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Abstract

Let o(n, k) be the largest number of k-cuts in a k-edge-connected multigraph with n vertices.
We determine o(n, k) and characterize extremal multigraphs for every # and k. The same problem
is also investigated for graphs with no multiple edges.

1. Introduction

Dinitz et al., in [2], described the structure of minimum cuts of multigraphs: the set
of all k-cuts of a graph with edge-connectivity £ has a one-to-one mapping onto the set
of all minimal cuts of a corresponding “cactus™ (the blocks are single edges and cycles).
As a corollary, they proved that the vertex set of a graph has a cyclic ordering such that
any minimum cut disconnects the graph into components of consecutive vertices. We
use here this basic result to investigate further the structure of graphs with maximum
number of minimum cuts.

A connected graph G is k-(edge)-connected, if any subset of E(G) whose removal
disconnects G contains at least k& edges. If there are exactly k& edges between X and
X = V(G)\X, then we say that (X,/\A’) is a k-cut. The edge-connectivity of G is the
largest £ such that G is k-connected; alternately it is the smallest & such that G has a
k-cut.

Let o(n,k) be the maximum number of k-cuts in a multigraph of edge-connectivity
k with n vertices; and let o(n, k) be the maximum number of k-cuts in a simple graph
of edge-connectivity k& with n vertices. A k-connected graph (resp. k-connected simple
graph) is called extremal if it has o(n, k) (resp. o1(n,k)) k-cuts.

In [2] the inequality a(n,k)<(}) was proved, and the cycle on n vertices with edges
of multiplicity £/2 was exhibited as an example for which this bound is tight when
is even. For £ odd, the k-cuts form a nested family, which yields a linear upper bound
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for o(m, k) in this case. In Section 3, we will show that o(n,k) = |3r/2] — 2, for odd
k > 1 and for every n. Furthermore, we characterize extremal graphs (Theorem 3.4).

Let us note that the preceding results are already implied by the work of Bixby
[1]. Our approach uses similar techniques but more graph theory than Bixby’s. It also
leads to the new results on simple graphs presented in Section 4, where o1(n. k) is
investigated. A tight upper bound is given for any even k>4 (Theorem 4.3). We
determine o(n,k) and characterize extremal graphs for £ = 3 and & = 5 (Theorems
34,44 and 4.7). For odd k > 5, o1(n,k)=(1 +2/(k + 1))n — O(1) follows from a
construction, and we prove o(n,k)<(1+ 4/(k + 5))n (Theorem 4.9).

In the following section, we give a representation for the structure of all minimum

cuts. Let G be a graph with vertex set {vg, v1,..., U,—1}, and let (Xl-,)A(l-), be the
minimum cuts of G such that vy € X;, i = 1,..., p. First we show that the hypergraph
defined on vertices {v|,...,v,—1} with edge set {Xi,...,X,,} is an interval hypergraph,

then we describe the structure of minimum cuts in terms of the overlap graph of
these intervals (Theorem 2.4). This also leads to the above-mentioned corollary of the
“cactus” representation of Dinitz et al. Another representation of the minimum cuts
was proposed recently by Gabow in [4]. For further reference on related algorithmic
results see [5, 7].

2. The structure of minimum cuts

For a fixed integer £ > 0, let G be a graph with edge-connectivity k. Since we are
interested in regarding the k-cuts as vertex subsets rather than edge subsets, we will
frequently fix a vertex vy of G and, with a slight abuse of terminology, say that X C V
is a k-cut of G when (X,)A( ) is a k-cut with vy € X. In this context, a k-cut X will be
called rrivial if | X| =1, i.e., X consists of one vertex of degree k. A nontrivial k-cut
X will be called minimal if every k-cut ¥ with ¥ C X is trivial.

We denote by mg(xy) the multiplicity of an edge xy of G. For disjoint subsets
A, BCV(G), mg(A4,B) is the total number of edges xy with x € 4 and y € B. We
simply write m(A4,B) omitting index G if no ambiguity occurs. If two k-cuts X,Y
have nonempty intersection, then either they are nested (i.e., X CY or ¥ CX) or they
overlap (ie, XNY, XNYand XN7Y are nonempty ).

It is known (and easy to check) that two k-cuts in a k-connected graph can overlap
only for k£ even. More precisely:

Propositlon 2.1. Let G be a k-connected graph and X,Y be two overlapping k-cuts.
Then m(XﬂYXﬁY)~m(XﬁYXﬂY)—m(XﬁYXﬂY) m(XNY,XNY)=k/2
Consequently X UY, XNY, XN Y, XNY are k- cuts, moreover,

mXNY,XNY)=m(XNY,XNY)=0. (1)

Proposition 2.1 is easily proved by counting the number of edges between any two
of the above-mentioned four sets. Details are ommited.
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The following lemma will be useful.

Lemma 2.2. If A, B and C are distinct k-cuts, then one of the sets
Ao=ANBNC.By=ANBNCand Co=ANBNC

is emply.

Proof. Assume on the contrary that Ay, By and Cy are nonempty. Then 4, B and C
pairwise overlap, and (1) holds for every X,V € {4,B,C}, X # Y. Consequently,
m(X,Y) =0, for every X,Y € {Ao,Bo,Co. Do}, X # Y. where Dy = AN BN C. Since
there are at most 3% distinct edges defined by the £-cuts 4, B and C, one of the cuts
Ag. By, Cg and 50 has at most 34/4 < k outgoing edges, a contradiction. [

Let £ be the family of all k-cuts of G and V = {vy,..., 041 }. Then H = (V. &) is
called the cur-hvpergraph of G. Using the remark at the beginning of this section, we
can easily conclude that M is laminar, i.e., it satisfies

AUBe & forall 4,B ¢ & such that ANB £ . {2
Furthermore, H satisfies the strong Helly property:
(WEe & |[En{x,yz}22} N {x, vz} £0  for everyx, v,z € V. (3)

To see (3), assume that x, y € 4 € £, z € A and xzeBeé& ve E7 for some
A.B € £ Then by Lemma 2.2, y,z € C implies x € C, for every C € &, hence
xe(M{E €& [En{xyz} =2} follows.

