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Abstract

Some oscillation and nonoscillation criteria for quasilinear differential equations of second ord
are obtained. These results are extensions of earlier results of Huang (J. Math. Anal. Appl. 210
712–723) and Elbert (J. Math. Anal. Appl. 226 (1998) 207–219).
 2004 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Let us consider the following second order linear differential equation:

x ′′ + q(t)x = 0, t � t∗ > 0, (1)

whereq(t) � 0 is locally integrable on[t∗,∞). If a solutionx(t) of (1) has arbitrarily large
zero, it is called oscillatory, otherwise it is called nonoscillatory. If all nonzero solutions o
(1) are oscillatory, then (1) is called oscillatory, otherwise it is called nonoscillatory.

The well-known Hill theorem [2] gives the following global integral criteria:
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m:
Theorem A. If q ∈ L1[t0,∞), and

lim sup
t→∞

t

∞∫
t

q(s) ds <
1

4
, (2)

then(1) is oscillatory. Otherwise, if

lim inf
t→∞ t

∞∫
t

q(s) ds >
1

4
, (3)

then(1) is nonoscillatory.

In 1997, Huang [3] obtained the following interval criteria for the oscillation an
nonoscillation of (1):

Theorem B. If there existst0 � t∗ such that for every positive integern,

2n+1t0∫
2nt0

q(t) dt <
α0

2n+1t0
, (4)

whereα0 = 3− 2
√

2, then(1) is nonoscillatory.
If there existst0 � t∗ such that for every positive integern,

2n+1t0∫
2nt0

q(t) dt � α

2nt0
, (5)

whereα > α0 = 3− 2
√

2, then(1) is oscillatory.

In 1998, Elbert [1] generalized Huang’s results and obtained the following theore

Theorem C. Assumet∗ � t0 < t1 < t2 < · · · < tn < · · · , tn → ∞. Let

βn = tn+1 − tn

t1 − t0
, n = 0,1, . . . , (6)

thenβ0 = 1, βn > 0,
∑∞

n=0 βn = ∞.

If q(t) satisfies the following inequality:

(tn+1 − tn)

tn+1∫
tn

q(s) ds � αn, 0 � αn < 1, n = 0,1, . . . , (7)

and for any sequence{zn}∞n=0 satisfying the following relation:{
zn+1 = zn−αn

θn+zn−αn
, n = 1,2, . . . ,
z0 = 1
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ts:
we have0 < zn < 1, n = 1,2, . . . , θn = βn/βn+1, then(1) is nonoscillatory.
If q(t) satisfies the following inequalities:

(tn+1 − tn)

tn+1∫
tn

q(s) ds � αn, αn > 0, n = 0,1, . . . , (8)

and there exists a sequence of numbers{un}∞n=0 satisfying the following relation:{
un+1 = αn+1θn

αn

(
αn + un

1−un

)
, n = 0,1, . . . ,

u1 = 0,

with 0< un < 1, n = 1,2, . . . , θn = βn/βn+1, then(1) is oscillatory.

In 2000, Jiang [4] generalized Huang’s results for linear equation to the following
silinear equation:(∣∣u′(t)

∣∣p−1
u′(t)

)′ + q(t)
∣∣u(t)

∣∣p−1
u(t) = 0, (9)

wherep > 0 is a constant, and obtained the following results:

Theorem D. Supposep � 1, if there existst0 � 0 and0 < c < 1 such that for every positiv
integern,

2n+1t0∫
2nt0

q(t) dt <
α0

pcp−1(2n+1t0)p
, (10)

whereα0 = 3− 2
√

2, then(9) is nonoscillatory.
Supposep � 1, if there existst0 � 0, 0 < c < 1 andα > 2p + 1− 21+p/2 such that for

every positive integern,

2n+1t0∫
2nt0

q(t) dt � α

pcp−1(2nt0)p
, (11)

then(9) is oscillatory.

