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The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) ‘Nano Task Force’ proposes
a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) that con-
sists of 3 tiers to assign nanomaterials to 4 main groups, to perform sub-grouping within the main groups
and to determine and refine specific information needs. The DF4nanoGrouping covers all relevant aspects
of a nanomaterial’s life cycle and biological pathways, i.e. intrinsic material and system-dependent prop-
erties, biopersistence, uptake and biodistribution, cellular and apical toxic effects. Use (including manu-
facture), release and route of exposure are applied as ‘qualifiers’ within the DF4nanoGrouping to
determine if, e.g. nanomaterials cannot be released from a product matrix, which may justify the waiving
of testing. The four main groups encompass (1) soluble nanomaterials, (2) biopersistent high aspect ratio
nanomaterials, (3) passive nanomaterials, and (4) active nanomaterials. The DF4nanoGrouping aims to
group nanomaterials by their specific mode-of-action that results in an apical toxic effect. This is even-
tually directed by a nanomaterial’s intrinsic properties. However, since the exact correlation of intrinsic
material properties and apical toxic effect is not yet established, the DF4nanoGrouping uses the ‘function-
ality’ of nanomaterials for grouping rather than relying on intrinsic material properties alone. Such func-
tionalities include system-dependent material properties (such as dissolution rate in biologically relevant
media), bio-physical interactions, in vitro effects and release and exposure. The DF4nanoGrouping is a
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hazard and risk assessment tool that applies modern toxicology and contributes to the sustainable devel-
opment of nanotechnological products. It ensures that no studies are performed that do not provide cru-
cial data and therefore saves animals and resources.

� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Information box: definitions of terms used in the present
article Benchmark material: A (nano-)material, which
has been tested and evaluated according to standard criteria
and to which new materials may reliably be compared for
grouping purposes (Kuempel et al., 2012).

(Certified) reference material: A material that has under-
gone a process for validation or round robin assessment as
‘reference material’, thereby having fulfilled specific prede-
fined requirements for, e.g., its homogeneity and stability
(Stefaniak et al., 2013).

Intrinsic material properties: Characteristics of the mate-
rial that are determined independently of the biological envi-
ronment or test system. Accordingly, intrinsic material
properties include chemical composition and impurities, pri-
mary particle size (PPS), surface area, water solubility and
shape or aspect ratio.

Mode-of-action (MoA): Mechanisms by which substances
may elicit cellular or apical toxic effects. To date, only a lim-
ited number of such mechanisms have been discerned for
nanomaterials (cf. Chapters 3.5 and 3.6 ‘Grouping of nanoma-
terials by cellular and apical toxic effects’ for further informa-
tion on different MoAs).

Nanoform: As defined by the EU Commission’s NANO
SUPPORT Project (2012), the term ‘nanoform’ is used for
REACH registration dossiers that (seem to) also address other
forms (e.g. bulk). Thus, a nanoform registered ‘alone’ (not
along with non-nanoforms) would be a nanomaterial.

Nanomaterial: In line with the EU definition (EU
Commission, 2011), ‘nanomaterial’ is an overarching term
to describe materials containing particles with external
dimensions in the size range 1–100 nm.

Nanoparticle: A specific nanosized ’pieces of matter’ (EU
Commission, 2011).

Substance: The EU Regulation on the Registration,
Evaluation, Authorisation and Restriction of Chemicals
(REACH; EP and Council of the EU, 2006) defines a substance
a chemical element and its compounds in the natural state or
obtained by any manufacturing process, including any addi-
tive necessary to preserve its stability and any impurity deriv-
ing from the process used, but excluding any solvent which
may be separated without affecting the stability of the sub-
stance or changing its composition. Accordingly, in the pre-
sent article, ‘substance’ is used as an overarching term
encompassing nanosized and non-nanosized substances in
all forms regardless of their state of dissolution.

System-dependent properties: Characteristics that are
linked to the material’s functionality in its environment, such
as surface reactivity, dissolution rate, and dispersibility. The
outcome of measurements of system-dependent properties
is affected by the given surroundings, i.e. the choice of the
test system (culture media, supplements, dispersing agents,
etc.) or of the product application. System-dependent proper-
ties constitute bio-physical interactions of the particles with
their environment. Accordingly, ‘systems’ may be, e.g.,
matrices in which a nanomaterial is embedded in a product,
exposure media (aerosols, suspensions, etc.), or biological
systems that the nanomaterial comes into contact with.
"form ever follows function" (Louis Sullivan, 1896)
1. Introduction

Given the vast number of nanotechnological products entering
the market and the multitude of different nanomaterials already
available, hazard and risk assessments of each and every single
variant of nanomaterial are impracticable and undesirable for eco-
nomic reasons and stand in contradiction to the legal requirement
to reduce animal testing (EP and Council of the EU, 2006, 2010).
The ‘grouping’ concept aims at making substance hazard assess-
ment more efficient. In its guidance documents, the European
Chemicals Agency (ECHA, 2013) describes grouping as the process
of uniting substances into a common group if they are structurally
similar with physico-chemical, toxicological, ecotoxicological and/or
environmental fate properties that are likely to be similar or to follow
a regular pattern. Such similarities may be due to common func-
tional groups, common precursors, or likely common breakdown
products. Within a group, each individual substance may not need
to be tested. Instead, endpoint-specific effects of an unknown sub-
stance may be derived from the endpoint-specific effects of further
substances within the group. ‘Read-across’ is the application of the
grouping concept to fill a data gap within a group of substances by
using data from the same endpoint from another substance or
other substances (ECHA, 2013; cf. Information box – for the defini-
tions of terms as they are used in the present article).

For substances in general, technical guidance documents on
grouping are available, e.g. from the Organization for Economic
Cooperation and Development (OECD) or the ECHA (ECHA, 2008,
2012a,b, 2013, 2014; OECD, 2014a). By contrast, to date there are
no specific regulatory frameworks for the grouping of nanomateri-
als. However, this topic is addressed in different publications, and
preliminary guidance is provided in the context of substance-
related legislation or the occupational setting. In an extensive
review, the European Centre for Ecotoxicology and Toxicology of
Chemicals Task Force on Nanomaterials (ECETOC Nano TF) assessed
such available concepts for the grouping of nanomaterials for
human health risk assessment (Arts et al., 2014). Based upon this
review, in the present article, the ECETOC Nano TF proposes a
functionality-driven Decision-making framework for the grouping
and testing of nanomaterials (DF4nanoGrouping) that aims to
group nanomaterials by their specific mode-of-action (MoA; cf.
Information box) that results in an apical toxic effect.

In its review (Arts et al., 2014), the ECETOC Nano TF came to the
conclusion that nearly all of the currently available approaches
involve some form of grouping by intrinsic (material) properties
or system-dependent properties that constitute bio-physical inter-
actions. Of note, whereas the term ‘physico-chemical characteriza-
tion’ is widely used in the literature, for the purpose of grouping,
the ECETOC Nano TF distinguishes between ‘intrinsic material
properties’ (‘material properties’) on the one hand and ‘system-
dependent properties’ constituting bio-physical interactions on
the other hand (Wiesner, 2014; cf. Information box for the
definitions of these terms).

http://creativecommons.org/licenses/by/4.0/
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The grouping of non-nanosized substances is often based on
(quantitative) structure–activity relationships ((Q)SARs) alone,
and also the above-mentioned ECHA guidance only allows for
grouping based upon structural similarities (ECHA, 2013). By con-
trast, all existing approaches for the grouping of nanomaterials
already go beyond the determination of mere (Q)SARs. For
instance, the United States National Institute for Occupational
Safety and Health (NIOSH) and the British Standards Institute
(BSI) distinguish between (1) soluble, (2) biopersistent and low
toxicity, (3) biopersistent and high toxicity, and (4) fibrous parti-
cles (or high aspect ratio nanomaterials, HAR NMs) (Kuempel
et al., 2012; BSI, 2007; reviewed in Arts et al. (2014)).

Similarly, the German Federal Institute for Occupational Safety
and Health (BAuA, 2013; Gebel et al., 2014) proposes three cate-
gories for nanomaterials based upon their predominant toxicolog-
ical MoA, while noting that some nanomaterials might be
assignable to more than one category or to none of these cate-
gories. The BAuA distinguishes between (1) nanomaterials whose
toxicity is mediated by their chemical composition; (2) rigid biop-
ersistent respirable fibrous nanomaterials; and (3) respirable gran-
ular biodurable particles (GBPs). The Guidance on the protection of
the health and safety of workers from the potential risks related to
nanomaterials at work (RPA and IVAM, 2014), produced for the
EU Commission, lists shape (in respect to HAR NMs), persistence,
water solubility, dustiness and flammability as essential material
properties to categorize levels of concern, further taking into
account nanomaterial exposure assessment.

Overall, the existing concepts for the grouping of nanomaterials
are founded on different aspects of the nanomaterial’s life cycle
throughout its biological pathway from production to disposal
(Fig. 1, see also Arts et al., 2014). These aspects include the nano-
material’s intrinsic material properties and system-dependent
properties, specific types of use and release, exposure route, biop-
ersistence, uptake, and biodistribution and cellular and apical toxic
effects. However, while none of the currently available concepts
consistently addresses all of these aspects, the ECETOC Nano TF
considers this necessary for a meaningful grouping of nanomateri-
als: Apical toxic effects caused by nanomaterials are not solely
influenced by intrinsic material properties (let alone, a single
intrinsic material property) or by system-dependent properties
(Arts et al., 2014; Oomen et al., 2014a,b). Instead, nanomaterials
readily undergo pronounced interactions with their respective
Biological
pathway
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Fig. 1. Life cycle and biological pathway of nanomaterials (Adapted from: Landsiedel et a
reactive species).
surroundings. These interactions may change at the different
stages of the nanomaterials’ life cycles, and this specific feature
of nanomaterials underlines the need for a functionality-driven
and exposure-based grouping concept (cf. Supplementary
Information (SI) text and SI Table S1 for two examples addressing
the hazard assessment of carbon allotropes and TiO2 that provide
further scientific evidence for this need).

Against this background, the functionality-driven Decision-
making framework for the grouping and testing of nanomaterials
(DF4nanoGrouping) proposed by the ECETOC Nano TF uses and
combines all of the different tools for grouping which are already
at hand. It addresses the complexity of all aspects of possible nano-
material interactions with its environment by taking into account
all of the above-mentioned aspects of the different stages of the
nanomaterials’ biological pathways throughout their life cycles.
Thereby, it is functionality-driven, and the components of the
DF4nanoGrouping correlate with the different steps of the adverse
outcome pathway (AOP) concept (Ankley et al., 2010), even though
definite AOPs have not yet been established for nanomaterials. The
starting point of the general AOP concept implies addressing
the ‘chemical properties’ of a substance, which correspond to
the ‘intrinsic material properties’ of the DF4nanoGrouping. In a
sequential series, this starting point of the AOP is succeeded by
‘molecular initiating events’ or ‘macro-molecular interactions’
(corresponding to ‘system-dependent properties’ that constitute
bio-physical interactions), cellular responses (corresponding to
‘cellular effects’), and organ, organism and population responses
(corresponding to ‘apical toxic effects’) (Ankley et al., 2010).

Consistent with the DF4nanoGrouping, Pastoor et al. (2014)
suggest a comprehensive framework for bringing together knowl-
edge to enable effective decision-making. The so-called RISK21
framework is presented as a problem formulation-based, exposure-
driven, tiered data acquisition approach that incorporates exposure
and toxicity estimates and their respective uncertainties to guide
informed human health safety decisions as soon as sufficient evi-
dence is acquired to address the specific problem formulation
(Pastoor et al., 2014). Similarly, Grieger et al. (2014) call for struc-
tured decision support tools such as risk ranking approaches for
decision-making regarding the use of nanomaterials in products
and applications.

For the time being, the DF4nanoGrouping is restricted to the
purpose of human health hazard assessment (and not environmental
ma�on 
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hazard assessment) of nanomaterials. Physical hazards elicited by,
e.g. substance flammability, are not taken into consideration, and
the DF4nanoGrouping excludes nanomaterials intended for medi-
cal application routes (such as intravenous or transdermal applica-
tion) or that are specifically designed for therapeutic effects. The
DF4nanoGrouping focuses on potential effects upon inhalation,
the predominant route of exposure for nanomaterials, whereas
the dermal and oral routes of exposure are only briefly addressed.
2. The decision-making framework for the grouping and testing
of nanomaterials (DF4nanoGrouping)

2.1. Delineation of the DF4nanoGrouping

The DF4nanoGrouping consists of three tiers to assign nanoma-
terials to one of four main groups, to perform subgrouping within
the main groups, and to determine and refine further specific infor-
mation needs. An overview of the grouping criteria used in the
course of the three tiers of the DF4nanoGrouping is provided in
Table 1 and Fig. 2. These criteria cover all relevant aspects of a nano-
material’s life cycle and biological pathways, i.e. intrinsic material
properties, system-dependent properties, biopersistence, uptake,
and biodistribution, and cellular and apical toxic effects. The intrin-
sic and system-dependent properties selected for the
DF4nanoGrouping are similar to the ones indicated in the recent
OECD report on the physico-chemical properties of manufactured
nanomaterials and test guidelines (OECD, 2014b). A comprehensive
description of the four main groups of nanomaterials and the three
tiers of the DF4nanoGrouping are presented in the following
Chapter 2.2. Additionally, the aspects ‘use, release and route of
exposure’ are addressed as ‘qualifiers’ during all tiers of the group-
ing process. The rationale for assigning these aspects a special role
is explained in Chapter 2.3. Chapter 3 provides detailed information
on the criteria that have been selected for the DF4nanoGrouping
discussing the specific role each criterion may play for the grouping
and hazard and risk assessment of nanomaterials.

As Table 1 and Fig. 2 reveal, a Tier 0 may precede the
DF4nanoGrouping. During this pre-tier, commonly used intrinsic
material properties may be used to identify a nanomaterial (cf.
Information box for definition). During Tier 1 of the
DF4nanoGrouping, intrinsic material properties are used as key
criteria to assign nanomaterials to main group 1 ‘soluble nanoma-
terials’ and for a preliminary assignment to main groups 2–4, i.e.
biopersistent HAR NMs, passive nanomaterials, and active nano-
materials (cf. Chapter 2.2). These four main groups have been
adapted from the grouping schemes proposed by BSI (2007),
Kuempel et al. (2012), BAuA (2013), Gebel et al. (2014). During
Tier 2, system-dependent properties are used as key criteria to cor-
roborate the assignment of nanomaterials to main group 2 (bioper-
sistent HAR NMs) and to distinguish between passive and active
nanomaterials (main groups 3 and 4). A nanomaterial, which does
not show any relevant activity in Tier 2, is assigned to main group 3
(passive nanomaterials), whereas a nanomaterial that shows rele-
vant activity in regard to any single Tier 2 grouping criterion is
assigned to main group 4 (active nanomaterials). Data from Tier
2 may also be used to assign those nanomaterials to main group
1 which are not water-soluble, but soluble in biological media.
Additional system-dependent properties may be used as supple-
mentary criteria if they relate to the nanomaterial’s given MoA.
Tier 3 allows confirming the distinction between passive and active
nanomaterials, and data from Tier 3 may be used to assign those
nanomaterials to main group 1 that are not biopersistent in vivo.
Likewise, Tier 3 allows for sub-grouping of active nanomaterials
based on the results of short-term in vivo studies. This information
may also be used to determine specific further information needs.
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Fig. 2. The decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping).
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The DF4nanoGrouping aims to group nanomaterials according
to their specific MoA that may result in an apical toxic effect.
Clearly, this is a function of a nanomaterial’s intrinsic material
properties. However, the exact correlation of intrinsic material
properties and apical toxic effect is not yet established, and differ-
ent intrinsic material properties may interact in complex ways,
which are not yet fully understood. Intrinsic material properties
of nanomaterials are highly relevant for grouping, but such group-
ing approaches may not be effective at the moment. Therefore, the
tiered approach of the DF4nanoGrouping utilizes ‘functionalities’
of nanomaterials in addition to intrinsic material properties
(Table 1). Functionalities include system-dependent material prop-
erties, bio-physical interactions as well as in vitro effects and
release and exposure. Tier-by-tier, ‘related’ higher-tier criteria
(presented as ‘interdependencies’ in the same rows in Table 1) pro-
vide information that increasingly reflects the biological complex-
ity and biological circumstances of the corresponding in vivo
property or apical toxic effect. For instance, the (Tier 1) intrinsic
material property ‘water solubility’ is related to the more complex
(Tier 2) system-dependent property ‘dissolution rate/solubility in
biological simulation fluids (BSF)’, which in return is related to
the more complex criterion (Tier 3) ‘in vivo solubility/biopersistence’.

