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OBJECTIVES The purpose of this study was to compare a novel compressed sensing (CS)–based single–breath-hold

multislice magnetic resonance cine technique with the standard multi–breath-hold technique for the assessment of left

ventricular (LV) volumes and function.

BACKGROUND Cardiac magnetic resonance is generally accepted as the gold standard for LV volume and function

assessment. LV function is 1 of the most important cardiac parameters for diagnosis and the monitoring of treatment

effects. Recently, CS techniques have emerged as a means to accelerate data acquisition.

METHODS The prototype CS cine sequence acquires 3 long-axis and 4 short-axis cine loops in 1 single breath-hold

(temporal/spatial resolution: 30 ms/1.5 � 1.5 mm2; acceleration factor 11.0) to measure left ventricular ejection fraction

(LVEFCS) as well as LV volumes and LV mass using LV model–based 4D software. For comparison, a conventional stack of

multi–breath-hold cine images was acquired (temporal/spatial resolution 40 ms/1.2 � 1.6 mm2). As a reference for the

left ventricular stroke volume (LVSV), aortic flow was measured by phase-contrast acquisition.

RESULTS In 94% of the 33 participants (12 volunteers: mean age 33 � 7 years; 21 patients: mean age 63 � 13 years

with different LV pathologies), the image quality of the CS acquisitions was excellent. LVEFCS and LVEFstandard were similar

(48.5� 15.9% vs. 49.8� 15.8%; p¼ 0.11; r¼ 0.96; slope 0.97; p< 0.00001). Agreement of LVSVCS with aortic flow was

superior to that of LVSVstandard (overestimation vs. aortic flow: 5.6 � 6.5 ml vs. 16.2 � 11.7 ml, respectively; p ¼ 0.012)

with less variability (r ¼ 0.91; p < 0.00001 for the CS technique vs. r ¼ 0.71; p < 0.01 for the standard technique). The

intraobserver and interobserver agreement for all CS parameters was good (slopes 0.93 to 1.06; r ¼ 0.90 to 0.99).

CONCLUSIONS The results demonstrated the feasibility of applying the CS strategy to evaluate LV function

and volumes with high accuracy in patients. The single–breath-hold CS strategy has the potential to replace

the multi–breath-hold standard cardiac magnetic resonance technique. (J Am Coll Cardiol Img 2014;7:882–92)
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AB BR E V I A T I O N S

AND ACRONYM S

CMR = cardiac magnetic

resonance

CS = compressed sensing

(technique)

LVEDV = left ventricular

end-diastolic volume

LVEF = left ventricular
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magnetic resonance (CMR) is generally accepted as
the gold standard to yield the most accurate mea-
sures of LVEF and left ventricular (LV) volumes and
mass. These characteristics, together with the addi-
tional value of CMR to characterize pathological
myocardial tissue, were the basis for CMR to be rec-
ommended for heart failure work-up in U.S. guide-
lines (5) and to be assigned a class I indication in
the new European heart failure guidelines (6).
TABLE 1 Imaging Parameters of the Standard Cine Sequence (Standard SSFP),

Prototype CS-Based Cine Sequence, and Phase-Contrast Flow Sequence (Aortic Flow)

Standard SSFP CS Technique Aortic Flow

TR, ms 3.06 2.94 10.5

TE, ms 1.28 1.23 3.04

Field of view, mm 300 � 240 420 � 340 340 � 238

Image matrix 256 � 180 272 � 272 192 � 192

Spatial resolution, mm 1.2 � 1.2 1.5 � 1.5 1.8 � 1.8

Temporal resolution, ms 49 30 42

Slice thickness/gap, mm 8/2 6 6

Flip angle 60� 70� 20�

Bandwidth, Hz/pixel 930 875 491

k lines/segment 16 10 4

Cardiac phases 25* 24† 20*

Breath-holds, n
(duration of breathhold, s)

4–6 (12)‡ 1 (14)§ 1 (20)

VENC, cm/s — — 150

*Retrospective electrocardiogram (ECG) triggering. †Prospective ECG triggering. ‡To cover the LV in this study
population, 4 to 6 breath-holds (i.e., 8 to 12 short-axis slices) were required. §Seven slices were acquired
in 1 breath-hold to cover the LV.

CS ¼ compressed sensing; LV ¼ left ventricle; SSFP ¼ steady-state free precession; TE ¼ echo time;
TR ¼ repetition time; VENC ¼ velocity encoded.

