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Abstract

The aim of this paper is to show how geometric and algebraic approaches lead us to a new symplectic elementary transformations:
the 2-D symplectic Householder transformations. Their features are studied in details. Their interesting properties allow us to
construct a new algorithm for computing a SR factorization. This algorithm is based only on these 2-D symplectic Householder
transformations. Its new features are highlighted. The study shows that, in the symplectic case, the new algorithm is the corresponding
one to the classical QR factorization algorithm, via the Householder transformations. Some numerical experiments are given.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Householder transformations [7,18] play an important role in numerical linear algebra. Their interesting features are
widely used for constructing efficient and stable [8] algorithms. Thus, for example, the well-known QR factorization, via
Householder transformations, is used for solving a large variety of problems as linear systems, least squares problems,
eigenvalue problems, matrix factorization [2,7,14,18]. From a geometric algebra point of view, the usual Householder
transformation is a transvection [1] of a finite dimensional Euclidean linear space E, which in addition, belongs to the
group of isometries. An isometry is an isomorphism that preserves the scalar product. The group G of isometries is
also called the orthogonal group. In matrix language, the orthogonal group is the group of orthogonal (or Hermitian)
matrices. It provides similarity transformations, structure-preserving, for Jordan and Lie algebras.

Some important applications in control theory, lead to Hamiltonian or skew-Hamiltonian matrices, which are struc-
tured matrices [9,10,12,13,17]. Unfortunately, such structures are not preserved under orthogonal (or Hermitian)
similarities. However, these structures are preserved by symplectic similarities. The group of symplectic transfor-
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mations can be interpreted as the group of isometries of a finite dimensional symplectic linear space F [1]. We refer to
as the symplectic group S.

The corresponding Jordan algebra (respectively, Lie algebra) is nothing else than the algebra of the skew-Hamiltonian
matrices (respectively, the Hamiltonian matrices). The SR decomposition [3,4,6,13] is the basis for constructing
structure-preserving methods for Hamiltonian or skew-Hamiltonian matrices. It can be obtained using symplectic
Gram–Schmidt [6,15,16] algorithm or a QR-like factorization using symplectic elementary transformations [5,17,13].

In this paper, the geometric approach leads us to the skew-Hamiltonian 2-D symplectic Householder transformations.
Their properties are studied in details. The algebraic approach is more complete and general. The approach is based
on the following result: any finite dimensional symplectic linear space possesses a canonical splitting in a direct sum
of symplectic planes. The approach leads us to the 2-D symplectic Householder transformations. Their features are
established in details. Such transformations will serve to construct an algorithm for computing a SR factorization. The
new algorithm is the corresponding one, in the symplectic case, to the QR factorization via Householder transformations,
in the Euclidean case.

The remainder of this paper is organized as follows. In Section 2, we introduce some notations, some definitions
and results. Section 3 describes briefly the symplectic geometry. In Section 4, the geometric approach is presented. A
detailed study is derived. The algebraic approach is treated in Section 5. Interesting new results are given. Section 6
deals with the construction of a SR decomposition via the 2-DSH transformations. Some numerical experiments are
reported. Section 7 is devoted to concluding remarks.

2. Notations and some preliminaries

In this section, we recall some notations and necessary tools which will be used throughout this paper.

2.1. Notations

We use italic capital and lower letters to denote matrices and vectors, respectively. The transpose of a matrix M=(mij )

is denoted by MT = (mji). The range of M (i.e., the linear space, spanned by the columns of M) is denoted by ran(M)

and the usual scalar product by (x, y) = xTy. We set

J2n =
(

0n In

−In 0n

)
, (2.1)

where 0n and In denote the null and the identity matrices of Rn×n, respectively. The matrix J2n is skew-symmetric and
orthogonal. If the actual dimensions of the matrices are apparent from the context, we will write simply 0, I, J. We also
use the notation

diag(K1, . . . , Jp) =
⎛
⎝

K1
. . .

Kp

⎞
⎠ ,

where the dimension will be apparent from the context.

