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Abstract 

Let a(n, k) be the largest number of k-cuts in a k-edge-connected multigraph with n vertices. 
We determine a(n, k) and characterize extremal multigraphs for every n and k. The same problem 
is also investigated for graphs with no multiple edges. 

1. Introduction 

Dinitz et al., in [2], described the structure of minimum cuts of multigraphs: the set 

of all k-cuts of a graph with edge-connectivity k has a one-to-one mapping onto the set 

of all minimal cuts of a corresponding “cactus” (the blocks are single edges and cycles). 

As a corollary, they proved that the vertex set of a graph has a cyclic ordering such that 

any minimum cut disconnects the graph into components of consecutive vertices. We 

use here this basic result to investigate further the structure of graphs with maximum 

number of minimum cuts. 

A connected graph G is k-(edge)-conne~te~l, if any subset of E(G) whose removal 

disconnects G contains at least k edges. If there are exactly k edges between X and 

2 = V(G)\X, then we say that (X,2) is a k-cut. The edge-connecticity of G is the 

largest k such that G is k-connected; alternately it is the smallest k such that G has a 

h--cut. 

Let a(n, k) be the maximum number of k-cuts in a multigraph of edge-connectivity 

h- with n vertices; and let ar(n, k) be the maximum number of k-cuts in a simple graph 

of edge-connectivity k with n vertices. A k-connected graph (resp. k-connected simple 

graph) is called rxtvemal if it has a(n, k) (resp. crt(n, k)) k-cuts. 

In [2] the inequality a(n, k) < (‘1) was proved, and the cycle on n vertices with edges 

of multiplicity k/2 was exhibited as an example for which this bound is tight when k 

is even. For k odd, the k-cuts form a nested family, which yields a linear upper bound 
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for a(n,k) in this case. In Section 3, we will show that o(n,k) = 13n/21 - 2, for odd 

k > 1 and for every IZ. Furthermore, we characterize extremal graphs (Theorem 3.4). 

Let us note that the preceding results are already implied by the work of Bixby 

[l]. Our approach uses similar techniques but more graph theory than Bixby’s. It also 

leads to the new results on simple graphs presented in Section 4, where oi(n, k) is 

investigated. A tight upper bound is given for any even k 24 (Theorem 4.3). We 

determine crl(n, k) and characterize extremal graphs for k = 3 and k = 5 (Theorems 

3.4, 4.4 and 4.7). For odd k > 5, ol(n, k) a( 1 + 2/(k + 1 ))n - 0( 1) follows from a 

construction, and we prove (rt (n, k) < (1 + 4/(k + 5))n (Theorem 4.9). 

In the following section, we give a representation for the structure of all minimum 

cuts. Let G be a graph with vertex set (~0, ~1,. ., L’,-I}, and let (Xi,Xi), be the 

minimum cuts of G such that va E X,, i = 1,. . , p. First we show that the hypergraph 

defined on vertices { ~1,. . . , v,_ I} with edge set {Xl,. . . ,X,} is an interval hypergraph, 

then we describe the structure of minimum cuts in terms of the overlap graph of 

these intervals (Theorem 2.4). This also leads to the above-mentioned corollary of the 

“cactus” representation of Dinitz et al. Another representation of the minimum cuts 

was proposed recently by Gabow in [4]. For further reference on related algorithmic 

results see [5, 71. 

2. The structure of minimum cuts 

For a fixed integer k > 0, let G be a graph with edge-connectivity k. Since we are 

interested in regarding the k-cuts as vertex subsets rather than edge subsets, we will 

frequently fix a vertex no of G and, with a slight abuse of terminology, say that X c V 

is a k-cut of G when (X,X) is a k-cut with vo E X. In this context, a k-cut X will be 

called trivial if (XI = 1, i.e., X consists of one vertex of degree k. A nontrivial k-cut 

X will be called minimal if every k-cut Y with Y CX is trivial. 

We denote by mo(xy) the multiplicity of an edge xY of G. For disjoint subsets 

A, B c V(G), mc(A, B) is the total number of edges xy with x E A and y E B. We 

simply write m(A, B) omitting index G if no ambiguity occurs. If two k-cuts X, Y 

have nonempty intersection, then either they are nested (i.e., X c Y or Y cX) or they 

overlap (i.e., X f’ Y, X n Y and X n ^r are nonempty). 

It is known (and easy to check) that two k-cuts in a k-connected graph can overlap 

only for k even. More precisely: 

Proposition 2.1. Let G be a k-connected graph and X, Y be two overlapping k-cuts. 

Thenm(~n^Y,Xn^Y)=m(~n^Y,~nY)=m(XnY,Xn~)=m(XnY,~nY)=k/2. 
Consequently X U Y, X f’ Y, X n ^r, 2 f’ Y are k-cuts; moreover, 

m(Xn^r,xnY)=m(~nY,xn^r)=o. (1) 

Proposition 2.1 is easily proved by counting the number of edges between any two 

of the above-mentioned four sets, Details are ommited. 



The following lemma will be useful. 

is emp tj,. 

Proof. Assume on the contrary that A*, Be and Co are nonempty. Then A, B and C’ 

pairwise overlap, and (1) holds for every X, Y E {A,B, C}, X # Y. Consequently, 

m(X. Y) = 0, for every X, Y E {Ao,BO,Co,D~~}, X # Y, where Do = 2 n g n ?. Since 

there are at most 3k distinct edges defined by the k-cuts ‘4, B and C, one of the cuts 

ilo, Bo, Co and & has at most 3kj4 < k outgoing edges, a contradiction. il 

Let E be the family of all k-cuts of G and II = { ci , . . . , z’,~... I}. Then ‘X = f V, E ) is 

called the rut-hr,pprryraplz of G. Using the remark at the beginning of this section, we 

can easily conclude that ?-l is Iuminar, i.e., it satisfies 

AUBEE forallA,BEEsuchthatAntf#O. 

Furthermore, ‘% satisfies the strong H&y property: 

(2) 

n{EEE: pn{ x,y,2}~32} n {x,.v,z} # dil for everyx,.r,z E 1;. (3) 

A To see (3), assume that x, y E A E &, ; E .4 and .V.Z E 5 E C:, _V E B^, for some 

A,B E E. Then by Lemma 2.2, _v, z E I’ implies x E c’, for every C E E, hence 

x E n (E E E : !E n jx,y,zjj 22) foLiows. 

