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1. Introduction

The classical Littlewood–Richardson rule [LR] describes the structure constants
obtained when the cup product of two Schubert classes in the cohomology ring of a
complex Grassmannian is written as a linear combination of Schubert classes. It also
gives a rule for decomposing the tensor product of two irreducible polynomial
representations of the general linear group into irreducibles, or equivalently, for
expanding the product of two Schur S-functions in the basis of Schur S-functions. In
this paper, we give a short and self-contained argument which shows that this rule is
a direct consequence of Pieri’s formula [P] for the product of a Schubert class with a
special Schubert class.
There is an analogous Littlewood–Richardson rule for the Grassmannians which

parametrize maximal isotropic subspaces of Cn; equipped with a symplectic or
orthogonal form. The precise formulation of this rule is due to Stembridge [St],
working in the context of Schur’s Q-functions [S]; the connection to geometry was
shown by Hiller and Boe [HB] and Pragacz [Pr]. The argument here for the type A
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rule works equally well in these more difficult cases and gives a simple derivation of
Stembridge’s rule from the Pieri formula of [HB].
Currently, there are many proofs available for the classical Littlewood–

Richardson rule, some of them quite short. The proof of Remmel and Shimozono
[RS] is also based on the Pieri rule; see the recent survey of van Leeuwen [vL] for
alternatives. In contrast, we know of only two prior approaches to Stembridge’s rule
(described in [St,HH] and [Sh], respectively), both of which are rather involved.
The argument presented here proceeds by defining an abelian groupH with a basis of

Schubert symbols, and a bilinear product on H with structure constants coming from
the Littlewood–Richardson rule in each case. Since this rule is compatible with the Pieri
products, it suffices to show thatH is an associative algebra. The proof of associativity is
based on Schützenberger slides in type A; and uses the more general slides for marked
shifted tableaux due to Worley [W] and Sagan [Sa] in the other Lie types. In each case,
we need only basic properties of these operations which are easily verified from the
definitions. Our paper is self-contained, once the Pieri rules are granted.

2. The Littlewood–Richardson rule for type A Grassmannians

Let X ¼ Gðk; nÞ be the Grassmannian of k-dimensional linear subspaces of Cn and
set m ¼ n � k: For each partition l whose Young diagram is contained in the k � m

rectangle ðmkÞ; there is a Schubert class sl in the cohomology ring H�ðX ;ZÞ: If a
partition *lCðmkÞ can be obtained from l by adding a horizontal strip with p boxes,

then we write l!p *l: The Pieri rule [P] states that for each ppm; sp � sl is equal to
the sum of all s*l for which l!p *l:
In this section, we will prove that the Littlewood–Richardson rule holds in the ring

H�X ¼ H�ðX ;ZÞ:We note however that the argument requires only two facts about
this ring: (i) the classes sl for lCðmkÞ form a basis of H�X ; and (ii) the Pieri rule
holds in H�X : An easy induction shows that the special Schubert classes sp for

1pppm generate the entire ring H�X : This also follows from the Giambelli

formula, which is a direct consequence of Pieri’s rule. Let l3 ¼ ðm � lk;y;m � l1Þ
denote the dual partition of l:
A tableau T of skew shape l=m is a filling of the boxes of l=m with positive integers

such that the entries are weakly increasing along each row and strictly increasing
down each column. The content of T is the sequence whose ith element is the number
of boxes of T containing i: The word w ¼ wðTÞ of T is the sequence obtained by
reading the entries of T going from right to left in successive rows, starting with the
top row. We say that w ¼ w1ywr is a lattice word and that T is a Littlewood–

Richardson tableau (or LR tableau) if the number of occurrences of i among w1ywj

is not less than the number of occurrences of i þ 1; for all i and j with 1pjpr:

Given three partitions l; m; nCðmkÞ; define cðl; m; nÞ to be the number of LR
tableaux of shape l3=m with content n3: (If m is not contained in l3 then we set
cðl; m; nÞ ¼ 0:)
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Proposition 1. For any three partitions l; m; nCðmkÞ and integer ppm; we have

X

l!p
*l

cð*l; m; nÞ ¼
X

m!p
*m

cðl; *m; nÞ: ð1Þ

Proof. We assume here familiarity with Schützenberger’s jeu de taquin (explained
e.g. in [F, Section 1.2]). Given a skew tableau T and an empty box which is an inner
corner of T ; we may perform Schützenberger slides to obtain a new skew tableaux
T 0; the empty box slides to an outer corner of T :

Fact 1. T is an LR tableau if and only if T 0 is an LR tableau.