SEE PAGE 893

ejection fraction

LVESV = left ventricular

end-systolic volume

LVSV = left ventricular

stroke volume
The evaluation of LV volumes and LVEF is based
on well-defined and generally-accepted CMR pro-
tocols (7,8), and it involves the acquisition of a stack
of LV short-axis cine images that are acquired in
multiple breath-holds. Quality criteria (9) for these
functional images are available and have been
implemented (e.g., within the European CMR regis-
try) (10). Although standard protocols are well
established, it is desirable to speed up CMR acquisi-
tions to reduce motion artifacts in severely ill pa-
tients who cannot hold their breath for an extended
amount of time, to increase spatial and/or temporal
resolution per unit time of acquisition, or simply to
shorten the CMR examination. A variety of recent
acceleration techniques (11), such as spatiotemporal
correlations (12–14) and spatially selective excitations
(15), could speed up acquisitions several fold. As an
alternative, compressed sensing (CS) was recently
proposed as a means to considerably accelerate data
acquisition. Conventional magnetic resonance (MR)
images once acquired can be compressed with little
or no perceptible loss of information (e.g., by JPEG
standards). The concept of CS aims to no longer apply
such compression algorithms to the acquired mag-
netic resonance image data but to the acquisition
process itself and then to reconstruct the under-
sampled data with novel nonlinear reconstruction
algorithms (Online Appendix) (16). This helps accel-
erate image acquisition several fold and theoretically
enables a cine acquisition of the whole heart in 1
single breath-hold, whereas conventional data
acquisition that covers the whole heart by short axes
often lasts up to 10 min. The aim of the study was to
demonstrate that this CS concept: 1) is applicable to
the heart in a clinical setting; 2) produces data to
accurately quantify LV function, volumes, and mass;
and 3) provides data quality that allows for accept-
able measurement reproducibility.

METHODS

CS TECHNIQUE. The prototype CS sequence devel-
oped for this study achieves incoherent sampling by
initially distributing the readouts pseudo-
randomly in the Cartesian k-space (17). In
addition, for cine-CMR, a pseudo-random
offset is applied from frame to frame that
results in temporal incoherence. Finally, a
variable sampling density in k-space stabi-
lizes the iterative reconstruction. The recon-
struction program is implemented directly on
the scanner and runs a nonlinear iterative
reconstruction (80 iterations) with k-t regu-
larization derived from a parallel imaging
reconstruction that takes coil sensitivity
maps into account. For cine CMR, no addi-
tional reference scans are needed because

the coil sensitivity maps are intrinsically calculated
from the temporal average of the input data in a
central region of k-space (Table 1, Online Appendix).

STUDY PROTOCOL. Healthy volunteers (n ¼ 12) and
patients with different pathologies of the LV (n ¼ 21)
were included in the study. The robustness and pre-
cision of the CS approach to measure LVEF and
LV volumes and mass were assessed in comparison
with a standard high-resolution steady-state free
precession cine CMR approach. All CMR examina-
tions were performed on a 1.5-T magnetic resonance
scanner (MAGNETOM Aera, Siemens AG, Erlangen,
Germany). The imaging protocol consisted of cardiac
localizers followed by the acquisition of a stack of
conventional short-axis steady-state free precession
cine images covering the entire LV (Table 1). Next, to
test the new CS-based technique, slice orientations



FIGURE 1 3D Reconstruction Derived From 7 Slices Acquired Within a Single Breath-Hold

The tracking of systolic left ventricular (LV) long-axis shortening allows for accurate LV volume measurements (yellow plane indicates mitral

valve plane) in a volunteer (A to D) and in a patient with ejection fraction of 32% (E to H). Any orientation of the 3-dimensional (3D)

representation of the LV is available for inspection of function.

TABLE 2 Characteristics of Study Population (N ¼ 33)

Volunteers
(n ¼ 12)

