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Malcolmia littorea (Brassicaceae) is a threatened species growing in the coastal sandy dunes of the west-
Mediterranean basin. In this study, the seed germination and seedling emergence requirements of this species
were investigated in the only remaining native population in Italy. The highest germination percentage was
achieved in darkness with scoring under safe green light at 5–10 °C. Seedling emergence was highest when
seeds were buried between 1 and 10mm in depth. The results suggest that germination and seedling emergence
are adapted to Mediterranean coastal habitats by employing a common mechanism of light-inhibited germina-
tion and by germinating at cooler temperatures before the onset of the summer drought. Seeds were also collect-
ed from plants cultivated at a botanical garden and from plants reintroduced by sowing or by transplanting. For
those populations, germination was maximal between 10–25 °C, suggesting that the thermal germination be-
haviour may be affected by the maternal environment of seed production within one generation. It is suggested
to use seeds produced in the same environment to which they will be used for the reintroduction of this species.

© 2014 SAAB. Published by Elsevier B.V. All rights reserved.
1. Introduction

Mediterranean coastal habitats are particularly vulnerable to distur-
bance, being subjected to a dynamic equilibrium due to several natural
factors and human activities (Carboni et al., 2009; Curr et al., 2000;
Lomba et al., 2008; Ma and Liu, 2008). In places where disturbance
has been particularly intense or prolonged in time, plant populations
have been fragmented with a risk of local extinction of species, and
coenoses have often completely disappeared (Acosta et al., 2006;
Carranza et al., 2010).

It is important to understand which factors restrict the establish-
ment and growth of rare species to support their in situ conservation
(Schemske et al., 1994) such as through reintroduction. While species
reintroduction from seed is usual for many commonly occurring plants,
little is known about the germination characteristics of many rare, na-
tive plant species (Cochrane et al., 2002). Several key factors influence
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seed germination, including temperature and light (Probert, 2000;
Thanos et al., 1994). The optimal temperatures for total germination
of coastal Mediterranean species are typically within the range of 5–
15 °C, with germination percentages decreasing at higher temperatures
(Thanos et al., 1989, 1995; Tlig et al., 2008). These species are also
characterised by having a low germination rate and being negatively
affected by prolonged chilling (Doussi and Thanos, 2002; Skordilis and
Thanos, 1995).

The stimulation of seed germination by alternating temperatures is
also common in species from arid zones (Mahmoud et al., 1983;
Probert, 2000). The requirement for alternating temperatures and
light may represent an adaptation of small-seeded species to ensure
that germination occurs close to the soil surface in vegetation gaps
(Probert, 2000). These responses can be interpreted in terms of the ecol-
ogy of the species, in that larger seeds can emerge from greater depths,
and thus there is less need for depth-sensing mechanisms (Murdoch,
1983). In coastal species of Mediterranean climates, light-inhibited
seed germination has been reported (e.g. Thanos et al., 1989, 1991,
1994). This mechanism is of adaptational value in the sea-shore or
sandy habitats, since germination on the surface of the sandmight pres-
ent a great hazard for newly germinated seedlings, due to rapid evapo-
ration and large temperature fluctuations (Thanos et al., 1989).
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In this study, the seed germination behaviour ofMalcolmia littorea, a
suffruticous chamaephyte belonging to the Brassicaceae family, was in-
vestigated. This species grows in sandy coastal habitats along transition
and fixed dunes (Del Vecchio et al., 2012), and has a west-
Mediterranean distribution (Pignatti, 1982), occurring in Italy, France,
Spain, Portugal, Morocco and Algeria (Greuter et al., 1986). In Italy the
species is represented by just one native population in the Latium re-
gion. Severe urbanisation of the area and tourist pressure are the most
intensive threats for this isolated population (Del Vecchio et al., 2012)
and as a result, it is listed as critically endangered in the Italian Red
List (Rossi et al., 2013). During 2009–2011, using seeds produced by
the Italian native population, an experimental reintroduction was per-
formed by in situ seed sowing and plant transplanting (ex situ seed
sowing and transfer of the grown plants), and resulted in an experimen-
tal population (sensu Caplow, 2004) of the species, established inside its
historical range (De Vitis, 2011).