A hypergraph is called an intercal hypwqraph if there exists a total ordering on 

its vertex set for which every hyperedge of the hypergraph is an interval. Interval 

hypergraphs were studied in [3, 6, 81. In particular it was shown that a hypergraph 

is an interval hypergraph if and only if it is laminar and satisfies the strong Eielly 

property. Thus we will assume that L = (PI,. . . . tl 1: ~ j ) is a linear order of the vertices 

such that every k-cut is a subset of consecutive vertices, that is, every minimum cut 

is an interval. Remark that by adding co between t’,_, and 1’1 we can obtain the same 

cyclic ordering as in [2]. 

Let {Xl,. . . ,Xp} be a family of intervals of L. Two vertices EI, 1‘ E lJf=,X, are said to 

be equivalent (with respect to the family) if for alt i (1 <i< p), 1~ E X, if and only ii 

1~ t X,. The equivalence classes are called the atoms of the family. The ocrrltrp qrc$r 

of {Xl,. . ,A’/,} is a graph defined on the intervals as vertices, X,X, being an edge if 

and only if Xi and X, overlap. 

As it was discussed in [2], the overlap structure contains the basic information about 

minimuln cuts. This is expressed in the next lemma. 

Lemma 2.3. Ler 3 he G~JJ j~rniiy of‘ k-cuts and i~t {A ,, . . , A, ) he the set of it.s 
utoms indexed ucwrding to the order L. !f’ F has connected ocerlup grqh. then 
.4 ,, U A ;,+, 1J . . . ii A, is u k-cut ,for wqv p, q with I < p <q <t. 
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Proof. We omit details of the easy induction on 1.F which uses the fact mentioned 

above that X U Y, X n Y, X \ Y, and Y \ X are k-cuts, for every X, Y E 1. 0 

Let H be the overlap graph of E. If H has no edges, then & is called a nested 

family, that is, for any pair X, Y E I, either X n Y = 0 or one of X and Y contains 

the other. Notice that this is the case when k is odd. 

Let Hi, i = 1,. . . , t, be the connected components of the overlap graph H with 

V(H,) = &j. Set Al,0 = U{X E &,}, and let Ai,,,.. . ,Ai,t, be the atoms of Ej indexed 

according to the order L. If Ei = {Ai,a}, then we say that Hi is isolated or trivial. If Hi 

is nontrivial, then by Lemma 2.3, Hi consists of all intervals of the form A,,, UAi,p+l U 

. U&r 1 < p < q < t,, different from Ai,a. We refer to this fact, that the intervals of 

Hi form a fill interval system on their atoms. It is also clear, that the intervals of the 

set {A,,,j : 1 <i < t, 0 <<j < t,} are pair-wise nonoverlapping, thus form a nested family. 

We summarize these results as follows. 

Theorem 2.4. Let G he a k-edge connected graph of order n, and let vg be an ar- 

bitrary vertex of G. Then V(G)\(Q) h as an ordering (VI,. , vn_l ) such that every 

k-cut is an interval on the set (VI,. . , v,_ 1). Moreover, if H is the overlap graph of 

the k-cuts of G, then its trivial connected components define a nested family, and the 

k-cuts in each nontrivial connected component form a full interval system on their 

atoms. For k odd, every connected component of H is trivial. 

In the remaining sections we use the following observation pertaining to the place- 

ment of edges of G between atoms. Let {Al,. , A,} (t 2 3) be the consecutive atoms 

defined by the k-cuts represented by the vertices of a nontrivial connected component 

of H. Then m(A,, Ai+,) = k/2, for every 1 <i < t. This follows from Proposition 2.1 

and from the fact that every interior atom A, (1 < j < t) is the intersection of two 

overlapping cuts belonging to H, namely, X = A,_1 U Aj and Y = Aj U A,+,. 

Note that, based on Theorem 2.4, one can easily get the result in [2] for representing 

minimum cuts by a cactus-like structure. On the other hand, the representation of k-cuts 

in [2] easily implies Theorem 2.4. 

3. Extremal multigraphs 

3.1. Multigraphs with odd edge-connectivity 

In this subsection we consider graphs of edge-connectivity k, with k odd. Note that 

o(n, 1) = n - I, and the extremal graphs are the trees. So we may assume k > 1. We 

use the interval representation and the notations introduced in Section 2. In particular, 

E denotes the family of intervals corresponding to the minimum cuts of graph G. By 

Theorem 2.4, the intervals of & form a nested family, for k odd. In this case there is 

a further restriction on E. 



Lemma 3.1. Lrr A,AI ,..., A, be k-cuts with A = UyT,Ai crndA,nA, = G?, 1 <i < j<q. 

Then. ,for k odd, q is also m odd integer-. 

Proof. Obviously, 

cjk = 2 m(A!,A^,) = m(A,A^) + 2 1 m(A,,A,) = k +2 c nz(A,,A, ). 
)=I I<!</<C/ I S-i<,<</ 

Hence yk ~ k = k(y - 1) is even, which implies that q must be odd. n 

From this observation one can easily conclude that the maximum number of intervals 

in the nested family E is less than 3n/2. To obtain a(n, k) and the structure of extremal 

graphs, we need a more accurate count and some definitions. 

For F c E(G). the rernoud of F results in a partial graph of G we denote by G-F; 

if _YJ’ is a multiple edge then G - {x.v} means the removal of every edge between x and 

J’. The contruction of a set A c V(G) is the operation which consists in identifying the 

\.ertices of A. The graph which results from this operation is denoted by G/A. Notice 

that contraction does not reduce the edge-connectivity of a graph. Denote by o(G) the 

number of minimum cuts of a graph G. 

Proposition 3.2. Let k 33 he odd. If G i.v N qrqh of t~t~~~t~-~otzrzrt~tir‘it~~ k und c$ortitv 

II, rhen 

(3) 

:MoI.~wwI., if’ tquulity holds in (4) und n 24, then G 11~s (I k-cut (A,/?) .such tlult 

tither A or ,4^ consists of’ e.yuctly three rertices of dqree k. 

Proof. The inequality is true for n = 2 and n = 3. Now assume that n 24 and that 

(4) holds for graphs of order less than n. If G has trivial cuts only, then (4) follows 

with strict inequality, for n 24, thus we may assume that G has nontrivial k-cuts. Let 

,l E E be a minimal nontrivial k-cut. Let G’ = G/A. Then G’ is k-connected and has 

11’ = II ~ IA 1 + I vertices. By the minimality of A, G has at most IA \ Qi + n( (;’ ) 
minimum cuts, where Q is the set of all vertices of A with degree larger than k. Since 

11’ < n, the induction hypothesis entails that rr(G’) < 13n”2] - 2. Here we distinguish 

between two possibilities. 

For lA1&3, we obtain IA \ Ql + o(G’)<lAl + L3(n - I.41 + I),‘21 - 2< 13n:?j 7. 

with equality only if IAl = 3 and Q = 0. 