This follows immediately from the definitions; alternatively, it is a consequence of
the well-known fact that plactic relations on words preserve the lattice property. For
the direct implication, it suffices to consider a single vertical slide as displayed below.
In the figure, the symbols u; x; y; z and v denote the words of their respective
subsets in the tableau. In particular, they are read from right to left.

u u

y y
x

z
v

x
z

v

b b
a

a

We must check that the word ubaxyzv of the resulting tableau is a lattice word. This
is true because ubxyazv is a lattice word, and the tableau inequalities imply that there
are at least as many a’s in the word z as there are ða � 1Þ’s in x: A similar argument
shows that reverse slides also preserve the lattice property.

We shall call an empty box contained inside the skew shape l3=m a hole. Given an

LR tableau on a shape l3= *m such that m!p *m; we can use Schützenberger slides
starting from the holes contained in *m=m; in right to left order, to obtain another LR
tableau of some shape *l3=m: Define the sliding path of each such hole to be the set of
boxes it occupies during the sliding process.

Fact 2. Two distinct sliding paths cannot cross each other.
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More precisely, if a hole is at a given position during its slide, then the boxes in any
subsequent sliding path must all lie strictly left or weakly below that position. For
otherwise, at some point a hole will slide right to occupy the position vacated by a
vertical slide in the previous sliding path. Depicting the vertical slide as

we must have ypa; and hence a subsequent hole, having arrived at position x; will
slide down to position y: Since different sliding paths cannot cross each other, it

follows that l!p *l: Furthermore, the entire process can be inverted using reverse
slides. This gives a bijective proof of identity (1). &

The following theorem is one out of many equivalent statements of the classical
Littlewood–Richardson rule.

Theorem 1. The constant cðl; m; nÞ is the coefficient of sn in the product sl � sm:

Proof. Let H be the free abelian group generated by symbols sl for all partitions

lCðmkÞ: We define a bilinear operator ‘‘3’’ on H by

sl3sm ¼
X

n

cðl; m; nÞsn:

The operator 3 is, a priori, neither commutative nor associative.

It is easy to see that there is a unique LR tableau of shape l3 and a unique LR
tableau of shape ðmkÞ=m; and that these tableaux have contents l3 and m3;
respectively. It follows that s| acts as a left and right identity in H: By taking l ¼ | in

Proposition 1 we deduce that sp3sm ¼
P

s *m; where the sum is over m!
p
*m: Similarly,

one obtains sl3sp ¼
P

s*l by setting m ¼ |; in other words, the operator 3 satisfies the
Pieri rule.
Eq. (1) is therefore equivalent to the associativity relation ðsl3spÞ3sm ¼ sl3ðsp3smÞ: It

follows that the elements sp for 1pppm generate an associative subalgebra of H:

Using the same Pieri induction as before, one sees that this subalgebra is the entire
algebra H: We conclude that the linear map H�X-H given by sl/sl is an
isomorphism of (associative) rings. &

Remark. (1) In its usual formulation, the Littlewood–Richardson rule states that the
coefficient cðl; m; nÞ is equal to the number of LR tableaux of shape n=l with content
m: To see this, note that the identity cðl; m; ðmkÞÞ ¼ dl;m3 holds by definition (this
corresponds to Poincaré duality in H�X ). It follows that

cðl; m; nÞsðmkÞ ¼ sn3ðslsmÞ ¼ ðsn3slÞsm ¼ cðn3; l; m3ÞsðmkÞ
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and hence cðl; m; nÞ ¼ cðn3; l; m3Þ; as required. Alternatively, a bijective proof of this
equality may be obtained using [F, Proposition 5.1.2].
(2) The above argument may be applied to derive other forms of the Littlewood–

Richardson rule. For example, it gives a short proof of the puzzle rule of Knutson
et al. [KTW]. In the language of puzzles, Schützenberger slides correspond to a
subset of the propagations described in [KT] (those which involve only non-
equivariant puzzle pieces).