The main aim of this study was to characterise the seed germination
behaviour of the native population of M. littorea by (1) determining
light, storage and temperature effects on seed germination, and
(2) assessing the optimal burial depth for seed germination and seedling
emergence. As the environment during seed production and cultivation
is likely to affect the germination performance (Evans, 1993;
Rojas-Arèchiga et al., 2001), and therefore reintroduction success, the
germination of seeds from the native population was also compared
with seeds from three experimental populations.

2. Material and methods

2.1. Seed lot details

Ripe siliquas ofM. littorea were collected directly from plants in the
native population (San Felice Circeo, Latina, Italy: NA1), in one popula-
tion cultivated at the Botanical Garden of Rome (BG) and in two
reintroduced populations (formed by in situ sowing (RE1), and ex situ
sowing followed by transplanting of the grown plantlets (RE2)), at the
time of natural dispersal in summer 2011 (Table 1). All the fruits were
cleaned in the laboratory and the seeds were stored in glass vials at
room conditions (+20 °C) for three months until the experiments
started. During Summer 2013 seeds from plants in the native popula-
tion were collected again and sown two days after collection (NA2). In
each population, siliquas were collected from 10 to 50 individuals, ac-
cording to their population size (Table 1), as specified below. Average
seed mass was calculated for each seed lot by weighing five replicates
of 50 seeds each.

2.2. Germination tests

In all the experiments, five replicates of 20 seeds were sown on the
surface of 1% water-agar, which provided a solid, non-sterile medium
for germination, in 90mmplastic Petri dishes and incubated at different
temperatures and irradiances as specified below. Experiments lasted for
a maximum of 26 days, at which time no further germination was ob-
served. Germination was defined as visible radicle emergence. At the
end of the germination tests, a cut-test was carried out to determine
Table 1
Provenance, habitat, population size, number of sampled individuals and the average seedmass
formed to compare average seed masses; values with different letters are significant at P b 0.0

Seed lot Provenance Plant habitat A

NA1 Native population Coastal sandy dune
NA2 Native population Coastal sandy dune
RE1 Reintroduced population (by sowing) Coastal sandy dune
RE2 Reintroduced population (by transplanting) Coastal sandy dune
BG Botanical Garden of Rome Living collection 1
the viability of the remaining seeds (soft or firm) and the final germina-
tion percentage was calculated on the basis of the total number of filled
seeds as the mean of the five replicates ± standard error (SE).
2.3. Effect of light irradiance, temperature and storage

Stored (NA1) and fresh (NA2) seeds belonging to the native popula-
tion were incubated at 15 °C under different light conditions. In partic-
ular, seeds were exposed to a 12 h photoperiod (12 h) with a ratio of
red:far red of ca. 2.0, a light quantity of ca. 7 μmol/m2/s and density of
50–100 W/m2, and in the dark, achieved by wrapping the dishes in
two layers of aluminium foil. Seeds were scored for germination every
two days. In the darkness seeds were either scored under safe green
light (GL; light density of 14.0 W/m2) or only at the end of the experi-
ment (D; 26 days).

Seeds belonging to NA1, RE1, RE2 and BGwere incubated in the dark
and scored every two days under safe green light at both constant (5, 10,
15, 20 and 25 °C) and alternating (15/5, 20/10 and 25/15 °C) tempera-
tures. As more seeds of NA1 were available for experimental work, they
were also germinated at constant temperatures of 30 and 35 °C.
2.4. Experimental seed burials