For IAl = 2. Q is nonempty by Lemma 3. I. Thus in this case lil \ Ql + a( G’ ) < I + 

:3(n - I )/2] - 2 < 13ni2J - 2 follows. Notice that the inequality is strict for II even. 

We obtain easily, as a consequence, that if equality holds in (4), then every vertex has 

degree k, for n even; and every vertex but one has degree k, for n odd. 

To finish the proof, we have to verify that in the second case G has a minimal non- 

trivial cut A with IAl = 3. Indeed, if we choose 2‘0 in the interval representation to be 
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the only vertex of G with degree more than k, then the interval representation excludes 

00 from the cuts, hence IAl # 2. 0 

Next we exhibit k-connected graphs with 13n/2] -2 k-cuts. We shall obtain extremal 

graphs from smaller ones by “splitting” vertices of degree k into three and including 

some edges between the new vertices. 

Let G be a k-connected graph. We denote by S(G) any graph obtained from G as 

follows. Let u be a vertex of G of degree k. Let pl, ~2, p3 be integers such that 

p1 + p2 + p3 = k. Partition the edges of G incident to v into three sets PI, PI, P3 

of size ~1, ~2, ~3, respectively. Remove v and add three new vertices vi, ~12, v3. For 

each edge wzj in P, add an edge WVi. Add edges between vi, ~2, vg with multiplicity 

m(vi,v2) = ~3, m(v2,v3) = PI and m(v3,vl) = ~2. The operation of deriving S(G) 

from G will be called k-splitting of G at v. We will say that a k-splitting is legal if 

pi < k/2 holds for i = 1,2,3. It is easy to check that if a k-splitting is not legal then 

the resulting graph is not k-connected. 

Proposition 3.3. Let G he a graph of order n and edge-connectivity k. Consider a 

legal splitting of G at a vertex v of degree k. Then the resulting graph S(G) has 

edge-connectivity k, order n + 2, and @(S(G)) = a(G) + 3. 

Proof. Consider any cut (A,A^) of S(G). 

First suppose that the cut (A,i) does not separate vi, v2,v3 from each other. We may 

assume without loss of generality that these three vertices are in A? Now A c V(G) and 

(A, V(G) \A) is a cut of G. There is an evident one-to-one correspondence between the 

edges of (A,A^) in S(G) and the edges of (A, V(G)\A) in G. It follows that m(A,A^)>k; 

moreover every k-cut of G corresponds to a k-cut of S(G). 

Second suppose that the cut (A,A^) does separate the vi’s from each other. Without 

loss of generality, vi E A and ~2, ~3 E A? Notice that vi v2 and vi 03 form p3 + p2 edges 

between A and A? Let pi be the number of edges between vi and A^\ {v2,vs}, and p 

be the number of edges between A \ { VI} and A? Here we have 

44% = ~2 + ~3 + p/1 + P. 

If A = {vi} then clearly m(A,A^) = k (since each vi is of degree k by the construction 

of S(G)). Now assume that A’ = A - {VI } is not empty. Hence (A’, V(G)\A’) is a cut 

of G and 

PI - p{ + p = m(A’, V(G) \ A’)3k. 

It follows that 

P3k_Pl+p{>p2+p3, 

because k = pl + p2 + p3, whence 

m(A,~)32(p2 + ~3). 



The hypothesis that PI < k/2 and pl + p2 + p3 = k imply p2 + pi > k:2, so 

m(A,A^) > k. Consequently, in this second case (A,A) is not a k-cut unless il = {l.,} 

for i= 1,2,3. 

For k 3 3, the smallest extremal graphs of edge-connectivity k are: the graph with two 

vertices and k parallel edges, which we will denote by P(k); and any graph with three 

vertices, one edge of multiplicity p < k/2 and two edges of multiplicity k - p. which 

will be denoted by Q(k, p). Proposition 3.3 shows that one obtains extremal graphs 

for every n by starting with either P(k) or Q(k, p), p < k!2, and by performing a 

sequence of legal splittings. Hence o(n, k ) = j3n.21 - 2 follows for every M > I and 

odd k33. 

Theorem 3.4. For ecery n > I und odd k 33. a(n, k) = j3n.21 - 2. Morrorvr, 11 

gruph of order n 34 and edge-connectivity k is estrerml f and on1.l’ lf’ it is obtained 

f&n either P(k) or Q(k, p), p < k/2, h_~t ~1 sequenccl of’legul splittirugs. 

Proof. Let G be an extremal graph of edge-connectivity k and order n. Then, by 

Proposition 3.2, G has a k-cut A = {D,. L’~. L’~}, with dG( c, ) = k (j = 1,2,3). Let 

111 = ~(vII.~), 172 = m(scl) and p3 = rn(rl~2). Since m(A.2) = k, we obtain that 

pi + p2 + p3 = k. If one of pl, ~2, pj was greater than k/2. say pl > k/2. then 

{Q, ~‘3) would be a cut of size 2~1 + 2p3 = 2k - 2pl < k, which is not possible. 

Thus 0 < PI, p_, p3 < k/2, showing that G = S(G:‘4). Repeating this argument for 

G/A, and so on, after [n/2] - 1 steps we get the graph P(k) or Q(k, p) for some 

&k:‘2. il 

3.2. Multigruphs lvith even edge-connecticit)? 

For k even, a(n, k) = (;) was proved in [2]. For the sake of completeness we 

show how this result follows from the interval representation of minimum cuts given 

in Section 2. Theorem 2.4 shows that the number of intervals on n - 1 points of the 

line, i.e., (“T’ ) + n - 1 = (z ) is an upper bound for the number of minimum cuts of 

a graph of order n. Using the remark after Theorem 2.4. we conclude that extremal 

graphs having (g ) minimum cuts are unique. 

Proposition 3.5. For n > 3 und k even, ~‘e haue o(n, k) = (3 ), und the unique estrermrl 

yruph is the n-c,,vcle ivith k/2 parallel edcges hetv,een an?’ tlvo consecutire rrrtices. 

4. Extremal simple graphs 

In this section simple graphs with large number of minimum cuts are investigated. 

From now on we will assume that k 3 3. We are using the representation of the k-cuts 

of a k-connected graph G by intervals of the set V = { rl, . , I’,~_ 1 } as described in 
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Section 2. Our goal is to improve on the general upper bounds of Propositions 3.2 and 

3.5. 

To see that the number of nontrivial cuts decreases when an upper bound is imposed 

on the edge multiplicity, we need the following observation. 

Lemma 4.1. If G is a k-connected graph with edge multiplicity at most m and A is 

a nontrivial k-cut, then IAl 2 k/m. 