Recently, Wong [7] generalized the results ofHuang, he obtained the following resul

Theorem E. Letλ > 1. If there exists somet0 such that for every positive integern,

λn+1t0∫
λnt0

q(t) dt � α

(λ − 1)λn+1t0
, (12)

whereα � (
√

λ − 1)2, then(1) is nonoscillatory.
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q. (9)
If

λn+1t0∫
λnt0

q(t) dt � α

(λ − 1)λnt0
, (13)

whereα > (
√

λ − 1)2, then(1) is oscillatory.

In this paper, by using a similar method in [1], we generalize Elbert’s results to E
and obtained the following results:

Theorem 1. Suppose0 < p � 1, assumet∗ � t0 < t1 < t2 < · · · < tn < · · · , tn → ∞. Let
βn be given by Theorem C andθn = (βn/βn+1)

p, n = 0,1, . . . .

If q(t) satisfies the following inequality:

(tn+1 − tn)
p

tn+1∫
tn

q(s) ds � αn, 0 � αn < 1, n = 0,1, . . . , (14)

and there exists a sequence of numbers{zn}∞n=0 satisfying the following relations:{
zn+1 = zn−αn

θn+zn−αn
, n = 1,2, . . . ,

z0 = 1,

with 0< zn < 1, n = 1,2, . . . , then(9) is nonoscillatory.
If q(t) satisfies the following inequalities:

(tn+1 − tn)
p

tn+1∫
tn

q(s) ds � αn, αn > 0, n = 0,1, . . . , (15)

and for any sequence{un}∞n=0 satisfying the following relations:{
un+1 = αn+1θn

αn

(
αn + un

1−un

)
, n = 0,1, . . . ,

u1 = 0

we have0 < un < 1, n = 1,2, . . . , then(9) is oscillatory.

Corollary 1. Letαn = α ∈ (0,1), θn = θ ∈ (0,1) and0 < p � 1 such that
√

θ + √
α < 1.

Then any nonzero solution of(9) is nonoscillatory.

Corollary 2. Letαn = α > 0, θn = θ ∈ (0,1) and0 < p � 1 such that
√

θ + √
αθ > 1.

Then any solution of(9) is oscillatory.
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Remark 1. Let p = 1, then Theorem 1 reduces to Theorem C, therefore Theorem
generalization of Theorem C. Comparing Theorem 1 with Theorem D, we find bot
generalizations of Theorem C, and neither contains the other.

For the proof of Theorem 1, we need the following lemmas.

Lemma 1. If x(t) is a nonzero solution of(9) satisfyingx(a) = 0, x ′(τ ) = 0, wheret0 �
a < τ , then we have

(τ − a)p

τ∫
a

q(s) ds > 1.

Proof. Without loss of generality, we can assumex(t) > 0, t ∈ (a, τ ) andτ = inf{t > a,

x ′(t) = 0}. Integrating (9) froma to τ and by noticingx ′(τ ) = 0, we getx ′(a) > 0 and

(
x ′(a)

)p =
τ∫

a

q(s)
(
x(s)

)p
ds <

τ∫
a

q(s)
(
x(τ)

)p
ds <

(
x ′(a)

)p
(τ − a)p

τ∫
a

q(s) ds,

hence we have(τ − a)p
∫ τ

a
q(s) ds > 1. �

Lemma 2. If a � 0, b � 0, 0< p � 1, thenap + bp � (a + b)p; if p � 1, thenap + bp �
(a + b)p.

Proof. Simple calculation yields above results.�

2. Proof of Theorem 1

The proof of the first part of Theorem 1

Since it is proved in [5,6] that (9) cannot has nonoscillatory and oscillatory non
solutions at the same time, we need only to prove that (9) has a nonoscillatory sol
tion. Therefore, we need only to prove the solutionx(t) of (9) satisfying initial condition
x(t0) = 0, x ′(t0) > 0 satisfiesx(t) > 0, ∀t > t0.