2.2. The four main groups and three tiers of the DF4nanoGrouping

The three tiers of the DF4nanoGrouping allow a stepwise
assignment of nanomaterials to the following four main groups,
sub-grouping within the main groups, and the determination of
further, specific information needs.

Main group 1 (soluble nanomaterials)
The main group 1 encompasses non-biopersistent nanomateri-

als, for which the chemical composition is more important for risk
assessment than the as-produced nanostructure.

� Key threshold value: In accordance with BAuA (2013), in the
DF4nanoGrouping, nanomaterials whose water solubility
exceeds 100 mg/L are defined as soluble.
� Nanomaterial assignment to main group 1 within the

DF4nanoGrouping: In Tier 1, nanomaterials are assigned to main
group 1 or ‘not main group 1’. Data from Tier 2 may be used to
additionally assign those nanomaterials to main group 1 which
are not water-soluble, but soluble in biological media. Likewise,
in Tier 3, nanomaterials may be assigned to main group 1 if
their pulmonary half-life is less than 40 days (cf. the threshold
value set for biopersistent fibers in BAuA (2014a)).
� Consequence of nanomaterial assignment to main group 1: No fur-

ther nano-specific sub-grouping, and no nano-specific hazard
assessment. Instead, read-across of the properties of the dis-
solved materials to the corresponding bulk materials will be
applied.

Main group 2 (biopersistent HAR NMs)
The main group 2 encompasses HAR NMs that are rigid and

fulfill the WHO criteria for respirable fibers and the criterion for
biopersistence (BAuA, 2014a). Biopersistent HAR NMs may elicit
toxic effects due to their morphology and prolonged half-life in
the organism.

� Key threshold values: Aspect ratio: <3:1, length: >5 lm; diame-
ter: <3 lm; (WHO, 2005); biopersistence, i.e. dissolution
rate > 100 mg/L (taken over from BAuA, 2013) or pulmonary
half-life upon intratracheal instillation: P40 days (BAuA,
2014a). Fiber diameter may be used as a proxy for rigidity.
� Nanomaterial assignment to main group 2 within the

DF4nanoGrouping: Indication for assignment to main group 2
based upon size and aspect ratio in Tier 1. Final assignment
based upon dissolution rate in BSF (Tier 2) or in vivo biopersis-
tence (Tier 3).
� Consequence of nanomaterial assignment to main group 2:

Different biopersistent HAR NMs may be assigned to further
sub-groups based upon their degrees of water solubility or
biopersistence (e.g. if they range in the same 25% intercept
between the negative control (NC) and the positive control
(PC)) and additionally taking into account release-related
qualifiers.

Main group 3 (passive nanomaterials)
The main group 3 encompasses biopersistent, non-fibrous

nanomaterials, such as GBPs, which do not have surface reactivity
and do not elicit a specific cellular effect and do not prevail in
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biological fluids in a well-dispersed form. In vivo, the ‘passive state’
of nanomaterials is confirmed in that they do not elicit apical toxic
effects and in that they are not biodistributed from the site of con-
tact or outside the mononuclear phagocyte system (MPS).
Regardless of their ‘passive state’, high doses of these nanomateri-
als – like other particles – may elicit effects on account of their par-
ticulate nature, especially by dust inhalation. Additionally,
nanomaterials that are not released from their matrix in products
– in any way – are also assigned to the main group 3 (passive
nanomaterials).

� Key threshold values: Toxic component (element or molecule)
<0.1% (EP and Council of the EU, 2008); surface reactivity:
<10% of Mn2O3 reactivity in FRAS or cytochrome c assays; dis-
persibility: AAN P 3; no cellular effects at 610 lg/cm2 (Kroll
et al., 2011). Confirmatory threshold value in respect to low
toxic potency, i.e. NOAEC in short-term inhalation study (STIS)
>10 mg/m3.
� Nanomaterial assignment to main group 3 within the

DF4nanoGrouping: Based on data obtained in Tier 2. The Tier 2
assignment may be confirmed or revised by Tier 3 data from
in vivo studies (STIS).
� Consequence of nanomaterial assignment to main group 3: Passive

nanomaterials are considered to possess no or only very low
hazard potential.

Main group 4 (active nanomaterials)
The main group 4 encompasses biopersistent, non-fibrous

nanomaterials with a hazard potential that is determined based
upon chemical composition, dissolution rate, surface reactivity,
dispersibility, or cellular effects. In vivo, ‘active’ nanomaterials
are expected to elicit apical toxic effects at lower doses. Results
of in vivo studies may be used to sub-group and rank ‘active
nanomaterials’.

� Key threshold values: Nanomaterials are assigned to main group
4 ‘active nanomaterials’ if they are not assigned to the main
groups 1, 2, or 3, i.e. if any single decisive property (or combina-
tions of properties) listed for main groups 1–3 is (or are) not
met. For confirmation of nanomaterial assignment to main
group 4, a NOAEC in STIS 610 mg/m3 may be used. Effects
and toxic potency determined in the STIS may also be used
for sub-grouping.
� Nanomaterial assignment to main group 4 within the

DF4nanoGrouping: Based on data obtained in Tier 2. The Tier 2
assignment may be confirmed or revised by Tier 3 data from
in vivo studies (STIS).
� Consequence of nanomaterial assignment to main group 4: Further

sub-grouping by the degree of mobility in air (dustiness) and in
physiological fluids (dispersibility), as well as by in vitro and
in vivo (STIS) effects and uptake, biopersistence, and
biodistribution.

Grouping is an instrument to aid risk assessment. One element
of risk assessment is the estimation of ‘no effect levels’. According
to Annex 1 of the EU Regulation on the Registration, Evaluation,
Authorisation and Restriction of Chemicals (REACH; EP and
Council of the EU, 2006), a derived-no-effect-level (DNEL) is
required as part of the Chemical Safety Assessment. Based upon
the risk assessment, risk management measures are taken, includ-
ing the setting of occupational exposure limits (OELs). Differing
exposure limits are being enforced for specific types of nanomate-
rials that reflect the main groups of the DF4nanoGrouping. In 2007,
the British Standards Institute (BSI) was one of the first institutions
to suggest OEL values for different groups of nanomaterials, and it
related them to the existing OEL values of the corresponding non-
nanosized materials. BSI (2007) proposed 0.5 of the existing OEL
for soluble nanomaterials, 0.01 fibers/mL for fibrous nanomateri-
als, 0.066 of the existing OEL for insoluble nanomaterials without
specific toxicity, and 0.1 of the existing OEL for nanomaterials with
a specific toxicity.

More recently, the German Federal Institute for Occupational
Safety and Health recommended seeking air concentrations
<10,000 fibers/m3 for fibers (BAuA, 2013). Since legally binding,
health-based occupational limit values for manufactured nanoma-
terials are currently not available, BAuA (2013) suggested an
‘assessment criterion’ of <0.5 mg/m3 (considering an average
agglomerate density of 2.0 g/cm3 at the workplace) for biopersis-
tent, non-fibrous nanomaterials without specific toxicity, and for
nanomaterials with specific (chemical composition-related) toxic-
ity, an ‘assessment criterion’ of <0.1 mg/m3 (BAuA, 2013). By com-
parison, for respirable non-nanosized dust, an OEL of 1.25 mg/m3

(based on an average particle density at the workplace of 2.5 g/
cm3) has been laid down (BAuA, 2014b). An extensive meta-analy-
sis of chronic rat inhalation studies with GBP materials (Gebel,
2012) found the difference in carcinogenic potency between GBP
nanomaterials and GBP micromaterials to be low (i.e. a factor of
2.0–2.5 referring to the dose metrics mass concentration). Of note,
however, the human health relevance of lung tumors observed in
the rat after particle inhalation is at least questionable, as reviewed
in an ECETOC report on pulmonary overload (ECETOC, 2013).

Taking into account these considerations, for main group 1 of
the DF4nanoGrouping (soluble nanomaterials), the DNEL of the
respective dissolved material may be applied, for biopersistent
HAR NMs (main group 2) – derived-minimal-effect-levels
(DMELs) for fibers, and for passive nanomaterials (main group 3)
– general DNELs derived from the no-observed-adverse-effect-con-
centrations (NOAECs) obtained in long-term studies (cf. 3.6.4 ‘Toxic
potency’).

2.2.1. Tier 1: nanomaterial assignment to main groups based on
intrinsic material properties

Taking into account the exposure-related qualifiers as appropri-
ate (cf. Chapter 2.3), 3 essential intrinsic material properties are
addressed as key criteria for nanomaterial grouping (Table 2; in
the following, the figure assigned to each grouping criterion refers
to the chapter in which its specific role for grouping is discussed in
further detail):

� Water solubility (3.1.1).
� Particle morphology (primary particle size (PPS) and shape,

including aspect ratio and surface area (3.1.2)).
� Chemical composition (3.1.4).

These key criteria are used to assign soluble nanomaterials to
the main group 1 and to provide an indication for the assignment
of non-soluble nanomaterials’ to the main groups 2, 3, or 4.

2.2.2. Tier 2: nanomaterial assignment to main groups based on
functionality

Tier 2 serves to assign non-soluble nanomaterials to the main
groups 2–4 and to sub-group the nanomaterials within the main
groups 2 (biopersistent HAR NMs) and 4 (active nanomaterials).
During Tier 2, the following key system-dependent properties
(assessed in relevant media) and in vitro toxicological criteria are
applied (Table 3):

� Dissolution rate (including loss of nanostructure and release of
toxic ions; 3.3.1).
� Surface reactivity (3.3.2).
� Dispersibility (3.3.3).



Table 2
DF4nanoGrouping: application of qualifiers, e.g. for exposure-based waiving of testing, and performance of Tier 1. Grouping criteria, threshold values and benchmark materials for nanomaterial assignment to main group 1 (with
resulting read-across of dissolved material) and indications for assignment to main groups 2–4.

Grouping criteria or qualifiers Relevance for HA or RA Threshold values for grouping Benchmark materialsa Assignment to main group or sub-grouping

Application of the qualifiers ‘use, release, and route of exposure’, e.g. for exposure-based waiving of testing (To be taken into consideration during each tier)

Use Nanomaterial exposure likely? If
so: In which form?

cf. Chapter 3.2 and Supplementary Information
Table S3

Release Release (i.e. exposure) likely? If
so: In which form? Do the
released fragments contain
nanoparticles?

Dustiness of powdersb

Low: pellet-like, non friable solids
Medium: crystalline, granular solids
High: fine, light powders

Benchmark materials for release of free
nanoparticles are unavailable

‘No release’ of free nanomaterials, e.g. due to reactivity within the
matrix (example: X-Seed�, a concrete hardening accelerator), can
be used to assign a nanomaterial to main group 3 (passive
nanomaterials). Further (non-nanospecific sub-grouping) may then
be performed by product matrix

Dustiness of powdersb

Low: polyvinyl chloride pellets, waxes
Medium: soap powder, sugar
High: cement, TiO2 NM-100 – NM-105
(RPA and IVAM, 2014)

Droplet size affecting inhalability
Respirable: 610 lm
Inhalable: 6100 lm
Not inhalable: >100 lm Release by machining

Soft plastics (lowc)
Brittle epoxy (highc)

Nanomaterial migration from food matrix
Low: <10 mg of substances/dm2 of food
contact surface (overall migration limit)
High: >10 mg of substances/dm2 of food
contact surface (overall migration limit)

Release by weathering or aging
UV-protected polyethylene (lowc)
Epoxy or polyamide (highc)

Exposure route Determination of most relevant
biological pathways and
corresponding endpoints

Not applicable cf. corresponding grouping criteria
relevant for the respective route of
exposure

Inhalation exposure
Dermal exposure
Oral exposure

Tier 1: Nanomaterial assignment to main group 1 and indications for main groups 2–4 making use of key criteria, i.e. essential intrinsic material properties indicating predominant MoAs

Water solubility Screening for loss of
nanomaterial structure: 1st
estimation of biopersistence

Assignment to main group 1 (soluble
nanomaterials): >100 mg/L (BAuA, 2013)

ZnCl2 (high)
ZnO NM-110, NM-111 (limited)
TiO2 NM-100 – NM-105 (low)

Read-across of the dissolved materials (that have been assigned to
main group 1) by composition

Shape (and aspect ratio) Screening for fiber effects (and
for appropriate dose metrics)

Indication for main group 2
(biopersistent HAR NMs):
Shape, size, aspect ratio fulfill WHO definition
of ‘respirable fibers’: Aspect ratio > 3:1 (i.e.
HAR NMs), length > 5 lm, diameter < 3 lm
‘Not main group 2’: Granular nanomaterials

Certified reference materials with 1 and 3
nanoscale dimensions, all with
diameters < 100 nm, available from: NIST
(USA); BAM (DE); IRMM (JRC-BE)d,e

Rigid HAR NMs: Asbestos and Mitsui
MWCNT-7 (Grosse et al., 2014)

Tier 2 assignment to main group 2 (biopersistent HAR NMs):
Dissolution rate
Rigidity (or diameter as a proxy)
Surface reactivity (cf. Table 3)
AND:
Use and release: The actually released material may have no ‘high
aspect ratio’ properties, even though the pristine nanomaterial was
a HAR NM

Composition Screening for toxic ion release
(inorganic nanomaterials)
Nanosized and bulk materials
may share similar properties

Indication for main group 3 (passive
nanomaterials):
<0.1% of toxic component (element or
molecule; EP and Council of the EU, 2008)
Indication for main group 4 (active nanoma-
terials):
P0.1% of toxic component (element or mole-
cule)

Dependent upon characterization
method

Tier 2 assignment to main group 3 (passive nanomaterials):
No significant release
OR
No toxic element AND
Low surface reactivity AND
Low dispersibility AND
Low in vitro effects
(cf. Table 3)
Tier 2 assignment to main group 4 (active nanomaterials):
All nanomaterials that either have a toxic element or high surface
reactivity or high dispersibility or high in vitro effects
‘Composition’ may be applied to sub-group nanomaterials
(assigned to main groups 2–4 in Tier 2) by most potent element
(e.g. zinc for ZnO)

Abbreviations: BAM: German Federal Institute for Materials Research and Testing; BAuA: German Federal Institute for Occupational Safety and Health; CNT: carbon nanotubes; HA: hazard assessment; HAR NMs: high aspect ratio
nanomaterials; IRMM: Institute for Reference Materials and Measurements; JRC: Joint Research Centre; NRCWE: National Research Centre for the Working Environment; NIST: National Institute of Standards and Technology; RA:
Risk assessment; WHO: World Health Organization.

a NM-x numberings of benchmark materials (e.g. ‘ZnO NM-110’) refer to the respective numberings of the ‘OECD reference nanomaterials’ as they have been coded in the list of the OECD Sponsorship Program for the Testing of
Manufactured Nanomaterials (http://www.oecd.org/science/nanosafety/ and http://ihcp.jrc.ec.europa.eu/our_activities/nanotechnology/nanomaterials-repository).

b Reflecting the kinds of dustiness that may occur with nanomaterials and indicating benchmark materials that are used as examples for dustiness, even though not all of them might be present in the nanoform.
c Relative amount of nanomaterial of entire amount of released fragment.
d cf: NIST: http://www.nist.gov/mml/bbd/rm-8027-092414.cfm; BAM: http://www.nano-refmat.bam.de/en/; IRMM: https://ec.europa.eu/jrc/en/reference-materials.
e (Certified) reference materials both <100 nm and P100 nm diameters, with 1, 2, or 3 nanoscale dimensions, incl. determination of size distribution and surface area, in preparation within the FP7 project NanoDefine (see:

http://www.nanodefine.eu/index.php/links/2-uncategorised/1-welcome).
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Table 3
DF4nanoGrouping: application of qualifiers, e.g. for exposure-based waiving of testing, and performance of Tiers 2 and 3. Grouping criteria, threshold values and benchmark materials for nanomaterial assignment to main group 2–4 and
for sub-grouping.