Proof. Since G is k-connected, de(x) 3k for every x E A. Thus 

=mAA,A^)+2 C mc(xy). (5) 
{x.?.} c A 

Since the multiplicity of an edge of G is at most m, 

C m&y)G 
{w) CA 

Using this inequality together with mG(A,A^) = k, (5) implies IAI(jAI - 1)m + kaklA1. 

Hence IAl 3k/m which concludes the proof of the lemma. 0 

4.1. Simple graphs with even edge-connectivity 

Assume that k 3 4 and k is even. First we determine ~1 (n, k) for small values of n. 

Proposition 4.2. Assume k is even and at least 4. Then 

n if’k+l<n<2k-1, 

al(n,k) = 
n + 1 if n = 2k, 

n-t2 iJ’n=2k+l, 

n-t4 iJ’ n=2k+2. 

Proof. In a k-connected graph each vertex has degree at least k, thus n 3 k + 1. By 

Lemma 4.1, the smallest cardinality of a nontrivial k-cut is k. Hence a graph of order 

n < 2k has only trivial cuts, implying 01 (n, k) <n for k + 1 dn <2k - 1. Since k is 

even, obviously there exists a k-regular graph G of order n for every n. Moreover, 

for nd2k, G is k-connected. To see this, assume on the contrary that mc(A,A^) < k, 

for some A c V(G) with IAl dk. Then clearly, d(v) < k follows for some r E A, 

contradicting the k-regularity of G. Hence cri (n, k) = n, for k + 1 <n < 2k - 1, and 

every k-regular graph is extremal. 

Observe that if G has two nontrivial overlapping cuts A and B, then A n B # 0, 

A~~#0,A^nB#0andA^n~#0implyn32k+2.Henceai(n,k)dn+1 and 

01 (n, k) <n + 2 follows for n = 2k and n = 2k + 1, respectively. In the first case, the 

graph Go consisting of two disjoint copies of a k-clique with a perfect matching M 

between them shows that the bound is tight. In the second case, we obtain an extremal 
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graph Gt from Go by subdividing k/2 edges of A4 and identifying all the subdividing 

vertices into one. (Note that the obtained extremal graphs are unique in both cases.) 

For n = 2k + 2, let Gl be the graph obtained from Gr by subdividing the remaining 

h-i2 edges of A4 and by identifying the new subdividing vertices into one. Clearly, G? 

has n + 4 k-cuts. If G is a graph without overlapping cuts, then IT(G) <n + 3. Hence 

rrl(n. k) = 17 + 4. for y1 = 2k + 2, concluding the proof of the proposition, ~ 

For n = r(k + 1) with r 3 3, let F,,k be the simple graph obtained as follows, WC 

start from r vertices CO.. ,c,_~. For each i we add k new vertices forming a k-clique 

Q,; we link k/2 of these new vertices to c; and the other k.!2 to c,+r (mod 1.). Clearly 

F,,.r is a k-regular, k-connected simple graph. To count the k-cuts of F,,J consider 

the sequence Qo, cl, Ql, ~2,. , c,_ 1, Qr- 1 and observe that every nonempty interval in 

this sequence of 2v ~ 1 elements forms a k-cut. In addition each vertex in any Q, is 

a trivial k-cut, so 

a(F,,k ) 
2r 0 2 k -- 1 

= 2 +rk-(k+,)‘n:+k1117. 

As we will see, the number of k-cuts of F,,J reaches the upper bound obtained for 

rr,(n,k). 

Theorem 4.3. Consider an ecen k 3 4 und n 3 2k + 2. Thaw 

2 
~~(n,k)<------ 

k-l 
(k + 1 )ln2 + -” k+l ’ 

(6) 

rrnd the bound is tight if k + 1 divides n. 

Proof. Let G be an extremal graph of edge-connectivity k and of order n. We say that 

G is cl~~~nzposuhlr if there exists a nontrivial nonminimal k-cut A such that there is 

no k-cut which overlaps A (i.e., for every k-cut C one of A c C, C c A and A n C = M 

must hold). 

Cuse 1: G is not decomposcrhle. Consider the interval representation of the k-cuts 

of G choosing a vertex of degree k in the role of I%(). To insure the existence of such 

a vertex, assume on the contrary that all vertices of G have degree at least k + 1. Let 

C be a nontrivial minimal k-cut. It is easy to check that C contains at least one edge 

P (for otherwise there would be too many edges going out of C) and that G - e is k- 

connected (for otherwise a nontrivial k-cut smaller than C would be found); moreover, 

every k-cut of G is a k-cut of G - e. We can repeat this argument until we obtain a 

k-connected subgraph of G with one vertex of degree k, contradicting the extremality 

of G. 

The choice of ~(1 implies that {U 1,. . , r,I-_l} is a k-cut. Hence every vertex is in a 

(minimal) k-cut. 

Let Al,. , A,,, be the minimal nontrivial k-cuts of G and let T be the set of trivial 

k-cuts not in Uy=,A,. By Lemma 4.1, IA,1 > k for every 1 <i <nz. By the remark after 

Theorem 2.4, one must have t <m - 1. Indeed, since G is simple, no consecutive 
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vertices Uj and Uj+i (1 <j <n - 2) may belong to T, and moreover, the sequence of 

atoms does start and end with minimal cuts belonging to Uy=,A;. 

Every vertex different from ua either has degree k or is in a minimal nontrivial cut. 

Hence A ,,...,A,, T form a partition of V-Q, and lT/+Cy=, lAil = n- 1. Moreover, 

since G is not decomposable, the nonminimal cuts form a full family of intervals on 

(Uy=,A;) U T. Thus o(G) = (‘+2”) + m + nk, where t = /T 1 and nk is the number of 

vertices of degree k different from ~0. Hence o(G) d (‘y ) + m + n - 1. 

So it suffices to find an upper bound on ( ‘7 )+m+n- 1 corresponding to a collection 

of pairwise disjoint subsets A 1,. . , A,,,, T of an n - 1 set, subject to IZ - 1 = t+Cyzl IA, j 

with ITI = t < m and IAil 3 k (regardless of graph realizability constraints). So let us 

consider an arbitrary such collection. 

If t = m - 1, then trivially m <n/(k + 1) (with equality only if IAiJ = k for every 

l<i<m). Thus t+m=2m-1<2n/(k+l)-1, and 

+m+n-l<($--I)(&-l)+i;-if”-1 

2 2 k-l 
G(k+ f-n k+l ’ 

which proves (6). 

Now suppose t < m - 1. If IA, I >k + 1 for some i, then (‘y ) increases if a vertex 

is removed from A, and is added to T, while m does not change. We can iterate this 

procedure; if t reaches the value m - 1, we can apply the preceding case. So we may 

assume that each IAil is equal to k and that t < m - 1. 

