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In this paper, by using the fixed point theory, we study the existence and uniqueness
of initial value problems for nonlinear fractional differential equations and obtain a new
result.
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1. Introduction

In this paper, we consider the existence and uniqueness of solutions of the following initial value problems:

Dαx(t) = f (t,Dβx(t)), 1 ≥ t > 0, (1.1)

x(k)(0) = ηk, k = 0, 1, . . . ,m− 1 (1.2)

where m − 1 < α < m, n − 1 < β < n (m, n ∈ N,m − 1 ≥ n), Dα are the αth Caputo fractional derivatives and
f ∈ C([0, 1] × R).
The initial and boundary value problems for nonlinear fractional differential equations arise from the study of models of

viscoelasticity, electrochemistry, control, porousmedia, electromagnetic, etc (see [1–3]). Therefore, they have receivedmuch
attention. For themost recentworks for the existence and uniqueness of solutions of the initial and boundary value problems
for nonlinear fractional differential equations, we mention [4–15,1–3,16]. But in the obtained results, for the existence, the
nonlinear term f needs to satisfy the condition: there exist functions p, r ∈ C([0, 1], [0,∞)) such that for 1 ≥ t ≥ 0 and
each u ∈ R,

|f (t, u)| ≤ p(t)|u| + r(t) (1.3)

and for the uniqueness, the nonlinear term f needs to satisfy the condition: there exist functions p, r ∈ C([0, 1], [0,∞))
such that for each 1 ≥ t ≥ 0 and any u, v ∈ R,

|f (t, u)− f (t, v)| ≤ p(t)|u− v| (1.4)

such that by using these results, we cannot discuss the existence and uniqueness of solutions of the following simple
problems.
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Example 1.1. Consider the problem

D3/4x(t) =
t − [D1/4x(t)]3

25(1+ t)4
, 1 ≥ t > 0, (1.5)

x(0) =
1
4
. (1.6)

In this paper, our object is to improve the situation. Our main result is the set of the following theorems.

Theorem 1.1. Let n− 1 < β < α < n (n ∈ N). Assume that

(H1) f : [0, 1] × R→ R is a continuously differentiable function;
(H2) f (0, 0) = 0 and f (t, 0) 6= 0 on a compact subinterval of (0, 1] and
(H3) there exist l > 1, 1 > γ > 0 and a(t) ∈ C([0, 1], [0,∞)) such that

1
0(α − β)

sup
0≤t≤1

∫ t

0
(t − s)α−β−1a(s)ds ≤ 1− γ , (1.7)

0 < R :=
1

0(α − β)
sup
0≤t≤1

∫ t

0
(t − s)α−β−1|f (s, 0)|ds <∞ (1.8)

and for any x, y ∈ C([0,∞)) with 0 ≤ |x(t)|, |y(t)| ≤ l
γ
R for 1 ≥ t ≥ 0,

|f (t, x(t))− f (t, y(t))| ≤ a(t)|x(t)− y(t)| for 1 ≥ t ≥ 0. (1.9)

Then (1.1)–(1.2) has a unique solution.

Theorem 1.2. Let n− 1 < β < n ≤ m− 1 < α < m (n,m ∈ N). Assume that (H1) and (H2) are satisfied and

(H4) there exist l > 1, 1 > γ > 0 and a(t) ∈ C([0, 1], [0,∞)) such that

1
0(α − n)0(n− β + 1)

sup
0≤t≤1

∫ t

0
(t − s)α−n−1sn−βa(s)ds ≤ 1− γ , (1.10)

0 < R := sup
0≤t≤1

[∣∣∣∣∣n−1∑
k=0

tk

k!
ηk

∣∣∣∣∣+
∫ t

0
(t − s)α−n−1|f (s, 0)|ds

]
<∞ (1.11)

and for any x, y ∈ C([0,∞)) with 0 ≤ |x(t)|, |y(t)| ≤ l
γ
R for 1 ≥ t ≥ 0,

|f (t, x(t))− f (t, y(t))| ≤ a(t)|x(t)− y(t)| for 1 ≥ t ≥ 0. (1.12)

Then (1.1)–(1.2) has a unique solution.

