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Abstract

Background: Dynamic hyperinflation during cardiopulmonary exercise testing (CPET) in cystic fibrosis (CF) has not been well characterized, and little is
known regarding its prevalence, risk factors and clinical associations.
Methods: CPET data from 109 adult patients with mild-to-moderate CF was used, in this retrospective study, to characterize and determine the
prevalence of dynamic hyperinflation, and evaluate its relationship with lung function and exercise tolerance, clinical symptoms, and prognosis
over a two-year period.
Results: 58% of patients responded to CPET with dynamic hyperinflation. These patients had significantly lower lung function (FEV1 66 ± 19 versus
79 ± 18%pred., p b 0.01) and exercise tolerance (peak oxygen uptake 28.7 ± 8.1 versus 32.9 ± 6.1 mL·kg−1·min−1, p = 0.02), and experienced greater
shortness of breath at peak exercise (7 ± 3 versus 5 ± 2 Modified Borg scale, p = 0.04) compared to patients who responded without dynamic
hyperinflation. Significant relationships between FEV1, FVC, FEV1/FVC, FEF25–75 and dynamic hyperinflation were shown (p b 0.01; p = 0.02;
p b 0.01; p b 0.01, respectively). Dynamic hyperinflation was also significantly correlated with oxygen uptake, tidal volume, work-rate and shortness of
breath at peak exercise (p = 0.03; p b 0.01; p b 0.01; p = 0.04, respectively). Responding to CPET with or without dynamic hyperinflation did not
significantly predict FEV1 at 2 years beyond the FEV1 at baseline (p = 0.06), or increase the likelihood of experiencing a pulmonary exacerbation over a
two-year period (p = 0.24).
Conclusion: The prevalence of dynamic hyperinflation during CPET in adult patients with mild-to-moderate CF is high, and is associated with reduced
lung function and exercise tolerance, and increased exertional dyspnea. However, identifying dynamic hyperinflation during CPET had limited prognostic
value for lung function and pulmonary exacerbation.
© 2013 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The assessment of exercise tolerance, through cardiopulmonary
exercise testing (CPET), is used in clinical practice to provide an
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lished
objective measure of exercise capacity, monitor disease progres-
sion and/or response to interventions, predict prognosis, and
identify the mechanisms that limit exercise [1]. Exercise
intolerance, from a clinical perspective, can be considered a
patient's inability to complete a physical task that could be
achieved, ordinarily, by a healthy individual. In cystic fibrosis
(CF) exercise tolerance is compromised [2,3], and mechanisms
for this can be multiple [4]. These include abnormal oxygen
delivery and gas exchange, [5] musculoskeletal abnormalities
by Elsevier B.V. All rights reserved.
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[6,7], and deconditioning [4]. In chronic obstructive pulmonary
disease (COPD), dynamic hyperinflation of the lung is also
considered a major limitation to exercise, through ventilatory
constraints [8], and has been reported to cause characteristic
symptoms such as exertional dyspnea [9]. However, the study
of dynamic hyperinflation and its clinical utility in CF is limited,
and patient numbers to date have been small. Furthermore, given
the differences in demographics, clinical characteristics, and
pathophysiology, extrapolation of data from COPD to CF is not
appropriate [10].

Previous studies investigating dynamic hyperinflation in CF,
measured changes in end-expiratory lung volume (EELV) by
measuring inspiratory capacity (IC) during different stages of
graded exercise. Alison et al. evaluated changes in EELV during
leg and arm exercise in 22 patients with CF; [11] while Regnis and
colleagues (1991) and (1996) studied changes in EELV during
CPET in 22 [12] and 8 [13] CF patients, respectively. In the study
by Regnis et al. it was reported that patients who demonstrated an
increase of 100 mL or greater in EELV had significantly lower
lung function, and exercise tolerance than patients whose EELV
decreased by 100 mL or more [12]. Larger studies, however, are
needed to confirm these findings, and further investigate the
clinical utility of assessing dynamic hyperinflation during CPET
in this patient group.