Write6=m-t.So6>2andn-l=t+mk=m(k+1)-6.Thenweget 

k-l 
-_n=-2m+w+n, 
k-l 

Furthermore, we have 

t+m ( > 2 
+m+n- 1 =2m2-2m6+ 62+6 ---fn-1. 

2 

(7) 

(8) 

Now, using (7) and (8), inequality (6) will hold if the following quantity is positive: 

2 k-l 

(k+1)2n2+/,iln- 
2m2-2md+y+n-I) 

= 
( 

2m2-4mk(l:11)_2m+::ij+,1~ ~ ‘y+ll) I n) 

- 2m2-Zrn*+y+rz-1) 
( 

=m2(~-l)(k-l)_6(6+l)(k+1)-4+ 2 

kfl 2(k + 1) > ktl’ 
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However, for 6 22 and k 34, the inequality 1 + (2k - 2)/(3k - 5) < 6 holds true, 

which implies 

(6-t l)(k+ l)-4 

2(k + 1) 

< 2(S- l)(k- 1) 

k+l -’ 

Using this inequality together with t = m - 6 20 we obtain that 

,<~,~..)(6+l)(k+1)-4 <fnits-l)(k-l) ci(ii+I)(k+I)-4 

2(k -+- 1) k+l - 2(k+ i) ’ 

and since 

2(6 - 1)’ 2 ~- 
(k + 1)’ + l- ktl 

is positive, (6) follows (with strict inequaIity). 

CUSP 2: G Ir dec~Fn~~sub~~. We use induction on n. By Proposition 4.2, the theorem 

is true for n = 2k + 2. Assume that n > 2k + 2, and (6) holds for .’ < n. Let A be 

a k-cut with k + 1 6 IA / 6 n - k such that for every cut C either C c A or C c 2 We 

replace A by a k-clique and let each of the k edges going into A go to a distinct vertex 

of the clique. The resulting graph G’ is simple, k-connected, and has ?z’ = n - lAl + k 

vertices. Let nr = /Al. Set 

cry = / {C j Cc A, C is a k-cut of G}j. 

Then clearly, a(G) = gI + a(G’) - k. Since 12’ < n, it follows by induction that 

2 
rr(G’)-k d--n 12 _c k - ’ rf’ _ k ~ 

(k + lf2 k+l 

2nln - 2nIk + 2nk -I- k2) 

k-l 
+- k+ l(n-nl+k)-k 

2 2_ k-l 2 k-l 

=(k+ + 
_- 

k+l “+mnT k-f- In’ 

(k((n,tz + n,k -- nk) - 2k 
(k + 1): ’ 

Using a similar counting argument as in Case 1 (details are omitted) we obtain 

From the upper bounds above we have 

2 k-l __ 
(k+$+/iijn-Q(G) 

2 2 k-l 
= --------y1 + kS-~ - (ot + a(G’) - k) 

(k -t 1 )” 
4 

+ik_;::.l)‘n:+ &(nin+nik-nk) 

2k 

+(k$_1)2. 
(9) 
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To verify (6) we show that the last line of (9) is nonnegative or equivalently, 

“on1 > = n: -n,(n+k)+nk-k/2<0. 

Since S(k+ 1) < 0, and the minimum of S(X) is negative at x = n + k/2, the inequality 

f(ni) < 0 follows from k + 1 <ni <n -k. 0 

4.2. Simple graphs with edge-connectivity 3 or 5 

For k = 3, extremal multigraphs were characterized in Theorem 3.4. These graphs 

obviously contain no multiple edges when n 26 or II = 4, and so oi(n,3) = 13n/2] -2. 

It is easy to verify that ai(5,3) = 4. 

We now examine the case k = 5. 

Theorem 4.4. 

fbr n = 6 and 7, 

jtir n = 8 and 9, 

[3n/2] - 4 for n 3 10. 

Proof. Note that in a k-connected graph each vertex has degree at least k, thus any 

simple 5-connected graph has at least six vertices. By Lemma 4.1, the smallest car- 

dinality of a nontrivial 5-cut is five. Hence a graph of order n < 10 can have only 

trivial 5-cuts, which implies CJI (n, 5) <n, for n = 6 and 8, and ol(n, 5) <n - 1, for 

n = 7 and n = 9. 

We exhibit graphs of edge-connectivity 5 showing that these bounds are tight. For 

n = 6, the complete graph K6 on six vertices satisfies r~(K6) = 6. For n = 7, the graph 

G7 obtained from KT by removing three independent edges satisfies rr(G,) = 6. For 

n = 8 or n = 9, let G8 be the complement of the chordless cycle on eight vertices and 

let Gg be the graph obtained from Gg by removing four independent edges and adding 

a ninth vertex adjacent to all the other vertices. Then a(Gs) = a(Gg) = 8. 

To compute al(n,5), for n3 10, we will use the following lemma. 

Lemma 4.5. A multigraph G of edge-connectivity 5 and order n 3 4 with the property 

that a(G) = [3n/2] - 2 contains two nonincident edges of multiplicity at least two. 

Proof. We will proceed by induction on n. It is easy to check that the lemma holds 

true for n = 4 or n = 5. Now we assume that the lemma is proved for all graphs with 

at most n - 1 vertices and consider a graph G with n vertices satisfying the hypothesis 

of the lemma. By Theorem 3.4, G is built via a legal splitting from a 5-connected 

multigraph H of order n - 2 such that a(H) = 13(n - 2)/2] - 2. By the induction 

hypothesis, H must contain two nonincident edges. say ab and cd, of multiplicity at 

least two. If the splitting leading to G is not at any of the vertices a, b,c,d then ab 

and cd are nonincident multiple edges in G. So let us assume that a is used in the 

splitting, i.e., a is replaced by three vertices al,az,uJ with two edges between al and 
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~2, two edges between ai and a3, and one edge between a2 and a3. Now alal and ru’ 

arc the desired pair of edges proving the lemma for G. This completes the proof of 

the lemma. r-1 

Proof of Theorem 4.4 (Conclusion). For every n 2 10, we exhibit 5connected simple 

graphs of order n with a number of 5-cuts equal to [3n,/2] - 4. For n = IO + 2~1, 

let { ~1,. . US} and { ~6,. . , G~O} induce two disjoint 5-cliques in G,,, and add the edge 

~rrb. If p = 0 (i.e., IZ = IO), add the edges c~I~,u~z’~. 1’1~9, 1’5rl[). If p > 0 create two 

vertices a,,b, for each i = 1,. . , p; add the edges c2al, u3aI, r&i, rghl and c7a,‘, QU,~. 

