)661}, {32,290,)662}, {452,260,)663}, {412,240,)664}, {432,270,)665},
{392,250,)(?66}.

Twenty-three of them are obtained by adding 0,2,4,...,44 to the following triples
mod(46, —):

{14¢,331,43,}, {370,101,20,}, {00, Lo,x23}, {230,240,%24 }, {20, 50,25}, {250,280, %26},
{30,80,x27}, {260,310,x28}, {40, 110,x20}, {270,340,x30}, {60, 150,x31}, {290,380,x32},
{70,180,x33}, {300,410, X34 }, {90,220, %35}, {320,450, X36 }, {200, 350,x37}, {430, 120, X35},
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{160,330,)639}, {390, 100,)(,‘4()}, {170,360,X41}, {400,130,)642}, {210,420,)643},
{440,190,)644}, {01,11,)645}, {231,241,)646}, {21,51,)(47}, {251,281,)648},
{31,81,)649}, {261,311,)65()}, {41,111,)(51}, {271,341,)652}, {61,151,)(?53},
{291,381,)(54}, {71,181,)655}, {301,411,)(56}, {91,221,)&?57}, {321,451,)(58},
{201,351,)&'59}, {431,121,)(60}, {19],361,)(61}, {421,131,)(62}, {211,401,)663},
{441, 171,564}, {161,371,x65}, {391, 141,%66}, {02, 12,31}, {232,242, 32},
{22,52,)63}, {252,282,)64}, {32,82,)65}, {262,312,)66}, {42, 112,)67}, {272,342,)63},
{62,152,)(9}, {292,382,)(?10}, {102,212,X11}, {332,442,)612}, {192,322,)613},
{422,92,)(?14}, {72,222,)(15}, {302, 452, xlé}, {182, 352, x17}, {412,122, xlg},
{172,362,)&'19}, {402,132,X20}, {162,372,)(21}, {392,142,)(22}.

Holey parallel classes of triples: Twenty-three of them are obtained by adding
0,2,4,...,44 to the following triples mod(46,—):

{40,80,100}, {270,310,330}, {30,130,210}, {260,360,440}, {190,39, 50},

{420, 160,280}, {61,81,121}, {291,311,35:}, {201,301,381}, {431,71, 151},
{131,33,,45,}, {361,101,22,}, {115,15,,17,}, {34,,38,,40,}, {215,31,,39,},
{44,,8,,16,}, {02,202,32,}, {232,432,9,}, {120, 144,135}, {350,371, 36,1},

{150, 181, 19,2}, {380, 41y, 42,2}, {110,17,,142}, {340,40,,372}, {200,27,,30,},
{430,41,72}, {90, 191,242}, {320,421, 15}, {170,321,41,}, {400,91, 185},
{140,341,45,}, {370, 111,225}, {22¢,441,35,}, {450,211,12,}, {00,041, 161},
{230,231,39}, {10,21,241}, {240,251, 11}, {31,102,26,}, {261,332,32}, {51,52,272},
{281,282,42}, {22,20, 180}, {252,250,410}, {62,70,29%}, {292,300, 60}

Nine of them are obtained by developing each of the following triples mod(46, —):

{00,51,72}, {00,81,122}, {00,91,52}, {00, 111,62}, {00,131,215}, {00, 141,85},
{00,171,95}, {00,181, 115}, {00,21,,33,}. [

We thus obtain:

Theorem 3.15. For all v=0 (mod 6) with v>198, there exists an NKTS(v) containing
a sub-NKTS(66).

For v=72, no exceptions are left after applying Theorem 1.3 and Lemmas 3.3 and
3.6. Thus we have

Theorem 3.16. For all v=0 (mod 6) with v>=216, there exists an NKTS(v) containing
a sub-NKTS(72).

The foregoing results give us the second part of our main theorem:

Theorem 3.17. For v=18,24,30,36,42,48,54,60,66 or 72, and u=0 (mod6), there
exists an NKTS(u) containing a sub-NKTS(v) if and only if u>3v.

Theorem 1.6 now follows from Theorems 3.7 and 3.17.
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Appendix

{4}-GDD of type 6821'24': We construct a {3,4}-GDD of type 6%21! with the
property that its set of triples can be partitioned into 24 parallel classes. By adding 24
infinite points, we get the desired GDD.

Point set: (Z(24) x{1,2})U{x1,x2,...,x10} U({a} x Z(2)).

Groups: {x1,x2,...,X19,d0,4a1 }, with {01,8;, 161,02, 82, 16,} mod(24, —).