The objective of the present study was to investigate dynamic
hyperinflation during CPET in a large cohort of adult patients
with mild-to-moderate CF, to better understand which patients
are at greater risk for dynamic hyperinflation, and to determine
whether dynamic hyperinflation is a predictor of clinical outcomes.
Specifically, our aims were to characterize and determine the
prevalence of dynamic hyperinflation, and to evaluate its
relationship with lung function, exercise tolerance and clinical
symptoms. A secondary aim was to determine if dynamic
hyperinflation during CPET could predict lung function at two
years, and whether dynamic hyperinflation was associated with
subsequent pulmonary exacerbations over a two-year period.
2. Methods

This is a retrospective study of 109 adults with mild-to-
moderate CF who were followed at the Adult CF Program at St.
Michael's Hospital (Toronto, CANADA) between 2002 and 2008.
As part of routine care, CF patients who have a forced expiratory
volume in one second (FEV1) greater than 30% predicted and who
are clinically stable undergo annual CPET. Patients with a FEV1

less than 30% predicted, not clinically stable or post-transplant are
excluded from exercise testing. Baseline spirometry and patient
clinical parameters were taken at the time of CPET and obtained
from the Toronto CF database. These included age, gender,
pancreatic status (insufficiency versus sufficiency), the presence
of CF-related diabetes, nutritional status as measured by body
mass index, and the presence of Pseudomonas aeruginosa or
Burkholderia cepacia complex. The number of hospitalizations
for pulmonary exacerbations within the two years following their
CPET was recorded. Patients provided written informed consent
for their data to be included in the Toronto CF database and to be
used for research purposes. Institutional research board ethics
approval was given by St. Michael's Hospital (IRB# 04-076).
2.1. Lung volume and function

Total lung capacity was calculated from the mean functional
residual capacity, determined by body plethysmography (Vmax
Spectra; Viasys, Loma Linda, CA, USA), plus the highest
measured IC from three acceptable and reproducible tests.
Standard spirometry [14] was performed by the patient using a
mass-flow sensor spirometer (Vmax Spectra; Viasys, Loma
Linda, CA, USA) for the measurement of forced lung function
maneuvers. The Canadian predicted normal values for spirometry
of Gutierrez et al. were used [15]. Maximal voluntary ventilation
(MVV) was estimated using the formula FEV1 × 40.
2.2. Cardiopulmonary exercise testing

Patients performed CPET on an electronically braked cycle
ergometer (Ergometrics 800; Jaeger, Wuerzburg, Germany)
using a graded protocol. Starting at 0 W·min−1 the work-rate
was increased progressively every minute by 10 or 15 W·min−1.
The work-rate was ramped with the goal of individuals reaching
symptom limitation within 10–12 min. Verbal encouragement
during exercise testing was given to all patients. Breath-by-
breath pulmonary gas measurements (oxygen uptake and
carbon dioxide production), as well as minute ventilation
were collected continuously during exercise and recorded by a
metabolic gas analyser (Vmax Encore; Viasys, Loma Linda,
CA, USA). Flow volume measurements (i.e., IC and EELV) and
shortness of breath and muscular leg fatigue scores, measured by
a modified Borg scale [16], were recorded at rest and every 2 min
of the exercise test.
2.3. The IC maneuver

The IC maneuver was measured by spirometry (Vmax Encore;
Viasys, Loma Linda, CA, USA) and was performed by patients at
rest and every 2 min of the CPET. The patients were instructed
to inspire, at the end of normal exhalation, until their lungs were
full. The maneuver ended with unforced exhalation. Patients
received verbal encouragement during the IC maneuver to
inspire maximally. The IC represents the volume inhaled from
the end of normal exhalation to maximal inhalation (i.e., total lung
capacity). EELV was calculated by subtracting the IC from the
total lung capacity. It is assumed that total lung capacity remains
unchanged during exercise which is supported by literature in
health [17] and COPD [18]. The change in the IC from rest to peak
exercise was calculated (ICΔ). Patients were categorized into two
groups, using established cut-off criteria [12], those with evidence
of dynamic hyperinflation (a decrease in ICΔ ≥ 100 mL) and
those without evidence of dynamic hyperinflation (an increase in
ICΔ ≥ 100 mL). Individuals with no change or a decrease or
increase in the ICΔ ≤ 99 mL were not included in the between
group analyses.