A hypergraph is called an interval hypergraph if there exists a total ordering on
its vertex set for which every hyperedge of the hypergraph is an interval. Interval
hypergraphs were studied in [3, 6, 8]. In particular it was shown that a hypergraph
is an interval hypergraph if and only if it is laminar and satisfies the strong Helly
property. Thus we will assume that L = (1,...,v,_ ) 1s a linear order of the vertices
such that every k-cut is a subset of consecutive vertices, that is, every minimum cut
is an interval. Remark that by adding vy between v, and ¢y we can obtain the same
cyclic ordering as in [2].

Let {Xi,...,X,} be a family of intervals of L. Two vertices u. v € | J/_ | X; are said to
be equivalent (with respect to the family) if for all / (1 <i<<p), v € X; if and only if
v € X;. The equivalence classes are called the atoms of the family. The overlap graph
of {Xy,....X,} is a graph defined on the intervals as vertices, X;X; being an edge if
and only if X; and X; overlap.

As it was discussed in [2], the overlap structure contains the basic information about
minimum cuts. This is expressed in the next lemma.

Lemma 2.3. Let F be any family of k-cuts and let {A\,....4,;} be the set of its
atoms indexed according to the order L. If F has connected overlup graph. then
ApUAdppy U= UA, is a k-cut for every p,g with 1 < p<g<t
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Proof. We omit details of the easy induction on |F| which uses the fact mentioned
above that X UY, XNV, X\7Y, and Y \ X are k-cuts, for every X, Y € £. [J

Let H be the overlap graph of £. If H has no edges, then £ is called a nested
family, that is, for any pair X,Y € £, either X N'Y = ) or one of X and Y contains
the other. Notice that this is the case when & is odd.

Let H;, i = 1,...,t, be the connected components of the overlap graph H with
V(H)) = &. Set 4;p = J{X € &}, and let 4;,...,4;, be the atoms of & indexed
according to the order L. If & = {4,¢}, then we say that H; is isolated or trivial. If H;
is nontrivial, then by Lemma 2.3, H; consists of all intervals of the form 4; ,UA4; 4.1 U
—-Udig, 1< p < g<t, different from 4;9. We refer to this fact, that the intervals of
H; form a full interval system on their atoms. It is also clear, that the intervals of the
set {4;;: 1<i<t, 0<j<¢y} are pairwise nonoverlapping, thus form a nested family.
We summarize these results as follows.

Theorem 2.4. Let G be a k-edge connected graph of order n, and let vy be an ar-
bitrary vertex of G. Then V(G)Y\{vo} has an ordering (v\,...,v,_1) such that every
k-cut is an interval on the set {v\,...,v,_1}. Moreover, if H is the overlap graph of
the k-cuts of G, then its trivial connected components define a nested family, and the
k-cuts in each nontrivial connected component form a full interval system on their
atoms. For k odd, every connected component of H is trivial

In the remaining sections we use the following observation pertaining to the place-
ment of edges of G between atoms. Let {4;,...,4,} (¢23) be the consecutive atoms
defined by the k-cuts represented by the vertices of a nontrivial connected component
of H. Then m(A4;,A;11) = k/2, for every 1<i < ¢. This follows from Proposition 2.1
and from the fact that every interior atom 4; (1 < j < ¢) is the intersection of two
overlapping cuts belonging to A, namely, X =4;  UA4; and ¥ =4;UA4;,,.

Note that, based on Theorem 2.4, one can easily get the result in [2] for representing
minimum cuts by a cactus-like structure. On the other hand, the representation of k-cuts
in [2] easily implies Theorem 2.4.

3. Extremal multigraphs
3.1. Multigraphs with odd edge-connectivity

In this subsection we consider graphs of edge-connectivity £, with & odd. Note that
o(n,1) = n — 1, and the extremal graphs are the trees. So we may assume £ > 1. We
use the interval representation and the notations introduced in Section 2. In particular,
£ denotes the family of intervals corresponding to the minimum cuts of graph G. By
Theorem 2.4, the intervals of £ form a nested family, for £ odd. In this case there is
a further restriction on &.



J. Lehel et al | Discrete Applied Mathematics 65 (1996) 387407 391

Lemma 3.1. Let A,4,,...,A, be k-cuts with A = |J_ | 4; and A,NA4; =0, 1<i < j<gq.
Then, for k odd, g is also an odd integer.

Proof. Obviously,

g ~ ~
gk = > m(A;, 4y =m(A,A)+2 > m(Ap AN =k+2 > m(4,4;).
=1

I<i<jsy l<i<j<yg

Hence gk — k = k(¢ — 1) is even, which implies that ¢ must be odd. T

From this observation one can easily conclude that the maximum number of intervals
in the nested family £ is less than 3n/2. To obtain a(n, k) and the structure of extremal
graphs, we need a more accurate count and some definitions.

For F C E(G), the removal of F results in a partial graph of G we denote by G — £,
if x1v is a multiple edge then G — {xv} means the removal of every edge between x and
v. The contraction of a set A C V(G) is the operation which consists in identifying the
vertices of 4. The graph which results from this operation is denoted by G/4. Notice
that contraction does not reduce the edge-connectivity of a graph. Denote by ¢(G) the
number of minimum cuts of a graph G.

Proposition 3.2. Let k=3 be odd. If G ix a graph of edge-connectivity k and of order
n, then

o(G)< [%J -2 (4)

Moreover, if equality holds in (4) and nz4, then G has a k-cut (A.A4) such that
cither A or A consists of exactly three vertices of degree k.

Proof. The inequality is true for » = 2 and » = 3. Now assume that n2>4 and that
(4) holds for graphs of order less than ». If G has trivial cuts only, then (4} follows
with strict inequality, for n>4, thus we may assume that & has nontrivial k-cuts. Let
A € £ be a minimal nontrivial k-cut. Let G’ = G/4. Then G’ is k-connected and has
i = n — |A| + 1 vertices. By the minimality of 4, G has at most |4\ Q| + a((")
minimum cuts, where Q is the set of all vertices of 4 with degree larger than k. Since
n' < n, the induction hypothesis entails that o(G’)<[3n'/2] — 2. Here we distinguish
between two possibilities.

For |4 =3, we obtain |4\ Q| + o(G")<|A4| + [3(n — |4| + 1)/2] = 2<{3n/2] - 2.
with equality only if |[4] =3 and Q = (.