Five replicates of 20 seeds of NA1 were placed on top of the 55 mm
diameter Whatman no. 1 filter paper and buried at different depths in
six black plastic boxes (174 × 115 × 60 mm) with transparent lids.
Each box was filled with 1060 g of sand, with grain sizes between 0.8
and 0.005 mm, pH 6.0–7.5 (ISTA, 2006), and moistened with 105 ml
of distilled water, calculated on the basis of previous experiments
with seeds of comparable size (unpublished internal report of the
Seed Conservation Department, Royal Botanic Gardens, Kew, UK). Rep-
licates were buried at 1, 5, 10, 15, 20 and 25 mm. The boxes were incu-
bated at the constant temperature of 15 °C and 12 h photoperiod (ratio
of red:far red of ca. 2.0, a light quantity of ca. 7 μmol/m2/s and density of
50–100W/m2) and checked every two days for seedlings to emerge be-
yond the sand surface. Emerged seedlings were removed. After 26 days,
the replicates were exhumed and the numbers of germinated non-
emerged seedlings were scored and the viability of the non-
germinated seedswas checked by a cut-test. The percentage of emerged
seedlings was then recalculated on the basis of the filled seeds, as the
mean of the five replicates ± standard error (SE).
2.5. Data analysis

Differences amongst final germination and t50 (time to reach 50% of
themaximumgermination in one replicate) were analysedwith a t-test
(paired and unpaired; for normally distributed data) or with the
Wilcoxon (paired) and Mann–Whitney (unpaired) tests (for data not
normally distributed) to compare two groups of data. When more
than two groups were compared, a one-way ANOVA (for normally dis-
tributed data) or Kruskal–Wallis (for data not normally distributed),
was followed by a post-hoc test (Tukey's or Mann–Whitney pairwise
comparison). Two-way ANOVA was also performed to identify a
(±SD) for each seed lot ofM. littorea investigated in this study. One-way ANOVAwas per-
5.

ltitude (m a.s.l.) Population size Sampled individuals Seed mass (mg)

3 30 20 0.14 ± 0.01b
3 30 20 0.15 ± 0.01b
2 120 50 0.15 ± 0.01b
2 13 10 0.17 ± 0.00a
7 10 10 0.16 ± 0.01b
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significant effect of independent variables, and their interaction, on a
dependent variable. Software Past 2.13 (Hammer et al., 2001) was used.

3. Results

3.1. Effect of light irradiance and storage

At 15 °C, exposure to 12 h photoperiod resulted in a very low germi-
nation percentage (1%) both for stored (NA1) and fresh (NA2) seeds,
with no significant differences between them (U = 12.50, P N 0.05).
Under dark condition with scoring every 2 days under green light
(GL), seeds of NA2 reached their maximum germination (37 ± 8.9%)
in 14 days, while those of NA1 in 6 days with a significantly higher ger-
mination percentage (68 ± 3.4%; t = 3.30, P b 0.05). In contrast, under
continuous darkness (D) germination of NA2 (13 ± 3.4%) was signifi-
cantly higher than that of NA1 (0%; U = 0.50, P b 0.05; Fig. 1).

3.2. Effect of temperature

At constant temperatures, seeds from NA1 showed the highest final
germination at 5 °C (75.0 ± 2.7%) and 10 °C (64.0 ± 7.6%) and a statis-
tically significant decreasing trend (P b 0.001) with increasing temper-
ature, reaching less than 2.0% germination at 30 and 35 °C (Fig. 2). In
contrast, the lowest germination percentage was detected at 5 °C in
the other seed lots (RE1, RE2 and BG), with maximal germination be-
tween 10 and 25 °C (P b 0.05; Fig. 2). A two-way ANOVA, applied on
final germination percentages of all seed lots at 5–25 °C, highlighted
that the effect of provenance (Pr), temperature (T) and their interaction
(Pr × T) were highly significant (P b 0.0001).