Table 1
Characteristics of the study group.

All
(n = 109)

Dynamic
hyperinflation
(n = 63)

Non-dynamic
hyperinflation
(n = 25)

Age (y) 30.2 ± 9.5 31.3 ± 10.2 28.6 ± 7.2
BMI (kg·m2) 22.9 ± 2.8 23.1 ± 3.4 22.9 ± 2.9
% Male 64 59 88 ⁎

% with CFRD 29 27 16
% with PI 73 73 64
% with Pseudomonas aeruginosa 68 70 68
% with Burkholderia cepacia 16 18 8

Values are means ± SD.
BMI, body mass index; CFRD, cystic fibrosis related diabetes; PI, pancreatic
insufficiency.
⁎ p b 0.05, between the dynamic hyperinflation and non-dynamic hyperinflation
groups.

Table 2
Physiological characteristics of the study group.

All
(n = 109)

Dynamic
hyperinflation
(n = 63)

Non-dynamic
hyperinflation
(n = 25)

FEV1 (%pred.) 72 ± 18 66 ± 19 79 ± 18⁎⁎

FVC (%pred.) 90 ± 18 87 ± 18 96 ± 15⁎

FEV1/FVC (%pred.) 65 ± 11 62 ± 11 69 ± 9⁎⁎

FEF25–75 (%pred.) 37 ± 21 31 ± 19 47 ± 23⁎⁎

MVV (L·min−1) 105.1 ± 36.4 97.8 ± 33.9 126.6 ± 32.6⁎⁎

VTrest (L) 0.88 ± 0.59 0.96 ± 0.63 0.72 ± 0.47
SpO2rest (%) 96 ± 2 96 ± 1 97 ± 1
BorgSOBrest 0 ± 1 1 ± 1 0 ± 1
BorgLEGrest 0 ± 1 0 ± 1 0 ± 1

Values are means ± SD.
FEV1, forced expiratory volume in one second; FVC, forced vital capacity; FEV1/
FVC, forced expiratory volume in one second and forced vital capacity ratio;
FEF25–75, forced expiratory flow between 25 and 75% of the forced vital capacity;
MVV, estimatedmaximal voluntary ventilation; VTrest, tidal volume at rest; SpO2rest,
oxygen saturation at rest; BorgSOBrest, Borg shortness of breath score at rest.
BorgLEGrest, Borg muscular leg fatigue at rest.
⁎p b 0.05, ⁎⁎p b 0.01 between the dynamic hyperinflation and non-dynamic
hyperinflation groups.
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2.4. Statistical analysis

The independent student's t-test was used to investigate
differences in continuous variables between groups at rest and
during CPET. Differences in categorical variables were evaluated
using a Chi-square (X2) test. To determine whether responding to
exercise testing with or without dynamic hyperinflation can
predict FEV1 at 2 years (FEV1y2) beyond the FEV1 at baseline,
linear regression was used and a partial F test was employed to
compare the following two models:

FEV1y2 ¼ β0 þ β1FEV1 þ ε ð1Þ

FEV1y2 ¼ β0 þ β1FEV1 þ β2ICΔþ ε ð2Þ

where ε represents the error term, β0 is the intercept of the line, β1

is the coefficient of the FEV1 and β2 is the coefficient of the ICΔ.
The ICΔ was coded 0 if the patient responded to CPET with
dynamic hyperinflation and 1 if the patient responded without
dynamic hyperinflation. A Fisher's Exact Test was used to assess
the frequency distribution of pulmonary exacerbations over
2 years post CPET between the two groups.

Simple linear regression was used to explore relationships
between lung function, CPET parameters and the ICΔ and the IC
Δ expressed as a percentage change from rest to peak exercise (IC
Δ%). Multiple regression analysis was performed to determine
which lung function and exercise parameters best predict exercise
tolerance (i.e., peak oxygen uptake). Statistical significance was
set a priori at p b 0.05 for all statistical analyses. All data were
analyzed using the Statistical Package for the Social Sciences
(SPSS; version 11.0, Chicago, IL).