It is obvious that if Theorem 1.1 holds, then it is easy to see that taking a(t) = 1
5(1+t)4

, γ = 1/2 and l = 2, the problem
(1.5)–(1.6) has a unique solution.
Our work is motivated by the work of [16].

2. Preliminaries

Definition 2.1 ([16]). The fractional order integral of order α for the function x is defined as

Iαx(t) =
∫ t

0

(t − s)α−1

0(α)
x(s)ds, 1 ≥ t ≥ 0

wherem− 1 < α < m andm ∈ N.

Definition 2.2 ([12]). The αth Caputo derivative of x is defined as

Dαx(t) =
1

0(m− α)

∫ t

0
(t − s)m−α−1x(m)(s)ds, 1 ≥ t ≥ 0

wherem− 1 < α < m andm ∈ N.

Definition 2.3 ([12]). u ∈ Cm[0, 1] is called a solution of (1.1)–(1.2) if it satisfies (1.1) and (1.2).
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Lemma 2.1 ([15]). Let m ∈ N, m− 1 < α < m, u ∈ Cm[0, 1] and v ∈ C1[0, 1], then for 0 ≤ t ≤ 1,

(2.1.1) Dα Iαv(t) = v(t);
(2.1.2) IαDαu(t) = u(t)−

∑m−1
i=0

tk
k! u

(k)(0);
(2.1.3) limt→0+ Dαu(t) = limt→0+ Iαu(t) = 0;
(2.1.4) If 0 < αi ≤ 1 (i = 1, 2, . . . , n) with α =

∑n
i=1 αi such that for each k ∈ {1, . . . ,m − 1}, there exists ik < n with

k =
∑ik
i=1 αi, then

Dαx(t) = Dαn · · ·Dα2Dα1x(t).

Lemma 2.2 ([16]). Let m ∈ N, m− 1 < β < α < m, u ∈ Cm[0, 1]. Then, for any k ∈ {1, . . . ,m− 1} and 0 ≤ t ≤ 1,

Dα−m+kx(m−k)(t) = Dαx(t)

and

Dα−βDβx(t) = Dαx(t).

Lemma 2.3 ([16]). Let n,m ∈ N, n− 1 < β < n ≤ m− 1 < α < m and assume that (H1) and (H2) hold. Then, u ∈ Cm[0, 1]
is a solution of (1.1)–(1.2) if and only if

u(t) =
n−1∑
k=0

tk

k!
ηk +

∫ t

0

(t − s)n−1v(s)ds
(n− 1)!

, 0 ≤ t ≤ 1

where v ∈ C[0, 1] is a solution of the equation

v(t) =
m−n−1∑
k=0

tk

k!
ηn+k +

1
0(α − n)

∫ t

0
(t − s)α−n−1f

(
s,

1
0(n− β)

∫ s

0
(s− h)n−β−1v(h)dh

)
ds, 0 ≤ t ≤ 1. (2.1)

Lemma 2.4 ([16]). Let n ∈ N, n − 1 < β < α < n and assume that (H1) and (H2) hold. Then, u ∈ Cn[0, 1] is a solution of
(1.1)–(1.2) if and only if

u(t) =
n−1∑
k=0

tk

k!
ηk +

1
0(β)

∫ t

0
(t − s)β−1v(s)ds, 0 ≤ t ≤ 1

where v ∈ C[0, 1] is a solution of the equation

v(t) =
1

0(α − β)

∫ t

0
(t − s)α−β−1f (s, v(s))ds, 0 ≤ t ≤ 1. (2.2)

3. The proof of main results

We divide the proof of Theorem 1.1 into several steps.
First, we have the following lemma.

Lemma 3.1. If (H1)–(H3) holds, then (2.2) has a unique solution ψ with ‖ψ‖ ≤ lR/γ .

Proof of Lemma 3.1. Let X be a linear space consisting of all functions x ∈ C[0, 1] such that

sup
1≥t≥0
|x(t)| < +∞

with the norm

‖x‖ = sup
1≥t≥0
|x(t)|.