Blocks of size four: Develop {01,121,15,13,}, {01,11,31,71}, {02,12,32,72}
mod(24, —).

Parallel classes of triples:

{121,231,&0}, {132,02,(11}, {171,221,71}, {172,222,72}, {01,22,)(?1}, {11,42,)62},
{21,62,)(3}, {31,82,)(4}, {41,102,)(5}, {51,122,)(6}, {61,152,)(7}, {91,192,x8},
{101,212,)&'9}, {111,232,)(10}, {131,32,)(]1}, {14],52,)(12}, {81,12,)(13}, {151,92,)614},
{161,112,)(15}, {181,142,)616}, {191,162,X17}, {201,182,)(]8}, {211,202,)619}
mod(24, —).

The subscripts on a are to be developed mod 2.

{4}-GDD of type 18*30'36': We construct a {3,4}-GDD of type 18*30' with the
property that its set of triples can be partitioned into 36 parallel classes. By adding 36
infinite points, we get the desired GDD.

Point set: (Z(36) x{1,2})U{x1,x2,...,x20} U({a,b,c,d,e} x Z(2)).

GI'OU.pSZ {xl,xz, . ,xzo,ao,al,bo,b], o, C],do,d], €0, €1 }, with {{Qi92j74j’ ey 34}'}5
{1:35,5)--,35 1 j=1,2}

Blocks of size four: Develop {01,151,0,,17,}, {01,174, 15, 16,} mod(36,—).

Parallel classes of triples:

{141,175, 185}, {171,22,,25,}, {61,71,132}, {161,191,28,}, {01,102, x1}, {11, 122,x2},
{341,112,)63}, {21,162,)64}, {351,142,)65}, {31,212,)66}, {321, 152, X7}, {41,262,)68},
{331,202,)(?9}, {51,292,)(1()}, {91,342,)(11}, {101,02,)(?12}, {181,92,)613}, {111,32,)614},
{81, lz,xls}, {121,62,X16}, {291,242,X17}, {231, 192,)618}, {301,272,)619}, {251,232,)(?20},
{211,261,610}, {201,271,])0}, {22],31],00}, {131,241,d0}, {151,281,6‘0}, {352,42,(11},
{312,22,171}, {322,52,01}, {332,82,d1}, {302,72,61} mod(36,—).

The subscripts on a,b,c,d and e are to be developed mod 2.

{4}-GDD of type 6818'24!: We construct a {3,4}-GDD of type 6°18' with the
property that its set of triples can be partitioned into 24 parallel classes. By adding 24
infinite points, we get the desired GDD.

Point set: (Z(24)x{1,2})U{x1,x2,...,x15} U({a} x Z(3)).

Groups: {x1,x2,...,x15,a0,a1,a>}, with {0;,4,,8;,12;,16;,20;} mod(24,—) for
j=12.

Blocks of size four: Develop {01,51,7,,10,}, {01,61,12,,19,} mod(24,—).

Parallel classes of triples:

{121,131, a0}, {01.42,a1}, {122,225,a2}, {81,111, 18}, {61,151,17:}, {175,18,,23,},
{192,215,65}, {11, 12,21}, {21,32,x2}, {231,22,x3}, {31, 112,34}, {224, 72,x5},
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{41, 152,x6}, {201, 102,x7}, {51,202,x58}, {211, 132,x0}, {71,02,x10}, {141, 82,x11},
{91,52,x12}, {191,162, x13}, {161,142,x14}, {101,9,,x15} mod(24, —).

The subscripts on a are to be developed mod 3.

{4}-GDD of type 6°12'27': We construct a {3,4}-GDD of type 6°12! with the
property that its set of triples can be partitioned into 27 parallel classes. By adding 27
infinite points, we get the desired GDD.

Point set: (Z(27)x {1,2})U{x1,x2,...,x12}.

Groups: {x1,x2,...,x12}, with {01,9;,18,02,9,, 18,} mod(27,—).

Blocks of size four: Develop {0y,131,83,19,} mod(27, —).

Parallel classes of triples:

{91, 151,191}, {111,124,14,}, {51,104,17;}, {242, 15,72}, {232,25,,26,},
{62,135, 185}, {201,225,3,}, {131,162,2,}, {81,161,92}, {221,61,0},
{01,42,)(1}, {11,82,)(2}, {261,102,X3}, {21,142,X4}, {251,112,)C5}, {31,172,)(?6},
{241,122,)67}, {41, 212, xg}, {231,192,)69}, {181,152,)(310}, {71,52,)611},
{211,202,)612} mod(27, —).
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