3. Results

3.1. Characteristics of the study patients and cardiopulmonary
exercise testing parameters

Characteristics of the overall study population (n = 109), and
the dynamic (n = 63) and non-dynamic (n = 25) hyperinflation
groups are presented in Tables 1 and 2. The mean age of the study
patients was 30.2 ± 9.5 years, and 64% were male. The overall
study population included individuals with a mean FEV1 of 72 ±
18% predicted, with a range in FEV1 of 34–115% predicted.
Fifty-eight percent (63/109) of patients demonstrated evidence of
dynamic hyperinflation during CPET. There were no significant
differences in the frequency distribution of patients with CF-
related diabetes, pancreatic insufficiency/sufficiency, and
P. aeruginosa or B. cepacia complex between the dynamic
hyperinflation and non-dynamic hyperinflation groups. However,
the frequency distribution of males in the non-dynamic hyperin-
flation group was significantly greater than females (p b 0.05). No
significant differences were shown for age and body mass index
between the dynamic hyperinflation and non-dynamic hyperinfla-
tion groups, or for tidal volume, oxygen saturation, shortness of
breath and muscular leg fatigue at rest. However, between groups,
patients with evidence of dynamic hyperinflation demonstrated a
significant reduction in FEV1 (p b 0.01), forced vital capacity
(FVC) (p = 0.04), forced expiratory volume in one second and
forced vital capacity ratio (FEV1/FVC) (p b 0.01), forced
expiratory flow between 25 and 75% of the forced vital capacity
(FEF25–75) (p b 0.01) and estimated MVV (p b 0.01).

CPET data in the dynamic and non-dynamic hyperinflation
groups are presented in Table 3. Patients with evidence of
dynamic hyperinflation had significantly lower oxygen uptake
(p = 0.02), minute ventilation (p = 0.04), tidal volume (p b 0.01)
and work-rate (p b 0.01) at peak exercise, and experienced greater
shortness of breath (p = 0.04) and minute ventilation to estimated
MVV ratio to those without evidence of dynamic hyperinflation
(p = 0.02). No significant differences were noted at peak exercise
for oxygen saturation, heart-rate and muscular leg fatigue between
groups. At the gas exchange threshold, the dynamic hyperinflation
group had a significantly greater ventilatory equivalent for carbon
dioxide (p b 0.01) than patients who did not respond to exercise
with dynamic hyperinflation.



Table 3
Cardiopulmonary exercise testing parameters.

Dynamic
hyperinflation
(n = 63)

Non-dynamic
hyperinflation
(n = 25)

_VO2 peak (mL·kg−1·min−1) 28.7 ± 8.1 32.9 ± 6.1 ⁎
_V E peak (L·min−1) 72.4 ± 20.5 83.4 ± 29.7 ⁎

HRpeak (b·min−1) 176 ± 14 173 ± 16
WRpeak (W·min−1) 140 ± 49 177 ± 53 ⁎⁎

SpO2peak (%) 93 ± 3 93 ± 3
BorgSOBpeak 7 ± 3 5 ± 2 ⁎

BorgLEGpeak 7 ± 2 8 ± 3
_V E/ _VCO2GET 33.2 ± 4.5 29.8 ± 3.9 ⁎⁎
_V E peak/MVV 0.79 ± 0.22 0.67 ± 0.18 ⁎

VT peak (L) 1.73 ± 0.56 2.20 ± 0.57 ⁎⁎

ICΔ (L) −0.44 ± 0.26 +0.40 ± 0.28 ⁎⁎

EELVΔ
(TLC-IC) (L)

+0.44 ± 0.26 −0.40 ± 0.28 ⁎⁎

Values are means ± SD.
_VO2 peak, oxygen uptake at peak exercise; _V E peak, minute ventilation at peak
exercise; HRpeak, heart-rate at peak exercise; WRpeak, work-rate at peak
exercise; SpO2peak, oxygen saturation at peak exercise; BorgSOBpeak, Borg
shortness of breath score at peak exercise; BorgLEGpeak, Borg muscular leg
fatigue at peak exercise; _V E/ _VCO2GET, ventilatory equivalent for carbon dioxide
at the gas exchange threshold; _V E peak/MVV, minute ventilation at peak exercise
and estimated maximal voluntary ventilation relationship; VTpeak, tidal volume
at peak exercise; ICΔ, inspiratory capacity delta from rest to peak exercise;
EEVLΔ, end-expiratory lung volume delta from rest to peak exercise.
⁎ p b 0.05.
⁎⁎ p b 0.01.