It follows that X is Banach space.
Define a bounded, convex and closed subset B of X and the operator T as follows:

B =
{
x ∈ X : |x(t)| ≤

lR
γ
for 1 ≥ t ≥ 0

}
(3.1)
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and

Tx(t) =
1

0(α − β)

∫ t

0
(t − s)α−β−1f (s, x(s))ds, 1 ≥ t ≥ 0. (3.2)

Then, from (1.7), (1.8) and (3.1)–(3.2), we have that for each x ∈ B,

|Tx(t)| =
1

0(α − β)

∣∣∣∣∫ t

0
(t − s)α−β−1f (s, x(s))ds

∣∣∣∣
≤

1
0(α − β)

[∣∣∣∣∫ t

0
(t − s)α−β−1f (s, 0)ds

∣∣∣∣+ ∫ t

0
(t − s)α−β−1|f (s, x(s))− f (s, 0)|ds

]
≤ R+

1
0(α − β)

∫ t

0
(t − s)α−β−1a(s)|x(s)|ds

≤ R+ (1− γ )
lR
γ
=
lR
γ
− (l− 1)R, 1 ≥ t ≥ 0 (3.3)

which yields that

T : B→ B, (3.4)

and for any x, y ∈ B, from (1.7), (1.9) and (3.1), we have

|Tx(t)− Ty(t)| ≤
1

0(α − β)

∫ t

0
(t − s)α−β−1|f (s, x(s))− f (s, y(s))|ds

≤ ‖x− y‖
1

0(α − β)

∫ t

0
(t − s)α−β−1a(s)dhds ≤ (1− γ )‖x− y‖

which, together with (3.4), yields that T : B→ B is a contraction. Therefore, from the Banach fixed point theorem, it is easy
to see that in B, T has a unique fixed point ψ . The proof is completed. �

Next, we have the following lemma.

Lemma 3.2. If (H1)–(H3) holds and x(t) is a solution of (2.2), then x(t) ≡ ψ(t) where ψ(t) is as in Lemma 3.1.
Proof of Lemma 3.2. First, from (3.3), it is easy to see that

|ψ(t)| ≤
lR
γ
− (l− 1)R, 1 ≥ t ≥ 0. (3.5)

Set

T = inf
{
t : 1 ≥ t ≥ 0 and |x(t)| >

lR
γ

}
.

Then, (i)
{
t : 1 ≥ t ≥ 0 and |x(t)| > lR

γ

}
is empty or (ii) T = 1 or (iii) 1 > T > 0.

If (i) or (ii) holds, then, |x(t)| ≤ lR
γ
for 1 ≥ t ≥ 0 and from (1.7) and (1.9), we have

‖x− ψ‖ ≤
∥∥∥∥ 1
0(α − β)

∫ t

0
(t − s)α−β−1|f (s, x(s))− f (s, ψ(s))|ds

∥∥∥∥
≤ ‖x− ψ‖

1
0(α − β)

∫ t

0
(t − s)α−β−1a(s)ds

≤ (1− γ )‖x− ψ‖

which yields that

x(t) = ψ(t) for 1 ≥ t ≥ 0. (3.6)

If (iii) holds, then, |x(T )| = lR
γ
, |x(t)| ≤ lR

γ
for T ≥ t ≥ 0 and from (1.7) and (1.9), we have

sup
0≤t≤T

|x(t)− ψ(t)| ≤
1

0(α − β)
sup
0≤t≤T

∫ t

0
(t − s)α−β−1|f (s, x(s))− f (s, ψ(s))|ds

≤
1

0(α − β)
sup
0≤t≤T

∫ t

0
(t − s)α−β−1a(s)|x(s)− ψ(s)|ds

≤ (1− γ ) sup
0≤t≤T

|x(t)− ψ(t)|



680 J. Deng, L. Ma / Applied Mathematics Letters 23 (2010) 676–680

which yields that

x(t) = ψ(t) for T ≥ t ≥ 0

which, together with (3.5), yields that

(l− 1)R ≤ |x(T )− ψ(T )| ≤
1

0(α − β)

∫ T

0
(T − s)α−β−1|f (s, x(s))− f (s, ψ(s))|ds = 0

which yields that (i) or (ii) holds (note (3.6)). The proof is completed. �

Finally, from Lemmas 2.4, 3.1 and 3.2, it is easy to see that Theorem 1.1 holds.
Similar to Theorem 1.1, we can prove that Theorem 1.2 holds.
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