Grouping criteria or qualifiers Relevance for HA or RA Threshold values for grouping Benchmark materialsa Assignment to main group or sub-grouping

Application of the qualifiers ‘use, release, and route of exposure’, e.g. for exposure-based waiving (To be taken into consideration during each tier) cf. Table 2

Tier 2: Nanomaterial assignment to main groups 2–4, corroboration and sub-grouping making use of key criteria, i.e. essential system-dependent material properties and in vitro effects

Dissolution rate in biological fluids After ‘water solubility’ (cf. Tier
1; Table 2), the dissolution rate
provides further estimations of
a nanomaterial’s in vivo
‘biopersistence’

Nanomaterials with a dissolution rate
>100 mg/L: may be moved to main group
1
For fibers: Low dissolution rate is an
indication for main group 2
(biopersistent HAR NMs):

Crocidolite asbestos (biopersistent, PC;
non-fibrous benchmark material not yet
determined)
Chrysotile asbestos (dissolves in
biological fluids, NC)
cf. Donaldson et al. (2010)b

Assignment to main group 2 (biopersistent HAR NMs):
Release AND
Shape, size, aspect ratio, rigidity (cf. Table 2) AND
Low dissolution rate
Sub-grouping of nanomaterials assigned to main groups 2 or 4, e.g.
by similar dissolution rates (e.g. the same 25% range between NC
and PC)

Surface reactivity Cellular and apical toxicity Indication for assignment to main group
3 (passive nanomaterials):
Passive: <10% of Mn2O3 reactivity in FRAS
or cytochrome c assays
Assignment to main group 4 (active
nanomaterials):
Active: P10% of Mn2O3 reactivity in FRAS
or cytochrome c assays

Passive: BaSO4 NM-220

Active: Mn2O3

Assignment to main group 3
(passive nanomaterials):
No release
OR
Low dispersibility AND
No toxic element AND
Low surface reactivity AND
Low in vitro effects
Sub-grouping of nanomaterials assigned to main groups 2 or 4, e.g.
by similar surface reactivity (e.g. the same 25% range between NC
and PC)

Dispersibility Mobilityc Assignment to main groups 2
(biopersistent HAR NMs) and 4 (active
nanomaterials):
Mobilec: AAN < 3
Indication for main group 3
(passive nanomaterials):
Large: AAN P 3 or diameter above
100 nm (may be grouped together with
micron-scale materials, if appropriate)

Ag NM-300 (AAN < 3)b

SiO2 NM-203 (small agglomerates)
SiO2 NM-200 (large agglomerates)

Assignment to main group 3
(passive nanomaterials):
No release
OR
Low dispersibility AND
No toxic element AND
Low surface reactivity AND
Low in vitro effects
Sub-grouping of nanomaterials assigned to main groups 2 or 4, e.g.
by similar degrees of dispersibility (e.g. the same 25% range
between NC and PC)

Cellular effects Preliminary prediction of
apical toxicity

Indication for nanomaterial assignment
to main group 3 (passive nanomaterials):
No effect at 610 lg/cm2 (Kroll et al.,
2011)
Nanomaterial assignment to main group
4 (active nanomaterials):
Effect at 610 lg/cm2

Passive: BaSO4 NM-220
Active: ZnO NM-110 and NM-111 (ion
effects);
CeO2 NM-211 and NM-212 (surface-
related effects)

Assignment to main group 3
(passive nanomaterials):
No release
OR
Low dispersibility AND
No toxic element AND
Low surface reactivity AND
Low in vitro effects
Sub-grouping of nanomaterials assigned to main groups 2 or 4, e.g.
by similar degrees of cellular toxicity (e.g. the same 25% range
between NC and PC)

In vitro genotoxicity Preliminary prediction of
apical toxicity

Not yet determined Not yet determined

Grouping criteria Threshold values for sub-grouping Benchmark materials

Tier 3: Confirmation of nanomaterial assignment to main group, sub-grouping by apical toxic effects, and refinement of information needs (examples relate to inhalation exposure and numberings of group assignments indicate increasing degrees of ‘activeness’)

Apical toxic effects 1. Inflammation in STIS at an aerosol concentration of 610 mg/m3

2. Necrosis in STIS at an aerosol concentration of 610 mg/m3
1. CeO2 NM-211 and NM-212
2. ZnO NM-110 and NM-111

Toxic potency in STIS 1. NOAEC: 60.1 mg/m3

2. NOAEC: 61 mg/m3

3. NOAEC: 610 mg/m3

4. NOAEC: >10 mg/m3 (confirms Group 3)

1. MWCNT NM-400, quartz DQ12
2. CeO2 NM-211 and NM-212
3. SiO2.naked and TiO2 NM-105
4. BaSO4 NM-220
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In vivo genotoxicity Not yet determined Not yet determined

Recovery/Progression 1. Recovery (full or partial) of effects within half-life of lung clearance
2. No recovery/progression

1. TiO2 NM-100 – NM-105
2. MWCNT NM-400

Organ burden and clearance(Biopersistence) 1. Physiological clearance in STIS at an aerosol concentration of 1 mg/m3

2. Decelerated clearance in STIS at an aerosol concentration of 1 mg/m3

3. Accelerated clearance

1. TiO2 NM-100 – NM-105
2. CeO2 NM-211 and NM-212
3. BaSO4 NM-220

Biopersistent nanomaterials are defined as having a pulmonary half-life upon intratracheal instillation equal to or exceeding 40 days (BAuA, 2014a)

Biodistribution 1. Local availability
2. Availability in MPS >1 mass% of dose
3. Systemic availability outside MPS >1 mass% of dose

1. CeO2 NM-211 and NM-212
2. Not yet determined
3. Not yet determined

Grouping criteria Relevance for HA or RA Threshold values for grouping Benchmark materialsa

Supplementary criteria, i.e. properties that are not used independently, but that are covered by properties of Tier 1 or Tier 2 of the DF4nanoGrouping or that may be applied to support the grouping and sub-grouping within the DF4nanoGrouping

Primary particle size Size is indispensible to identify a nanomaterial Size is not a primary grouping criterion, but it influences dose metrics
depending on MoA via mass, surface (or number)

Certified reference materials with 1 and 3 nanoscale dimensions,
all with diameters <100 nm, available from: NIST (USA); BAM (DE);
IRMM (JRC-BE)d

Surface area Many of the most relevant MoAs are surface-induced Surface area is not a primary grouping criterion, but it is essential to
convert dose metrics

Certified reference materials with BET values from 0.102–550 m2/
g, covering nano-sized and bulk materials, available from: NIST
(USA); BAM (DE); IRMM (JRC, BE); APPIE (JP)d

Surface chemistry Many of the most relevant MoAs are surface-induced For grouping, composition is more important than surface chemistry.
Subgrouping relies on the system-dependent consequences of surface
chemistry: surface reactivity and dispersibility

ZnO NM-110 vs. NM-111
TiO2 NM-103 vs. NM-104

Crystallinity Addressed in the context of ‘composition’

Surface charge Interaction with lipids: Negatively charged (and
hydrophilic) materials evade corona formation longer;
positively charged materials may damage membranes

Secondary evidence for nanomaterial assignment to main groups 3
(passive) or 4 (active nanomaterials) – joint evaluation with
‘dispersibility’:
If materials within (sub-)group are very heterogeneous in
hydrophobicity and surface charge, data of the extreme cases should
verify that uptake and biodistribution do not counter-indicate the
grouping
Positive: f > 10 mV; neutral: f = �10–10 mV; negative: f < �10 mV

Positive: CeO2 NM-212
Negative: SiO2 NM-203

Hydrophobicity Altered mobility: Hydrophobic materials have stronger
corona formation and are cleared differently than
hydrophilic materials

Secondary evidence for nanomaterial assignment to main groups 3
(passive) or 4 (active nanomaterials) – joint evaluation with
‘dispersibility’:
If materials within (sub-)group are very heterogeneous in
hydrophobicity and surface charge, data of the extreme cases should
verify that uptake and biodistribution do not counter-indicate the
grouping

Not yet determined

Corona formation The predictive value of this system-dependent property is sufficiently
addressed by the intrinsic properties of hydrophobicity and surface
charge, supplemented by the system-dependent dispersibility

Abbreviations: AAN: average agglomeration number; APPIE: Association of Powder Process Industry; BAM: German Federal Institute for Materials Research and Testing; DF4nanoGrouping: decision-making framework for the
grouping and testing of nanomaterials; FRAS: ferric reducing ability of serum; HA: hazard assessment; IRMM: Institute for Reference Materials and Measurements; JRC: Joint Research Centre; MoA: mode-of-action; MPS:
mononuclear phagocyte system; MWCNT: multi-walled carbon nanotube; NC: negative control; NIST: National Institute of Standards and Technology; NOAEC: no-observed-adverse-effect concentration; PC: positive control; RA:
risk assessment.

a The numberings in the column ‘benchmark materials’ correspond to the numberings in the column ‘group assignment (and threshold values, if applicable)’. AND: NM-x numberings of benchmark materials (e.g. ‘ZnO NM-110’)
refer to the respective numberings of the ‘OECD reference nanomaterials’ as they have been coded in the list of the OECD Sponsorship Program for the Testing of Manufactured Nanomaterials (http://www.oecd.org/science/-
nanosafety/ and http://ihcp.jrc.ec.europa.eu/our_activities/nanotechnology/nanomaterials-repository).

b Further benchmark materials required for all relevant scenarios; data from OECD is emerging.
c Mobile nanomaterials: nanomaterials that remain dispersed as constituent particles and therefore may potentially move between body compartments; surface charge, hydrophobicity, dispersibility determine mobility.
d cf: NIST: http://www.nist.gov/mml/bbd/rm-8027-092414.cfm; BAM: http://www.nano-refmat.bam.de/en/; IRMM: https://ec.europa.eu/jrc/en/reference-materials; APPIE: https://www.nmij.jp/english/info/lab/mtrl-charct/.
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� Effects observed in the in vitro macrophage assay, in vitro geno-
toxicity assays, and in vitro barrier penetration studies using
relevant test systems reflecting the primary target organ (3.4
and 3.5).

During Tier 1 and Tier 2, no further properties, apart from the
mentioned key criteria, are necessary for decision-making, i.e. to
assign nanomaterials to the corresponding main groups.
Additional intrinsic material and system-dependent properties
may however be relevant for sub-grouping, i.e. PPS (3.1.2), surface
area (3.1.3), crystallinity (3.1.4), surface chemistry (3.1.5), surface
charge (3.1.5), hydrophobicity (3.1.5), and corona formation
(3.3.4), which also relates to surface area in situ (3.3.5). These prop-
erties are listed as supplementary criteria in the lower part of
Table 3. Sub-grouping is especially relevant for the main groups
2 (biopersistent HAR NMs) and 4 (active nanomaterials) since
nanomaterials assigned to these groups may possess specific haz-
ards. Additionally, size and surface area are indispensible to estab-
lish the appropriate dose metrics that is relevant to investigate
specific MoAs (Landsiedel et al., 2014a).

2.2.3. Tier 3: confirmation of nanomaterial assignment to main groups
und sub-grouping based on short-term in vivo studies

Tier 3 allows confirming or revising the assignment of nanoma-
terials to the main groups. Further, sub-grouping may be per-
formed by information obtained in short-term in vivo studies,
such as the STIS and to define and refine additional information
needs. Toxicological criteria, exemplified for the inhalation route
of exposure, include (Table 3):

� Lung burden, systemic uptake, in vivo biopersistence, biodistri-
bution, assessed by STIS (3.6).
� Apical toxic effects and toxic potency, assessed by STIS (3.6).
� Ex vivo genotoxicity screening combined with STIS (3.6).

2.3. Application of the qualifiers ‘use, release and route of exposure’ for
exposure-based waiving

Within the DF4nanoGrouping, the aspects of nanomaterial use,
release and route of exposure play a special role. (Of note, ‘use’ is
defined as handling during all life cycle stages of the nanomaterial
and explicitly includes nanomaterial manufacture, production and
consumer use.) Even one single variant of a specific type of nano-
material may be intended for a broad spectrum of different uses.
Vice versa, different types of nanomaterials may be intended for
one specific type of use. Likewise, depending on the final product
for which the given nanomaterial is foreseen, a broad variety of dif-
ferent release scenarios are foreseeable, including no release at all
and different degrees of release by machining, weathering or aging.
Again, these properties may be very similar for a variety of differ-
ent types of nanomaterials, or they may differ considerably within
a group of nanomaterials with very similar intrinsic material prop-
erties. These examples further highlight that the determination of
intended use and realistic release scenarios (throughout the life
cycle of the given nanomaterial, starting from production, use
within industry (e.g. formulation) to consumer use and disposal)
directly affect the nanomaterial’s most likely route of exposure
and exposure potential.

Presently, the DF4nanoGrouping focuses on intended use condi-
tions covering the most realistic exposure scenarios for workers or
consumers. Accidental exposure to nanomaterials may occur at all
life cycle stages and could form a separate exposure group. For the
time being, however, acute overexposure by accidental uptake is
not further considered in the DF4nanoGrouping. Likewise, humans
may potentially be exposed to nanomaterials if they are present in
the environment, e.g. when a nanomaterial is discharged or
contained in the sludge. Nevertheless, since such ‘indirect’ human
exposure is considered to be much lower than ‘direct’ exposure at
the workplace or during use, it is also not further addressed in the
grouping concept.

Grouping by use, release and exposure may be debatable since
most scenarios are not mutually exclusive and further uses and
release scenarios may exist – even if they may only be minor.
However, nanomaterials that fuse or react with their matrix in
the final product (e.g. concrete seeding crystals; Bräu et al., 2012)
are examples for passive nanomaterials forming a group of
‘no-release’. For such nanomaterials, grouping by no-release is
effectively an exposure-based waiving.

Due to the special role that the aspects ‘use, release and route of
exposure’ play, within the DF4nanoGrouping, these aspects are
used as qualifiers for grouping instead of direct grouping criteria.
For a given nanomaterial, the grouping criteria on intrinsic and sys-
tem-dependent properties, nanomaterial biopersistence, uptake,
and biodistribution or cellular and apical toxic effects are affected
by the use and release scenarios and the resulting relevant route(s)
of exposure. Therefore, these qualifiers may serve to support
grouping decisions in order to adapt data requirements, i.e. to tai-
lor subsequent testing to specific needs or to justify waiving of
testing. Furthermore, the qualifiers may serve to determine appro-
priate forms of nanomaterial preparation for testing (e.g. aerosols
for inhalation exposure).

The qualifiers ‘use, release, and route of exposure’ may be inte-
grated into any given tier of the grouping process. Table 4 illus-
trates how the qualifiers are combined and applied to determine
hotspots, i.e. groups of nanomaterials for which human exposure
is likely. The table addresses possible uses of nanomaterials (listed
in the accessory table at the bottom of Table 4) and distinguishes
relevant life cycle stages for grouping, i.e. production, formulation
and industrial use, consumer use, and, finally, disposal (first level
column scaling). Further, the table distinguishes between the most
relevant routes of exposure (first level row scaling) and finally dif-
ferentiates by the form in which the given nanomaterial may pre-
vail, i.e. as powder, liquid or bound in matrix (second level row
scaling). Jointly addressing these aspects, Table 4 indicates the like-
lihood of nanoparticle release and exposure, highlighting in red the
hotspots for which exposure is likely. The most relevant exposure
scenarios for nanomaterials known to date (e.g. dustiness in pro-
duction) are addressed.

The following examples demonstrate how Table 4 may be
applied for decision-making during nanomaterial grouping:

� Intended use: Nanomaterial in sunscreen (tube); route of expo-
sure under investigation: dermal; nanomaterial form: liquid;
potential release: yes, by direct skin contact; exposure potential:
yes (hotspot). Resulting qualifier: Risk assessment required for
dermal route.
� Intended use: Nanomaterial in sunscreen (tube); route of expo-

sure under investigation: inhalation; nanomaterial form: liquid;
potential release: no, since no aerosol is formed; exposure poten-
tial: no inhalation exposure. Resulting qualifier: No risk assess-
ment required for this route of exposure.
� Intended use: Nanomaterial in sunscreen (spray); route of expo-

sure under investigation: inhalation; nanomaterial form: liquid;
potential release: yes, since aerosol is formed; exposure potential:
yes, due to respirable droplet size (hotspot). Resulting qualifier:
Risk assessment required for inhalation route.