I3h,” rl~h,~. If p = 1 add the edge albl. If p > 1, add edges so that each subset 

{~~,h,,a,_l,h,+~} (i = l,.... p- 1) forms a 4-clique. For n = 10+2p+ 1 and p > 0, 

start from the graph Gia+~~,, subdivide each of the three edges P~LII. t:&, ,rlcb with one 

vertex and identify these three new vertices. If p = 0 (n = 11 ). do the same operation 

on the three edges ~1~6. t:2~‘7. L’~Q of Glo. It is not difficult to check that G,, is a simple 

graph of edge-connectivity 5 and that a(G,) = 13nj2J - 4 for all n > 10. 

Let G be a simple graph of edge-connectivity 5 and of order II > IO. We will show 

that 

If G contains only 5-cuts of cardinality I or n - 1 then ( 10) follows with strict in- 

equality. So we may assume that G has a nontrivial 5-cut and choose a minimal such 

cut A. By Lemma 4.1, we have 5 < IAl <rz - 5. Let G’ = G/A be the graph obtained 

from G by contracting A into one vertex. It is clear that G’ is a 5-connected graph 

(possibly with multiple edges) of order IZ’ = II -- (Al + I 36. By the minimality of .4, G 

has at most IAl - q + o(G’) 5-cuts, where q is the number of vertices of A of degree 

at least six. We can remark that G’ has no nonincident edges of multiplicity at least 

two, and so by the preceding lemma we have cr(G’) < 13n’/2j - 3. Thus 

n(G)= IAl -q+rr(G’)<IAl -q+ 
301 - IAl + 1) _ 3, 

2 1 

Let R denote the right-hand side of the above inequality. For IAl = 5 it is clear that 

R = 13n/2] -4-q. If 1A136, then we get R61AI-q+3(n-lAl+l)/2-3 = 

3nj2 - IA\/2 - 3/‘2 ~ q, whence R< [3n/2] - 4 - q. In either case (10) follows. This 

concludes the proof of the theorem. q 

The proof of Theorem 4.4 actually implies that, in an extremal simple graph G for 

k = 5, any minimal nontrivial cut A induces a 5-clique of G. Indeed, for 1.4 = 5 it 

is clear that A must be a 5-clique; if IAl = 6 then q # 0 (see Lemma 3.1) and the 

inequality (10) is strict; and the same holds for IAl 37. Furthermore, the graph G’ 

obtained by contracting a 5-clique of G satisfies a( G’ ) = 13n’,‘2] ~ 3. so it is extremal 

among multigraphs of edge-connectivity 5 having a vertex incident to all the multiple 
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edges. So there exist such graphs for any order greater than or equal to six. We will 

show how these extremal graphs are obtained. 

Proposition 4.6. Let G’ he a multigraph of edge-connectivity 5 and order n’ 3 6 

having a vertex incident to all the edges of multiplicity at least two. If o(G’) = 

[3n’/2J - 3, then G’ contains a 5-clique. Moreover, the graph G” obtained from G’ 

by contracting this clique into one vertex is an extremal multigraph for k = 5 (i.e., 

a(G”) = [3n”/2J - 2, where n” = n’ - 4 is the order of G”). 

Proof. For the interval representation of the 5-cuts of G’ we choose vo as the vertex 

incident to all edges of multiplicity at least two in G’. We consider in G’ a minimal 

nontrivial cut A. (If G’ had no such cut then we would have o(G’) <n’ - 1, which 

would contradict the assumption.) Since A does not contain 00, by Lemma 4.1, we 

have IAl 35. Let G” = G’/A. Clearly 

[3n’/2] - 3 = g( G’) d /A ) - q + o( G” ), 

where q is the number of vertices of A of degree at least six. Since G” is a 5-connected 

multigraph, the right-hand side R of the inequality above is smaller than or equal to 

IAl - q + [3(n’ - IAl + 1)/2] - 2. 

If IAl = 5, then 

R< L”“‘;“‘] +3-q= [%I _3_q, 

furthermore, A is a 5-clique and a(G”) = 13n”/2] - 2. For IAl 36, it is easy to check 

that R < 13n’/2] - 3. 0 

Let us call special pair any two vertices of degree 5 such that every edge of mul- 

tiplicity at least two is incident to at least one of them. Let v,w be a special pair of 

G. We call special splitting on G any splitting on v into vertices vi, ~2, v3 such that 

M(v~v~) = m(viv3) = 2, m(v2v3) = 1, and such that vi,w is a special pair in the 

resulting graph. 

Theorem 4.7. Let G be a simple graph of edge-connectivity 5 and order n > 10. If 

G is extremal it is obtained from an extremal multigraph H of edge-connectivity 5 

having a special pair by replacing each vertex of the pair by a 5-clique. Moreover H 

itself is obtained from either P(5) or Q(5,2) through a sequence of special splittings. 

Proof. Note that a graph obtained from a 5-connected graph by replacing a vertex of 

degree 5 with a 5-clique is also 5-connected. 

Let G be a graph satisfying the hypothesis of the theorem. From the proof of The- 

orem 4.4 and Proposition 4.6 it follows directly that G contains two disjoint 5-cliques 

and that the multigraph H obtained by contracting each of these cliques into one vertex 

is an extremal multigraph having a special pair. 



Now we show that any extremal Multigraph M of edge-connectivity 5 and order n >4 

having a special pair is obtained via a special splitting from an extremaI muItigraph 

M’ of edge-connectivity _5 and order PI - 2. Indeed Let us consider such a multigraph 

M, where t’,lv is a special pair. By Theorem 3.4, we know that M is obtained from an 

extremal multigraph M’ of edge-connectivity 5 and order H - 2 through a legal splitting 

at a vertex s. which is replaced by three vertices x~..x~,xJ with edges x~x~,x~x~..Y~.Y~ 

of multiplicity 2, 2, and 1, respectively. 

Since I‘ and $1: together are incident to all muhiple edges in M, it is clear that 

one of U, WI must be equal to ~2, ,x? or x1. Fu~he~ore, only one of them is among 

XI ,.X?,XJ* for otherwise, M’ would be an extremal multigraph with one vertex incident to 

all multiple edges. This would contradict Lemma 4.5 in the case ~1’ = n - 2 34. When 

12’ = 2 or II’ .= 3, 13 and 1~) could both be Amoco _Y~,.xY,x:~ only if rz’ = 2, but in this 

particular case it is easy to see that another choice for f:, M‘ in A4 gives the desired resuIt. 

So we can assume without loss of generality that 1: is one of SI_.I-~.X~. Actually since 

1: and vv are adjacent to all multiple edges of M it must be that 1% = XI. Now w and A- 

are clearly incident to all rhe multiple edges in M’. 