2.2. Scalar product associated to the matrix J

Consider the bilinear form (x, y) �→ (x, y)J from R2n × R2n to R defined by

∀x ∈ R2n, ∀y ∈ R2n, (x, y)J = (x, Jy) = xTJy. (2.2)

The form is non-degenerate, i.e.,

(x, y)J = 0, ∀y �⇒ x = 0 (2.3)

and is skew-symmetric, i.e.,

∀x, y ∈ R2n, (x, y)J = −(y, x)J . (2.4)
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For any real 2n-by-2n matrix M, there is a unique matrix MJ , the adjoint of M with respect to (·, ·)J defined by

∀x, y ∈ R2n, (Mx, y)J = (x, MJ y)J . (2.5)

It is easy to show that

MJ = J TMTJ . (2.6)

The following properties of the adjoint with respect to (·, ·)J are all analogous to properties of transpose. We have
obviously: ∀M, N ∈ R2n×2n,

(M + N)J = MJ + NJ , (MN)J = NJ MJ , (MJ )J = M, (MJ )T = (MT)J . (2.7)

A linear space equipped with the underlying skew-symmetric inner product (·, ·)J is called symplectic linear space.
Let us recall that the symplectic group is given by

S = {S ∈ R2n×2n|(Sx, Sy)J = (x, y)J , ∀x, y ∈ R2n}
= {S ∈ R2n×2n|SJ S = I },

the Jordan algebra J is given by

J = {A ∈ R2n×2n|(Ax, y)J = (x, Ay)J , ∀x, y ∈ R2n}
= {A ∈ R2n×2n|AJ = A},

and the Lie algebra is given by

L = {H ∈ R2n×2n|(Hx, y)J = −(x, Hy)J , ∀x, y ∈ R2n}
= {H ∈ R2n×2n|HJ = −H }.

A matrix S in S is called symplectic, a matrix A in J is called skew-Hamiltonian and a matrix H in L is called Hamiltonian.
The symplectic group S provides structure-preserving similarities for matrices in S, J, and L [10], i.e.,

∀S ∈ S, A ∈ E �⇒ S−1AS ∈ E where E = S, J, or L.

2.3. Extensions

In the literature, symplectic matrices are defined as elements of the symplectic group S. This definition is extended
[15] to matrices which are not necessarily square but only of size 2n × 2k. An extension of the definition of the adjoint
is needed. The adjoint of x ∈ R2n is defined by

xJ = xTJ , (2.8)

and the adjoint of M ∈ R2n×2k is defined by

MJ = J T
2kM

TJ2n. (2.9)

Thus, in particular, the underlying inner product can be written as

(x, y)J = xJ y. (2.10)

Definition 2.1. A matrix S ∈ R2n×2k is called symplectic if

SJ S = I2k . (2.11)

The non-square adjoint (2.9) of M with respect to (·, ·)J satisfies ∀M ∈ R2n×2k , ∀N ∈ R2k×2p

(MN)J = NJ MJ , (MJ )J = M, (MJ )T = (MT)J . (2.12)

For proof and more details see [15].
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We give the following lemma, which will be used in the sequel.

Lemma 2.2. Let V = [v1, v2] be a 2n × 2 real matrix and � be a 2 × 2 real matrix, then we get

� + �J = trace(�)I2, ��J = det(�)I2 and V J V = vT
1 Jv2I2.

Proof. Set

� =
(

a b

c d

)
.

Then

�J = J T�TJ =
(

0 −1
1 0

) (
a c

b d

) (
0 1
−1 0

)
=

(
d −b

−c a

)
.

It follows that � + �J = trace(�)I2 and ��J = det(�)I2. We get obviously

V J V = J TV TJV =
(

0 −1
1 0

) (
vT

1
vT

2

)
J (v1 v2 ) = vT

1 Jv2I2. �

3. Symplectic geometry

In the sequel, we need to consider the specificity of the symplectic geometry. We outline briefly some features
of symplectic geometry contrasting with orthogonal geometry. See [1,15] for more details on common features of
orthogonal and symplectic geometry and on special features of symplectic geometry. As usual, a vector x ∈ R2n is
said to be orthogonal to y ∈ R2n, with respect to the skew-symmetric scalar product (·, ·)J , iff (x, y)J = 0. We use
the symbol ⊥ for the orthogonality in an Euclidean space whereas ⊥′ is used for a symplectic space. Let L be a linear
subspace of R2n. Define the symplectic complement of L to be the subspace

L⊥′ = {x ∈ R2n|∀y ∈ L, (x, y)J = 0}.
The symplectic complement satisfies

(L⊥′
)⊥′ = L⊥′

(3.1)

and

dim L + dim L⊥′ = 2n. (3.2)

However, unlike orthogonal complements, L⊥′ ∩L does not need to be the null space. We recall the following case:

• L is symplectic if

L⊥′ ∩ L = {0}. (3.3)

This is true iff the restriction of (·, ·)J on L is a non-degenerate form.
• L is isotropic [1] if

L⊥′ ∩ L = L. (3.4)