In the final life cycle stage ‘disposal’, no human exposure or
environmental emission of nanomaterials is expected from con-
trolled combustion (Walser et al., 2012). Although many inorganic
nanomaterials are presumably persistent, they mostly end up in
the glassy matrix of the slag, and are partially present in the
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filtered fly ash (Walser et al., 2012). As a result, there is no poten-
tial uptake via any of the exposure routes during the life cycle step
‘disposal’, and no hotspot was identified in Table 4.

During all tiers, the release and exposure potential of a nanoma-
terial may be investigated addressing relevant endpoints as appro-
priate (e.g. release of substance from articles (dustiness)
determined by methods allowing to assess release by weathering
or machining) and taking into account the intended uses and most
likely routes of exposure. Based upon the outcome of such assess-
ments, the qualifiers ‘use, release and route of exposure’ may be
applied to justify waiving of testing in case of low toxicological
potency or the selection of specific higher tier assays.
3. Criteria for the grouping of nanomaterials

3.1. Grouping of nanomaterials by intrinsic material properties

Due to nanomaterial complexity, their structure will involve
features generally not measured for bulk substances, including
size, surface area and shape or aspect ratio, as well as traditional
structural measurements, such as chemical composition. It is vital
to understand the specific intrinsic material properties of a nano-
material prior to beginning toxicological testing (Warheit, 2008;
Keene et al., 2014). Accordingly, the assessment of intrinsic mate-
rial properties is the starting point for nanomaterial grouping in
the preceding Tier 0 and in Tier 1 of the DF4nanoGrouping. In addi-
tion, correctly identifying the nanomaterial’s material properties
may allow the determination of some of the risks factors inherent
with occupational exposure of nanomaterials, particularly for
inhalation exposure (RPA and IVAM, 2014).

For a given nanomaterial, its intrinsic material properties will
be useful for grouping if they pertain to certain adverse health
effects regardless of the nanomaterial’s interactions with the envi-
ronment. Examples include the chemical composition that may be
a predictor of the cellular effects elicited by nanomaterials that
shed toxic ions or the shape, i.e. high aspect ratio and rigidity,
which may indicate particles acting according to the fiber para-
digm. Other material properties, however, will change once the
given nanomaterial is placed in a different environment. For
instance, a nanomaterial may agglomerate (affected by the sys-
tem-dependent property ‘dispersibility’) so that it is no longer pre-
sent in its PPS. In such cases, the respective intrinsic material
property will be less relevant for grouping by mechanisms that rely
on size.

Defining their intrinsic material properties will allow some
nanomaterials to be initially placed into commonly accepted
groups, such as the ones suggested by the NIOSH, the BSI, the
BAuA, or RPA and IVAM. By determining water solubility, aspect
ratio, and chemical composition (together with biopersistence
and apical toxic effects), many nanomaterials may be assigned as
being soluble, biopersistent and low or high toxicity, or HAR NMs
(BSI, 2007; Kuempel et al., 2012; Gebel et al., 2014; RPA and
IVAM, 2014).

In the following chapters, water solubility, PPS, shape, and
aspect ratio, surface area, chemical composition, and surface chem-
istry are presented as relevant intrinsic material properties for
nanomaterial characterization and grouping. The rationale for each
property is discussed. Additionally, the Supplementary
Information Table S2 provides specific information on currently
preferred analytical techniques and the dynamic ranges of the
respective properties that are relevant for grouping. If possible,
standardized methodologies are listed, since the standardization
of analytical techniques is vital to proper grouping. Many measure-
ment methods have standards accepted by the International
Standardization Organization (ISO), although these methods have
not necessarily been designed for nano-sized objects (Izak-Nau
and Voetz, 2014). Further, Table S2 indicates technical limitations
or caveats for the characterization methods and lists relevant
benchmark materials (cf. Information box for definition), if avail-
able. These benchmark materials would ideally have a similar
MoA as other substances that are placed into the particular group.
Benchmark materials allow some ranking of toxicity among mem-
bers of a group, allowing for exposure control bands (Kuempel
et al., 2012).

Of note, NM-x numberings of benchmark materials (or of speci-
fic nanomaterials mentioned in the text, e.g. ‘ZnO NM-110’) refer to
the respective numberings of the ‘OECD reference nanomaterials’
as they have been coded in the list of the OECD Sponsorship
Program for the Testing of Manufactured Nanomaterials (http://
ihcp.jrc.ec.europa.eu/our_activities/nanotechnology/nanomateri-
als-repository and http://www.oecd.org/science/nanosafety/).

3.1.1. Water solubility
In the DF4nanoGrouping, ‘water solubility’ is used as Tier 1 key

criterion to assign nanomaterials to main group 1 (‘soluble nano-
materials’). ‘Water solubility’ is interdependent with the system-
dependent property/Tier 2 key criterion ‘dissolution rate in BSF,
and the Tier 3 criteria ‘in vitro/in vivo biopersistence/release of
toxic ions’.

Solubility is conventionally described as the maximum mass of
a (nano-)material that is found in molecularly dissolved state in a
given volume of solvent containing a particulate material under
specific conditions. Dissolved species may either be ions or single
molecules that have dissolved from organic nanomaterials.
Within the DF4nanoGrouping, water solubility is addressed as
intrinsic material property (and oftentimes, it is tabulated),
whereas the time-dependent dissolution rate of a nanomaterial
in different biological media is addressed as system-dependent
property (cf. Chapter 3.3).

The water solubility of a material provides a first indication of
its (non-)biopersistence. However particle dissolution may be
reversed by recrystallization (Kuempel et al., 2012; Wohlleben
et al., 2013; BAuA, 2013; Li et al., 2014). For ionic compounds, dis-
solved metal ions are one of the primary mechanisms of cytotoxi-
city (Nel et al., 2013). The German Federal Institute for
Occupational Safety and Health (BAuA, 2013) has set a threshold
value of 100 mg/L to distinguish between soluble and non-soluble
nanomaterials.

3.1.2. Particle morphology: primary particle size, shape, and aspect
ratio

‘PPS, shape and aspect ratio’ may be used in Tier 0 to identify a
nanomaterial. In the DF4nanoGrouping, these intrinsic material
properties are used as Tier 1 key criteria to indicate that a nanoma-
terial might belong to main group 2 ‘biopersistent HAR NMs’. ‘PPS,
shape and aspect ratio’ are interdependent with the system-depen-
dent properties/Tier 2 key criteria ‘size in relevant media/dis-
persibility’ and the Tier 2 and 3 criteria ‘in vitro/in vivo uptake,
biodistribution, and clearance’.

The PPS, the shape and resulting aspect ratio of nanomaterials
may influence biological interactions such as adsorption sites, cel-
lular deposition and cellular or systemic uptake, clearance, and
biological effects, such as inflammation-related responses
(Oberdörster et al., 2005; Teeguarden et al., 2007; Kettler et al.,
2014). Therefore, assessing size and shape (and aspect ratio) is
imperative for nanomaterial grouping. It may further serve to pri-
oritize inhalation testing (since the size of the nanomaterial greatly
affects lung deposition) and to understand how to minimize poten-
tial hazards caused by nanomaterials.

In accordance with the guidance from the German Federal
Institute for Occupational Safety and Health (BAuA, 2013, 2014a),

http://ihcp.jrc.ec.europa.eu/our_activities/nanotechnology/nanomaterials-repository
http://ihcp.jrc.ec.europa.eu/our_activities/nanotechnology/nanomaterials-repository
http://ihcp.jrc.ec.europa.eu/our_activities/nanotechnology/nanomaterials-repository
http://www.oecd.org/science/nanosafety/


J.H.E. Arts et al. / Regulatory Toxicology and Pharmacology 71 (2015) S1–S27 S13
fibers that fulfill the criteria of the World Health Organization
(WHO, 2005; i.e. that have an aspect ratio of 3:1 or higher, a length
>5 lm, and a diameter <3 lm) may be expected to elicit asbestos-
like effects – acting by a mechanism also described as the ‘fiber
pathogenicity paradigm’ (Poland et al., 2009). Additionally, the
rigidity and biopersistence of such HAR NMs contribute to their
increased hazard potential by inhalation exposures (Donaldson
et al., 2006, 2010, 2011). Accordingly, the above-mentioned
BAuA, NIOSH, and BSI grouping approaches have defined a separate
group for (biopersistent) nanomaterials that may elicit ‘fiber
toxicity’.

Importantly, size and shape may change depending on the
nanoparticles’ surroundings. For instance, the primary particles of
many types of nanomaterials, including TiO2, form aggregates or
agglomerates when dispersed in air or in liquid vehicles (Yi et al.,
2013), and saline causes gold nanoparticles to agglomerate
(Keene and Tyner, 2011). Therefore, the state of the particles (pow-
der, suspension, etc.), both as manufactured and as intended for
use, should be understood before testing takes place. Since in situ
nanomaterial size and shape depends on prior dispersion, it is trea-
ted as a system-dependent property designated ‘dispersibility’
(ECHA, 2012c; cf. Chapter 3.3).
3.1.3. Surface area
‘Surface area’ may be used in Tier 0 to identify a nanomaterial.

In the DF4nanoGrouping, it may also be used as supplementary cri-
terion. ‘Surface area’ is interdependent with the system-dependent
property/Tier 2 key criterion ‘surface reactivity’, with the Tier 2
supplementary criteria ‘corona formation’ and ‘surface area
in situ’ and with the Tier 2 and 3 criteria ‘in vitro/in vivo oxidative
stress, membrane damage, macrophage activation, and
inflammation’.

Surface area is considered an important factor for nanomaterial
toxicology because all interactions between a nanoparticle and its
environment occur at the particle surface. With decreasing particle
size, down to the nanoscale, the surface area increases exponen-
tially. Thereby, also the fraction of the particle’s atoms present
on its surface increases. Surface area greatly depends on the PPS,
shape and porosity.

Frequently, the increase in catalytic surface is the desired fea-
ture of a nanomaterial since it enables the formation of more reac-
tion products per time and mass of the catalyzing particles. With
increasing surface area, such nanomaterials may increasingly cat-
alyze the formation of reactive species, such as reactive oxygen
species (ROS), in biological systems. Another example of the high
surface activity of nanomaterials is the rapid formation of protein
coronas when dispersed in biological fluids (Bello et al., 2009).
Thereby, the intrinsic material property ‘surface area’ is closely
related to the system-dependent properties ‘surface charge’ and
‘corona formation’ (cf. Chapter 3.3).

Brown et al. (2001), Duffin et al. (2007) described that large sur-
face area nanoparticles made from low-toxicity materials exerted
higher levels of inflammatory response in lung cells, indicating that
surface area is an important factor in triggering inflammatory
responses. Also in a STIS investigating CeO2 NM-211 and NM-
212, the surface area of the particles provided the dose metrics
with the best correlation of the two substances’ inflammatory
responses and better correlated than mass or volume in the lung
(Keller et al., 2014). Many studies recognized surface metrics as
the best-suited parameters for comparative toxicological testing
of nanomaterials (Oberdörster, 2009; Rushton et al., 2010; Wang
and Fan, 2014). Since different properties of nanomaterials affect
different stages of the events leading to apical toxic effects, a uni-
fying dose metric for all types of nanomaterials is unlikely
(Braakhuis et al., 2014; Landsiedel et al., 2014b).
3.1.4. Chemical composition (including impurities and crystallinity)
‘Chemical composition’ and ‘crystallinity’ may be used in Tier 0

to identify a nanomaterial. In the DF4nanoGrouping, ‘composition’
is used as Tier 1 key criterion to indicate that a nanomaterial might
belong to the main groups 3 or 4 (‘passive’ and ‘active nanomate-
rials’, respectively). ‘Composition’ is interdependent with the sys-
tem-dependent property/Tier 2 key criterion ‘dissolution rate’
and with the Tier 2 and 3 criteria ‘in vitro/in vivo biopersistence
and release of toxic ions’.

For many nanomaterials, the chemical composition, i.e. the
nanomaterial’s chemical identity on the molecular level without
consideration of nanostructures, is an important determinant of
toxic effects. This has been discussed in detail in different reviews
(e.g. Donaldson and Poland, 2013; Landsiedel et al., 2014a; Wang
and Fan, 2014), as well as in publications related to the EU-funded
project Particle_Risk (Johnston et al., 2013), the German project
nanoGEM (Buesen et al., 2014; Landsiedel et al., 2014b), or the
United States Environmental Protection Agency (EPA) ToxCast™
program (Wang et al., 2013). The chemical composition’s potential
to drive toxicity requires special attention if the nanomaterial is
produced from a substance that is known to induce a specific toxic
effect, i.e. carcinogenicity (Pietruska et al., 2011) or is likely to dis-
solve releasing toxic ions.

As for non-nanosized materials, impurities and stabilizers may
drive nanomaterial toxicity (Nel et al., 2006; Keene et al., 2014).
Similarly, the crystal phase of a nanomaterial that may differ even
for substances of the same chemical composition, may affect its
toxicity. For instance, amorphous silica is innocuous, while crys-
talline silica is carcinogenic (Fruijtier-Polloth, 2012). Due to the
influence of chemical composition on toxicity, several classification
schemes include a group for nanomaterials that bases their bioper-
sistence and toxicity on this intrinsic material property (BSI, 2007;
BAuA, 2013).

3.1.5. Surface chemistry, surface charge and surface hydrophobicity
‘Surface chemistry, surface charge and hydrophobicity’ may

be used in Tier 0 to identify a nanomaterial. In the
DF4nanoGrouping, these intrinsic material properties may be used
as supplementary criteria. They are interdependent with the sys-
tem-dependent property/Tier 2 key criterion ‘size in relevant
media/dispersibility’ and with the Tier 2 and 3 criteria ‘in vitro/
in vivo uptake, biodistribution and clearance’.

Surface chemistry encompasses the chemical composition of the
material’s surface and intentional or inadvertent organic surface
modifications (Hellack et al., 2013; Wohlleben et al., 2013). In
accordance with the definitions for ‘intrinsic material properties’
and ‘system-dependent properties’, intentional surface modifica-
tions are listed as ‘intrinsic material properties’ whereas inadver-
tent surface modifications (specifically, corona formation) are
assigned as system-dependent properties (cf. Chapter 3.3).
Chemical surface functional groups, such as amines on dendrimers,
may affect nanomaterial toxicity (Kim et al., 2008), and many lab-
oratories use such modifications to lessen nanoparticle interac-
tions with proteins and to mitigate the toxicity of organic and
inorganic nanomaterials (Aillon et al., 2009; Kong et al., 2011).
Small changes in functionalization groups that change a nanopar-
ticle’s surface charge have been shown to significantly affect cellu-
lar uptake, protein absorption, and cytotoxicity (Patil et al., 2007;
Moghadam et al., 2012; Mattix et al., 2013). By contrast, the biolog-
ical effects of other nanomaterials of the same composition but
with different surface functionalization were not greatly influ-
enced by surface functionalization (Hellack et al., 2013;
Wohlleben et al., 2014a).

Surface charge is measured from the zeta potential or the elec-
trophoretic mobility of the particle at a given pH and temperature
(Table S2). In addition to the zeta potential, it is important to note
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the isoelectric point, i.e. the pH where the zeta potential is equal to
zero (Izak-Nau and Voetz, 2014). In colloidal science, particles in
solution with zeta potentials below �20 mV or above +20 mV are
considered as electrostatically stabilized against agglomeration
with each other (Evans and Wennerström, 1999).

Surface charge is an intrinsic material property, since it is inde-
pendent of the system in which the material prevails (Brunner
et al., 2006; Schulze et al., 2008; Wang et al., 2014). Kim et al.
(2008) found positively charged polyamidoamine dendrimers to
be more cytotoxic in Chinese hamster ovary cells than neutral or
negatively charged particles and concluded that the charge of a
nanoparticle might affect its biodistribution. Wang et al. (2014)
found the nanoparticles’ positive zeta potential to be neutralized
by corona formation immediately after their deposition in lung lin-
ing fluid. However, once taken up into cellular lysosomes, the
acidic environment in combination with protease and lipase activ-
ity was able to remove the corona. Thereby, the charged surface
was again revealed, and the naked particle was free to interact
with the lysosomal membrane (Wang et al., 2014).