For |4| = 2. Q is nonempty by Lemma 3.1. Thus in this case |4\ Q| + a(G') <1 +
3(n — 1)/2] —2<|3n/2] — 2 follows. Notice that the inequality is strict for 7 even.
We obtain easily, as a consequence, that if equality holds in (4), then every vertex has
degree k, for n even; and every vertex but one has degree &, for n odd.

To finish the proof, we have to verify that in the second case G has a minimal non-
trivial cut 4 with |4] = 3. Indeed, if we choose vy in the interval representation to be
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the only vertex of G with degree more than £, then the interval representation excludes
vy from the cuts, hence |4| # 2. O

Next we exhibit k-connected graphs with |3#n/2] —2 k-cuts. We shall obtain extremal
graphs from smaller ones by “splitting” vertices of degree k& into three and including
some edges between the new vertices.

Let G be a k-connected graph. We denote by S(G) any graph obtained from G as
follows. Let v be a vertex of G of degree k. Let p;, p2, p; be integers such that
p1 + p2 + p3 = k. Partition the edges of G incident to v into three sets P, Pa, P3
of size p1, pa2, ps, respectively. Remove v and add three new vertices v, v, v3. For
each edge wv in P; add an edge wv;. Add edges between vy, vz, vs with multiplicity
m(v1,v2) = p3, m(vy,v3) = py and m(v3,v)) = po. The operation of deriving S(G)
from G will be called k-splitting of G at v. We will say that a k-splitting is legal if
p; < k/2 holds for i = 1,2,3. It is easy to check that if a k-splitting is not legal then
the resulting graph is not k-connected.

Proposition 3.3. Ler G be a graph of order n and edge-connectivity k. Consider a
legal splitting of G at a vertex v of degree k. Then the resulting graph S(G) has
edge-connectivity k, order n + 2, and o(S(G)) = o(G) + 3.

Proof. Consider any cut (A,AA) of S(G).

First suppose that the cut (A,/f ) does not separate vy, v, v3 from each other. We may
assume without loss of generality that these three vertices are in A. Now A C V(G) and
(A, V(G)\A) is a cut of G. There is an evident one-to-one correspondence between the
edges of (4, A) in S(G) and the edges of (4, V(G)\4) in G. It follows that m(4, A)>k
moreover every k-cut of G corresponds to a k-cut of S(G).

Second suppose that the cut (4, AA) does separate the v;’s from each other. Without
loss of generahty, v € 4 and vy,15 € A. Notice that v10 and vv3 form p3 + p» edges
between 4 and 4. Let pi be the number of edges between v, and A\ {vy,v3}, and p
be the number of edges between 4 \ {v;} and A. Here we have

m(4,4) = ps + ps + P + p.

If A = {v,} then clearly m(4,4) = k (since each v; is of degree k by the construction
of S(G)). Now assume that 4’ = A — {v,} is not empty. Hence (4’, V(G)\4) is a cut
of G and

= pi+p=mA,V(G\4) =k
It follows that

pzk—pi+pizp+ ps,
because £k = p1 + p, + p3, whence

m(4,4)=2(p2 + p3).
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The hAypothesis that py < k/2 and py + p2 + p3 = &k imply p» + p3 > k/2, so
m(A.A4) > k. Consequently, in this second case (4,4) is not a k-cut unless 4 = {r;}
fori=1,2,3.

For k =3, the smallest extremal graphs of edge-connectivity & are: the graph with two
vertices and k parallel edges, which we will denote by P(k); and any graph with three
vertices, one edge of multiplicity p < &/2 and two edges of multiplicity & — p. which
will be denoted by Q(k, p). Proposition 3.3 shows that one obtains extremal graphs
for every n by starting with either P(k) or Q(k, p), p < k/2, and by performing a
sequence of legal splittings. Hence a(n, k) = |3n/2| — 2 follows for every n > | and
odd & =3.

Theorem 3.4, For cvery n > | and odd k=3, a(n k) = [3n/2] — 2. Moreover, a
graph of order n=4 and edge-connectivity k is extremal if and only if it is obtained
from either P(kY or Q(k, p), p < k/2, by a sequence of legal splittings.

Proof. Let G be an extremal graph of edge-connectivity & and order n. Then, by
Proposition 3.2, G has a k-cut 4 = {vi. 02,03}, with dg(e;) = & (j = 1,2.3). Let
P = m(ty), pp = m(vzvy) and py = m(rvy). Since m(A,E) = k, we obtain that
p1+ pa+ p3 = k. If one of pi, p2, p3 was greater than k/2. say p; > k/2. then
{vz2,03} would be a cut of size 2p> + 2p3; = 2k — 2py < k, which is not possible.
Thus 0 < pi, p2, p3 < k/2, showing that G = S(G/4). Repeating this argument for
G/A, and so on, after |n/2] — 1 steps we get the graph P(k) or Q(k, p) tor some
p<k/2. 1

3.2. Multigraphs with even edge-connectivity

For k even, a(n,k) = (5) was proved in [2]. For the sake of completeness we
show how this result follows from the interval representation of minimum cuts given
in Section 2. Theorem 2.4 shows that the number of intervals on # — 1 points of the
line, i.e., (";1 )+ n—1=(}) is an upper bound for the number of minimum cuts of
a graph of order n. Using the remark after Theorem 2.4, we conclude that extremal
graphs having (5) minimum cuts are unique.

Proposition 3.5. For n>3 and k even, we have o(n, k) = (1), and the unique extremal
graph is the n-cycle with kf2 parallel edges between any two consecutive vertices.
4. Extremal simple graphs

In this section simple graphs with large number of minimum cuts are investigated.

From now on we will assume that £ >3. We are using the representation of the k-cuts
of a k-connected graph G by intervals of the set V' = {¢1,...,v,-1} as described in
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Section 2. Our goal is to improve on the general upper bounds of Propositions 3.2 and
3.5.

To see that the number of nontrivial cuts decreases when an upper bound is imposed
on the edge multiplicity, we need the following observation.

Lemma 4.1. If G is a k-connected graph with edge multiplicity at most m and A is
a nontrivial k-cut, then |A| =k/m.

Proof. Since G is k-connected, dg(x)=k for every x € 4. Thus
HA< T | S moley)+ X moxy) | =ma(A4,A)+2 Y mglxy).  (5)
XEA4 \ y€A yE/A\ {x,y} C4

Since the multiplicity of an edge of G is at most m,

A
>, mg(xy)< <k2|)m_
{x,y} C4

Using this inequality together with mg(4,4) = k, (5) implies |[4|(J4| — Dym + k = k|A|.
Hence |4| =k/m which concludes the proof of the lemma. [

4.1. Simple graphs with even edge-connectivity

Assume that k>4 and £ is even. First we determine o(n, k) for small values of n.