Fig. 1. Relationship between FEV1 (%pred.) and IC(Δ) during CPET (r = 0.37,
p b 0.01; n = 109).
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Simple linear regression analysis between lung function, CPET
parameters and the ICΔ and ICΔ% are presented in Table 4. Lung
function parameters, FEV1 (Fig. 1), FVC, FEV1/FVC (Fig. 2),
FEF25–75 (Fig. 3) and estimated MVV were all significant
predictors of the ICΔ (p b 0.01; p = 0.02; p b 0.01; p b 0.01;
p b 0.01, respectively). CPET parameters at peak exercise,
oxygen uptake (Fig. 4), tidal volume, work-rate and shortness of
breath were also significant predictors of the ICΔ (p = 0.03;
p b 0.01; p b 0.01; p = 0.04, respectively). Minute ventilation
at peak exercise was not a significant predictor of the ICΔ (p =
0.07). When expressed as a percentage change from rest to peak
exercise the ICΔ% was significantly predicted from the FEV1,
FVC, FEV1/FVC, FEF25–75 and estimated MVV (p b 0.01). The
ICΔ% was also significantly predicted from the oxygen uptake,
minute ventilation, tidal volume and work-rate at peak exercise
(p = 0.01; p = 0.01; p b 0.01; p b 0.01, respectively). Shortness
Table 4
Simple linear regression between lung function, CPET parameters and the ICΔ and

FEV1

(%pred.)
FVC
(%pred.)

FEV1/FVC
(%pred.)

FEF25–75
(%pred.)

MVV
(L·min−1

ICΔ (L) 0.37 ⁎⁎ 0.22 ⁎ 0.37 ⁎⁎ 0.35 ⁎⁎ 0.35 ⁎⁎

ICΔ% 0.44 ⁎⁎ 0.30 ⁎⁎ 0.41 ⁎⁎ 0.39 ⁎⁎ 0.43 ⁎⁎

Values are r. FEV1, forced expiratory volume in one second; FVC, forced vital c
capacity ratio; FEF25–75, forced expiratory flow between 25 and 75% of the forced v
uptake at peak exercise; _V E peak, minute ventilation at peak exercise; VTpeak, tidal vo
shortness of breath score at peak exercise; ICΔ, change in inspiratory capacity from r
to peak exercise.
⁎ p b 0.05.
⁎⁎ p b 0.01.
of breath at peak exercise did not significantly predict the ICΔ%
(p = 0.08).

A multiple linear regression analysis of the lung function and
CPET parameters showed that the strongest predictors of peak
oxygen uptake (exercise tolerance) were FEV1, FEV1/FVC and
either the ICΔ or ICΔ%, respectively. These parameters combined
in a multiple linear regression model explain 31% of the variance
between the independent variables and peak oxygen uptake (r2 =
0.31, p b 0.01).

3.2. Prognostic value of exercise induced dynamic hyperinflation

Whether patients responded to CPET with or without dynamic
hyperinflation did not explain any significant additional variance
of the FEV1 at two years, beyond the FEV1 at baseline. The
difference between the R2 of the two models was 0.01, which was
not clinically or statistically significant (p = 0.06). Furthermore,
the frequency distribution of pulmonary exacerbations over two
years following exercise testing was not significantly different
between the two groups (p = 0.24).

4. Discussion

Our data show that dynamic hyperinflation is common in adult
patients withmild-to-moderate CF. Over half of our patients (58%)
responded to exercise with dynamic hyperinflation. These patients
ICΔ%.