This is true iff the restriction of (·, ·)J on L is the null form. Indeed, any one-dimensional subspace is isotropic.
In Euclidean spaces, there exists no isotropic subspaces different from the zero space, whereas there are in symplectic

spaces.
Any finite Euclidean space E, can be written as a direct sum of a given one-dimensional subspace (line) and its

orthogonal complement, i.e.,

∀v ∈ E\{0}, E = 〈v〉 ⊕ 〈v〉⊥. (3.5)
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As a consequence of (3.5), the Euclidean space Rn can be written as a direct sum of orthogonal lines, i.e.,

∃v1, . . . , vn ∈ Rn|Rn = ⊕n
i=1span{vi}, vi ⊥ vj , ∀1� i �= j �n. (3.6)

Contrasting with the Euclidean case, a symplectic linear space R2n can never be written as a direct sum of symplectic
one-dimensional subspaces (lines) as (3.6). This is due to the fact that any one-dimensional subspace is isotropic, i.e.,

∀v ∈ E, 〈v〉 ⊂ 〈v〉⊥′
. (3.7)

However, such splitting is possible using two-dimensional subspaces (planes). In fact, for any 〈v1, v2〉 symplectic
subspace of R2n, one gets

R2n = 〈v1, v2〉 ⊕ 〈v1, v2〉⊥′
. (3.8)

As a consequence of (3.8), the symplectic linear space R2n can be written as a direct sum of symplectic planes, i.e.,

∃vi ∈ R2n, i = 1, . . . , 2n such that, R2n = ⊕n
i=1〈v2i−1, v2i〉, (3.9)

where the matrix [v2i−1, v2i] is symplectic, for 1� i�n, and

∀1� i �= j �n, 〈v2i−1, v2i〉⊥′〈v2j−1, v2j 〉. (3.10)

4. Geometric approach, limited case

In an Euclidean space E, the Householder transformation

Hv = I − 2vvT/vTv (4.1)

is associated to the linear splitting (3.5) and conversely. Hv is a symmetry with respect to the hyperplane 〈v〉⊥, i.e.,

∀x ∈ 〈v〉, Hx = −x, ∀x ∈ 〈v〉⊥, Hx = x. (4.2)

In a symplectic linear space R2n, it is not permitted to follow the same scheme, for constructing a “symmetry”, since

〈v〉 ⊂ 〈v〉⊥′
.

However, the linear splitting (3.8) can be associated in a natural way with the elementary transformation

HV = I − 2V (V J V )−1V J (4.3)

and conversely, where V =[v1, v2] and the plane 〈v1, v2〉 symplectic. In a symplectic space, this transformation can be
interpreted geometrically as an extended “symmetry” with respect to planes. In other words, any vector of the 〈v1, v2〉⊥′

remains fixed by HV whereas any vector of 〈v1, v2〉 is displaced to the opposite, i.e.,

∀x ∈ 〈v1, v2〉, HV x = −x, ∀x ∈ 〈v1, v2〉⊥′
, HV x = x. (4.4)

Remark 4.1. Note that 〈v1, v2〉 is symplectic iff vT
1 Jv2 �= 0 and HV is defined only when 〈v1, v2〉 is symplectic. Since

V J V = vT
1 Jv2I2, then HV can be written as

HV = I − 2

vT
1 Jv2

V V J or HV = I − 2V V J /V J V .

If vT
1 Jv2 = 1 (which can be guaranteed by a adequate choice) then, the expression is reduced to HV = I − 2V V J . We

will refer to V as the direction of HV .

We establish the useful properties of HV .

Proposition 4.2. The elementary transformation HV is symplectic (HJ
V HV = I2n) and skew-Hamiltonian (HJ

V =HV ).
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Proof. We get HJ
V = (I − (2/vT

1 Jv2)V V J )J = I − (2/vT
1 Jv2)(V V J )J =HV . Then, HJ

V HV =H 2
V = I −4V (V J V )−1

V J + 4V (V J V )−1V J V (V J V )−1V J = I . �

Proposition 4.3. Let G be a non-singular 2-by-2 real matrix and set W = V G. Then HV = HW .

Proof. HW = I − 2W(WJ W)−1WJ = I − 2V G(GJ V J V G)−1GJ V J . From Lemma 2.2, we have GJ G = det(G)I2
and V J V = vT

1 Jv2I2 and then we get HW = HV . �

Let H2 be H2 = {HV , V ∈ R2n×2, ran(V ) symplectic}. The mapping problem for HV consists in mapping
simultaneously a pair of vectors into another pair. It takes the form

Theorem 4.4. Let X, Y ∈ R2n×2 such that XJ (X − Y ) �= O2. Then

∃HV ∈ H2 such that Y = HV X ⇐⇒ XJ X = YJ Y, Y J X = XJ Y .

Moreover, the elementary symplectic transformation HY−X of direction Y − X moves X into Y .