Proposition 4.2. Assume k is even and at least 4. Then

n if k+1<n<2k—1,
n+1 if n=2k

n+2 if n=2k+1,
n+4 if n=2k+2.

ai(n,k) =

Proof. In a k-connected graph each vertex has degree at least &, thus n=k + 1. By
Lemma 4.1, the smallest cardinality of a nontrivial k-cut is k. Hence a graph of order
n < 2k has only trivial cuts, implying o,(n,k)<n for k + 1 <n<2k — 1. Since k is
even, obviously there exists a k-regular graph G of order n for every n. Moreover,
for n<2k, G is k-connected. To see this, assume on the contrary that mG(A,Z) < k,
for some 4 C V(G) with |4|<k. Then clearly, d(v) < k follows for some v € 4,
contradicting the k-regularity of G. Hence a((n,k) = n, for k + 1<n<2k — 1, and
every k-regular graph is extremal.

Observe that if G has two nontrivial overlapping cuts 4 and B, then A N B # {,
ANB#0,AnB # 0 and ANB £ 0 imply n>=2k + 2. Hence a1(n,k)<n + 1 and
gi(n,k)<n+ 2 follows for n = 2k and n = 2k + 1, respectively. In the first case, the
graph Go consisting of two disjoint copies of a k-clique with a perfect matching M
between them shows that the bound is tight. In the second case, we obtain an extremal
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graph G, from G, by subdividing k/2 edges of M and identifying all the subdividing
vertices into one. (Note that the obtained extremal graphs are unique in both cases.)
For n = 2k + 2, let G, be the graph obtained from G, by subdividing the remaining
k/2 edges of M and by identifying the new subdividing vertices into one. Clearly, G
has n + 4 k-cuts. If G is a graph without overlapping cuts, then o(G)<n + 3. Hence
ai(nk)=n+4, for n =2k + 2, concluding the proof of the proposition. [

For n = r(k + 1) with r=3, let F,x be the simple graph obtained as follows. We
start from r vertices ¢g...,c,—|. For each { we add k new vertices forming a k-clique
Qi; we link /2 of these new vertices to ¢; and the other &/2 to ¢; ;| (mod ). Clearly
Fax is a k-regular, k-connected simple graph. To count the k-cuts of £, ; consider
the sequence Qy,c1,01,¢2,...,¢—1,0r—; and observe that every nonempty interval in
this sequence of 2+ — 1 elements forms a k-cut. In addition each vertex in any Q, is
a trivial k-cut, so

2r 2 k—1
o(Fpi) = <2> +rk = " 1)2r12+1"+1n.

As we will see, the number of k-cuts of F,; reaches the upper bound obtained for
oy(n k).

Theorem 4.3. Consider an even k=4 and n=2k + 2. Then
2 , k=1

T 1)zn + A 1”’

and the bound is tight if k + 1 divides n.

ai(n k)< (6)

Proof. Let G be an extremal graph of edge-connectivity & and of order n. We say that
G is decomposable if there exists a nontrivial nonminimal k-cut A4 such that there is
no k-cut which overlaps 4 (i.e., for every k-cut C one of ACC, CCAand ANC =4
must hold).

Case 1: G is not decomposable. Consider the interval representation of the k-cuts
of G choosing a vertex of degree £ in the role of vy. To insure the existence of such
a vertex, assume on the contrary that all vertices of G have degree at least k + 1. Let
C be a nontrivial minimal k-cut. It is easy to check that C contains at least one edge
e (for otherwise there would be too many edges going out of C) and that G — ¢ is k-
connected (for otherwise a nontrivial k-cut smaller than C would be found); moreover,
every k-cut of G is a k-cut of G —e. We can repeat this argument until we obtain a
k-connected subgraph of G with one vertex of degree 4, contradicting the extremality
of G.

The choice of vy implies that {v(,....v,—1} is a k-cut. Hence every vertex is in a
(minimal) £-cut.
Let 4,,...,4,, be the minimal nontrivial k-cuts of G and let T be the set of trivial

k-cuts not in |JI,4;. By Lemma 4.1, |4,| >k for every 1<i<m. By the remark after
Theorem 2.4, one must have t<m — 1. Indeed, since G is simple, no consecutive
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vertices v; and v, (1<j<n —2) may belong to 7, and moreover, the sequence of
atoms does start and end with minimal cuts belonging to |JI_,4;.

Every vertex different from vg either has degree £ or is in a minimal nontrivial cut.
Hence 4,,...,A,, T form a partition of ¥ — v, and |T| +Z;":1 |[4;] = n— 1. Moreover,
since G is not decomposable, the nonminimal cuts form a full family of intervals on
(Ur,4) U T. Thus 6(G) = (‘") + m + m, where ¢ = |T| and n; is the number of
vertices of degree k different from vo. Hence o(G)<("}")+m+n— 1.

So it suffices to find an upper bound on ("}")+m-+n—1 corresponding to a collection
of pairwise disjoint subsets 4|,...,4,, T of an n—1 set, subject to n—1 = z+zl'.":1 |41

with |T| =t < m and |4;| =k (regardless of graph realizability constraints). So let us
consider an arbitrary such collection.

If ¥ = m — 1, then trivially m <n/(k + 1) (with equality only if |4;] = & for every
1<ig<m). Thus t+m=2m—1<2n/(k+1)— 1, and

t+m e < 2n 1 n 1)+ n n |
n—1<| ——— —_ = — 48—
2 " k+1 k+1 K+ 1

2 k-l
S+t Tk’

which proves (6).

Now suppose ¢ < m — 1. If |4;|>k + 1 for some i, then ("}") increases if a vertex
is removed from A4; and is added to 7, while m does not change. We can iterate this
procedure; if ¢ reaches the value m — 1, we can apply the preceding case. So we may
assume that each |4;| is equal to & and that r < m — L.