While surface charge is not of primary relevance for grouping,
monitoring the surface chemistry of organic and inorganic nano-
materials (Suzuki, 2003; Baer et al., 2010) provides additional
structural information relevant for grouping. The surface chemistry
of nanomaterials has a fundamental influence on system-depen-
dent properties, such as aggregation, agglomeration, and biomole-
cule interaction, and it may vary depending on the synthesis
method used (Kim et al., 2013). This variation may also have an
effect on the nanomaterial’s toxicity, since it affects surface reac-
tivity, which in return influences oxidative reactions, i.e. one of
the primary mechanisms of cytotoxicity (Nel et al., 2013).
Similarly, differences in ATP-ase activity (ATP: adenosine triphos-
phate) and in the cellular uptake of particles were observed in vari-
ants of CeO2 nanomaterials created during assorted synthesis
techniques (Dowding et al., 2013).

Hydrophobicity has been addressed as key property to deter-
mine the uptake, fate and transport of non-nanosized substances
or nanomaterials (Wagner et al., 2014). While the traditional
OECD method of Kow partition coefficient is not generally consid-
ered to be applicable to determine the hydrophobicity of nanoma-
terials (OECD, 2012), other characterization methods for this
property have not yet gained wide acceptance. For powder materi-
als, inverse gas chromatography is relatively simple and is increas-
ingly being applied. Nevertheless, the even simpler method of
measuring the water contact angle on a pressed powder substrate
may still be advantageous for hydrophobicity assessment.

The biological surface adsorption index (BSAI) has been sug-
gested as a more complete approach to assess a nanomaterial’s
surface composition. The BSAI results in five quantitative descrip-
tors, i.e. hydrophobicity, hydrogen bond, polarity/polarization,
and lone-pair electrons (Xia et al., 2011; Chen et al., 2014). Up to
now, however, a simple correlation of all indices with in vivo
effects is unavailable. Therefore, within the DF4nanoGrouping,
the basic properties of charge and hydrophobicity have been
selected as preferred grouping criteria, in the expectation that
methods for the determination of nanomaterial hydrophobicity
will shortly become accepted.

Knowledge on how altered surface chemistries affect system-
dependent properties, cellular or apical toxic effects due may be
used to design and produce safer nanomaterials, since manipula-
tion of the surface chemistry may minimize its toxic potential.
Nevertheless, also the OECD guidance confirms that the surface
charge of a nanomaterial is not of primary relevance for grouping.
Instead, it is a proxy to estimate agglomeration tendency (by col-
loidal theories), which in return contributes significantly to mobil-
ity (OECD, 2012), i.e. the nanomaterial’s potential to move between
body compartments (cf. Chapter 3.3.3).
3.1.6. Grouping of nanomaterials by intrinsic material properties –
conclusion

Grouping of nanomaterials by specific intrinsic material proper-
ties is based on the assumption that the characteristic in question
is one of the primary influences of toxicity. Overall, some intrinsic
material properties, such as high aspect ratios, may be direct pre-
dictors of biological effects. Other intrinsic material properties,
such as chemical composition and water solubility, may provide
a first estimate of the nanomaterial’s likely toxic potential, whereas
further properties are not by themselves predictive, but need to be
combined with the outcome of in vitro or in vivo studies to allow
nanomaterial grouping. Depending on the respective type of nano-
material and the given intrinsic material property, grouping may
lead to an understanding on how the unique characteristics of
nanomaterials contribute to potential toxicological risks. If a reli-
able grouping may be established, it allows for a more efficient
production, use, and disposal of nanomaterials, affecting the whole
life cycle of the material. This may provide the basis for the safer
use and development of nanomaterials.

However, most nanomaterials will not be accurately grouped
based solely on their intrinsic material properties. While high
aspect ratio is an intrinsic material property allowing the assign-
ment of the corresponding nanomaterials into a ‘group with higher
hazard potential’ and water solubility into a group of ‘soluble par-
ticles’, other nanomaterials may need to be grouped using addi-
tional aspects of grouping discussed below depending on the
toxicity endpoint. In addition, it is likely false to assume that
nano-size alone dictates toxicity (Gebel et al., 2014).

3.2. The qualifiers use, release, and route of exposure

3.2.1. Use
With the increasing application of nanomaterials in industry

and consumer products (Chen et al., 2014), the list of specific uses
of nanomaterials is continuously increasing. The German Federal
Environmental Agency suggests a classification framework to
group products containing nanomaterials into the following cate-
gories: substances, cosmetics, health care, food and feed, coatings
and inks, cleaning and disinfection, rubber products, building and
construction, textiles, paper products, and complex objects and
other products (UBA, 2014). Specifically for carbon nanotubes
(CNTs), Nowack et al. (2013) describe nine relevant use and release
scenarios, i.e. injection molding, manufacturing, sports equipment,
electronics, windmill blades, fuel system components, tires, tex-
tiles, incineration, and landfills, with each having specific exposure
routes and patterns. The properties of fragments released from
nanocomposite materials and the actual probability of release
were assessed as being primarily linked to the matrix in which
the nanomaterial is incorporated (i.e. the ‘system’ is referred to
in the term ‘system-dependent properties’), with only secondary
modulation by the embedded nanomaterial (Kingston et al.,
2014). Since investigations using fragments released during the
use of plastics, cements and coatings revealed that toxicological
effects are predominantly elicited by the material system that
incorporates the nanomaterial (Wohlleben et al., 2011; Saber
et al., 2012; Kaiser et al., 2013; Kuhlbusch and Canady, 2014;
Saber and Jensen, 2014; Smulders et al., 2014), within the
DG4nanoGrouping, ‘use’ has been included as a relevant qualifier
for nanomaterial grouping.

3.2.2. Release
In the Supplementary Information, Table S3 presents parame-

ters for determining the impact of relevant release scenarios sorted
by the corresponding most relevant route of exposure. These
include the dustiness or droplet size of aerosolized nanomaterials
or particle sizes upon machining or weathering. Hence,
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nanomaterial volatility and dustiness, two intrinsic material prop-
erties, are addressed as indicators of nanomaterial release.
Substances, which are inherently ‘dusty’, are likely to have
increased toxicity due to increased pulmonary deposition and pos-
sible absorption after inhalation exposure.

Intensive investigations have assessed nanomaterial release
from matrices focusing on the product’s use phase under condi-
tions like weathering or aging. Overall, the potential release, e.g.,
of MWCNTs or silica from different polymer systems, is likely to
be low (Kingston et al., 2014; Wohlleben et al., 2014a,b). Release
by machining or mechanical treatment of an article with embed-
ded nanomaterial should be investigated if elevated exposures
may occur locally and temporally during the mechanical treat-
ment. This is especially relevant if, e.g., high-shear professional
handling may lead to aerosol generation. In outdoor uses, hydroly-
sis and UV radiation degrade polymer matrices, and fractions of
embedded nanomaterials may be released (Ging et al., 2014).
Even though the corresponding rates of release and released
masses will be low, they may nevertheless be relevant.
Accordingly, nanomaterial release by weathering or aging of an
article with embedded nanomaterial substance should be assessed,
if appropriate.

3.2.3. Route of exposure
Table S3 distinguishes between inhalation, oral and dermal

exposure (while additionally mentioning special exposure scenar-
ios for nanomaterials that are intended for use in food, pharmaceu-
ticals, or cosmetics). Handling of nanomaterial powders is the most
critical occupational exposure scenario, however, inhalation expo-
sure may also be relevant for consumers. Ingestion mostly reflects
both incidental and intentional exposure to nanomaterials in food
and consumer products. The potential of dermal exposure is espe-
cially high for consumers using e.g. cosmetic products and for
workers in occupational settings.

Of note, the DF4nanoGrouping implies that general methods for
industrial hygiene are fully implemented. Along with exposure-
based hazard assessment, it will be possible to advise on further
specific risk management measures, such as, in the occupational
setting, respiratory protection, wearing of specific gloves, etc.

3.2.4. The qualifiers use, release, and route of exposure – conclusion
The importance of exposure estimations that are based on rele-

vant use and release scenarios for hazard assessment is highlighted
in various research projects (Stone et al., 2014; Pastoor et al., 2014;
Duncan and Pillai, 2015). Most importantly, it is also reflected in
the regulatory environment. Sensitive uses, e.g. with direct expo-
sure of humans or the environment, such as in food, medical
devices, agrochemicals, biocides and cosmetics, are treated by sep-
arate, specific regulations. The European Food Safety Authority
(EFSA, 2011) distinguishes 6 different exposure scenarios for ‘engi-
neered’ nanomaterials in food and feed products: (1) no persis-
tence of the nanomaterial in preparations and formulations as
marketed; (2) no nanomaterial migration from food contact mate-
rials (i.e. no exposure); (3) complete nanomaterial transformation
in the food or feed matrix before ingestion; (4) nanomaterial trans-
formation during digestion. Finally, in scenarios (5) and (6) it is
assumed that some or all of the nanomaterial persists in the food
or feed matrix and in gastrointestinal fluids and information on a
non-nanosized substance of the same chemical composition is
(or is not) available. Hence, the EFSA guidance allows for reduced
information requirements when there is no exposure to the nano-
material either because it does not migrate from food contact
materials or if it completely degrades or dissolves so that no nano-
material will be absorbed (EFSA, 2011).

Specifically for the determination of potential health effects of
nanomaterials used in medical devices, the EU Commission’s
Scientific Committee on Emerging and Newly Identified Health
Risks (SCENIHR, 2015) recommends a phased approach based on
potential release and characteristics of the nanomaterials to avoid
unnecessary testing, i.e. (1) particle release, (2) particle distribu-
tion and persistence, (3) hazard assessment (toxicological evalua-
tions), (4) risk characterization and assessment: In phase 1, an
evaluation of the potential for the device to release nanoparticles
either directly or due to wear of the device during use should be car-
ried out. In phase 2, the aim is to determine the distribution of the par-
ticles released and also their persistence potential. In phase 3, the
hazard is assessed using appropriate toxicity tests taking account of
the exposure characteristics and potential for persistence in specific
organs. This will provide input for the final risk characterization (phase
4). The estimated risk needs to be compared to the risk from the use of
comparable devices not incorporating nanomaterials in judging the
acceptability of the risk.

Within the REACH regulation, hazard and exposure assessment
form the two fundamental pillars of risk assessment. Nevertheless,
in Annex XI, Paragraph 3, ‘substance-tailored exposure-driven test-
ing’ is discussed as a possible waiving argument for testing. Higher
tier testing (in accordance with the information requirements from
Annex VIII–X of the REACH regulation) may be omitted if exposure
assessment demonstrates that exposure is either absent or non-
significant throughout the life cycle of a substance (EP and
Council of the EU, 2006).

The combination of intrinsic material properties and realistic
release and exposure scenarios during the various stages of a nano-
material’s life cycle reveals to which forms of a nanomaterial
humans may potentially be exposed and which therefore should
be submitted to further evaluation. On the other hand, exposure-
based waiving with regard to hazard testing should be possible,
if no or negligible exposure exists and information on intrinsic
material properties and system-dependent properties is available.
For instance, nanomaterials solely used in non-spray cosmetic sun-
screen lotions would have to be assessed for dermal effects and
dermal penetration, but may not require extensive data on inhala-
tion toxicity.

3.3. Grouping of nanomaterials by system-dependent properties

System-dependent properties provide essential information on
potential hazards that may arise from nanomaterial exposure.
The system-dependent properties of a nanomaterial are dependent
upon, and influenced by, the environment in which it is located
during use. A substance that has low toxicity as a powder may
become more hazardous in a particular solvent if it begins to break
down into toxic ions. Alternatively, wetting of nanomaterials or
incorporation into solid matrices are established means of expo-
sure control by reducing dustiness. Numerous types of nanomate-
rials will aggregate or agglomerate in biological matrices, such as
blood or culture media that are supplemented with serum. This
may change their size and shape as well as surface characteristics.
Many of these parameters are dependent upon the specific matrix
used during the measurement. Therefore, it may be necessary to
characterize the system-dependent properties of a nanomaterial
using multiple assay conditions or using one standardized tech-
nique that utilizes a particular matrix.

The following chapters present and discuss surface reactivity,
dispersibility, and dissolution in relevant media as key criteria for
nanomaterial grouping in Tier 2 of the DF4nanoGrouping, high-
lighting their influence on potential cellular or apical toxic effects
(i.e. their interdependence with higher tier criteria within the
DF4nanoGrouping). For these parameters, the Supplementary
Information Table S4 lists preferred characterization methods,
dynamic ranges, and benchmark materials. Some of the system-
dependent properties require functional assays that extend



S16 J.H.E. Arts et al. / Regulatory Toxicology and Pharmacology 71 (2015) S1–S27
standardized characterization methods to investigate intrinsic
material properties. Additionally, ‘corona formation’ and ‘surface
area in situ’ are presented. These system-dependent properties are
closely related to the key criterion ‘surface reactivity’ and therefore
are used as supplementary criteria in the DF4nanoGrouping.

3.3.1. Dissolution rate
In the DF4nanoGrouping, ‘dissolution rate’ is used as Tier 2 key

criterion to assign nanomaterials to main group 2 ‘biopersistent
HAR NMs’. It is interdependent with the lower tier intrinsic mate-
rial properties ‘composition’, ‘crystallinity’, ‘water solubility’, ‘PPS
and aspect ratio’ and the Tier 2 and 3 criteria ‘in vitro/in vivo biop-
ersistence and release of toxic ions’.

Whereas the intrinsic material property ‘water solubility’
describes equilibrium in a saturated aqueous solution, a nanoma-
terial’s dissolution describes a time-dependent process (depending
on the rate of solubilization and the surface area). Further, dissolu-
tion may be determined in more physiologically relevant media,
such as phagolysosomal simulation fluids (PSF) or phosphate buf-
fered saline (Stefaniak et al., 2005; Gamble, 2011; Misra et al.,
2012). As kinetic property, the dissolution rate is directly related
to a nanomaterial’s in vitro or in vivo biopersistence that decreases
with increasing dissolution rate. Therefore, the dissolution rate is
expected to be a better reflection of the biopersistence of a nano-
material than the intrinsic material property ‘water solubility’.

The dissolution rate is an essential factor for the grouping and
risk assessment of nanomaterials. Some nanomaterials, such as sil-
ver or zinc oxide nanomaterials or cadmium-based quantum dots,
may release toxic ions, particularly in biological samples (Sharma
et al., 2012; Nel et al., 2013; Gebel et al., 2014; Landsiedel et al.,
2014a; Pujalté et al., 2014). Alternatively, completely (bio)soluble
nanomaterials with very high dissolution rates will lose their
nanospecific features so that only ions will become systemically
available. For such nanomaterials, hazard identification and risk
assessment may rely on data from the non-nanosized bulk mate-
rial or the dissolved ions. Also the particulate fraction remaining
after incubation may be relevant for grouping and risk assessment
due to recrystallization phenomena that may directly link to toxi-
cological effects (Li et al., 2014; Molina et al., 2014).

3.3.2. Surface reactivity (incl. electronic resonance (band gap), abiotic
ROS generation, redox and photocatalytic activities)

In the DF4nanoGrouping, ‘surface reactivity’ is used as Tier 2
key criterion to distinguish ‘passive nanomaterials’ (main group
3) from ‘active nanomaterials’ (main group 4). ‘Surface reactivity’
is interdependent with the lower tier intrinsic material properties
‘surface area’, ‘surface chemistry’, ‘surface charge’ and ‘hydropho-
bicity’ as well as the Tier 2 supplementary criteria ‘corona forma-
tion’ and ‘‘surface area in situ’ and the Tier 2 and 3 criteria
‘in vitro/in vivo oxidative stress, membrane damage, macrophage
activation, and inflammation’.