Proof. Since HV is symplectic, we get YJ Y = (HV X)J HV X = XJ HJ
V HV X = XJ X. As HV is skew-Hamiltonian,

we obtain YJ X = (HV X)J X = XJ (HV )J X = XJ HV X = XJ Y .
Reciprocally, we recall (Lemma 2.2) that (Y − X)J (Y − X) is non-singular iff (Y − X)J (Y − X) �= 02. From

XJ X = YJ Y, Y J X = XJ Y , we get (X − Y )J Y = XJ Y − YJ Y = YJ X − XJ X = −(X − Y )J X and then (Y − X)J

(Y − X) = 2(X − Y )J X �= 02. It follows that (Y − X)J (Y − X) is non-singular. We have then HY−XX = X − 2
(Y − X)((Y − X)J (Y − X))−1(Y − X)J X = X − 2(Y − X)(2(X − Y )J X)−1(Y − X)J X = X + Y − X = Y . �

We refer to HV as skew-Hamiltonian 2-D symplectic Householder transformation. In [13], Paige et al. introduced
the matrix transformation

H(k, w) =
(

diag(Ik−1, P ) 0
0 diag(Ik−1, P )

)
, (4.5)

where

P = I − 2wwT/wTw, w ∈ Rn−k+1.

The matrix H(k, w) is orthogonal and symplectic. They used the denomination Householder symplectic matrix to
designate H(k, w), which is just a direct sum of two “ordinary” n-by-n Householder matrices [18]. It is used to zero
selected components of a vector [13,17] in a skew-Hamiltonian context. We establish the following link.

Proposition 4.5. The symplectic Householder transformation introduced by Paige et al. in [13] is a particular case of
the skew-Hamiltonian 2-D symplectic Householder transformations. Furthermore, H(k, w) is recovered explicitly by

H(k, w) = I2n − 2V V J /V J V ,

with

V = [v1, v2], v2 = J Tv1, v1 = (0 w| 0 0 )T.

Proof. From v1 = (0 w| 0 0 )T and v2 = J Tv1 =
(

0 −I

I 0

)
v1 = (0 0| 0 w), we get V J V = vT

1 Jv2

I2 = ‖v1‖2
2 I2 = ‖w‖2

2 I2. We have also

V V J = V

(
0 −1
1 0

)
V T

(
0 I

−I 0

)
=

⎛
⎜⎝

0 0 0 0
0 wwT 0 0
0 0 0 0
0 0 0 wwT

⎞
⎟⎠ .

It follows then that I2n − 2V V J /V J V = H(k, w). �
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The above geometric approach allowed us to construct the skew-Hamiltonian 2-D symplectic Householder trans-
formations. They can be used in a more general context than those introduced by Paige et al. However, their context
remains still limited. The following approach permits us to construct elementary symplectic transformations for a
general context.

5. Algebraic approach, general case

In the sequel, we present a complete algebraic approach, leading us to an elementary symplectic transformations: the
2-D symplectic Householder transformations. These transformations will serve to present an algorithm for computing
a SR factorization of at least almost any arbitrary matrix A. The obtained algorithm corresponds to the QR factorization
via Householder transformations in the Euclidean case.The approach is as follows.

5.1. 2-D transvections

Set Ei = [ei en+i] for i = 1, . . . , n and �2 = R2×2. The canonical basis of R2n is denoted by {ei}i=1,...,2n. It is easy
to verify that

ET
i Ej = EJ

i Ej = �ij I2. (5.1)

The space R2n×2 can be considered as a right linear space over �2, of dimension n, i.e., any U ∈ R2n×2 can be expressed,
in a unique way, as a right linear combination

U =
n∑

i=1

EiMi where Mi = ET
i U = EJ

i U ∈ �2. (5.2)

Definition 5.1. � : R2n×2 −→ �2 is said to be a right linear form (r.l.f) if

∀X, Y ∈ R2n×2, ∀� ∈ �2, �(X + Y�) = �(X) + �(Y )�. (5.3)

Definition 5.2. T is said to be a 2-D transvection of direction V if T is of the form

T (X) = X + V �(X). (5.4)

Lemma 5.3. � is a r.l.f ⇐⇒ ∃W ∈ R2n×2 such that �(X) = WJ X, ∀X ∈ R2n×2.

Proof. Let X be X = ∑n
i=1EiMi with Mi ∈ R2×2. Setting �(Ei) = NJ

i , then �(X) = ∑n
i=1N

J
i Mi = (

∑n
i=1EiNi)

J

(
∑n

i=1EiMi) = WJ X, with W = ∑n
i=1EiNi . �

5.2. 2-D symplectic Householder transformations (2-DSH)

Definition 5.4. H is said to be a 2-D symplectic Householder transformation of direction V if H is a symplectic 2-D
transvection.