In fact, it follows from (14) that(t1 − t0)
p

∫ t1
t0

q(s) ds < 1 and Lemma 1,x ′(t) > 0, t ∈
[t0, t1], thatx(t) > 0 and by (9),x(t) is concave in(t0, t1). Integrating (9) fromt0 to t1, we
get

(
x ′(t0)

)p − (
x ′(t1)

)p =
t1∫

t0

q(s)
(
x(s)

)p
ds

�
(
x ′(t0)(t1 − t0)

)p

t1∫
q(s) ds � α0

(
x ′(t0)

)p
,

t0
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s

which yields(
x ′(t1)

)p �
(
x ′(t0)

)p − α0
(
x ′(t0)

)p = (1− α0)
(
x ′(t0)

)p
> 0. (16)

Claim 1. x(t) > 0, ∀t ∈ [t1, t2]. Otherwise, letτ ∗ = inf{t ∈ (t1, t2) | x(t) = 0}, then by
Rolle’s theorem, there existst = a∗ ∈ (t1, τ

∗) such thatx ′(a∗) = 0. As a∗ ∈ (t1, τ
∗) ⊂

[t1, t2], it follows from Lemma 1 that

α1 > (t2 − t1)
p

t2∫
t1

q(s) ds � (τ ∗ − a∗)p
τ+∫

a∗
q(s) ds > 1,

which contradicts the assumptionα1 < 1. Claim 1 is thus proved and we have

x(t) > 0, t ∈ [t1, t2]. (17)

Next we prove the following inequalities by using mathematical induction:

(
x ′(tn)

)p � zn

β
p
n

(
n∑

i=0

βix
′(ti)

)p

, (18)

(
x ′(tn+1)

)p �
(
x ′(tn)

)p − αn

β
p
n

(
n∑

i=0

βix
′(ti)

)p

, (19)

x(t) > 0, t ∈ [tn+1, tn+2], (20)

wherezn is defined in Theorem 1.
The casen = 0 follows from (16) and (17). Assume (18)–(20) hold for 0,1, . . . , n. We

show that (18)–(20) hold also forn + 1. Aszn+1 > 0, it follows from (18) and (19) that

(
x ′(tn+1)

)p � zn − αn

β
p
n

(
n∑

i=0

βix
′(ti)

)p

> 0.

Let a = ∑n
i=0 βix

′(ti), b = βn+1x
′(tn+1). From Lemma 2, for 0< p � 1, we get(

β
p
n + β

p
n

zn − αn

)(
x ′(tn+1)

)p �
(

n∑
i=0

βix
′(ti )

)p

+ β
p
n+1

(
x ′(tn+1)

)p
,

or equivalently,

(
x ′(tn+1)

)p � zn+1

β
p

n+1

(
n+1∑
i=0

βix
′(ti )

)p

. (21)

By (9) and (20),x(t) is concave on[tn+1, tn+2], hencex ′(t) is nonincreasing and satisfie
for t ∈ [tn+1, tn+2]

x(t) � x(tn+1) + x ′(tn+1)(t − tn+1) � x(tn+1) + x ′(tn+1)(tn+2 − tn+1).

Integrating (9) over[tn+1, tn+2], we get
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the
(
x ′(tn+1)

)p − ∣∣x ′(tn+2)
∣∣p−1

x ′(tn+2) =
tn+2∫

tn+1

q(s)
(
x(s)

)p
ds

�
∣∣x(tn+1) + x ′(tn+1)(tn+2 − tn+1)

∣∣p tn+2∫
tn+1

q(s) ds.

By the Lagrange mean value theorem and the meaning ofβn, θn, we get

x(tn+1) =
n∑

i=0

[
x(ti+1) − x(ti)

] =
n∑

i=0

(ti+1 − ti)x
′(t∗i )

�
n∑

i=0

(ti+1 − ti)x
′(ti ) = (t1 − t0)

n∑
i=0

βix
′(ti),

whereti < t∗i < ti+1, i = 0,1, . . . , n.
We have therefore

(
x ′(tn+1)

)p − ∣∣x ′(tn+2)
∣∣p−1

x ′(tn+2) � (t1 − t0)
p

(
n+1∑
i=0

βix
′(ti )

)p tn+2∫
tn+1

q(s) ds

=
(

tn+2 − tn+1

βn+1

)p
(

n+1∑
i=0

βix
′(ti )

)p tn+2∫
tn+1

q(s) ds � αn+1

β
p

n+1

(
n+1∑
i=0

βix
′(ti)

)p

.