Write 6 =m — . So 622 and n — 1 =t + mk =m(k + 1) — 6. Then we get

k—1 2(6 — 1)
AL ] S
k—ln m —+ 1 +n,
2 2 o2 Am(6-1) 26 — 1)
R = BN =S o M
Furthermore, we have
t N L)
(_;m>+m+n—1:2m2—2mb+ ;_()—Fn—l. (8)

Now, using (7) and (8), inequality (6) will hold if the following quantity is positive:

2, k-1 5 )
(k+1)2n —|—k+1n—(2m —2md + 3 +n—1
4m(d — 1) 20172 200-1)
={2m? - —— L2
(m k+1 "ty T ket 7

32 +6
——(2m2~2m5+ ; —I—n—l)

20-Dk—1) G+ Dk+1)—4 <2(5—1)2 | 2)

k+1 2k + 1) (k+1)2 k1
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However, for 622 and & 24, the inequality 1 4 (2k — 2)/(3k — 5) < J holds true,
which implies
b+ k+1)—4 - 20— 1k - 1)
20+ 1) k+1 '
Using this inequality together with r = m — 3 20 we obtain that

@+ D+ D=4 2A5-D)k—1) S+ Dk+1)—4

Ostm=0) =0 7TD e Tk
and since

200 -1y 2

k+ 1) k1

is positive, (6) follows (with strict inequality).

Cuse 2: G is decomposable. We use induction on n. By Proposition 4.2, the theorem
is true for n = 2k + 2. Assume that n > 2k + 2, and (6) holds for ' < n. Let 4 be
a k-cut with k + 1<|4|<n — k such that for every cut C either C C A4 or C C 4. We
replace 4 by a k-clique and let each of the & edges going into 4 go to a distinct vertex
of the clique. The resuiting graph G’ is simple, k-connected, and has n’ = n ~ [4]| + £
vertices. Let ny = |4]. Set

g = |{C|CCA4,C is a k-cut of G}|.

Then clearly, o(G) = 6y + 0(G’) — k. Since n’ < n, it follows by induction that
2 n k—1,

(G Y~k < “+ —k
a(G) x02" TErl”
= (71—1—)5(712 + 0 — 2nn — 2mk + 2nk + k%)
k—1
- k) —k
e m TR
2 o k=l 2 kel
== n —
(k+ 1) K+ 1 k02 kw1t
Stk k) — 2
- (nn —~nk) - ———.
(g ppmnTm G+ 1)
Using a similar counting argument as in Case 1 (details are omitted) we obtain
(2 2 n o+ k- }n
RNV
From the upper bounds above we have
2 k—1 2 k—1
2 —a(G) = 2 - G —k
(k+1)2n +k+1n a(() (}(,+])2n +k+1n (g +0(G)— k)
4
> — : k — nk
Gt gt

2k

TET TR 9)
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To verify (6) we show that the last line of (9) is nonnegative or equivalently,
f(n) = nt —nm(n+k)+ nk — kj2<0.

Since f(k+1) < 0, and the minimum of f(x) is negative at x = n + k/2, the inequality
f(ny) < 0 follows from k+1<m<n—Fk. [0

4.2. Simple graphs with edge-connectivity 3 or 5

For k = 3, extremal multigraphs were characterized in Theorem 3.4. These graphs
obviously contain no multiple edges when #26 or n = 4, and so ¢,(n,3) = [3n/2| -2.
It is easy to verify that ¢,(5,3) = 4.

We now examine the case k = 5.

Theorem 4.4.

6 for n=6 and 7,
g(n,5)=1¢ 8 for n =8 and 9,
[3n/2] —4 for n=10.

Proof. Note that in a k-connected graph each vertex has degree at least &, thus any
simple S-connected graph has at least six vertices. By Lemma 4.1, the smallest car-
dinality of a nontrivial S-cut is five. Hence a graph of order n < 10 can have only
trivial 5-cuts, which implies o,(#,5)<n, for n = 6 and 8, and o1(n,5)<n — 1, for
n=7and n=9.

We exhibit graphs of edge-connectivity 5 showing that these bounds are tight. For
n = 6, the complete graph K¢ on six vertices satisfies 6(Kgq) = 6. For n = 7, the graph
G5 obtained from K7 by removing three independent edges satisfies o(G7) = 6. For
n=_8 or n =29, let Gy be the complement of the chordless cycle on eight vertices and
let Gy be the graph obtained from Gg by removing four independent edges and adding
a ninth vertex adjacent to all the other vertices. Then o(Gg) = a(Gy) = 8.

To compute o,(n,5), for n=10, we will use the following lemma.

Lemma 4.5. A multigraph G of edge-connectivity 5 and order n =4 with the property
that o(G) = |3n/2| — 2 contains two nonincident edges of multiplicity at least two.

Proof. We will proceed by induction on #. It is easy to check that the lemma holds
true for n =4 or n = 5. Now we assume that the lemma is proved for all graphs with
at most » — 1 vertices and consider a graph G with n vertices satisfying the hypothesis
of the lemma. By Theorem 3.4, G is built via a legal splitting from a 5-connected
multigraph H of order n — 2 such that o(H) = |3(n — 2)/2] — 2. By the induction
hypothesis, H must contain two nonincident edges, say ab and cd, of multiplicity at
least two. If the splitting leading to G is not at any of the vertices a,b,c,d then ab
and cd are nonincident multiple edges in G. So let us assume that « is used in the
splitting, i.e., a is replaced by three vertices ay, as,a; with two edges between a; and
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as, ™o edges between a; and a3, and one edge between a4, and a3. Now a,a; and cd
are the desired pair of edges proving the lemma for G. This completes the proof of
the lemma. T[]

Proof of Theorem 4.4 (Conclusion). For every n> 10, we exhibit 5-connected simple
graphs of order n with a number of 5-cuts equal to |3n/2] — 4. For n = 10 + 2p,

let {vy,..., vs} and {ve,...,v10} induce two disjoint 5-cliques in G,, and add the edge
vite. If p =0 (i.e,, n = 10), add the edges vav7, v3vg, tavg, tsvyp. If p > 0 create two
vertices a;. b; for each i = 1,..., p; add the edges v2a),v3a,, v3by,vshb) and vra,, vsa,,,

tobp viobp. If p = 1 add the edge a1b). If p > |, add edges so that cach subset
{aibi,aiy. by} (i=1,...,p—1) forms a 4-clique. Forn = 10+2p+1 and p > 0,
start from the graph Gyg42,, subdivide each of the three edges vray.v4by, v16 with one
vertex and identify these three new vertices. If p = 0 (n = 11), do the same operation
on the three edges vvg, tav7, v308 of Gyg. It is not difficult to check that G, is a simple
graph of edge-connectivity 5 and that 6(G,) = [3n/2] — 4 for all n>10.