Let T2(R
2n) the set of such transformations. The following theorem specifies the form of a 2-DSH.

Theorem 5.5. H is a 2-D symplectic Householder of direction V �= 0 iff there exists � ∈ �2 such that

H = I + V �J V J , (5.5)

with

rank(V ) = 1 or V J V det(�) + trace(�) = 0. (5.6)
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Proof. From Definition 5.4 and Lemma 5.3, the form of a 2-D symplectic Householder transformation H is given by
H = I + V WJ where V, W ∈ R2n×2. H is symplectic iff HJ H = I which is equivalent to

V WJ + WV J + WV J V WJ = 0. (5.7)

If rank(W) = 2, then rank(WJ (WJ )T) = 2 and WJ (WJ )T ∈ �2 is non-singular. Using (5.7), we get

V = W�J , (5.8)

where �J ∈ �2 and is given by

�J = −(V J + V J V WJ )(WJ )T(WJ (WJ )T)−1. (5.9)

It follows then that H = I + W�J W which is the desired form.
If rank(W) = 1, we get WV J V WJ = 0. In the fact, setting V = [v1, v2] and W = [�w1, �w1], where w1 �= 0 and

(� �= 0 or � �= 0). We obtain

WWJ = [�w1, �w1]
[−�wT

1

�wT
1

]
, J = 0.

From Lemma 2.2, we get

WV J V WJ = vT
1 Jv2WWJ = 0.

Moreover, Eq. (5.7) becomes

V WJ + WV J = 0. (5.10)

Developing (5.10), we have

[v1, v2]
(

0 −1

1, 0

) [
�wT

1

�wT
1

]
+ [�w1, �w1]

(
0 −1

1, 0

) [
�vT

1

�vT
2

]
= 0,

which is equivalent to

(−�v1 + �v2)w
T
1 = w1(−�v1 + �v2)

T. (5.11)

If −�v1 + �v2 �= 0, then from (5.11), we get w1 = �(−�v1 + �v2) for a certain � ∈ R and then W = V �J for a certain
� ∈ �2 and one gets the desired form.

If −�v1 + �v2 = 0, we will show that V WJ = 0 and then H is reduced to the identity. Therefore, we get the desired
form, with �J = 0 ∈ �2. In fact, there is no loss of generality, if one takes � = 1. It follows

V WJ = [v1, �v1]
(

0 −1
1, 0

) [
wT

1
�wT

1

]
J = 0.

Thus the expression of any 2-DSH of direction V is necessarily given under the form

H = I + V �J V . (5.12)

Now, from (5.12), H is symplectic (HJ H = I ) is expressed by

V (�J + � + �V J V �J )V J = 0. (5.13)

From Lemma 2.2, Eq. (5.13) can be written as

V [trace(�) + vT
1 Jv2 det(�)]I2V

J = 0. (5.14)

It follows then that H is symplectic iff

V V J = 0 or trace(�) + vT
1 Jv2 det(�) = 0. (5.15)

To end the proof, since V V J = −v1v
T
2 + v2v

T
1 , we get V V J = 0 iff rank(V )�1. �
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Unlike for the extended ”symmetry” (4.3), it is important to note that for a 2-DSH of direction V, the subspace ran(V )

could be isotropic (i.e., V J V = 0).

Remark 5.6. The 2-D symplectic Householder transformation H = I + V �J V J ∈ T2(R
2n) is symplectic, but not

necessarily skew-Hamiltonian.

Proposition 5.7. H = I + V �J V J ∈ T2(R
2n) let unchanged x ∈ [ran(V )]⊥′

and let invariant the subspace ran(V ).

Proof. If x ∈ [ran(V )]⊥′
then V J x = 0 and Hx = x. If x ∈ ran(V ) then x can be written as x = V z for a certain

z ∈ R2. It follows Hx = V z + V �J z = V (I2 + �J )z ∈ ran(V ). �

The mapping problem for the 2-D symplectic Householder transformations is solved as follows:

Theorem 5.8. Let X = [x1, x2], Y = [y1, y2] ∈ R2n×2 with XJ X = YJ Y �= 02. If

det((Y − X)J X) �= 0, (5.16)

then

∃H ∈ T2(R
2n)|HX = Y .