3. The Littlewood–Richardson–Stembridge rule for maximal isotropic Grassmannians

The odd orthogonal Grassmannian Y ¼ OGðn; 2n þ 1Þ parametrizes n-dimen-

sional isotropic linear subspaces of C2nþ1 with respect to a non-degenerate
orthogonal form. The cohomology ring H�ðY ;ZÞ has a basis of Schubert classes
tl; indexed by strict partitions l (i.e. with distinct parts) such that lCrn; where
rn ¼ ðn; n � 1;y; 1Þ: For each strict lCrn; define l3Crn as the strict partition
whose parts complement the parts of l in the set f1;y; ng: The shifted diagram SðlÞ
is obtained from the Young diagram of l by indenting the ith row by i � 1 columns,
for each iX1: For skew diagrams we set Sðl=mÞ ¼ SðlÞ\SðmÞ: For example, if
n ¼ 7; l ¼ ð5; 3; 1Þ; and m ¼ ð5; 2Þ then Sðl3=mÞ is the diagram:

Recall that a border strip is an edge-connected skew diagram that contains no

2� 2 block of squares. As before, we write l!p *l if the partition *lCrn can be

obtained from l by adding a horizontal strip of length p: In this case, the shifted

skew diagram Sð*l=lÞ is a union of border strips. The Pieri rule for OGðn; 2n þ 1Þ;
due to Hiller and Boe [HB], states that

tp � tl ¼
X

2Nð*l=lÞt*l; ð2Þ

where the sum is over strict *lCrn with l!
p *l; and Nð*l=lÞ is one less than the number

of border strip components of Sð*l=lÞ: The Pieri rule implies that the special
Schubert classes tp for 1pppn generate H�ðY ;ZÞ:
Let A be the ordered alphabet 10o1o20o2o?; the symbols 10; 20;y are said to

be marked. A shifted tableau T on the shifted skew shape Sðl=mÞ is a filling of the
boxes of Sðl=mÞ with symbols from A such that (i) the entries are weakly increasing
along each row and down each column, and (ii) each row contains at most one i0 and
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each column contains at most one i; for every integer iX1: The content of T is the
partition whose ith part is the number of boxes with entry i or i0 in T ; while the word
w ¼ wðTÞ of T is defined as in Section 2.

For any integer i we set î 0 ¼ i and î ¼ ði þ 1Þ0: If w ¼ w1w2ywp is a word of

marked and unmarked integers wj; then we write #w ¼ ŵ pyŵ 2ŵ 1: We say that w is

an LRS word if (i) w #w is a lattice word, i.e. every i or i0 in w #w is preceded by more
occurrences of i � 1 than of i; for all i; and (ii) the last occurrence of i0 in w (if any) is
followed by at least one i; for all iX1: A tableau T is a Littlewood–Richardson–

Stembridge tableau (or LRS tableau) if wðTÞ is an LRS word.
Given three strict partitions l; m; nCrn; define f ðl; m; nÞ to be the number of LRS

tableaux of shape Sðl3=mÞ with content n3: (If m is not contained in l3 then we set
f ðl;m; nÞ ¼ 0:) For example, if n ¼ 7 we have f ðð5; 3; 1Þ; ð5; 2Þ; ð6; 5; 4; 1ÞÞ ¼ 4 as
counted by the following list of LRS tableaux:

Theorem 2. The constant f ðl; m; nÞ is the coefficient of tn in the product tl � tm:

Using the same argument as in the proof of Theorem 1, Theorem 2 follows from
the Pieri rule (2) and the next proposition, which comes from the associativity
relation in H�ðY ;ZÞ:

Proposition 2. For any three strict partitions l; m; nCrn and integer ppn; we have

X

l!p
*l

2Nð*l=lÞf ð*l; m; nÞ ¼
X

m!p
*m

2Nð *m=mÞf ðl; *m; nÞ: ð3Þ

The proof of Proposition 2 occupies the remainder of this section. Define the main

diagonal D to be the set of squares along the southwest border of SðrnÞ: We will
apply the shifted analogue of Schützenberger’s sliding operation, constructed by
Worley [W] and Sagan [Sa], to LRS tableaux. This involves the usual sliding moves
which refer to the alphabet A; with the exception of the horizontal slide in case (a)
below, when a different rule applies. In addition, there is a special slide in case (b),
which is used only when the empty box is on the diagonal D:

These operations are invertible using the obvious reverse slides.
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Suppose that we are given an LRS tableau T and an empty box at an inner corner
of T ; and let T 0 be the result of performing a shifted sliding operation to T : The next
lemma is parallel to Fact 1, and follows from the fact that the shifted analogues of
the plactic relations preserve the Littlewood–Richardson–Stembridge property (see
[W,Sa,St] for details.) We give a direct proof here.

Lemma 1. T is an LRS tableau if and only if T 0 is an LRS tableau.