Let G be a simple graph of edge-connectivity 5 and of order n>=10. We will show
that

. 3n
o(G)< [TJ — 4. (10)

If G contains only 5-cuts of cardinality 1 or n — I then (10) follows with strict in-
equality. So we may assume that G has a nontrivial 5-cut and choose a minimal such
cut 4. By Lemma 4.1, we have 5<|4|<n — 5. Let G' = G/4 be the graph obtained
from G by contracting 4 into one vertex. It is clear that G’ is a S-connected graph
(possibly with multiple edges) of order ' = n—|4|+ 1> 6. By the minimality of 4, G
has at most [4] — g + o(G’) 5-cuts, where ¢ is the number of vertices of 4 of degree
at least six. We can remark that G’ has no nonincident edges of multiplicity at least
two, and so by the preceding lemma we have 6(G’)< |3n//2] — 3. Thus

o(G)=|d| — g+ a(G)Y<|A| - g + F('L\;;HQJ -3

Let R denote the right-hand side of the above inequality. For |4] = 5 it is clear that
R = [3n/2] — 4 — q. If |4]| =6, then we get R<|A| — g+ 3(n— 4|+ 1)/2 -3 =
3n/2 — |A4]/2 — 3/2 — q, whence R<|3n/2| — 4 — g. In either case (10) follows. This
concludes the proof of the theorem. [

The proof of Theorem 4.4 actually implies that, in an extremal simple graph G for
k = 5, any minimal nontrivial cut 4 induces a 5-clique of G. Indeed, for |4| = 5 it
is clear that 4 must be a 5-clique; if |[4] = 6 then ¢ # 0 (see Lemma 3.1) and the
inequality (10) is strict; and the same holds for |4]|>7. Furthermore, the graph G’
obtained by contracting a 5-clique of G satisfies a(G’) = |3n'/2] — 3, so it is extremal
among multigraphs of edge-connectivity 5 having a vertex incident to all the multiple
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edges. So there exist such graphs for any order greater than or equal to six. We will
show how these extremal graphs are obtained.

Proposition 4.6. Let G’ be a multigraph of edge-connectivity 5 and order n' 26
having a vertex incident to all the edges of multiplicity at least two. If ¢(G') =
|3n//2| — 3, then G' contains a 5-clique. Moreover, the graph G" obtained from G'
by coniracting this clique into one vertex is an extremal multigraph for k =5 (i.e.,
a(G"y = [3n"/2] — 2, where 0" =1’ — 4 is the order of G").

Proof. For the interval representation of the 5-cuts of G’ we choose vy as the vertex
incident to all edges of multiplicity at least two in G'. We consider in G’ a minimal
nontrivial cut 4. (If G’ had no such cut then we would have o(G’')<n’ — 1, which
would contradict the assumption.) Since A4 does not contain vy, by Lemma 4.1, we
have |4]25. Let G” = G'/A. Clearly

[3n/2] =3 = a(G)<|4] - ¢ + a(G"),

where g is the number of vertices of 4 of degree at least six. Since G” is a S-connected
multigraph, the right-hand side R of the inequality above is smaller than or equal to
[A| — g+ |3 — 4]+ 1)/2] — 2.

If |4] = 5, then

3(n —4) 3n’
Rg A - - A - - Y,
{ 3 J +3—9¢ { > 3—gqg

furthermore, 4 is a 5-clique and o(G”) = |3n”/2] — 2. For |A| =6, it is easy to check
that R < [3n/2) —3. O

Let us call special pair any two vertices of degree 5 such that every edge of mul-
tiplicity at least two is incident to at least one of them. Let v,w be a special pair of
G. We call special splitting on G any splitting on v into vertices v;,v;,0; such that
m(vyvy) = m(viv3) = 2, m(vavs) = 1, and such that v;,w is a special pair in the
resulting graph.

Theorem 4.7. Let G be a simple graph of edge-connectivity 5 and order n=10. If
G is extremal it is obtained from an extremal multigraph H of edge-connectivity 5
having a special pair by replacing each vertex of the pair by a 5-clique. Moreover H
itself is obtained from either P(5) or O(5,2) through a sequence of special splittings.

Proof. Note that a graph obtained from a 5-connected graph by replacing a vertex of
degree 5 with a S-clique is also S-connected.

Let G be a graph satisfying the hypothesis of the theorem. From the proof of The-
orem 4.4 and Proposition 4.6 it follows directly that G contains two disjoint 5-cliques
and that the multigraph H obtained by contracting each of these cliques into one vertex
is an extremal multigraph having a special pair.
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Now we show that any extremal multigraph M of edge-connectivity 5 and order n >4
having a special pair is obtained via a special splitting from an extremal multigraph
M’ of edge-connectivity 5 and order n — 2. Indeed let us consider such a multigraph
M, where v,w is a special pair. By Theorem 3.4, we know that M is obtained from an
extremal multigraph M’ of edge-connectivity 5 and order n —2 through a legal splitting
at a vertex x, which is replaced by three vertices x;.x2,x; with edges xyxy,xjx3.x0x3
of multiplicity 2, 2, and 1, respectively.

Since ¢ and w together are incident to all multiple edges in M, it is clear that
one of r,w must be equal to x;, x or x;. Furthermore, only one of them is among
X1.xa,x3, for otherwise, M’ would be an extremal multigraph with one vertex incident to
all multiple edges. This would contradict Lemma 4.5 in the case #/ = n —2>=4. When
W =2 orn =3, v and w could both be among x),x2,x3 only if n = 2, but in this
particular case it is easy to see that another choice for &, w in A gives the desired resutt,

So we can assume without loss of generality that v is one of x,x3,x3. Actually since
v and w are adjacent to all multiple edges of M it must be that v = x;. Now w and x
are clearly incident to all the multiple edges in M.

To finish the proof we just remark that if the graph O(5,1) is used as the starting
graph of a special splitting, the resulting multigraph cannot have a special pair. Hence
only P(5) and Q(5,2) can be used as the starting graph of the sequence of special
splittings leading to M.