Proof. Setting H = I + (Y − X)�J (Y − X)J . Then HX = Y ⇐⇒ Y − X = (Y − X)�J (Y − X)J X ⇐⇒
(Y − X)(I2 − �J (Y − X)J X) = 0. Then (5.16) implies rank(Y − X) = 2 and thus (I2 − �J (Y − X)J X) = 0.
Finally, we obtain �J = [(Y − X)J X]−1. It is easy to verify that �J satisfies the condition (5.6). �

Remark 5.9. Eq. (5.16) can easily be checked since

det((Y − X)J X)) = det((Y − X)TJX) = yT
1 Jx1.y

T
2 Jx2 − xT

2 J (y1 − x1).x
T
1 J (y2 − x2). (5.17)

Furthermore, without the additional condition (5.16), the mapping problem takes the form

Theorem 5.10. Let X = [x1, x2], Y = [y1, y2] ∈ R2n×2|XJ X = YJ Y �= 02. Then ∃H1 ∈ T2(R
2n), H2 ∈ T2(R

2n)

|H2H1X = Y .

Proof. If det((Y − X)J X)) �= 0, then the result is straightforward from Theorem 5.8. Assume now that
det((Y − X)J X)) = 0. There are two cases.

First case: xT
1 Jy2 �= 0 or xT

2 Jy1 �= 0. We choose � ∈ R\{0, 1} such that

xT
2 Jy1 + 1

�
xT

1 Jy2 �= 0. (5.18)

We set Z = [�y1, y2/�]. It is easy to check that ZJ Z = YJ Y . Then, we have

det((Z − X)J X) = xT
1 Jy1.x

T
2 Jy2 − xT

1 J
(y2

�
− x2

)
.xT

2 J (�y1 − x1). (5.19)

Developing the right-hand side of Eq. (5.19) and using det((Y − X)J X)) = 0, we obtain

det((Z − X)J X) = (� − 1)xT
1 Jx2

(
xT

2 Jy1 + 1

�
xT

1 Jy2

)
�= 0.

Thus, from Theorem 5.8, there exists H1 ∈ T2(R
2n)|H1X = Z. Indeed, Z is carefully chosen since from

det((Y − Z)J Z) = zT
1 Jy1.z

T
2 Jy2 − zT

1 J (y2 − z2).z
T
2 J (y1 − z1),

and using z1 = �y1, and z2 = y2/�, we obtain

det((Z − X)J X) = [(� − 1)(yT
1 Jy2)]2

�
�= 0.

Thus, from Theorem 5.8, there exists H2 ∈ T2(R
2n)|H2Z = Y, i.e., H2H1X = Y .
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Second case: xT
1 Jy2 = 0 and xT

2 Jy1 = 0. We set Z = [z1, z2], with z1 = x1 + y1 and z2 = x2. In one hand, we have
zT

1 Jz2 = (xT
1 + yT

1 )Jx2 = xT
1 Jx2 and thus XJ X = ZJ Z. On the other hand, we get

xT
1 Jz2 = xT

1 Jx2 �= 0, (5.20)

and

zT
1 Jy2 = (x1 + y1)

TJy2 = yT
1 Jy2 �= 0. (5.21)

Thus, from the first case, we have: there exists H1 ∈ T2(R
2n)|H1X = Z (which corresponds to Eq. (5.20)) and there

exists H2 ∈ T2(R
2n)|H2Z = Y (which corresponds to Eq. (5.21)). Thus H2H1X = Y . �

Proposition 5.11. We have H2 ⊂ T2(R
2n).

Proof. Let H ∈ H2. Then, there exists V ∈ R2n×2 with V J V = I2 such that H = I − 2V V J . Thus, it can be written
as

H = I + V �J V J with � = −2I2.

Since � = −2I2 satisfies (5.6), it follows that H ∈ T2(R
2n). �

In [13], Paige et al. introduced also the matrix transformation

J (k, 	) =
(

C S

−S C

)
, (5.22)

where

C = diag(Ik−1, cos 	, In−k), S = diag(0k−1, sin 	, 0n−k).

J (k, 	) is a Givens symplectic matrix, which is an “ordinary” 2n-by-2n Givens rotations that rotates in planes k and
k+n [18]. Such transformations are used [17,13] to zero prescribed entries in a vector, in a structure-preserving QR-like
algorithm, for Hamiltonian or skew-Hamiltonian matrices. We present here the interesting result.

Proposition 5.12. The transformation J (k, 	) given by (5.22) is a 2-DSH.

Proof. Note first that J (k, 	) is characterized by

J (k, 	)Ei = Ei for i �= k

and

J (k, 	)Ek = Ek

(
cos 	 sin 	
− sin 	 cos 	

)
.