Under alternating temperatures, RE1, RE2 and BG showed high ger-
mination percentages in all the tested conditions, ranging from ca. 70 to
ca. 90%, but significantly lower germination percentages of NA1 at 15/5
and 25/15 °C (Fig. 3). A paired comparison of the germination percent-
ages between alternating temperatures and their corresponding aver-
age constant temperatures showed that alternating temperatures did
not affect the germination of NA1 and BG. For RE1, germination was
higher at 15 °C than at 20/10 °C (W=15, P b 0.05) and for RE2, germi-
nation was higher at 20 °C than at 25/15 °C (t = 2.8, P b 0.05).

Under constant temperature regimes, t50 of all seed lots were signif-
icantly longer at 5 °C after which t50 shortenedwith increasing temper-
ature (Fig. 2). A two-way ANOVA applied on t50 values of all seed lots at
5–25 °C, showed that the effect of provenance (Pr) was not significant,
while the effects of temperature (T) and of the interaction of the two
variables (Pr × T) were highly significant (P b 0.0001). Alternating
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Fig. 1. Germination percentages (mean ± SE) of the natural population under 15 °C and
different light (exposure to 12 h of white light, 12 h; dark with short exposure to green
safelight for scoring, GL; and continuous darkness with scoring at the end of the experi-
ment, D) and storage conditions (stored, NA1; and fresh, NA2).
temperatures did not decrease the t50 in comparison with their corre-
sponding average constant temperatures in any seed lot (data not
shown).

3.3. Effect of burial depth

The highest percentage of seedling emergence was detected be-
tween1 and 10mmin depth (Fig. 4). Frombelow10mmvery few seed-
lings emerged (1% of all the buried seeds at depths≥ 15mm). At 1mm,
20 ± 4% of the seeds were dead and 9 ± 8% of seedlings died after ger-
mination and all the emerged seedlings (51± 10%) were found to have
an elongate hypocotyl under the very fine sand layer. At 5 mm 69± 3%
of the seeds germinated and emerged and 25 ± 5.0% seeds germinated
but did not emerge. At 10mm the percentage of emerged seedlings was
41 ± 11% and the percentage of germinated non-emerged seedlings
was 21 ± 2%. At the depth 15 mm, 45 ± 7% of the seeds died and
48 ± 6% germinated without reaching the surface; at 20 mm, 31 ±
7.3% of the seeds germinated without emerging, a small percentage of
seeds died (9 ± 4%) and a greater percentage remained viable under
the sand (57 ± 12%); while at 25 mm almost all seeds died (90 ± 3%)
and a few seeds germinated but did not emerge (7 ± 3%).

4. Discussion

4.1. Germination behaviour and soil depth-sensing of the native population

Information on the seed biology and ecology of threatened species
must be considered in order to ensure their long term conservation
and reintroduction. For seeds of the threatened M. littorea, the lower
germination of fresh seeds in comparison to stored seeds suggest that
physiological dormancy is likely, broken by after-ripening in dry storage
(sensu Baskin and Baskin, 1998, 2004). Short exposure (e.g. a few mi-
nutes every two days) of seeds in the dark to the green safelight was
found to positively affect seed germination rather than a condition of
complete darkness, without receiving any light impulse, or the exposure
to 12 h of white light. Purportedly, short bursts of light may stimulate
germination in the late stages of dormancy breakage (Baskin et al.,
2006). Mediterranean species have previously been reported to be sen-
sitive to green light. Luna et al. (2004) evaluated the effect of green safe-
lightwith respect to absolute darkness on the germination response of a
set of 12 Mediterranean species; starting the germination tests several
months after seed collection, the germination of six species were sensi-
tive (five positively and one negatively) to short-duration exposures to
green safelight.