4.3. Bounds on o1(n, k) for odd k=7
We will use the following result.

Lemma 4.8. Let G be a simple graph of edge-connectivity k=7 (k odd or even), and
let A and B he distinet k-cuts of G with B C A. Then either |A\B|<2 or |[A\B| 2k~ 1.

Proof. Clearly, dg(x) =k for every x € A\ B. Set t = |4\ B|. By counting the edges
that go out of 4\ B, and using that 4 and B are k-cuts, we obtain

th <t(t — 1)+ mg(A\ B,A)+ mg(4\ B,B)
SHt— 1)+ m(AA) + mg(B.BY = H{t — 1)+ 2k.

It is easy to sce that the resulting inequality /> — #(k + 1) + 2k >0, under the con-
dition £ 227, is satisfied only if <2 or 124k — 1, which concludes the proof of the
lemma. [

The construction in this subsection shows that

5
oy{nm k)= (1 +k+l)n—0(l),

for every odd &£ >3. Let H be a 3-connected, 3-regular simple graph of order 2V with
3N — 2 minimum cuts as in Theorem 3.4, We choose H such that it has a maximal
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AN

Fig. 1.

independent set S containing N — 1 vertices (see Fig. 1 for N = 5). Let F be a
perfect matching of H. (It is not difficult to check that F exists; actually the graphs
in Theorem 3.4 are Hamiltonian.) To obtain a k-regular graph G first replace every
vertex u € V(H)\ § with a k-clique K(u), then partition each such clique into equal
(or almost equal) subsets (see Fig. 1).

For k = 3¢, we redefine the three edges of H incident to any u € ¥V \ S as follows.
If x € S then edge ux is replaced with ¢ edges going from x to a z-subset of K(u). If
x & S then ux is replaced with ¢ independent edges between a ¢-subset of K(u«) and a
t-subset of K(x). To get a k-regular graph each z-subset of a k-clique is used just once.

For k = 3t 2, first we replace the edges of F with #-stars and ¢ independent edges
as in the previous case, then the edges not in F are replaced with (¢ + 1)-stars and
¢t = 1 independent edges.

It is easy to check that the resulting graph G is a k-connected k-regular simple graph
withn =N —-1+k&N+1)=(k+1)N +k — 1 vertices. Furthermore,

0(G)=@BN—2)+k(N+1)=n+2N—1= (l+k—i—1—>n—0(1).

Hence we have a lower bound on the value of g1(n, k). Now we give an upper bound.

Theorem 4.9. If &k is odd and k=7 then

4
<1+ —)n
o1(n,k) < —|—k+5)n

Proof. Let G be a simple graph of order » and edge-connectivity k4, with o(G) =
a1(n, k).

First recall that G has a vertex of degree k. (The proof of this fact is the same as
in Theorem 4.3, Case 1.)

Now let vy be a vertex of degree & in G. By Theorem 2.4 we can find an ordering
U1,...,0y,—1 on ¥ —{vp} such that the k-cuts of G form a nested family of intervals in
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this ordering. Notice that ¥ —{vo} itself is a k-cut. Let T be the rooted tree representing
the Hasse diagram of the inclusion relation on the nested family formed by all the &-
cuts and all the {v;}’s (i = I,...,n — 1). More precisely, each {v;} is a leaf of T, the
root of 7 is ¥ —{ro}, and the parent of any nonroot node X of T is the smallest k-cut
in which X is strictly included.

Let s(7) be the number of internal nodes of T, i.c., nodes that are not leaves. Let
r be the number of vertices of G of degree at least £ + 1. So we have

o(Gy=n—1—r+s(T)

We want to find an upper bound on the value of s(7') — r.

We will say that a subtree S of T is full if, for each node X in S, either all or
none of the children of X in T are in S. Given a full subtree S of 7', a leaf X of §
is called special if it is not a leaf of 7. Now we will modify T so as to obtain a tree
Ty with n — | leaves such that:

(t1) every interior node of 7y has at least three children:

(t2) if all children of a node are leaves then it has at least k& children;

(t3) every full subtree of 7, with exactly one special leaf has either at most three
or at least k leaves;

(t4) s(Ty)=s(T) —r.

Lemmas 4.1 and 4.8 obviously imply that 7 satisfies (12) and (t3). Thus, when
constructing 7y, our goal is to preserve these properties and to obtain (t1) and (14).

Observe that the root V' — {19} of T has at least three children (for otherwise one
of the two children should be a singleton {z} where z has degree at least & + 1 in
G. and the other V' — {vg,z} would be a k-cut of G, a contradiction to Lemma 4.1).
If every interior node of T has at least three children then it suffices to take 7y = 7.
Now assume that 7' has an interior node ¥ with only two children. Since Y is not the
root, it has a parent U. By Lemma 4.1 at least one child of ¥ is not a singleton (hence
a nontrivial £-cut). By Lemma 3.1 one child of Y is not a k-cut, hence is a singleton
{v} where y has degree at least k + 1. We contract the edge YU, in other words we
delete Y and append its children to U. Note that U has at least three children after the
contraction; in fact the nodes with two children in the contracted tree have exactly the
same two children as in 7. We iterate this procedure until the tree has no more vertex
with only two children. It is not difficult to check that the resulting contracted tree 7}
has the four desired properties. (To verify the last one, notice that each contraction
from a node Y corresponds to one vertex y of degree at least & + I, hence the number
of contracted edges is at most r.)

We now prove that

4n
s(Ty) < m
for all trees T, having » — 1 leaves and satisfying properties (t1)—(t3), with k=7 and
n>=k + 1. Remark that it is true when 7 is a star, i.e., when all leaves are children
of the root, since then s(7Ty) = 1. To prove it in general we proceed by induction
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on n. If n =k + 1, then by (t2) 7p must be a star and we are done. So we may now
assume that n >k + 2 and also that 7, is not a star. Let xo be an interior node of 7
farthest from the root; and let x; be the parent of x;. Let ¢, be the number of children
of x; that are not leaves. We will distinguish between several cases.

First, assume that ¢, =2. We build a new tree T, from 7; by removing every de-
scendant of x| and adding & leaves at x;. Clearly the number #’ — 1 of leaves of 7} is
such that

W—1l<n—1- (g - Dk

and the number of interior nodes of T} is s’ = s(Tp) — ¢;. It is not difficult to check
that properties (t1)—(t3) are satisfied by 7j; moreover » < n. So we can apply the
induction hypothesis on T}, which yields s’ <4n'/(k + 5), whence

4n 3g1k — 4k — 5q,
k+5 k+5

Then, since ¢ =2,

S(T())<

591
g —4
is true, and s(7p)<4n/(k + 5) follows easily.