To finish the proof we .just remark that if the graph Q(5, 1 ) is used as the starting 

graph of a special splitting, the resulting multigraph cannot have a special pair. Iience 

only P(5) and Q(5,2) can be used as the starting graph of the sequence of special 

splittings leading to M. J 

We will use the following result. 

Proof, Clearly, d&) 2 k for every x f A \ B. Set f = jA 1 Bi. By counting the edges 

that go out of A \ B, and using that A and B are k-cuts, we obtain 

tk &i t(t - I ) + mc(A \ I?,$ i- mc(A \ B, B) 

<rtr- I)+mc~A,~)+mcfB,~)=r(t- 1)+2k. 

It is easy to see that the resulting inequality tz - f(k + 1) i- 2k 20. under the con- 

dition k 2 7. is satisfied only if t ~2 or t 2 k - 1, which concludes the proof of the 

lemma. r:! 

The ~o~st~ct~on in this subsection shows that 

for every odd k 33. Let H be a 3-connected, 3-regular simple graph of order 2N with 

3N - 2 minimum cuts as in Theorem 3.4, We choose N such that it has a maximal 
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Fig. I. 

independent set S containing N - 1 vertices (see Fig. 1 for N = 5). Let F be a 

perfect matching of H. (It is not difficult to check that F exists; actually the graphs 

in Theorem 3.4 are Hamiltonian.) To obtain a k-regular graph G first replace every 

vertex u E V(H) \ S with a k-clique K(u), then partition each such clique into equal 

(or almost equal) subsets (see Fig. 1). 

For k = 3t, we redefine the three edges of H incident to any u E V \ S as follows. 

If x E S then edge ux is replaced with t edges going from x to a t-subset of K(u). If 

x @ S then 11x is replaced with t independent edges between a t-subset of K(u) and a 

t-subset of K(x). To get a k-regular graph each t-subset of a k-clique is used just once. 

For k = 3t f 2, first we replace the edges of F with t-stars and t independent edges 

as in the previous case, then the edges not in F are replaced with (t 5 I)-stars and 

t 31 1 independent edges. 

It is easy to check that the resulting graph G is a k-connected k-regular simple graph 

with n = N - 1 + k(N + 1) = (k + l)N + k - 1 vertices. Furthermore, 

a(G)=(3N-2)+k(N+l)=n+2N-l= I+ ( $+0(L). 

Hence we have a lower bound on the value of at (n, k). Now we give an upper bound. 

Theorem 4.9. If k is odd and k 27 then 

al(n,k)< (1 + &) n. 

Proof. Let G be a simple graph of order n and edge-connectivity k, with a(G) = 

ar(n,k). 
First recall that G has a vertex of degree k. (The proof of this fact is the same as 

in Theorem 4.3, Case 1.) 

Now let uo be a vertex of degree k in G. By Theorem 2.4 we can find an ordering 

~‘1,. . . , II,_, on V - {vg} such that the k-cuts of G form a nested family of intervals in 
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this ordering. Notice that V - { ug} itself is a k-cut. Let T be the rooted tree representing 

the Hasse diagram of the inclusion relation on the nested family formed by all the k- 

cuts and all the {q}‘s (i = 1,. . . , n - 1). More precisely, each {u;} is a leaf of T, the 

root of T is V - {CO}, and the parent of any nonroot node X of T is the smallest k-cut 

in which X is strictly included. 

Let s(T) be the number of internal nodes of T, i.e., nodes that are not leaves. Let 

r be the number of vertices of G of degree at least k + I. So we have 

a(G) = n ~ I - r + s(T). 

We want to find an upper bound on the value of s( T ) - r. 

We will say that a subtree S of T is Jill if, for each node X in S, either all or 

none of the children of X in T are in S. Given a full subtree S of T, a leaf X of S 

is called speciul if it is not a leaf of T. Now we will modify T so as to obtain a tree 

To with n ~ 1 leaves such that: 

(t 1 ) every interior node of I”0 has at least three children; 

(t2) if all children of a node are leaves then it has at least k children; 

(t 3 ) every full subtree of 7’0 with exactly one special leaf has either at most three 

or at least k leaves; 

(t4) s( To)>:s( T) - Y. 

Lemmas 4.1 and 4.8 obviously imply that 7’ satisfies (t2) and (t3). Thus, when 

constructing TO, our goal is to preserve these properties and to obtain (tl ) and (t4). 

Observe that the root V - {CO} of T has at least three children (for otherwise one 

of the two children should be a singleton {z} where z has degree at least k + 1 in 

G. and the other V - { CO,Z} would be a k-cut of G, a contradiction to Lemma 4.1 ). 

If every interior node of T has at least three children then it suffices to take TO = T. 

Now assume that T has an interior node Y with only two children. Since Y is not the 

root, it has a parent U. By Lemma 4.1 at least one child of Y is not a singleton (hence 

a nontrivial k-cut). By Lemma 3.1 one child of Y is not a k-cut, hence is a singleton 

{ >a} where _r has degree at least k + 1. We contract the edge YU, in other words we 

delete Y and append its children to U. Note that U has at least three children after the 

contraction; in fact the nodes with two children in the contracted tree have exactly the 

same two children as in T. We iterate this procedure until the tree has no more vertex 

with only two children. It is not difficult to check that the resulting contracted tree To 

has the four desired properties. (To verify the last one, notice that each contraction 

from a node Y corresponds to one vertex .I’ of degree at least k + I, hence the number 

of contracted edges is at most I^.) 

We now prove that 

4n 
s(To)< - 

k+5 

for all trees TO having n - 1 leaves and satisfying properties (tl )-( t3), with k 3 7 and 

n 3 k + 1. Remark that it is true when 7’0 is a star, i.e., when all leaves are children 

of the root, since then s( TO) = 1. To prove it in general we proceed by induction 
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on n. If n = k + 1, then by (t2) TO must be a star and we are done. So we may now 

assume that n > k + 2 and also that To is not a star. Let xa be an interior node of TO 

farthest from the root; and let xi be the parent of x0. Let q1 be the number of children 

of xi that are not leaves. We will distinguish between several cases. 

First, assume that q1 22. We build a new tree Ti from TO by removing every de- 

scendant of x1 and adding k leaves at x1. Clearly the number n’ - 1 of leaves of TA is 

such that 

IZ’ - 1 <n - 1 - (q, - 1)k 

and the number of interior nodes of ?“A is s’ = s( TO) - 41. It is not difficult to check 

that properties (tl)-(t3) are satisfied by T,‘; moreover .’ < n. So we can apply the 

induction hypothesis on T& which yields s’<4n’/(k + 5), whence 

4n 
s(To)< ~ - 

3qlk - 4k - 5q, 

kf5 k+5 ’ 

Then, since q1 22, 

k>5> 5q’ >0 
‘3ql 

is true, and s( TO) 6 4n/(k + 5) follows easily. 