Patients
(n ¼ 21) p Value

Age, yrs 33 � 8 63 � 14 <0.0001

Male 9 (75) 18 (86) —

BMI, kg/m2 25.2 � 5.1 26.2 � 3.6 0.527

BSA, m2 1.9 � 0.2 1.9 � 0.19 0.394

Rhythm, SR/PVCs/PM 12/—/— 19/1/1 —

HR, beats/min 66 � 10 71 � 13 0.203

Cardiovascular risk factors — 18 (85) —

Family history of CAD — 3 (14) —

Hypertension — 11 (52) —

Hypercholesterolemia — 13 (62) —

Diabetes — 3 (14) —

Smoking — 10 (47) —

Diagnosis

Coronary artery disease* — 14 (66) —

Valve pathology† — 16 (76) —

Moderate to severe — 6 (28) —

Minimal to mild — 9 (43) —

Ross procedure — 1 (5) —

Cardiomyopathy — 3 (14) —

AV block (CMR-conditional PM implanted) — 1 (5) —

Congenital heart disease‡ — 1 (5) —

LV measurements

LVEF, % 60.9 � 15.4 41.4 � 15.4 0.0002

LVEDV, ml 151.8 � 25.1 175.0 � 70.9 0.284

LVESV, ml 59.9 � 15.5 111.1 � 77.0 0.031

LVSV, ml 91.9 � 14.1 63.9 � 20.4 0.0002

LV mass, g 123.7 � 30.7 135.6 � 33.7 0.323

Values are mean � SD or n (%). *Patients with coronary artery disease underwent adenosine stress testing
and/or assessment of viability. †No echocardiography available in 2 patients. ‡Follow-up CMR examination after a
Ross procedure for congenital aortic valve stenosis.

AV ¼ atrioventricular; BMI ¼ body mass index; BSA ¼ body surface area; CAD ¼ coronary artery disease;
CMR ¼ cardiac magnetic resonance; HR ¼ heart rate; LV ¼ left ventricular; LVEDV ¼ left ventricular end-diastolic
volume; LVEF ¼ left ventricular ejection fraction; LVESV ¼ left ventricular end-systolic volume; LVSV ¼ left
ventricular stroke volume; PM ¼ pacemaker; PVC ¼ premature ventricular contraction; SR ¼ sinus rhythm.
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were planned to cover the LV with 4 short-axis slices
(positioned at roughly equidistant positions along the
LV long axis) complemented by 3 long-axis slices
(i.e., 2-, 3-, and 4-chamber slices). The long-axis
acquisitions were added to benefit from the high in-
plane spatial resolution to follow the mitral annulus
motion during the cardiac cycle. Because the recon-
struction algorithm is susceptible to aliasing in the
phase-encoding direction, the 7 slices were first ac-
quired with a non-cine acquisition to check for cor-
rect phase-encoding directions and, if needed, to
adjust the field-of-view to avoid fold-over artifacts.
After confirmation of correct imaging parameters, the
multislice prospectively electrocardiogram-triggered
CS acquisition was performed in a single breath-
hold (14 heart beats; acceleration factor 11.0)
(Table 1). As a reference, a phase-contrast flow mea-
surement (Table 1) in the ascending aorta was per-
formed to be compared with the left ventricular
stroke volumes (LVSVs) calculated from the standard
and CS cine data (LVSVcs and LVSVstandard).

The study protocol was approved by the ethics
committees of our institution, and all study parti-
cipants gave written informed consent before
enrollment.
IMAGE ANALYSES. The image quality of the CS and
standard cine CMR images was assessed based on
recently published criteria (9). Briefly, 1 point was
given if an artifact (wrap around, respiratory ghost,
cardiac ghost, image blurring/mistriggering, metallic,
or shimming) impeded the visualization of more than
one-third of the LV endocardial border at end-systole
and/or diastole on a single short-axis slice. If such



TABLE 3 Image Quality

Standard (12 Volunteers/21 Patients) CS (12 Volunteers/21 Patients)

Score 0 Score 1 Score 2 Score 3 Score 0 Score 1 Score 2 Score 3

LV coverage 12/21 — — — 12/21 — — —

Wrap around 12/21 — — — 9/18 —/4 — 1/2

Ghosts 12/18 —/3 — — 11/20 — — 1/—

Image blurring/mistriggering 11/18 1/2 —/1 — 12/21 — — —

Metallic artifact 12/21 — — — 12/21 — — —

Shimming artifact 12/21 — — — 12/21 — — —

Signal loss 12/21 — — — 12/21 — — —

Orientation of stack 12/21 — — — 12/21 — — —

Correct LV long axes 12/21 — — — 12/21 — — —

Slice thickness/gap 12/21 — — — not applicable

Total score 0.24 � 0.50 0.40 � 1.00

Quality score for standard versus CS was not significantly different (p ¼ 0.36 by Wilcoxon signed rank test).

Abbreviations as in Table 1.

FIGURE 2 Good-Quality Compressed Sensing Acquisition in a

79-Year-Old Patient

Quality score was 0 in a 79-year-old patient with left ventricular systolic

dysfunction (left ventricular ejection fraction 41%) and severe aortic regur-

gitation (arrow) before aortic valve replacement. No flow-related or fold-over

artifacts are visible. (A and B) Three-chamber view in diastole/systole.