Second, assume that ¢, = 1 and that x| has at least & children. We build a new tree
T; from T, by removing all children of xy. The number n’ — 1 of leaves of T} satisfies

k>5= >0

W—1<n—k

and the number of interior nodes is s = s(7y) — 1. Again it is not difficult to check
that 7} satisfies properties (t1)—(t3) and n' < n. Applying the induction hypothesis on
T} yields s’ <4n'/(k + 5) from which s(Tp)<4n/(k 4 5) is easily derived.

Now assume that g; = 1 and x; has at most &£ — 1 children. Property (t3) on the full
subtree formed by x; and its children implies that x; has at most three children. By
(t1) the node x; has exactly three children, which are x; and two leaves of 7j. Actually
we can assume that this is the case for the parent of every interior node farthest from
the root. If x; is the root then it is easy to see that s(7p) =2 and n — 1 2k + 2, s0
s(To)<4n/(k + 5). Now let x; be the parent of x; and ¢, be the number of children
of x, that are not leaves.

Assume for now that ¢, = 1, i.e., x| is the only nonleaf child of x;. Property (t3) on
the full subtree formed by x;, its children and the children of x; (where x¢ is the unique
special leaf) implies that x, has at least £—3 children different from x;. We build a new
tree 7 from T by removing all the descendants of x; and adding 4 leaves at x,. It is not
difficult to check that T} satisfies properties (t1)—(t3). Moreover its number of interior
nodes is s = s(Tp)—2, and its number of leaves is n' —1<n—k+1. Applying the induc-
tion hypothesis on 7 we get s’ <4n'/(k +3), from which s<4n/(k+5) follows easily.

Now assume that ¢, >2. Let p; be the number of children of x, whose children are
all leaves of Ty; let p» = g2 — py. So p; is the number of children of x, that are of
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the same type as x;. We build a new tree 7 from 7 by removing all the descendants
of x» and adding k leaves at x;. It is not difficult to check that T} satisfies properties
(t1)—(t3). The number of interior nodes of T is s’ = s(75)—2 p2 — p1, and the number
of its leaves is ' —1<n—1— pa(k+2)— pik + k. Applying the induction hypothesis
on T} we get s’ <4n'/(k + 5), from which

4n  k@2pr+3pi—4)—2p,—5p
k+5 k+35

s(Ty)y<

follows easily. We want to check that the term following the minus sign in the pre-
ceding inequality is nonnegative or, equivalently, that

p2(2k —2)= pi(5 — 3k) + 4k.

Notice that the left-hand side of this inequality is always nonnegative, and the right-
hand side is negative whenever p| =2. If p; = | then p; =1, since g; =2, and in that
case the desired inequality is also true. If p; = 0 the desired inequality fails only if
p>» = 2. In that case we observe that, by (tl), the node x, must have a third child
which is a leaf. Consequently the number of leaves of 7 can be estimated more tightly
as

—l<n—1-2k+2)+k— 1

Now the inequality s’ <4n'/(k + 5) directly becomes s(Ty) <4n/(k +3). I

We now exhibit graphs which show that the bound obtained in Theorem 4.9 is sharp
when £ =7 and k == 9. These graphs will be built using a recursive construction that
we call i-box and that we now explain for & = 7. A 0-box is a clique with seven
vertices, and at each vertex there is an incident edge hanging out of the box. These
seven edges are divided into two batches of three plus a “‘solitary” edge. Given two
vertex-disjoint i-boxes X and Y with seven edges hanging out of each of them, cach
of these two sets of seven edges being divided into two batches of three plus a solitary
edge, we obtain an (i + 1)-box Z as follows.

e Add five vertices x;, x2, ¥, ¥ and z. Add edges x;x3, yviva. x1 ¥, as well as xz,
X2Z, V1Z, Yz.

¢ Connect the first batch of edges hanging out of X (resp. Y) to x; (resp. v;), and
the second batch to x; (resp. y2). The solitary edges hanging out of X and Y are
connected to z.

e At cach of x,x3, v, add one incident edge hanging out of Z; these three new edges
will form the first batch of Z. At each of yy, y;,x; add one incident edge hanging
out of Z; these three edges will form the second batch of Z. At z add one new
incident edge hanging out of Z, which will be the solitary edge of Z.
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We obtain a simple graph G; by taking the i-box, adding a 7-clique and connecting
each vertex of that clique to one edge hanging out of the i-box. By contracting each
0-box of G; into one vertex one gets a multigraph which can be obtained from P(7)
through a sequence of legal 7-splittings, thus G; is 7-connected. Moreover G; has
n; = 3-2%2 4 2 vertices and a number of 7-cuts equal to o(G;) = n; + 22 — 3 (this
is because, given an (i + 1)-box Z with the above notation, each of X, X U {x,x2},
Y, YU{y,y:} and Z form a 7-cut; moreover every vertex of G; is of degree 7). So
a(G;) = 4n;/3 — o(n;), which is asymptotically equal to the upper bound in Theorem
4.9 when k =7.

For £ = 9 the construction of the i-boxes is slightly different. The 0-box is a 9-
clique. The nine edges hanging out of an i-box are divided into two batches of four
plus one solitary edge. The construction of the (i + 1)-box is as above except that we
also add the edges x;y; and xy;, and we also add two new edges incident at z and
hanging out of Z; one of them is included in the first batch and the other one in the
second batch of Z. We obtain a simple graph G/ by taking an i-box for k = 9, adding
a 9-clique and connecting each vertex of that clique to one edge hanging out of the
i-box. Again it is not very difficult to check as above that G/ is a 9-connected graph
with n) = 7-2"*! 1 4 vertices and a number of 9-cuts equal to ! + 2/+? — 3, achieving
equality asymptotically in Theorem 4.9 when £ = 9.

For larger values of & we could neither generalize the idea of i-boxes nor find
any construction that would imply equality in Theorem 4.9. In fact we conjecture
that there exists a function f(k) such that, for every odd k=11 we have oi(n,k) =
f(k)-nxo(n), and with f(k) < 1+4/(k+5); but f(k) seems to be very difficult to
calculate precisely.
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