Coastal Mediterranean species typically germinate within the range
of 5–15 °C, therefore limiting germination to the winter so plants can
establish before the onset of the summer drought (Thanos et al., 1989,
1995). At 5–10 °C, the germination of the native population (NA1) of
M. littoreawas the highest amongst the tested temperatures, conferring
to this species ecological adaptation to the unpredictable rainfall pattern
of species living under “typical” Mediterranean climate conditions, re-
ducing the risk of losing a cohort of plants. Rapid germination has also
been suggested to be an adaptation in advance of soil drying in unpre-
dictable environments (Daws et al., 2002) as prevalent in the Mediter-
ranean. Compared to other Mediterranean species such as Glaucium
flavum (t50 of ca. 30 days for untreated seeds at 10 °C; Thanos et al.,
1989), Muscari spp. (t50 ranging from 12 to 16 days at 10 °C; Doussi
and Thanos, 2002), Centranthus ruber (t50 of 4.5 days at 15 °C;
Mattana et al., 2010) and Dianthus morisianus (t50 ranging from 4 to
5 days at 15 °C; Cogoni et al., 2012), NA1 showed faster germination,
with t50 values of 3.4 days at 15 °C and 5.6 days at 10 °C.

In Mediterranean climates, germination on the soil surface is
unfavourable due to high irradiance. Many species employ surface-
avoidingmechanisms (Thanos et al., 1989), based on diurnally fluctuat-
ing temperatures and light quality, to detect depth of seed burial
(Koutsovoulou et al., 2014), as germination from too deep within the
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tributed) at P b 0.01. Bars with different letters are significant at P b 0.05 (post-hoc tests: Tukey's for normally distributed data and Mann–Whitney for data not normally distributed).
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soil will lead to seedling death by seedling exhaustion before surface
emergence (Benvenuti et al., 2001). The application of alternating tem-
perature regimes did not improve the final germination percentage nor
the t50 of NA1 in comparison with constant temperatures, and this is
consistent with previous studies where seeds smaller than 2 mg did
not respond to alternating temperatures (Cogoni et al., 2012; Mattana
et al., 2010; Rojas-Arèchiga et al., 2001). Bond et al. (1999) found that
there is an allometric correlation between seedmass and themaximum
depth at which seedling emergence occurs [maximum depth (mm):
27.3 × seed weight0.334 (mg)]. According to this model, M. littorea
seeds should not be able to emerge from depths N15 mm. Laboratory
experiments confirmed the model validity for M. littorea, as very few
seedlings emerged fromburial depths N15mm(1%),while a considerable
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Fig. 3. Final germination percentages (mean ± SE) of the different seed lots under alter-
nating temperature treatments. One-way ANOVA detected a significant difference
amongst them (P b 0.001); bars with different letters are significant at P b 0.05 (post-
hoc Tukey's test).
emergence of seedlingswas evident between1 and 10mm. Further inter-
pretation of the seedling emergence experiment is precluded by the fact
that the irradiance of the incubator lighting was lower than expected in
nature. Nonetheless,M. littorea appears to germinate as a typicalMediter-
ranean species avoiding high irradiance and by germinating at cooler
temperatures.

4.2. Impact of maternal environment and implications for conservation

Seeds produced andmatured on themother plants in thewild (NA1)
had a different germination response to those produced from the exper-
imental populations, suggesting that seeds may show a rapid alteration
of fitness within one generation. This has previously been shown in
seeds of the cactus Stenocereus stellatus (Rojas-Arèchiga et al., 2001). If
the maternal environment during seed development is a determinant
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Fig. 4. Seedling emergence of five replicates (mean ± SE) at 15 °C for the tested burial
depths. Significant differences were tested by Kruskal–Wallis test (P b 0.001); bars with
different letters are significant at P b 0.05 (by Mann–Whitney pairwise comparison).
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for the germination behaviour of M. littorea, then the source of seeds
could have a major impact on the success of conservation programmes.
Therefore, seeds for reintroduction should be harvested from plants
produced in the same environment into which they will be sown. If
seeds from the native population must be collected, it is suggested
that only small quantities are removed so as to reduce the risk of
depauperation, and then sown ex situ to produce plants for reintroduc-
tion. Finally, we suggest seeds should be dried upon collection, after-
ripened to break any physiological dormancy, and sown in situ within
1 to 10 mm of the soil surface at 10–15 °C.
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