Materials may absorb energy from their surrounding system to
promote bound electrons into a state of higher excitation energy
(i.e., for semiconductor metal oxides, the conduction band).
When the electrons return to the ground state (i.e. valence band),
energy is restored to the surrounding system by emission of heat
or light or by the redox cycle. The energetic gap between these
two bands (i.e. the band gap) is measurable by UV–Vis spec-
troscopy. Such processes constitute the technical functionality of
e.g. semiconducting metal oxides used as (photo)catalysts or UV
absorbers. The potential of metal oxide nanomaterials to initiate
oxidative stress via ROS generation is believed to be one of their
primary MoAs of toxic effects. ROS reactivity may even be calcu-
lated via the band gap and redox state energies (Burello and
Worth, 2011; Zhang et al., 2012), even though this cannot be per-
formed universally on all groups of materials and hence is not
recommended. Instead, abiotic ROS generation should be deter-
mined in the Ferric Reducing Ability of Serum (FRAS) assay.

Based upon the outcome of the FRAS assay, Hsieh et al. (2013)
grouped a broad variety of 138 different nanomaterials by their
MoAs related to the inorganic particle surface and slight modula-
tion by additional surface charges. Although it is potentially of
even higher physiological relevance than the FRAS assay, fewer
data are available on using cytochrome c as the protein that carries
the redox-cyclable iron-complex to determine abiotic ROS genera-
tion. Nevertheless, the available cytochrome c assay-based data
confirms the suggested ranking of materials using data from the
FRAS assay (Zhang et al., 2012). Regardless of the ROS screening
method applied, due to the composition of the most reactive mate-
rials (Cr2O3, Co3O4, CoO, MnO2, Mn2O3, NiO, Cu, CuO, Ag, and ZnO),
synergistic effects from nanomaterial metal ion dissolution should
be considered in parallel (Chusuei et al., 2013).

If nanomaterials are intended for use under exposure to light
that is resonant with the electronic absorbance spectrum (espe-
cially UV filters or pigments in cosmetics), photocatalytic activity
is accepted as critical property. Several standardized methods
based on the discoloration of dyes have been adapted to nanoma-
terials from the OECD sponsorship program (OECD, 2014b).

3.3.3. Dispersibility
In the DF4nanoGrouping, ‘dispersibility’ is used as Tier 2 key

criterion to distinguish ‘passive nanomaterials’ (main group 3)
from ‘active nanomaterials’ (main group 4). It is interdependent
with the lower tier intrinsic material properties ‘PPS, surface chem-
istry, surface charge and hydrophobicity’ as well as the Tier 2 and 3
criteria ‘in vitro/in vivo uptake, biodistribution and clearance’.

Dispersibility is the measure of the distribution of a solid mate-
rial in a suspending medium, and the ‘smallest dispersible unit’ of a
material is the asymptote of particle size with increasing shear
force (e.g. by ball milling or probe sonication) (ASTM, undated).
Although its determination frequently relies on estimations and
procedural conventions (Taurozzi et al., 2010), assessing dis-
persibility may provide indications on how a material will perform
in a biological fluid, which in turn may be an indication of its
in vivo uptake and biodistribution and provide relevant informa-
tion for in vitro dose metrics (DeLoid et al., 2014). Only particles
with surface functionalizations that are designed to minimize cor-
ona formation (cf. Chapter 3.3.4) remain in the systemic circulation
for longer periods of time. This may be achieved most effectively
by steric stabilization with long flexible polymer chains, such as
polyethylene glycol, and further be aided by zwitterionic or strong
negative charges (Hühn et al., 2013; Kim et al., 2013).

Dispersibility is an important characteristic in understanding
the behavior of nanoparticles, yet it is one of the more difficult
ones to quantify due to the high polydispersity of agglomerates
(Powers et al., 2006). Consequently, measurement techniques need
to tolerate a polydisperse distribution of free proteins, lipids, natu-
ral matter, and nanoparticles, on the one hand, and their micron-
sized homo- or hetero-agglomerates, on the other hand
(Landsiedel et al., 2010). The simplest property to screen for is full
dispersibility with average agglomeration numbers (AAN) of 1
(ECHA, 2012c; Choi et al., 2009, 2010; Hühn et al., 2013;
Wohlleben et al., 2013). Nanomaterials that remain dispersed as
constituent particles (with AAN <3) are defined as ‘mobile’, since
they may potentially move between body compartments.
Nanomaterial mobility is jointly determined by dispersibility, sur-
face charge and hydrophobicity.

3.3.4. ‘Corona formation’: medium-related alterations in surface
chemistry

In the DF4nanoGrouping, ‘corona formation’ and ‘surface area
in situ’ may be used as supplementary criteria to the Tier 2 key
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criterion ‘surface reactivity’ that serves to distinguish ‘passive
nanomaterials’ (main group 3) from ‘active nanomaterials’ (main
group 4). ‘Surface reactivity’, ‘corona formation’, and ‘‘surface area
in situ’ are interdependent with the lower tier intrinsic material
properties ‘surface area’, ‘surface chemistry’, ‘surface charge’ and
‘hydrophobicity’ and the Tier 2 and 3 criteria ‘in vitro/in vivo oxida-
tive stress, membrane damage, macrophage activation, and
inflammation’.

As soon as nanomaterials come into contact with biological flu-
ids, they readily adsorb proteins and/or phospholipids. In in vitro
studies, addition of fetal calf serum or other protein-rich supple-
ments to the culture media with resulting protein adsorption onto
the nanoparticle surfaces was found to mitigate cellular toxicity
(Docter et al., 2014; Gebel et al., 2014). Due to this process of ‘cor-
ona formation’ (Monopoli et al., 2011, 2012), previously designated
as ‘opsonization’, ‘naked’ nanoparticles will never reach the cells of
the organism (Landsiedel et al., 2014a). Protein binding to
nanoparticles is a factor distinctly influencing their systemic avail-
ability and translocation, e.g. if immunoglobulin G or fibrinogen
bound to their surface target particles for immune responses, such
as phagocytosis. As reviewed by Landsiedel et al. (2012), the bind-
ing of proteins often causes a high loss of nanoparticles from the
circulation and fast transfer to organs of the mononuclear
phagocyte system (MPS), such as the liver and spleen. While the
composition of adsorbed proteins may be very specific and also
depends upon the composition of the surroundings (Monopoli
et al., 2012), the overall adsorption affinity is mostly determined
by the intrinsic properties of hydrophobicity and positive charge
(Xia et al., 2011; Chen et al., 2014), which also correlate directly
with fast removal of nanoparticles from the blood and uptake into
the MPS (Landsiedel et al., 2012; Johnston et al., 2013).

System-dependent alterations in surface chemistry affect the
net charge of the particle, and protein coronas may lead to a net
negative charge and zeta potential of the nanomaterials (Sayes
et al., 2007; Alkilany and Murphy, 2010). Nevertheless, different
nanomaterials (with very different toxicological effects) tend to
all have the same net charge in serum-containing medium
(Landsiedel et al., 2010). A deviation from that rule may be an indi-
cation of weak corona formation, and may correlate with low
agglomeration (but not necessarily so).

3.3.5. Surface area in situ
Cf. Chapter 3.3.4, first paragraph, for the status of ‘surface area

in situ’ within the DF4nanoGrouping.
In situ, the surface area of the nanoparticle that is accessible to

biomolecules of a given size and diffusion constant is likely to
change due to the reduced interstitial pore sizes inside agglomer-
ates, and due to binding of other biomolecules to the surface
(Monopoli et al., 2011, 2012). The techniques for measuring surface
area in situ are limited to simulations and calculations from assess-
ments of size and shape including dynamic light scattering (DLS) or
atomic force microscopy (Izak-Nau and Voetz, 2014). For nanoma-
terials in dispersion, the surface area may be measured using the
nuclear magnetic resonance relaxation of the liquid containing
the nanomaterial (Fairhurst and Prescott, 2011). However, none
of these techniques have gained wide acceptance yet, and this
property is only being used as supplementary criterion in the
DF4nanoGrouping.

3.3.6. Grouping of nanomaterials by system-dependent properties –
conclusion

The determination of system-dependent properties is vital for
nanomaterial grouping. In fact, it is a key feature of nanomaterials
that they elicit pronounced interferences with their surroundings,
and this very feature is the reason why nanomaterial grouping
must be performed differently than the grouping of conventional
substances. Due to the pronounced influence of system-dependent
properties of nanomaterials on their cellular and apical toxic
effects, grouping of nanomaterials cannot rely on structural simi-
larities alone, but must be functionality-driven. As such, system-
dependent properties correspond to the AOP step of ‘molecular
initiating effects’, which also directly relates to subsequent cellular
and organ effects, while taking into account the biopersistence,
uptake, and biodistribution properties of a material.

Of note, even though ‘corona formation’ plays a role in a nano-
material’s mobility and cellular effects, the predictive value of this
system-dependent property is sufficiently addressed by the intrin-
sic properties hydrophobicity and surface charge, supplemented by
the system-dependent property dispersibility. Therefore, these
three properties have been selected key criteria within the
DF4nanoGrouping, whereas ‘corona formation’ and ‘surface area
in situ’ are addressed as supplementary criteria.

3.4. Grouping of nanomaterials by biopersistence, uptake, and
biodistribution

After nanomaterial grouping by intrinsic material properties
taking into account the qualifiers use, release and route of expo-
sure, the next step of the DF4nanoGrouping implies determining
whether the respective nanomaterial under investigation is likely
to persist in vitro or in vivo, whether it may be taken up into the
organism and, if so, how it is distributed within the body. The
unique intrinsic material properties of nanomaterials relative to
the corresponding bulk materials and especially their variability
and modification diversity may either facilitate or hamper the
biopersistence of nanomaterials in the organism as well as their
translocation across respiratory, gastrointestinal or dermal barriers
(depending on the route of exposure). The intrinsic material prop-
erties may further influence nanomaterial translocation rate and
extent from the blood into organs and tissues (biodistribution).
Particular attention should be paid to the ‘internal exposure’ or ‘in-
ternal dose’, i.e. the nanomaterial’s concentration in different tis-
sues and organs, as a driver of the biologically effective dose.
Notwithstanding, Gebel et al. (2014) caution that biodistribution
is much more strongly affected by the route of exposure than by
intrinsic or system-dependent properties. Similarly, Yokel et al.
(2014) reported that biodistribution and retention of CeO2 nano-
materials upon intravenous injection into rats was very similar
regardless of particle size or shape.

Relevant information to group nanomaterials by biopersistence,
uptake, and biodistribution may be obtained in in vitro studies. To
investigate uptake through the skin, an accepted in vitro test
method is available, i.e. the in vitro skin absorption method in
accordance to OECD Test Guideline (TG) 428 (Supplementary
Information Table S5). By contrast, to date in vitro test methods
simulating the pulmonary or gastrointestinal barriers have not
yet passed the stage of test method development, and on short
notice validated or accepted in vitro models are not to be expected
(Hittinger et al., 2014; Murgia et al., 2014). The human lung adeno-
carcinoma cell line NCl-H441 has been suggested as a useful
in vitro model to study particle transport across the distal lung
epithelial barrier (Salomon et al., 2014). In vitro investigations
addressing nanomaterial intestinal uptake are frequently con-
ducted using the human intestinal Caco-2 cells (Tarantini et al.,
2014a). Nevertheless, Tarantini and co-workers cautioned that
the undifferentiated Caco-2 cells are not fully polarized and only
display some phenotypic characteristics of human enterocytes
and, further, that M cells or a mucus barrier are lacking in Caco-2
cell-based test systems. Gantzsch et al. (2014) proposed a modified
phospholipid vesicle-based permeation assay to jointly assess the
gastrointestinal dissolution and permeation of nanomaterials,
since this model appears more robust and easier to handle than
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Caco-2 cell monolayers, especially under physiological dynamic
flow conditions.

Importantly, data may also be collected in the course of in vivo
toxicity assays, such as the STIS (Table S5). The 5-day study proto-
col of the STIS, first described by Arts et al. (2007) and further elab-
orated by Ma-Hock et al. (2009a) is designed to assess lung burden,
i.e. the amount of nanomaterial retained in the primary target
organ, just as organ burden in lung-draining mediastinal lymph
nodes, in the blood and in secondary organs, such as liver, kidneys,
spleen and brain. Thereby, the STIS reveals if and how a nanomate-
rial becomes systemically available (uptake and biodistribution),
and this information is valuable for the grouping of nanomaterials
by their potential to induce systemic effects. Additionally, the STIS
incorporates a time-course experimental design to investigate
effects immediately after the 5-day exposure period and after a
3-week post-exposure period. Therefore, it also provides informa-
tion on nanomaterial biopersistence and the reversibility or pro-
gression of effects. These criteria are relevant for the grouping of
nanomaterials by their potential to elicit chronic effects
(Ma-Hock et al., 2009a, 2013, 2014; Landsiedel et al., 2014b).

3.4.1. Biopersistence
Biopersistence is defined as the property of a material to persist

in a cell, tissue, organ or organism. The biopersistence of a nano-
material may affect its pulmonary retention and clearance (and
hence also lung burden) as well as the nanomaterial’s systemic
uptake and biodistribution, which are presented in the following
chapters. Nanomaterial biopersistence may be reduced if the mate-
rial is degraded (e.g. by phagolysosomal dissolution). In vivo, nano-
materials may be poorly soluble or of moderate or high solubility.
Nanoparticle toxicity (other than indirect toxic effects elicited by
dissolved ions) is only likely for non-soluble or poorly soluble
(i.e. biopersistent) particles. Biopersistence also determines the
toxic potential of HAR NMs (Donaldson et al., 2010). This was
shown in a rat short-term inhalation study applying 30 mg/m3 of
four different man-made vitreous fibers (diameters approx.
1 lm; lengths 15, 17, 22, and 27 lm, respectively) or 10 mg/m3

crocidolite asbestos (diameter 0.3 lm; length 5.7 lm)
(Hesterberg et al., 1996). One year post-exposure, >95% of the
MMVFs with lengths >20 lm had disappeared from the lung com-
pared to only 17% of the highly biopersistent crocidolite. The
longer 22 and 27 lm MMVFs disappeared more rapidly than the
shorter 15 and 17 lm MMVFs, suggesting that long fibers were dis-
solving or breaking (Hesterberg et al., 1996).

The relevance of biopersistence for hazard assessment is under-
lined by the fact that it is already taken into account in available
concepts for the grouping of nanomaterials. For instance, in the
scheme from Gebel et al. (2014) categories two and three address
the nanomaterials’ biopersistence ((1) nanomaterials whose toxic-
ity is mediated by their chemical composition; (2) rigid biopersis-
tent respirable fibrous nanomaterials; and (3) respirable granular
biodurable particles (GBPs)). Moreno-Horn and Gebel (2014)
define GBPs as being persistent in biological systems without pos-
sessing relevant toxicity that is either mediated by specific,
released substances or by relevant functional surface properties.
Other authors have suggested a similar group of ‘poorly soluble
particles’, ‘poorly soluble low toxicity particles’, or ‘low-toxicity
dusts’ (cf. e.g. Kuempel et al., 2012, 2014; Donaldson and Poland,
2013). In spite of their low inherent toxicity, inhaled GBPs, due
to their biopersistence, may cause pulmonary inflammation and
secondary mutagenicity that may ultimately lead to lung cancer
(Gebel et al., 2014). The German Federal Institute for
Occupational Safety and Health (BAuA, 2014a) prescribes catego-
rizing fibers meeting the WHO criteria (cf. Chapter 3.1.2) as car-
cinogenic, if 4 � 0.5 mg intratracheally instilled, suspended fibers
are retained in the rat lung with a half-life exceeding 40 days.
As a rule, biopersistence is inversely related to the dissolution
rate of the respective material in relevant biological media.
However, it cannot always be derived from this system-dependent
property. For instance, BaSO4 was found to be hardly soluble in
water, poorly soluble in simulation fluid, but nevertheless of very
low biopersistence in vivo (Konduru et al., 2014). Therefore, the ini-
tial assessment of a nanomaterial’s biopersistence by its water sol-
ubility should be revisited when data on the dissolution rate in
BSFs and in vivo organ burden over time are available. Water-sol-
uble nanomaterials are generally not biopersistent – whereas some
insoluble nanomaterials may nevertheless be non-biopersistent in
BSFs or in vivo. Hence water solubility is a conservative predictor of
non-biopersistence and does not result in wrongful exclusion of
biopersistent nanomaterials.