)
VO2peak

(mL·kg1·min−1)
VEpeak

(L·min−1)
VTpeak

(L)
WRpeak

(W)
SOBpeak

(Borg)

0.19 ⁎ 0.17 0.30 ⁎⁎ 0.25 ⁎⁎ 0.28 ⁎

0.24 ⁎ 0.22 ⁎ 0.39 ⁎⁎ 0.30 ⁎⁎ 0.26

apacity; FEV1/FVC, forced expiratory volume in one second and forced vital
ital capacity; MVV, estimated maximal voluntary ventilation; _VO2 peak, oxygen
lume at peak exercise; WRpeak, work-rate at peak exercise; BorgSOBpeak, Borg
est to peak exercise; ICΔ%, percentage change in inspiratory capacity from rest



Fig. 2. Relationship between FEV1/FVC (%pred.) and IC(Δ) during CPET
(r = 0.37, p b 0.01; n = 109). Fig. 4. Relationship between VO2peak (mL·kg−1·min−1) and IC(Δ) during CPET

(r = 0.19, p = 0.03; n = 109).
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had significantly lower lung function than patients who exercised
without evidence of dynamic hyperinflation, confirming the
findings of an earlier, smaller study [12]. Patients with dynamic
hyperinflation during CPET also had lower exercise tolerance
and greater breathlessness at peak exercise than those without
dynamic hyperinflation. The identification of dynamic hyper-
inflation, despite identifying patients with more severe lung
disease, did not predict the two-year clinical outcomes studied
here. Specifically, whether the patient responded to CPET with
or without dynamic hyperinflation did not predict lung function at
two years beyond the FEV1 at baseline, or whether the patient
would experience a pulmonary exacerbation over a two-year
period.

One strength of the present study is the large sample size of our
patient group, which adds confidence to our findings, and allowed
us to create a robust clinical picture of dynamic hyperinflation in
mild-to-moderate CF. Our study included a broad range of lung
disease severity (FEV1 34–115%pred.), and included patients
with a variety of CF co-morbidities such as diabetes, pancreatic
insufficiency, and various microbiology. Therefore, from an
Fig. 3. Relationship between FEF25–75 (%pred.) and IC(Δ) during CPET (r = 0.35,
p b 0.01; n = 109).
epidemiological perspective, the present study has character-
ized dynamic hyperinflation in a wide spectrum of CF disease.
We did not include patients with severe CF in this study, as CPET
is not routinely performed in our clinic with individuals with
an FEV1 less than 30% predicted. However, given the observed
association of dynamic hyperinflation with reduced FEV1, we
would expect a greater incidence of dynamic hyperinflation during
exercise in patients with more severe CF (i.e., FEV1 b30%pred.).
This would also be compatible with the reported association
between exercise dynamic hyperinflation and severity of
COPD [19].

At peak exercise, perceived dyspnea was significantly greater
in the dynamic hyperinflation group. The increased breathless-
ness likely contributed to the earlier termination of exercise, with
significantly lower work-rates and peak oxygen uptake observed
in the dynamic hyperinflation group. Hyperinflation of the lung
may have also compromised minute ventilation and tidal volume
at peak exercise, and minute ventilation at peak exercise and
estimated MVV ratio in these patients. At lower exercise
intensities, patients in the dynamic hyperinflation group had
to work at significantly greater ventilatory equivalents for
carbon dioxide at the gas exchange threshold. This may have
also resulted in the greater perception of exertional dyspnea
in the dynamic hyperinflation group. There was, however, a
greater distribution of females in the dynamic hyperinflation group.
This may have possibly affected the exercise testing parameters
between the two groups presented in Table 3. An analysis to
control for gender would, however, not be appropriate due to
the difference between the number of females in the dynamic
hyperinflation (n = 26) and non-dynamic hyperinflation (n = 3)
groups. At peak exercise, oxygen uptake, tidal volume and work-
rate were all significant predictors of the ICΔ and ICΔ%.
However, minute ventilation at peak exercise was a significant
predictor of the ICΔ% but not the ICΔ; and shortness of breath
was a significant predictor of ICΔ but not the ICΔ%.

The multiple regression analysis showed that the strongest
model for predicting peak oxygen uptake included FEV1,

image of Fig.�2
image of Fig.�3
image of Fig.�4
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FEV1/FVC and either the ICΔ or ICΔ%. However, the model
showed that the ICΔ or ICΔ% was the weakest dependent
variable in the model for predicting peak oxygen uptake.
Given that peak oxygen uptake is a strong prognostic
indicator of survival in CF [20], it is of interest that our
data suggest that the dynamic hyperinflation is associated
with a reduction in exercise tolerance in patients with
mild-to-moderate CF.