Consider

H(k, 	) = I + Ek�
J EJ

k , (5.23)

with

I2 + �J =
(

cos 	 sin 	
− sin 	 cos 	

)
. (5.24)

In one hand, it is obvious that � given by (5.24) satisfies (5.6) and thus

H(k, 	) ∈ T2(R
2n).

On the other hand, since EJ
k Ei = �kiI2, we obtain

H(k, 	)Ei = Ei = J (k, 	)Ei, for i �= k
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and

H(k, 	)Ek = Ek + Ek�
J = Ek(I2 + �J ) = J (k, 	)Ek .

Thus H(k, 	) = J (k, 	). �

6. SR-algorithm via the 2-D symplectic Householder transformations

In addition to the two types of elementary symplectic matrices H(k, w) and J (k, 	) given by (4.5)–(5.22),
Bunse-Gerstner et al. [5] introduced a third type defined by

G(k, 
) =
(

D F

0 D−1

)
, (6.1)

where k ∈ {2, . . . , n}, 
 ∈ R and D, F are the n × n matrices

D = In +
(

1

(1 + 
2)1/4 − 1

)
(ek−1e

T
k−1 + eke

T
k ),

F = 


(1 + 
2)1/4 (ek−1e
T
k + eke

T
k−1).

The matrix G(k, 
) is a non-orthogonal symplectic matrix. Such a type was introduced in order to proceed to a SR
factorization for at least almost arbitrary matrices, i.e., up to a set of measure zero. Their algorithm is quite complicated.
It involves heterogeneous transformations. It is an empirical algorithm and thus, it lacks theoretical results. There is for
example no algebraic analysis behind it. The algorithm is not the corresponding one, to the classical QR factorization,
via Householder transformations. We demonstrated here that there is no need to distinguish between H(k, w) and
J (k, 	) since they are just two 2-DSH.

We outline here how to obtain, in an unified way, a SR factorization for almost arbitrary matrices, via only 2-DSH.
The introduction of G(k, 
) is superfluous. A 2-DSH is constructed so that one gets a SR factorization by following
the same scheme as in QR factorization via Householder transformations. Thus, the new algorithm is in the symplectic
case, the equivalent of QR factorization via Householder transformations. The new algorithm is constructed following
an algebraic analysis. Theoretical results can be then established.

6.1. SR algorithm, via the 2-D symplectic Householder transformations

Let us first present the following result, which will be used in the algorithm.

Lemma 6.1. Let U, V, W be subspaces of R2n such that

V = U ⊕ W with U⊥′W . (6.2)

Let �1 : U −→ U (respectively, �2 : W −→ W ) a symplectic isometry.
The map �1⊥′�2 : V −→ V defined by

∀u ∈ U, ∀w ∈ W, �1⊥′�2(u + w) = �1(u) + �2(w) (6.3)

is a symplectic isometry. Moreover, if � ∈ T2(W) then IU⊥′� ∈ T2(V ), where IU is the identity on U .

Proof. Let u1, u2 ∈ U and w1, w2 ∈ W and set v1 = u1 + w1 and v2 = u2 + w2. Set �3 = �1⊥′�2. We have

�3(v1)
J �3(v2) = �3(v1)

TJ�3(v2) = (�1(u1) + �2(w1))
TJ (�1(u2) + �2(w2)).

From (6.2), we obtain

�1(u1)
TJ�2(w2) = �2(w1)

TJ�1(u2) = 0.
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Thus

�3(v1)
J �3(v2) = �1(u1)

TJ�1(u2) + �2(w1)
TJ�2(w2).

Since �1, �2 are isometries, we have

�1(u1)
TJ�1(u2) = uT

1 Ju2 and �2(w1)
TJ�2(w2) = wT

1 Jw2.

Then we obtain

�3(v1)
J �3(v2) = uT

1 Ju2 + wT
1 Jw2 = (u1 + w1)

TJ (u2 + w2) = vJ
1 v2,

i.e., �3 is a symplectic isometry.
For v ∈ V , let uv ∈ U, wv ∈ W such that v = uv + wv . Suppose that � ∈ T2(W). Then � can be written as

� = IW + Z�J ZJ ∈ T2(W),

for a certain Z ∈ W 2 and � ∈ �2 satisfying (5.6). Thus

IU⊥′�(v) = uv + �(wv) = uv + wv + Z�J ZJ wv = v + Z�J ZJ wv .

Since U⊥′W , we have ZJ uv = 0 and then ZJ wv = ZJ (uv + wv) = ZJ v.
Therefore

IU⊥′�(v) = (IV + Z�J ZJ )v.