Proof. For any a in the alphabet A; let NaðwÞ denote the number of occurrences of a

in w: It follows immediately from the definitions that for any LRS word w;

NiðwÞ4Niþ1ðwÞ; for each unmarked iAA: ð4Þ

Since horizontal slides do not change the word of a tableau, we need only consider
special and vertical slides. Observe that in either case, condition (ii) in the definition
of an LRS tableau is easily verified; hence, we concentrate on condition (i).
We start with a special slide as displayed below:

u

y

v

u

y

v

i′
i

i i

We must show that if w1 ¼ ui0yiv is an LRS word, then so is w2 ¼ uiiyv: Using (4) we
see that NiðuÞ þ 1pNiðw1ÞoNi�1ðw1Þ ¼ Ni�1ðuÞ: Since i0; ieyv#v#y this implies that
every i0 and i in the word w2 #w2 is preceded by more occurrences of i � 1 than of i:
Furthermore, since Niðw1#vði þ 1Þ0 #yÞXNiþ1ðw1#vði þ 1Þ0 #yÞ it also follows that every
ði þ 1Þ0 and i þ 1 in w2 #w2 is preceded by more occurrences of i than of i þ 1: All other
symbols are not affected by the slide.
Next, consider a vertical slide. In the figure, a and b are symbols such that apb (if

b is marked then aob):

u
x
z

v

u
x
z

v

y y
b

a
ba

We must show that if w1 ¼ ubxyazv is an LRS word then so is w2 ¼ ubaxyzv:
Assume first that a ¼ i is unmarked. To see that every i0 and i in the new word w2 #w2
is preceded by more occurrences of i � 1 than of i; we must show that NiðubÞ þ
Ni0 ðxÞoNi�1ðubÞ: If NiðzÞ þ Ni0 ðzÞXNi�1ðxÞ þ Ni0 ðxÞ then this follows from the LRS
condition NiðubxyizÞ þ Ni0 ðzÞpNi�1ðubxÞ: Otherwise, NiðzÞ þ Ni0 ðzÞoNi�1ðxÞ þ
Ni0 ðxÞ which can only happen when z is a string of copies of i terminating at the
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diagonal D; in which case we have NiðzÞ ¼ Ni�1ðxÞ þ Ni0 ðxÞ � 1 and i � 1ezv: The
word z here cannot contain i0 because of condition (ii) in the definition of an LRS
tableau. Using (4) we get

NiðubÞ þ 1þ NiðzÞpNiðw1ÞoNi�1ðw1Þ ¼ Ni�1ðubÞ þ Ni�1ðxÞ

which also implies the required inequality.
Since â ¼ ði þ 1Þ0; we also must check that the string w2 #v#z#y #x contains more

occurrences of i than of i þ 1: The only way this can fail is if #y #x contains an i þ 1; i.e.
if ði þ 1Þ0Axy: Now all symbols in x are less than i; so ði þ 1Þ0ex: If ði þ 1Þ0Ay then

b̂ ¼ ði þ 1Þ0 or b̂ ¼ i þ 1; so the lattice property of the original word w1 #w1 implies
the desired one.
Now suppose that a ¼ i0 is marked. To see that the displaced i0 is not a problem,

we must verify that NiðubÞoNi�1ðuÞ: Since iexy and i � 1exy; this follows from the
LRS property of the original word. We also need to check that all symbols ði þ 1Þ0
and i þ 1 in w2 #w2 are preceded by enough occurrences of i: This can only fail if #y #x
contains ði þ 1Þ0 or i þ 1; i.e. if xy contains i or ði þ 1Þ0: These symbols cannot be in x

since all symbols in x are less than i0: The only symbol among the two that can be in y

is ði þ 1Þ0; and this can only occur once in y: Furthermore, we must have b̂ ¼ ði þ 1Þ0
or b̂ ¼ i þ 1: Since ie#y #x and i þ 1A#y; we deduce that w1#v#z contains more
occurrences of i than of i þ 1; as required.
By inverting these arguments, one can show that reverse slides also send LRS

tableaux to LRS tableaux. The details are left to the reader. &

As in the proof of Proposition 1, we shall call an empty box contained inside the

skew shape Sðl3=mÞ a hole, but we will need to distinguish between two kinds of

holes. For this purpose, we extend the ordered alphabet A to Ã ¼ A,fo0; og; where
o0oo and the new symbols represent a marked and an unmarked hole. Define a NW-

holed tableau (respectively, a SE-holed tableau) to be a filling of a shifted shape

Sðl3=mÞ with symbols from Ã so that the entries in A satisfy the usual conditions
and the holes form a shifted horizontal strip L along its northwest (respectively,
southeast) border, such that wðLÞ is an LRS word. This means that the holes in a
NW-holed tableau occupy a skew shape Sð *m=mÞ for which m!p *m so that any hole
above another hole is marked, any hole to the right of another hole is unmarked, and
the most southwest hole is unmarked; the conditions for a SE-holed tableau are
similar.