Disease co-morbidities in CF such as pancreatic insufficiency,
nutritional status (body mass index), the presence of CF-related
diabetes, and the presence of P. aeruginosa or B. cepacia complex
were not significantly different between the dynamic and non-
dynamic hyperinflation groups, thus, making dynamic hyperin-
flation in mild-to-moderate CF difficult to predict. Furthermore,
the FEV1 range of the dynamic (34–114%pred.) and non-dynamic
(41–115%pred.) hyperinflation groups show considerable over-
lap. In our study, one individual with an FEV1 of 114% predicted
and had an ICΔ of −0.48 L, while another patient with an FEV1

of 41% predicted had an ICΔ of +0.46 L. Our data showed that
the correlation between the FEV1 and ICΔ, although significant, is
weak. The FEV1 only explains 14% of the variance of the ICΔ,
and is shown by considerable spread around the regression line
(Fig. 1). This relationship still holds true when the ICΔ is
expressed as a percentage change from rest to peak exercise.
The FEV1 only explains 19% of the variance of the ICΔ%.
Although elastic recoil of the lung, which is important to
maintain ventilation during progressive exercise, is relevant to
the maximum expiratory flow performance in individuals with
CF, airway obstruction is a much greater determinant of the
FEV1 in these patients [21]. Whereas, the elastic recoil of the
lung may be a greater determinant of dynamic hyperinflation
during exercise in this patient group. Other lung function
variables, FVC, FEV1/FVC, FEF25–75 and estimated MVV, were
all significant predictors of the ICΔ and ICΔ%. Demonstrating
that a reduction in these lung function variables is associated with
greater dynamic hyperinflation (e.g., decrease in ICΔ or ICΔ%).

Although we have not demonstrated a prognostic role for
CPET in this study, the identification of dynamic hyperinflation
with exercise may help better understand exercise limitation in
individual patients, may guide therapy for exertional breathless-
ness and may eventually be a useful therapeutic outcomemeasure
for CF patients, as it has been shown in COPD [9,19,22,23]. The
assessment of dynamic hyperinflation during CPET can refine and
add to the patient's clinical profile by informing the clinician as to
whether exercise capacity is limited by ventilatory mechanisms
caused by progressive lung damage. This information can be used
in the management of exertional dyspnea in CF, and consideration
of bronchodilators or more aggressive chest physiotherapy may
be beneficial in this setting to minimize bronchial obstruction,
dynamic hyperinflation and exertional dyspnea. Clinically the
management of exertional dyspnea is important as it causes
discomfort during exercise, and may discourage individuals
from taking part in physical activities. This has significant
implications for patient prognosis in CF, as regular exercise
participation has been shown to improve lung function, increase
aerobic and anaerobic capacity, strengthen ventilatory muscles,
and help airway sputum clearance [24–31]. Furthermore, increased
levels of physical activity and peak oxygen uptake in CF are
positively correlated to survival [20,32,33], and quality-of-life [34].

In COPD, bronchodilator use has been shown to have a
significant and sustained reduction in air trapping at rest and
during exercise compared to placebo, thus, allowing for greater
tidal volume and, consequently, significant increases in exercise
tolerance and reductions in perceptual dyspnea [35]. However,
specific studies on bronchodilator use in the management of
dynamic hyperinflation in CF are needed. Further work should
also investigate the effects of pulmonary rehabilitation on dynamic
hyperinflation. Indeed, studies in moderate-to-severe COPD have
shown that reducing dynamic hyperinflation is associated with
improvements in symptom limited peak oxygen uptake [35,36],
constant work endurance time [37], peak tidal volume [35,37] and
dyspnea [35,37,38], and a lower ventilatory demand for a given
work-rate [39].

Dynamic hyperinflation is difficult to predict from disease
co-morbidities in mild-to-moderate CF. Therefore, CPET is a
useful tool to directly determine its presence. Our data show
significant relationships between exercise induced dynamic
hyperinflation and reduced lung function and exercise tolerance,
and increased breathlessness during exercise. The identification
of dynamic hyperinflation through CPET can identify subsets of
patients who may benefit from more aggressive airway clearance
treatments.
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