Second, assume that q1 = 1 and that xi has at least k children. We build a new tree 

TA from TO by removing all children of x0. The number n’ - 1 of leaves of T,’ satisfies 

n’-l<n-k 

and the number of interior nodes is s’ = .s(To) - 1. Again it is not difficult to check 

that T,j satisfies properties (tl)-(t3) and JZ’ < IZ. Applying the induction hypothesis on 

TA yields s’ <4n’/(k + 5) from which s( TO) <4n/(k + 5) is easily derived. 

Now assume that q1 = 1 and x1 has at most k - 1 children. Property (t3) on the full 

subtree formed by XI and its children implies that XI has at most three children. By 

(tl) the node XI has exactly three children, which are x0 and two leaves of TO. Actually 

we can assume that this is the case for the parent of every interior node farthest from 

the root. If xi is the root then it is easy to see that s(T0) = 2 and n - 1 >k + 2, so 

s(T0) <4n/(k + 5). Now let x2 be the parent of XI and q2 be the number of children 

of x2 that are not leaves. 

Assume for now that q2 = 1, i.e., xi is the only nonleaf child of x2. Property (t3) on 

the full subtree formed by x2, its children and the children of xi (where x0 is the unique 

special leaf) implies that x2 has at least k-3 children different from x1. We build a new 

tree Th from TO by removing all the descendants of x2 and adding k leaves at x2. It is not 

difficult to check that Ti satisfies properties (tl)-(t3). Moreover its number of interior 

nodes is s’ = s(To)-2, and its number of leaves is n’- 1 <n-k+l. Applying the induc- 

tion hypothesis on T,’ we get s’ < 4n’/(k + 5), from which s < 4n/(k + 5) follows easily. 

Now assume that q2 32. Let pl be the number of children of x2 whose children are 

all leaves of TO; let p2 = q2 - pl. So p2 is the number of children of x2 that are of 
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the same type as XI. We build a new tree Th from To by removing all the descendants 

of x2 and adding k leaves at x2. It is not difficult to check that TA satisfies properties 

(tl )-(t3). The number of interior nodes of rh is s’ = s(To) -2~2 - ~1, and the number 

of its leaves is n’ - 1 <n - 1 - pl(k + 2) - pl k + k. Applying the induction hypothesis 

on T(i we get .s’ 64n’!(k + 5), from which 

4n k(2m + 3~7, - 4) - s(T”)<--- 2p2 -- 5p, _ 

k+5 k+5 

follows easily. We want to check that the term following the minus sign in the pre- 

ceding inequality is nonnegative or, equivalently, that 

p2(2k - 2)>p,(5 - 3k) + 4k. 

Notice that the left-hand side of this inequality is always nonnegative, and the right- 

hand side is negative whenever pl >2. If p1 = 1 then p2 > 1, since q2 22, and in that 

case the desired inequality is also true. If pI = 0 the desired inequality fails only if 

p2 = 2. In that case we observe that, by (tl ), the node x2 must have a third child 

which is a leaf. Consequently the number of leaves of T(i can be estimated more tightly 

as 

n’- l<n- 1 -2(k+2)+k- 1. 

Now the inequality s’ <4n’/(k + 5) directly becomes s( To) <4n!(k + 5). 1 

We now exhibit graphs which show that the bound obtained in Theorem 4.9 is sharp 

when k = 7 and k = 9. These graphs will be built using a recursive construction that 

we call i-box and that we now explain for k = 7. A O-box is a clique with seven 

vertices, and at each vertex there is an incident edge hanging out of the box. These 

seven edges are divided into two batches of three plus a “solitary” edge. Given two 

vertex-disjoint i-boxes X and Y with seven edges hanging out of each of them, each 

of these two sets of seven edges being divided into two batches of three plus a solitary 

edge, we obtain an (i + 1 )-box Z as follows. 

Add five vertices x1, x2, y1, ~2 and z. Add edges .YIX~, yiy2, ,ulyl. as well as xl:, 

XlZ, _)‘]Z, _V22. 

Connect the first batch of edges hanging out of X (resp. Y) to XI (resp. ~1 ). and 

the second batch to x2 (resp. ~2). The solitary edges hanging out of X and Y are 

connected to z. 

At each of xl ,x2, y2 add one incident edge hanging out of Z; these three new edges 

will form the first batch of Z. At each of yl,y2,xl add one incident edge hanging 

out of Z; these three edges will form the second batch of Z. At z add one new 

incident edge hanging out of Z, which will be the solitary edge of Z. 
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We obtain a simple graph Gi by taking the i-box, adding a 7-clique and connecting 

each vertex of that clique to one edge hanging out of the i-box. By contracting each 

O-box of Gi into one vertex one gets a multigraph which can be obtained from P(7) 

through a sequence of legal 7-splittings, thus Gi is 7-connected. Moreover Gi has 

n, = 3 .2’+2 + 2 vertices and a number of 7-cuts equal to a(Gi) = Al; + 2if2 - 3 (this 

is because, given an (i + I)-box 2 with the above notation, each of X, X U {xI,x2}, 

Y, Y U {yl, ~2) and Z form a 7-cut; moreover every vertex of Gi is of degree 7). So 

o(Gj) = 4ni/3 - o(n;), which is asymptotically equal to the upper bound in Theorem 

4.9 when k = 7. 

For k = 9 the construction of the i-boxes is slightly different. The O-box is a 9- 

clique. The nine edges hanging out of an i-box are divided into two batches of four 

plus one solitary edge. The construction of the (i + I)-box is as above except that we 

also add the edges xty2 and xzyi, and we also add two new edges incident at z and 

hanging out of Z; one of them is included in the first batch and the other one in the 

second batch of Z. We obtain a simple graph G! by taking an i-box for k = 9, adding 

a 9-clique and connecting each vertex of that clique to one edge hanging out of the 

i-box. Again it is not very difficult to check as above that Gi is a 9-connected graph 

with n: = 7.2’+’ + 4 vertices and a number of 9-cuts equal to ni + 2jf2 - 3, achieving 

equality asymptotically in Theorem 4.9 when k = 9. 

For larger values of k we could neither generalize the idea of i-boxes nor find 

any construction that would imply equality in Theorem 4.9. In fact we conjecture 

that there exists a function f(k) such that, for every odd k > 11 we have 01 (n, k) = 

f(k) - n 31 o(n), and with f(k) < 1 + 4/(k + 5); but f(k) seems to be very difficult to 

calculate precisely. 
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