(C and D) Short-axis view in diastole/systole. Abbreviation as in Figure 1.
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artifact involved 2 or $3 slices, 2 or 3 points were
given, respectively. For the standard cine CMR
images, these criteria were applied to the short-axis
acquisitions only because they are used exclusively
for volume calculations. For the CS quality assess-
ment, these criteria were applied to both the short-
and long-axis CS acquisitions because these slice
orientations were used for volume calculations with
this approach. For quantitative measurements, the
conventional stack of short-axis cine MR images was
analyzed by the Argus VF software (Siemens AG)
applying the Simpson rule. The CS cine data were
analyzed by the 4-dimensional (4D)–VF Argus soft-
ware (Siemens AG) (18). This software is based on
an LV model, and with relatively few operator in-
teractions, the contours for the LV endocardium
and epicardium are generated by the analysis tool.
This 4D analysis tool automatically tracks the
3-dimensional (3D) motion of the mitral annulus
throughout the cardiac cycle (Figure 1) and thus al-
lows for an accurate volume calculation, particularly
at the base of the heart.

Aortic flow was quantified by manually tracing a
region of interest on the ascending aorta of the
phase-contrast CMR images corrected for any phase
offset measured on the chest wall (Argus flow anal-
ysis package, Siemens AG). Because aortic flow was
performed distal to the coronary arteries, flow in the
coronary arteries was estimated as the LV mass
multiplied by 0.8 ml/min/g divided by heart rate (19).
This flow was added to the aortic flow before com-
parison versus volumetrically-determined LVSV. Pa-
tients were excluded from this analysis because the
presence of a mitral regurgitation of any degree
would cause an overestimation of the volumetric
LVSV in the patient group.
To assess intraobserver and interobserver repro-
ducibility of the CS technique, the CS cine images
were analyzed by 2 experienced cardiologists (G.V.
and P.M. [CMR level III experts]).
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STATISTICAL ANALYSES. The standard multi–
breath-hold and the novel single–breath-hold CS
techniques were compared using Bland-Altman (20)
and linear regression analyses. The same analyses
were performed to assess interobserver and intra-
observer variabilities of the CS technique. Compari-
sons of demographic and CMR data (Table 2) involved
the unpaired 2-tailed Student t test. Differences in
quality scores between the standard multi–breath-
hold and CS technique were explored using the
nonparametric Wilcoxon matched-pairs signed-rank
test. Differences between LVSV and aortic flow were
evaluated by paired Student t test. Values of p < 0.05
were considered statistically significant. Stata 12
software (StataCorp LP, College Station, Texas) was
used for statistical analyses.

RESULTS

STUDY POPULATION AND IMAGE QUALITY. Demo-
graphic data and image quality scores are given in
3 Compressed Sensing Acquisition in a 58-Year-Old Patient With

Cardiomyopathy

had a left ventricular ejection fraction of 8%, an apical thrombus

arrow), and pleural effusion (asterisk). Mild fold-over artifact in the

er view (white arrow); quality is sufficient to detect the apical

s (quality score of 0). (A and B) Two-chamber view in diastole/sys-

and D) Short-axis view in diastole/systole. Abbreviation as in Figure 1.
Tables 2 and 3, respectively. Excellent image quality
of the single–breath-hold multislice CS acquisitions
was obtained with a mean score of 0.39 � 0.79 (not
different from that of standard CMR: 0.24 � 0.50;
p ¼ 0.36) (Table 3, Figures 2, 3, and 4). Two CS ac-
quisitions had poor image quality (score $3) due to
fold-over artifacts (Figures 5A and 5B). Nevertheless,
all CS data were of adequate quality for quantitative
4D analysis (Figure 1). Figures 5C and 5D show ex-
amples of flow-related artifacts. Although small
structures such as trabeculations were visualized
in the CS data, smaller anatomic details such as
branches of coronary arteries were not detectable on
the CS images.