It is now obvious that IV + Z�J ZJ ∈ T2(V ). �

Let �+
2 ⊂ �2 the subset of upper triangular matrices. The main steps of the algorithm can be also understood as

follows. Let A be a 2n × 2n matrix. AE1 represents the first and the n + 1th columns of A. Let 
1 be an arbitrary
element of �+

2 such that 
J
1 
1 = (AE1)

J AE1. The first step is

• Find H1 ∈ T2(R
2n) such that H1AE1 = E1
1. One uses Theorems 5.8 or 5.10 for determining explicitly H1 =

I + V1�J
1 V J

1 , where V1 ∈ R2n×2 and �1 ∈ �2.
The action of H1 on AE1 is

Zero in the second and last rows of H1AE1 represents the null vector in Rn−1.
• Update A by

H1A =

⎛
⎜⎜⎜⎝

× × × ×
0 A

(1)
11 0 A

(1)
12

0 × × ×
0 A

(1)
21 0 A

(1)
22

⎞
⎟⎟⎟⎠ , (6.4)

where A
(1)
ij for i, j = 1, 2 are n − 1 × n − 1 matrices.
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Fig. 1. pascal(8).

• Set Ã(2) =
(

A
(1)
11 A

(1)
12

A
(1)
21 A

(1)
22

)
. The second step is

• Find H̃2 ∈ T2(R
2n−2) so that H̃2Ã

(2) has the form (6.4), i.e.,

H̃2Ã
(2) =

⎛
⎜⎜⎜⎝

× × × ×
0 A

(2)
11 0 A

(2)
12

0 × × ×
0 A

(2)
21 0 A

(2)
22

⎞
⎟⎟⎟⎠ ,

where A
(2)
ij for i, j = 1, 2 are n − 2 × n − 2 matrices. Theorems 5.8 or 5.10 allow us to determine explicitly

H̃2 = I + Ṽ2�J
2 Ṽ J

2 , where Ṽ2 ∈ R2n−2×2 and �2 ∈ �2. Set

W = ran(E1)
⊥′

, and ˜̃
H 2 = IW + Ṽ2�

J
2 Ṽ J

2 ,

where ũ2 ∈ Rn−1×2, w̃2 ∈ Rn−1×2.

• We get H2 = Iran(E1)⊥′ ˜̃
H 2 = IR2n + V2�J

2 V J
2 and then

It is important to note that H2H1AE1 = H1AE1, i.e., the first and the n + 1th columns (respectively, rows) of H1A

are unchanged by the action of H2. The next step is obtained in a similar way.
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• At the n − 1th step, we get

Hn−1 . . . H2H1A = R =
(

R11 R12
R21 R22

)
,

where R11, R12, R21, R22 are n×n upper triangular matrices. The symplectic factor S is given by S=HJ
1 HJ

2 . . . HJ
n−1.

The algorithm can be easily adapted to a non-square 2n × 2k matrix.

6.2. Numerical experiments

Numerical results, concerning the preservation of geometric properties of the exponential operator, when the matrix
is Hamiltonian, are reported in [11]. The accuracy in the evaluation of the system energy is much higher in the proposed
structure preserving method [11] than the standard Krylov process. The proposed structure preserving method uses the
modified symplectic Gram–Schmidt algorithm [15] as a key step. The modified version of symplectic Gram–Schmidt
algorithm presents a significant improvement with respect to the no modified version [15]. In the following numerical
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experiments, we remark that the J-orthogonality is more preserved in a SR decomposition via 2-DSH than via the
best modified version of symplectic Gram–Schmidt. Thus, we expect for example, that the preservation of the above
geometric properties of the exponential operator, could be still significantly improved if an adapted SR factorization
via 2-DSH is used. We mention also that we used a very simple version of the algorithm, in the sense that no particular
attention was given to its optimal implementation of the algorithm. This will be the aim of future investigations
(Figs. 1–4).

7. Conclusion

In this paper, a geometric approach is presented leading us to skew-Hamiltonian 2-D Householder transformations.
The properties of such transformations are studied in details. However, the algebraic approach allowed us to present
more general elementary symplectic Householder transformations: the 2-D symplectic Householder transformations (2-
DSH). Their features are established in details, providing interesting results.A SR-algorithm based on only these 2-DSH
transformations is constructed. We demonstrated that the algorithm is the corresponding one, in the symplectic case, to
the QR-factorization, via Householder transformations, in the Euclidean case. The new algorithm is numerically better
than the best of the modified symplectic Gram–Schmidt algorithms. Furthermore, the new algorithm is theoretically
and numerically rich. These aspects will be the aim of a future work. Thus, questions as error analysis, choice of the
free parameters, link with modified versions of symplectic Gram–Schmidt, breakdowns, etc., will be treated. We expect
that the approach presented here will be very helpful for such investigations.
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