3.4.2. Deposition in the lung, pulmonary clearance, and lung burden
Nanomaterials may enter the lung as airborne dust or dispersed

or nebulized particles, with fractions below 3 lm (for the rat)
reaching the non-ciliated alveolar region. The proportion of an
inhaled amount of a nanomaterial that reaches the lung and that
is not exhaled may be deposited on the surface of the lung. The
deposited fraction carried within macrophages may initially be
small. Over time, particles may progressively be removed from
the alveoli by macrophages, which internalize the particles and
move, as particle-laden cells, to the mucociliary escalator. During
this process, dissolution and/or degradation of the materials by
phagocytic cells may take place as well. To a limited extent,
nanoparticles may also translocate across the air-blood-barrier as
free particles (ICRP, 1994; Semmler-Behnke et al., 2007;
Landsiedel et al., 2012). Accordingly, at a given point in time, the
lung burden of a nanomaterial is dependent upon the amount of
nanomaterial that has been deposited in the lung and its pul-
monary clearance.

Inhaled particles may damage lung cells, especially if the
macrophages’ clearance capacity is overwhelmed. The clearance
capacity is impaired once 6% of the macrophage volume has been
filled, and macrophage stasis occurs at 60% filling of the macro-
phage volume (Morrow, 1988, 1994; Morrow et al., 1996).
Therefore, determination of the lung burden and clearance rates
of inhaled nanoparticles is especially relevant to determine
whether pulmonary particle overload is likely, which may further
lead to particle uptake and hence biodistribution (Kuempel et al.,
2014). Apart from the degree of biopersistence, cumulative lung
burden appears dependent upon the size of agglomerated particles
and the likelihood of their disintegration. Nanoparticle agglomer-
ates that form in aerosols and do not disintegrate in the lung are
unlikely to become systemically available (Landsiedel et al., 2012,
2014a; Konduru et al., 2014; Molina et al., 2014), but might never-
theless remain in the lung or be cleared from there.

Overall, lung burden is low e.g. ranging from approximately 1%
for surface-functionalized ZrO2 to approximately 15% for ZnO and
CeO2 nanomaterials immediately after a 5-day exposure period
(Landsiedel et al., 2014b). Lung burden of 4-week inhalation expo-
sure to 50 mg/m3 BaSO4 NM-220 was also low (0.84 mg/lung; cor-
responding to 1.3% deposition) and decreased by 95% over 34 days
(Konduru et al., 2014). Konduru et al. conclude that particle disso-
lution most likely explains the lower pulmonary biopersistence
(and toxicity) of BaSO4 nanoparticles compared to poorly soluble
nanoparticles, such as CeO2 and TiO2.

Test substance concentration and exposure duration, and differ-
ent intrinsic material and system-dependent properties, such as
chemical composition including surface characteristics, size, water
solubility, and dissolution in relevant media, may affect nanomate-
rial pulmonary deposition, clearance, and retention and the result-
ing lung burden at a given point in time, which in return directly
influences nanomaterial biodistribution (Van Ravenzwaay et al.,
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2009; Geraets et al., 2012; Ma-Hock et al., 2013; Keller et al., 2014;
Konduru et al., 2014; Landsiedel et al., 2014b; Silva et al., 2014; cf.
Supplementary Information for a summary of the results of these
studies).

During inhalation exposure to CeO2 NM-211, the dose rate of
CeO2 deposition drove an initial neutrophil-dominated inflamma-
tory reaction (Keller et al., 2014). During 4 weeks of exposure, cell
counts shifted to a macrophage-dominated inflammation that pro-
gressed toward a granulomatous reaction depending on the dura-
tion and amount of particles retained in the lung (Keller et al.,
2014; Pauluhn, 2014). Hence, particle deposition and retention in
the lung may affect apical toxic effects.

3.4.3. Systemic uptake and biodistribution upon inhalation
Typically, systemic uptake of nanomaterials lies in ranges below

1% of the retained dose, and it may occur especially under high-
dose conditions. Systemic availability may be a result of the parti-
cles’ ability to cross the air-blood barrier. In this case, they are pre-
sent in the blood as free particles. If the nanoparticles dissolve in
the lung, released ions may become systemically available.
Alternatively, alveolar macrophages may take up the particles in
the lung and then enter the blood stream in which case the parti-
cles are not present in the blood outside the cells. These differences
in particle uptake mechanisms may affect tissue distribution.

Specifically for GBPs, low rates of absorption and biodistribu-
tion have been recorded (generally below 0.1–0.2% of the applied
dose) without relevant differences in the translocation of nano-
sized or micron-sized GBPs. If taken up systemically, nanoparticles
are prone to lymphatic transport, but they may also be translo-
cated with the circulatory system. By contrast, absorption via the
olfactory system, if it occurs, does not seem to be specific for the
nanosized variants of a material. Also nanoparticles that enter
the blood stream are mostly taken up by the MPS that acts as a
depot for nanoparticles. This explains observed extra-pulmonary
accumulations in the liver and spleen, which are the first organs
that particles circulating in the blood encounter. Surface charge
affects nanoparticle uptake by the MPS. Neutral nanoparticles are
taken up to a lesser extent, and therefore may have prolonged
half-lives in the blood becoming available for increased uptake
by other organ systems. However, organ uptake is also dependent
on additional factors, such as the partition coefficient, and smaller-
sized nanoparticles were observed to have a much greater biodis-
tribution than larger-sized nanoparticles. Also within tissues,
nanoparticles are preferentially located in phagocytically active
cells, where they may have half-lives in the range of weeks or even
up to years. Just as determined for lung burden, also secondary
organ burden is dependent upon nanomaterial transport to and
clearance from this organ. Repeated exposure to nanoparticles
may lead to tissue accumulation if exposure levels and systemic
availability are high enough, as is also known for bulk substances
(Landsiedel et al., 2012; Kreyling et al., 2013; Gebel et al., 2014;
Moreno-Horn and Gebel, 2014; Oomen et al., 2014).

Since secondary organ burden is very low, a number of studies
have investigated nanomaterial organ distribution upon intra-
venous or intraperitoneal application (De Jong et al., 2008;
Fabian et al., 2008; Van Ravenzwaay et al., 2009; Lankveld et al.,
2010; Yang et al., 2013; Semmler-Behnke et al., 2014). These routes
of application provide information for assessing systemic particle
translocation and putative adverse effects based upon maximized
bioavailability. However, intravenous or intraperitoneal adminis-
tration do not represent realistic exposure scenarios for nanomate-
rials intended for non-medical uses, and biodistribution patterns
and organ ratios may differ considerably depending on the admin-
istration route (Semmler-Behnke et al., 2008; Moreno-Horn and
Gebel, 2014). Therefore, these routes of application are not further
addressed in the present decision-making framework.
In different rat STIS investigating a broad spectrum of different
TiO2, CeO2, SiO2, ZrO2, BaSO4 and ZnO nanomaterials, most
nanoparticles were found only in the animals’ lungs and lung-
draining lymph nodes. Only polyacrylate-coated SiO2 was also
identified in the spleen. None of the other nanoparticles were
recorded in organs other than the respiratory tract, indicating that
their translocation rate into secondary organs was negligibly low
(Van Ravenzwaay et al., 2009; Morfeld et al., 2012; Landsiedel
et al., 2014b). Keller et al. (2014) reported a very low content of
cerium in the liver of rats exposed to 25 mg/m3 CeO2 NM-212 for
4 weeks by inhalation. Also 28 days post-exposure following a sin-
gle intratracheal instillation of CeO2 nanoparticles in rats, less than
1% of the administered dose was retained in extra-pulmonary tis-
sues (Molina et al., 2014), and 7 days after intratracheal instillation
of BaSO4 nanoparticles in rats, only 0.15% of the dose was detected
in the organs, with predominant accumulation in the bone com-
partment (29%). Overall, instilled and inhaled BaSO4 nanoparticles
were cleared from the organism quickly, but resulted in higher tis-
sue retention rates compared to oral administration (Konduru
et al., 2014). With decreasing size (down to very small PPS of
1.4 nm) and resulting increasing SSA, gold nanoparticles were
found to be more likely to cross the air-blood barrier upon intratra-
cheal instillation. However, relative to the amount of nanoparticles
that had been taken up systemically, their retention in the sec-
ondary organs appeared unrelated to the SSA (Semmler-Behnke
et al., 2008; Kreyling et al., 2014).

In an extensive review of GBP tissue distribution and systemic
effects determined in in vivo rat and mouse acute, sub-acute and
sub-chronic studies with at least 14-day post-exposure observa-
tion periods, Moreno-Horn and Gebel (2014) reported overall low
systemic TiO2 or CeO2 nanoparticle translocation regardless of
the route of application. If particles were found in extra-pulmonary
tissues at all, they were mainly restricted to the liver (but also
occurred to minimal extents in other organs, including the brain).
For CeO2 nanoparticles, a 28-day inhalation study using male mice
provided evidence of nephrotoxicity (Aalapati et al., 2014), a find-
ing that, however, was not observed in any studies using rats
(Moreno-Horn and Gebel, 2014). Also for silver nanoparticles, sys-
temic translocation was low, as assessed in a sub-chronic inhala-
tion study with rats, in spite of its higher bioavailability than the
poorly soluble TiO2 or CeO2 nanoparticles (Moreno-Horn and
Gebel, 2014).

In summary, whereas most nanomaterials do not accumulate in
secondary organs, determination of tissue distribution during ini-
tial screening tests, such as the STIS, allows grouping nanomateri-
als by potential secondary organ burden and clearance rates within
3-week post-exposure. Information on tissue distribution and
biopersistence is relevant to rank nanomaterials by their potential
to cause systemic apical toxic effects (and the likelihood of
progression toward chronic effects) and also to select relevant
follow-up studies.

3.4.4. Dermal and gastrointestinal absorption
The most important criterion to group nanomaterials with

expected dermal or gastrointestinal exposure routes is to address
whether these substances are likely to become systemically avail-
able. Generally, the available in vitro and in vivo studies do not
report unintentional permeability or systemic availability of der-
mally applied nanomaterials, e.g. for nanomaterials used in sun-
screen lotions (Landsiedel et al., 2012). In an in vitro porcine skin
absorption model, neither micron-sized zinc oxide, nor different
micron-sized titanium oxide penetrated the stratum corneum
(Gamer et al., 2006). Also UVB-damaging of the skin only slightly
enhanced the dermal penetration of TiO2 or ZnO nanoparticles in
sunscreen formulations, whereas transdermal absorption was not
detected (Monteiro-Riviere et al., 2011). Consistent with these



S20 J.H.E. Arts et al. / Regulatory Toxicology and Pharmacology 71 (2015) S1–S27
findings, also in an in vivo study using mini-pigs, different
uncoated or coated TiO2 nanoparticles did not penetrate signifi-
cantly through the intact normal epidermis (Sadrieh et al., 2010).

As a rule, nanomaterials reaching the gastrointestinal tract are
excreted with the feces. Nevertheless, for some nanomaterials very
low levels are absorbed and become systemically available
(Landsiedel et al., 2012). Immediately after 28-day oral administra-
tion of 90 mg/kg body weight (bw) silver nanoparticles (uncoated,
PPS: <20 nm, TEM; 59 nm, DLS; or polyvinylpyrrolidone-coated,
PPS: <15 nm, TEM; 49 nm, DLS) to rats, silver was present in all
examined organs, with the highest levels recorded in the liver
and spleen. Silver concentrations in the organs highly correlated
with the amount of Ag ions in the nanoparticle suspension, indicat-
ing that mainly Ag ions passed through the intestines. Eight weeks
after dosing, silver was cleared from most organs, but not from the
brain or testis (Van der Zande et al., 2012). Exposing rats orally to
2500 mg/kg bw commercially available amorphous SiO2 (PPS:
7 nm) or to 1000 mg/kg SiO2 NM-202 (PPS: 10–25 nm) for 28 days
did not result in distinctly elevated SiO2 levels in the body tissues.
After 84 days of exposure, however, SiO2 accumulated in the spleen
of the rats treated with the commercially available amorphous
SiO2, and a significant increase in the occurrence of liver fibrosis
was observed in the rats treated with SiO2 NM-202 (Van der
Zande et al., 2014). Treating rats orally with up to 1042 mg/kg
bw TiO2 (80% anatase, 20% rutile; 26 nm, SEM; 38 nm, DLS) or up
to 536 mg/kg bw ZnO nanoparticles (90 nm, SEM; 202 nm, DLS)
for 13 weeks did not result in significantly increased TiO2 organ
levels. Zn concentrations in the liver and kidney were significantly
increased, and they were minimally increased in the spleen and
brain (Cho et al., 2013).

3.4.5. Grouping of nanomaterials by biopersistence, uptake, and
biodistribution – conclusion

Grouping of nanomaterials by biopersistence, uptake, and
biodistribution, taking into account the qualifiers use, release,
and exposure route, may provide first indications of expected local
or systemic apical toxic effects. Furthermore, the same key intrin-
sic material properties and system-dependent properties that
affect nanomaterial uptake and biodistribution (i.e. composition,
solubility, size, surface area and charge) are also considered to be
main drivers for toxicity. Most nanomaterials do not penetrate
the stratum corneum of the skin, and only minimal amounts enter
the systemic circulation from the lung and gastrointestinal tract. If
nanomaterial exposure does not lead to systemic uptake, demon-
strated in the STIS (or short-term oral studies or relevant in vitro
test methods, such as OECD TG 428 if the dermal route of exposure
is relevant) by a lack of secondary organ burden, potential health
risks are limited to local effects. Notwithstanding, especially for
the respiratory route of exposure, local effects at the primary site
of contact have to be taken into consideration and evaluated for
nanomaterial grouping.

3.5. Grouping of nanomaterials by cellular effects

Nanomaterials may induce cellular effects by a number of dif-
ferent mechanisms of toxicity, i.e. (1) membrane damage including
cationic phagolysosome damage, (2) generation of ROS, oxidative
stress, redox activities, and photo-catalytic effects, (3) inflamma-
some activation and cytokine and chemokine production, (4) the
cytotoxic effects of toxic ions, (5) fiber effects, and (6) DNA damage
(Meng et al., 2009; Nel et al., 2006, 2013; Landsiedel et al., 2014a;
Visalli et al., 2015).

The release of cellular lactate dehydrogenase (LDH) allows
assessing membrane damaging potential. Additionally, the human
red blood cell lysis assay has been suggested as a relevant model to
investigate phagolysosome damage, leading to inflammasome
activation and release of the pro-inflammatory cytokine IL-1ß.
Even though erythrocytes are not involved in pulmonary inflam-
matory processes, the same mechanisms appear involved in red
blood cell lysis or phagolysosomal damage (Pavan et al., 2014).
Inflammasome activation, in return, is determined by measuring
the induction or release of relevant cytokines and chemokines,
such as interleukins and tumor necrosis factor alpha (TNF-a).
Different endpoint detection methods are available to investigate
cytotoxicity and fiber-induced toxicity, including measurements
of impaired mitochondrial activity (reduction of tetrazolium salts,
such as MTT and WST-1) and colony formation ability, or apoptotic
reactions (caspase-3/-7 or Annexin V/propidium iodide assays)
(Landsiedel et al., 2014a; Sauer et al., 2014).

Oxidative stress reactions have been described as hierarchically
evolving responses. At low levels of oxidative stress, antioxidant
enzymes are induced that neutralize the ROS. Inflammatory reac-
tions may occur if the cells’ antioxidant capacities are over-
whelmed. Finally, at prolonged, high oxidative stress levels, the
cells may become apoptotic (Nel et al., 2006; Meng et al., 2009;
Colognato et al., 2012). Therefore, the potential of a nanomaterial
to generate ROS has been addressed as a key element affecting
its cell and tissue damaging potential (Nel et al., 2006; Colognato
et al., 2012). Generation of ROS and release of toxic ions have been
linked to indirect genotoxic effects of the respective nanomaterials.
Generally, there is conflicting and inconsistent evidence regarding
the genotoxicity of nanomaterials in vitro. Few nanomaterials of
specific particle morphology (distinct single-walled CNT and small
gold nanoparticles) have been shown to interact with the DNA and
the spindle apparatus in vitro, respectively (Singh et al., 2009;
Colognato et al., 2012). There is, however, no consistent evidence
of nanomaterials having direct genotoxic effects in vitro and
in vivo (Landsiedel et al., 2009; Tarantini et al., 2014a; Golbamaki
et al., 2015).