That is,

∣∣x ′(tn+2)
∣∣p−1

x ′(tn+2) �
(
x ′(tn+1)

)p − αn+1

β
p

n+1

(
n+1∑
i=0

βix
′(ti )

)p

. (22)

Sincezn+2 > 0 implieszn+1 > αn+1, and by (21), we get

∣∣x ′(tn+2)
∣∣p−1

x ′(tn+2) � zn+1 − αn+1

β
p

n+1

(
n+1∑
i=0

βix
′(ti)

)p

> 0,

which impliesx ′(tn+2) > 0. Lemma 1 and the inequality

(tn+3 − tn+2)

tn+3∫
tn+2

q(s) ds < αn+2 < 1

implies thatx(t) > 0, t ∈ [tn+2, tn+3], which, together with (21) and (22), completes
induction step. This shows thatx(t) > 0 holds for allt > t0, hencex(t) is a nonoscillatory
solution of (9). This completes the proof of the first part of Theorem 1.�
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The proof of the second part of Theorem 1

If the result of the second part of Theorem 1 is not true, then we can without lo
generality assume that there exists a nonoscillatory solutionx(t) of (9) such that for all
t � t0, x(t) > 0. From (9) we see thatx ′′(t) � 0 andx ′(t) is nonincreasing andx(t) is
concave for allt > t0.

We show next thatx ′(t) � 0 can never hold fort > t0. In fact, integrating (9) ove
[tn, tn+1] for n � m, we get from (15)

∣∣x ′(tn)
∣∣p−1

x ′(tn) − ∣∣x ′(tn+1)
∣∣p−1

x ′(tn+1) =
tn+1∫
tn

q(s)
(
x(s)

)p
ds

�
(
x(tn)

)p tn+1∫
tn

q(s) ds > 0,

hence

x ′(t0) > x ′(t1) > · · · > x ′(tn) > x ′(tn+1) > · · · > 0. (23)

By using the Lagrange mean value theorem again and by the definition ofβn, θn, we obtain

x(tn) = x(t0) +
n∑

i=1

[
x(ti) − x(ti−1)

]

>

n∑
i=1

(ti − ti−1)x
′(t∗i )

� (t1 − t0)

n∑
i=1

βi−1x
′(ti),

whereti−1 < t∗i < ti+1, i = 1,2, . . . , n, and by (15), we get

(
x ′(tn)

)p − (
x ′(tn+1)

)p
> (t1 − t0)

p

(
n∑

i=1

βi−1x
′(ti)

)p tn+1∫
tn

q(s) ds

= (tn+1 − tn)
p

∫ tn+1
tn

q(s) ds

β
p
n

(
n∑

i=1

βi−1x
′(ti)

)p

� αn

β
p
n

(
n∑

i=1

βi−1x
′(ti)

)p

,

which implies the following two inequalities:

αn

β
p
n

(
n∑

i=1

βi−1x
′(ti )

)p

<
(
x ′(tn)

)p (24)

and

(
x ′(tn+1)

)p
<

(
x ′(tn)

)p − αn

β
p
n

(
n∑

βi−1x
′(ti)

)p

. (25)

i=1
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Let u0, u1, . . . be given by Theorem 1, then we prove the following claim:

Claim 2. Forn = 1,2, . . . , we have

un

(
x ′(tn)

)p
<

(
x ′(tn)

)p � αn

β
p
n

(
n∑

i=1

βi−1x
′(ti )

)p

(26)

and

0 < un < 1. (27)

It is easy to see that (26), (27) hold forn = 0,1. Assume (26), (27) hold for 0,1, . . . , n, we
show next that they hold also forn + 1.

From (24) and (26), we know

(
x ′(tn)

)p − αn

β
p
n

(
n∑

i=1

βi−1x
′(ti )

)p

� (1− un)
(
x ′(tn)

)p
.