Identity (3) is equivalent to the statement that there are equally many NW and SE-

holed LRS tableaux with content n on the shapeSðl3=mÞ:We will use shifted slides
to construct an explicit bijection between these two kinds of tableaux. Given a NW-
holed LRS tableau, we first slide the unmarked holes to the southeast border, in right
to left order, after which we slide the marked holes, proceeding from bottom to top.
If the final position of an unmarked hole is in a row above the final position of
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the previous hole, then we change it to a marked hole. Marked holes always
stay marked.

O

OO′

O

O′ O

O′

O′

O

O′

For the reverse bijection, we begin by sliding the marked holes in top to bottom
order, followed by the unmarked holes in left to right order. If the path of a marked
hole intersects the diagonal D then we erase its marking; the unmarked holes remain
unmarked. To verify that these two transformations are inverse to each other, we
must check that after all the holes have been slid by one of them, the other will slide
them back in the opposite order.

Let P be a set of boxes in the shifted diagram Sðl3=mÞ; and let B be any box in
this diagram. We say that B lies west of P if P contains a box which is strictly east
and weakly north of B: And we say that B lies north of P if P contains a box which is
strictly south and weakly west of B:

Lemma 2. Consider the path of a hole o2 which slides directly after a hole o1:

(a) At any given step, if o2 lies west of the sliding path of o1; and o2 is not on D; then at

the next step o2 will remain west of the path of o1:
(b) At any given step, if o2 lies north of the sliding path of o1; then the same is true at

the next step.

Proof. Suppose the position of the hole o2 is as indicated in the figure.

a

bO2

The only way (a) can fail is if o1 was in the position of b and moved down from
there. But then apb (and if b is marked then aob), so o2 will also move down.
Notice that there must be a symbol from A in the square occupied by a; because o2 is
not on the diagonal D:
The only way (b) can fail is if the first hole o1 was in the position of a and moved

east from there. But this means that aXb (and if b is unmarked then a4b), hence, o2
will move east as well. This time there must be a symbol from A in the square
occupied by b: &
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Consider the sequence of slides from northwest to southeast, beginning with the
unmarked holes. If the path of an unmarked hole crosses the previous path, then by
Lemma 2(a) this must be at a corner, and Lemma 2(b) then implies that the hole will
remain north of the previous path from that point onwards. Since this creates a path
which meets the diagonal D; the next unmarked hole will be forced to cross it, and so
on. The result is that all of the remaining unmarked holes will become marked and
land in reverse order. After all the unmarked holes have been slid, Lemma 2(b) will
force every subsequent marked hole to stay north of the previous hole’s path, thus,
all the marked holes retain their order. It follows that the reverse slides are
performed in the opposite order, as required. Similar arguments can be used to show
that reverse slides will deposit the holes along the northwest border in the opposite
order. This completes the proof of Proposition 2.

Example. The following gives an example of the bijection:

1 1

1′ 1

1′

4′

2′ 3′ 3

1′ 2′ 3′

1

3

O

O′

O
→

1 1

1′ 2 2

1′ 3′ 3

1′ 3′

1

1

2′

4′

2′

2

3 4′ 4′3

4

O′

O

O

→

1 1

1′ 2 2

1′ 3′ 3

3′

1

2′

2′

2

4

1 1

O′

O′

O

→

1 1

1′ 2 2

3′

3′

3

1

2′

2′

4

1

3

1′ 1

2

O′

O′

O

22

2

4

Remark. Arguing as in Section 2, we can show that f ðl; m; nÞ is equal to the number
of LRS tableaux of shape Sðn=lÞ with content m; which is Stembridge’s original
statement of the rule. Note also that the even orthogonal Grassmannian OGðn þ
1; 2n þ 2Þ is isomorphic to the odd orthogonal Grassmannian OGðn; 2n þ 1Þ; and the
Schubert structure constants for these two spaces coincide. The Schubert classes on
the Lagrangian Grassmannian LGðn; 2nÞ are also indexed by strict partitions l
contained in rn; and the corresponding structure constants eðl; m; nÞ satisfy the
identity eðl; m; nÞ ¼ 2cðlÞþcðmÞ�cðnÞf ðl; m; nÞ: This follows by comparing the Pieri
formulas for these spaces; see [Pr] for more details. Therefore, the proof of the
Littlewood–Richardson–Stembridge rule given here also covers the maximal
isotropic Grassmannians in Lie types C and D:
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