In vitro assays to determine DNA damaging potential include
the in vitro micronucleus test (MNT) or the mammalian cell hypox-
anthine phosphoribosyl transferase (HPRT) gene mutation assay
(Landsiedel et al., 2009, 2014a; Supplementary Information
Table S6).

As a rule, cellular effects are assessed in in vitro test methods
that use cells and tissues of the corresponding organs of primary
contact related to the expected human exposure route (i.e. pul-
monary, dermal or intestinal cells) or cells and tissues of relevant
target organs, such as hepatocytes or neuronal cells. The need to
select appropriate dispersing agents, to consider and avoid nano-
material interferences with assay detergents and to calculate
in vitro effective doses, i.e. the amount of applied nanomaterial that
reaches the in vitro system within the given exposure time, and to
relate in vitro doses to realistic in vivo doses (avoid unrealistically
high dosages), which all affect the relevance of the outcome of
in vitro studies, have been discussed extensively elsewhere
(Teeguarden et al., 2007; Stone et al., 2009; Guadagnini et al.,
2013; Cohen et al., 2014; Landsiedel et al., 2014a).

In vitro-in vivo comparisons oftentimes yield unsatisfactory
results, especially in regard to predicting in vivo hazard potency
(Sayes et al., 2007; Landsiedel et al., 2014a). By contrast, the
in vitro alveolar macrophage assay was found to be promising in
regard to predicting the outcome of in vivo rat intratracheal instil-
lation studies or short-term inhalation studies ranked according to
no-observed-adverse-effect-levels (NOAEL; Wiemann and Bruch,
2009; Wiemann et al., 2015). This in vitro alveolar macrophage
assay investigates LDH release, glucuronidase (as a sign of macro-
phage activation or incomplete phagocytosis), tumor necrosis fac-
tor alpha (TNF-a) and ROS. Thereby, it allows assessing many
known mechanisms of cellular toxicity in a dose-dependent man-
ner (Wiemann and Bruch, 2009; Wiemann et al., 2015, Table S6).
The relevance of alveolar macrophages as suitable in vitro test



J.H.E. Arts et al. / Regulatory Toxicology and Pharmacology 71 (2015) S1–S27 S21
systems is explainable by the unique role these phagocytically
active cells play in the biopersistence, uptake, and biodistribution
of nanomaterials (cf. Chapter 3.4).

A number of intrinsic material properties and system-depen-
dent properties of nanomaterials (and of testing conditions that
influence these characteristics) crucially affect their uptake into
cells and the resulting cellular effects they may cause (Nel et al.,
2006, 2013; Zhu et al., 2013; Wang and Fan, 2014). An extensive
review by Kettler et al. (2014) concludes that nanoparticle uptake
into non-phagocytic cells depends strongly on particle size, with an
uptake optimum at approximately 50 nm. Further, increasingly
positive or negative surface charges have been shown to increase
particle uptake (Kettler et al., 2014). Cellular uptake studies using
A549 cells cultured in Dulbecco’s Modified Eagle Medium supple-
mented with 10% fetal calf serum showed preferential uptake of
CeO2 nanoparticles with negative zeta potential as compared to
those with positive zeta potential (Patil et al., 2007). Negative zeta
potentials have been observed to correlate with better nanomate-
rial dispersion in water (Buesen et al., 2014; Wohlleben et al., 2013.

Taking into account their intrinsic material and system-
dependent properties, nanomaterials may be grouped by one or
more mechanisms of cellular toxicity. For instance, for GBPs, such
as TiO2 and carbon black, oxidative stress reactions have been sug-
gested as predominant mechanisms of toxicity, whereas SiO2

nanomaterials were reported to cause membrane damage, ZnO
and Ag nanomaterials cytotoxicity by the dissolution of toxic ions,
and HAR NMs fiber effects (Nel et al., 2013; Landsiedel et al.,
2014a). Within a group of common mechanism of cellular toxicity,
different nanomaterials may be sub-grouped by the severity of the
respective in vitro effect. To date, findings regarding in vitro geno-
toxic effects of nanomaterials are often inconsistent (and much less
pronounced than effects caused by corresponding non-nanosized
positive controls) and further difficult to relate to in vivo genotoxic
effects. Overall, a nanomaterial’s potential to induce genotoxicity
appears mainly dependent upon its chemical composition and sur-
face properties (Landsiedel et al., 2009; Haase et al., 2015).

3.5.1. Grouping of nanomaterials by cellular effects – conclusion
Grouping nanomaterials by cellular effects determined in rele-

vant in vitro assays, such as the in vitro alveolar macrophage assay,
while taking into account important intrinsic and system-depen-
dent properties and realistic exposure scenarios for relevant stages
of the nanomaterial’s life cycle, is a further functionality-driven
aspect of the DF4nanoGrouping that supports nanomaterial hazard
and risk assessment. The experimental design of these studies will
be important and should include fundamental parameters such as
dose/response and time course characteristics, as well as appropri-
ate benchmark control materials to better interpret the results of
the in vitro assays (Hristozov et al., 2012; National Research
Council, 2013; Krug, 2014; Landsiedel et al., 2014a).

3.6. Grouping of nanomaterials by apical toxic effects

3.6.1. Standard (screening) test methods for grouping by apical toxic
effects

The STIS is suggested as standard (screening) test method for
inhalation as route of exposure during Tier 3 of the
DF4nanoGrouping. It allows the investigation of local and systemic
toxicity, provides excellent correlation to 90-day inhalation studies
and further allows the determination of local deposition and sys-
temic distribution. Further, the STIS may be combined with
ex vivo genotoxicity studies (Supplementary Information
Table S6; Ma-Hock et al., 2009a, 2009b, 2013, 2014; Landsiedel
et al., 2010, 2014b).

Frequently, nanomaterial respiratory tract effects are investi-
gated in intratracheal instillation studies. Even though the
limitations of these studies as compared to inhalation studies have
been described (Driscoll et al., 2000), by bridging data obtained in
instillation studies to a well-studied control material for which
long-term inhalation data are available, these limitations may be
at least partially mitigated (Gordon et al., 2014). According to
Gordon et al., intratracheal instillation studies of nanomaterials
should include dose–response data, time-course assessments (e.g.
1 day, 1 week, 1 month, and 3 months post-exposure), and doses
should be relevant to potential worker exposures and not so high
as to cause lung overload. Furthermore, dose bridging between
instillation and inhalation should be done in terms of deposited
lung doses, derived either via direct measurements or model esti-
mates (Gordon et al., 2014).

For the oral route of exposure, the short-term oral study (STOS)
does not have a defined exposure protocol yet. Currently, oral stud-
ies applying different exposure durations and exposure schemes
up to 28-day exposure are addressed as ‘short-term’ studies. For
instance, to investigate the genotoxic effects of amorphous SiO2

nanomaterials, Tarantini et al. (2014b) exposed rats orally by gav-
age to 5–20 mg/kg bw of the nanomaterials for three consecutive
days. Buesen et al. (2014) administered 1000 mg/kg bw/day of four
amorphous SiO2 with or without surface functionalization, two
surface-functionalized ZrO2 nanomaterials, or BaSO4 NM-220
orally by gavage for 28 days.
3.6.2. Local effects in the respiratory tract (for the inhalation exposure
route)

Many nanomaterials do not cause adverse effects upon inhala-
tion. If effects are observed, they are mostly refined to the lung
and recorded as different forms and degrees of inflammatory reac-
tions. ZnO nanomaterials have additionally been reported to elicit
necrotic reactions in the upper respiratory tract (Van Ravenzwaay
et al., 2009; Klein et al., 2012; Landsiedel et al., 2010, 2014b; Ma-
Hock et al., 2013, 2014). Accordingly, nanomaterials may be
grouped by their potential to cause local reactions in the different
parts of the respiratory tract. Arts et al. (2007) showed similarities
in apical toxic effects between three different forms of amorphous
SiO2. By contrast, for TiO2 and carbon-based nanomaterials, differ-
ences in apical toxic effects induced in the respiratory tract upon
short-term and sub-chronic exposure allowed differentiating
between distinct forms of TiO2 nanoparticles (Warheit et al.,
2007) or carbon allotropes (Ma-Hock et al., 2009a, 2009b, 2013;
DeLorme et al., 2012).
3.6.3. Progressiveness of local effects
If inflammatory reactions are observed in the lung (for the

inhalation exposure route), further grouping should address
whether effects are progressive. If so, the corresponding nanoma-
terials ultimately may have the potential to initiate tumor develop-
ment. Lung carcinogenicity was shown in the rat for nanosized
carbon black and TiO2 nanoparticles, and Gebel et al. (2014) just
as the EU Commission’s Scientific Committee on Consumer Safety
(SCCS, 2014) considered these effects to be relevant for extrapola-
tion to humans. Further, the potency of nanosized GBPs to induce
inflammatory reactions in the lung was assessed as being higher
than for micron-sized GBPs when comparing mass concentration
exposure, the standard measured variable at the workplace
(Gebel et al., 2014). On the other hand, none of the epidemiological
studies examining workers exposed to carbon black or TiO2

nanoparticles show evidence of carcinogenicity in humans (IARC,
2010). Additionally, Nikula et al. (1997, 2001) observed the bioki-
netics and lung responses elicited in rats versus non-human pri-
mates or humans upon inhalation of particulate materials to
differ considerably, indicating that, for that effect, the rat might
not be a good model for extrapolation to humans.
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3.6.4. Toxic potency in the respiratory tract
The toxic potency of a nanomaterial in the respiratory tract may

be assessed using no-observed-adverse-effect-concentration
(NOAEC) values that correspond to the highest test substance con-
centration that does not elicit local toxic effects in the STIS. Within
a given main group, nanomaterials may be sub-grouped by toxic
potency, i.e. by similar NOAEC values. NOAEC values may also be
used to derive OEL values (calculated, e.g., as suggested by
Gordon et al. (2014)), such as DNELs or DMELs (for substances,
such as fibers, that may be carcinogenic); c.f. 2.2 for further details
on OELs for nanomaterials assigned to the 4 main groups of the
DF4nanoGrouping.

3.6.5. Toxic potency in secondary organs
Whereas data from long-term studies are too sparse to provide

evidence whether nanoparticles may accumulate to an extent high
enough to cause adverse chronic systemic effects, to date, no con-
vincing evidence for a relevant specific systemic toxicity of nano-
sized GBPs could be identified (Gebel et al., 2014; Moreno-Horn
and Gebel, 2014). Therefore, within the DF4nanoGrouping, toxic
potency in secondary organs is considered to be of minor relevance
for grouping. Notwithstanding, as discussed in further detail in
Chapter 3.4 (Grouping of nanomaterials by biopersistence, uptake,
and biodistribution), in principle, nanomaterial grouping should
also address the nanomaterials’ potential to cause chronic local
or systemic effects.

3.6.6. Use of bulk material toxicity data for nanomaterial grouping
In grouping nanomaterials by their potential to cause apical

toxic effects, it is further relevant to compare their hazard profiles
to those of the corresponding bulk materials of identical chemical
composition. Extensive toxicological data on a variety of bulk
materials, by various routes of exposure, are available. Such com-
parative assessments allow applying nanomaterial grouping to
determine whether, and if so, which hazard information on bulk
materials provides important clues for nanomaterials of identical
chemistry.

3.6.7. Grouping of nanomaterials by apical toxic effects – conclusion
Comparative investigations of broad spectra of nanomaterials

in vivo in rat short-term inhalation studies allow grouping nano-
materials. Generally, grouping by apical toxic effects is the final
step of the grouping concept. It may allow the selection of relevant
further (in vivo) tests, but it may also link back to earlier steps of
the grouping concept if effects were observed that had not been
anticipated. Accordingly, in vivo testing is performed to confirm
or disapprove grouping performed during earlier steps.
4. Conclusion and outlook

The Decision-making framework for the grouping and testing of
nanomaterials (DF4nanoGrouping) presented by the European
Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)
Task Force on Nanomaterials consists of three tiers to assign nano-
materials to four main groups, to perform sub-grouping within the
main groups, and to identify and refine specific subsequent infor-
mation needs for those nanomaterials for which the information
needs could not be fulfilled by grouping and read-across.

Currently, intrinsic material properties may be used to define if
a substance is in fact a nanomaterial, e.g. in accordance to the EU
recommendation (EU Commission, 2011). Intrinsic material prop-
erties may also be relevant for grouping even though this is not
yet possible for most nanomaterials. For many nanomaterials, it
is not yet understood how intrinsic material properties relate to
apical toxic effects, i.e. the (the degree and type of)
interdependence of intrinsic material properties and bio-physical
interactions leading to apical toxic effects. Therefore, while group-
ing by intrinsic material properties appears highly relevant, it is
not yet useable. Hence, the DF4nanoGrouping follows a functional-
ity-driven approach instead of being predominantly based upon
intrinsic materials properties. Of note, the focus on intrinsic mate-
rial properties such as composition, size, surface area or coatings to
identify a nanomaterial and different nanoforms of a substance
does not compromise a subsequent grouping of these nanoforms
for the purpose of hazard and risk assessment by functionality-
driven properties.

Within the DF4nanoGrouping, relevant and useful intrinsic
material and function-related properties have been selected as
‘key criteria’ (while others were considered ‘supplementary’) and
were sorted into three tiers by increasing complexity thereby
enabling a step-by-step approach to apical toxic effects. By making
use of the different perspectives of nanomaterials, i.e. intrinsic
material and system-dependent properties, bio-physical interac-
tions, biopersistence, uptake and biodistribution as well as
in vitro cellular and, finally, apical toxic effects, the
DF4nanoGrouping is a multiple perspective grouping concept. It
makes use of grouping criteria that are as simple as possible and
as complex as necessary to enable a relevant and justifiable group-
ing. Within the DF4nanoGrouping, pragmatic methods, many of
which standardized, and specific benchmark materials, predomi-
nantly from the OECD sponsorship program, are suggested for each
grouping criterion.

In practice, functionality-driven grouping is closely linked to (or
even undistinguishable from) integrated approaches for the testing
and assessment of nanomaterials, and both of these processes take
into account the life cycle of a nanomaterial and its biological path-
ways (Fig. 1, Oomen et al., 2014a,b; Tollefsen et al., 2014). Similar
to AOPs, biological pathways may encompass a multitude of inter-
linked steps that are not necessarily already fully understood for
each and every type of nanomaterial. Nevertheless, application of
the grouping concept (while potentially making use of all of the
steps of the life cycle and biological pathway of a nanomaterial)
does not require that all pieces of knowledge concerning the
respective steps are already available. Based upon the available
knowledge, grouping may begin at any step of the biological path-
way of a nanomaterial, i.e. not only with intrinsic material proper-
ties, but also with any aspect closer to the apical toxic effect.

Thereby, the DF4nanoGrouping may be applied and further
developed at the same time making use of further knowledge on
the relationship between intrinsic and system-dependent proper-
ties as it becomes available. Specifically, future research should
address the following knowledge gaps: In vitro models that allow
the prediction of in vivo effects and toxic potency of nanomaterials,
especially in vitro barrier models, remain to be developed.
Likewise, promising approaches, such as the in vitro macrophage
assay require standardization and validation. Regarding in vivo
databases as a basis for nanomaterial grouping, there is a need
for long-term exposure data.

Importantly, case studies covering a broad spectrum of different
types of nanomaterials should be conducted to provide proof-of-
evidence of the relevance of the DF4nanoGrouping and to further
develop and refine it as necessary.

Based upon the outcome of such case studies, future research
should aim at making available a decision tree und REACH guid-
ance on how the DF4nanoGrouping may be integrated into the
REACH registration process for substances that have to be regis-
tered in the nanoform. Thereby, very early on in the assessment
process, supporting information is provided concerning the appli-
cation of read-across and grouping, e.g. with the non-nanoform
of the substance or with groups of nanomaterials (Patlewicz
et al., 2013; Ball et al., 2014). Therefore, one option would be to
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add the DF4nanoGrouping to Annex VI of the REACH regulation or
to provide guidance on its use in a separate document.

The DF4nanoGrouping is a hazard and risk assessment tool that
applies modern toxicology and contributes to the sustainable
development of nanotechnological products. The grouping
approach presented in the DF4nanoGrouping is effective, efficient,
and safe and moves away from a more traditional check-box
approach to regulatory toxicology by ensuring that no studies are
performed that are not needed, that do not provide crucial data,
and that therefore would lead to a waste of animals and resources.
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