By (25)–(27), we obtain

(
x ′(tn+1)

)p
< (1− un)

(
x ′(tn)

)p = (1− un)

un

un

(
x ′(tn)

)p
� (1− un)αn

unβ
p
n

(
n∑

i=1

βi−1x
′(ti)

)p

,

that is,

unβ
p
n

(1− un)αn

(
x ′(tn+1)

)p �
(

n∑
i=1

βi−1x
′(ti)

)p

. (28)

Adding β
p
n (x ′(tn+1))

p to both sides of (28) and then multiplying both sides of the
tained inequality byαn+1/β

p

n+1, applying the result of Lemma 2 forp � 1, and using the
definition ofun+1 in Theorem 1, we obtain from (24) (replacen by n + 1) the following
inequalities:

un

(
x ′(tn+1)

)p
<

αn+1

β
p

n+1

(
n+1∑
i=1

βi−1x
′(ti )

)p

<
(
x ′(tn+1)

)p
. (29)

Hence Claim 2 is proved.

Now it follows from (29) and definition ofun+1 that 0< un+1 < 1. This completes th
induction step and this also implies that (26), (27) hold for anyn ∈ N . But this contradicts
the assumption of Theorem 1. Therefore the second part of Theorem 1 is thus prove�

The following example shows that there existsp > 1, q(t) > 0 satisfying the condition
of the first part of Theorem 1, but Theorem 1 does not hold.
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Example 1. It follows from [5] that the necessary and sufficient conditions for any s
tion of (9) to be nonoscillatory is that there exists continuous functionr(t) satisfying the
following equation:

r(t) =
∞∫
t

q(s) ds + p

∞∫
t

∣∣r(s)∣∣1+1/p
ds. (30)

Let q(t) = αp/tp+1, α � 1 is a constant. If (9) has a nonoscillatory solution, then (30)
a solutionr(t). Since

∫ ∞
t

q(s) ds = α/tp , we obtain

r(t) = α

tp
+ p

∞∫
t

∣∣r(s)∣∣1+1/p
ds >

α

tp
> 0. (31)

This implies that

r(t) >
α

tp
+ α1+1/p

tp
= α + α1+1/p

tp
. (32)

Substituting (32) into the right side of (31), we obtain

r(t) >
α + (α + α1+1/p)(1+1/p)

tp
. (33)

Continuing in this way, we get

r(t) >
fn(α)

tp
, n = 0,1, . . . , (34)

wherefn(x) = x + (fn−1(x))1+1/p, f1(x) = x + x1+1/p, f0(x) = x for x � 1. It is easy
to verify the following inequalities:

fn+1(x) > fn(x) > · · · > f1(x) > f0(x) � 1.

The exist therefore two possibilities:

(i) limn→∞ fn(x) = ∞, for all x � 1;
(ii) lim n→∞ fn(x) = M < ∞.

If (ii) holds, we haveM = x + M1+1/p, which is impossible, sinceM > 1. Hence
(i) holds, which implies thatr(t) = ∞ for all t 	 1. A contradiction.

It is easy to verify that forq(t) = αp/tp+1, p > 1, the conditions of the first part o
Theorem 1 hold. In fact, lettn = 2n, n = 0,1, . . . , thentn+1 − tn = 2n, βn = 2n, θn = θ =
2−n and

(tn+1 − tn)
p

tn+1∫
tn

q(s) ds = α

(
1− 1

2p

)
.

Hence

αn = α

(
1− 1

p

)
< 1, n = 1,2, . . . .
2
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If we take 1< α < 2p/2p−1, zn satisfies 0< zn < 1, n = 1,2, . . . . Then the assumption
of the first part of Theorem 1 are satisfied. But it follows from [5] that any solution o
is oscillatory.

The following example shows that forp ∈ (0,1), the conclusion of the second part
Theorem 1 may be incorrect.

Example 2. For 0< p < 1, q(t) = cp/tp+1, where

(2p/2 − 1)2 2p

2p − 1
< c <

2p

2p − 1
.

Let tn = 2n, θn = θ = 2−p, αn = α = c(2p − 1)/2p < 1. Then it is easy to verify tha√
θ + √

θα > 1. Hence the condition of Corollary 2 holds, but at the same time (14)
0 < zn < 1, n = 1,2, . . . , hold. Hence any nonzero solution of (9) is nonoscillatory, wh
shows that the second part of Theorem 1 may be incorrect forp ∈ (0,1).
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