COMPARISON OF THE NEW SINGLE–BREATH-HOLD

CS APPROACH VERSUS THE STANDARD MULTI–

BREATH-HOLD CINE MR TECHNIQUE. The conven-
tional cine MR acquisitions were used as the “gold
standard” for measurements of LVEF, left ventricular
end-diastolic volume (LVEDV), left ventricular end-
systolic volume (LVESV), LVSV, and LV mass. These
images were collected with 4 to 6 breath-holds,
yielding 8 to 12 short-axis slices (the 3 long-axis ac-
quisitions were used occasionally to decide on the
most basal short-axis slice to be included for analysis;
otherwise, the long-axis acquisitions were not used
for analysis). For the acquisition of the CS cine data,
2 breath-holds were performed (1 non-cine acquisi-
tion to check for fold-over and 1 cine acquisition).
The CS cine acquisitions yielded a similar LVEF of
48.5 � 15.9% versus 49.8 � 15.8% measured by the
standard multi–breath-hold technique (p ¼ 0.11).
Excellent agreement was obtained by Bland-Altman
analysis (Figure 6).

LVEDV was slightly smaller by 6.0 � 10.2% (p ¼
0.0009) when measured by the CS approach, whereas
no differences were found for LVESV, LVSV, and LV
mass (Table 4). Bland-Altman and linear regression
analyses yielded good agreement for all 4 parameters
(Figure 7).

VALIDATION OF THE NEW SINGLE–BREATH-HOLD

MULTISLICE CS APPROACH. In the group of 12
healthy volunteers, excellent correlation was found
between LVSVCS and aortic flow, with an over-
estimation by LVSVCS of 5.6 � 6.5 ml/beat as illus-
trated in Figure 8A. The standard multi–breath-hold
CMR approach overestimated by 16.2 � 11.7 ml/beat
(p ¼ 0.012 vs. CS) (Table 4, Figure 8C), and its vari-
ability versus the reference aortic flow was larger
(Figures 8B and 8D).

INTRAOBSERVER AND INTEROBSERVER VARIABILITY

OF THE NEW SINGLE–BREATH-HOLD CS APPROACH.

Intraobserver and interobserver variabilities for the



FIGURE 4 Good-Quality Compressed Sensing Acquisition in a

56-Year-Old Patient

Patient had a dual-chamber pacemaker (arrows) (Advisa MRI SureScan System, Medtronic

Inc., Mounds View, Minnesota) implanted for complete atrioventricular block of unknown

origin. Cardiac magnetic resonance imaging was requested for the detection of myocarditis

or infiltrative cardiomyopathy. The pacemaker leads are visible in the right atrium and right

ventricle (arrows) without affecting the image quality (quality score of 0 [good]). (A and

B) Four-chamber view in diastole/systole. (C and D) Short-axis view in diastole/systole.

FIGURE 5 Fold-Over Artifact in the Superior-Inferior Direction on Short-Axis

and 2-Chamber Views

(A) Short-axis view. (B) Two-chamber view. Quality score is 3 (fold-over artifacts in>3 slices).

Flow-related artifacts in phase-encoding direction (arrows) on systolic phases in a volunteer

propagating over the aortic valve in the 3-chamber view (C) and over the mitral valve in the

4-chamber view (D). Quality score is 1 (image blurring in 1 slice, apical region in C).
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new CS approach were excellent, as given in Table 5.
The intraobserver and interobserver differences
ranged from �3.8% to �0.4% and from �9.7% to
þ0.7%, respectively, with slopes of regressions
ranging between 0.94 and 1.06 and between 0.93 and
1.06, respectively (Table 5).

DISCUSSION

PERFORMANCE OF THE SINGLE–BREATH-HOLD

CS APPROACH AND COMPARISON WITH OTHER

TECHNIQUES. Overall, the single–breath-hold CS
approach yielded a high image quality in 94% of
all participants (Table 3), and all examinations were
of sufficient quality to undergo quantitative 3D
LV model–based analysis. With recently-established
quality criteria applied (9), a score $3 (i.e., artifacts
in $3 slices) was obtained in only 2 participants
(6% of study participants). The standard cine
CMR technique is known to yield good image quality
in patients equipped with MR-conditional pace-
makers (21), and similarly, an excellent quality was
achieved with the CS approach in a pacemaker-
implanted patient as illustrated in Figure 4. The
high image quality of the CS technique translated into
high agreement for LVEF, with a mean difference
versus the standard multi–breath-hold technique of
1.3% (95% confidence interval [CI]: �7.2% to þ9.7%).
For interstudy variabilities of the standard LVEF
measurements, 95% CIs of �4.1% to þ4.3% were re-
ported (22,23), which are only slightly narrower than
the differences found between the standard cine and
CS technique in the current study. Thus, the vari-
ability between the standard and CS technique
observed in the current study was comparable to the
reproducibility of the standard technique itself.
Accordingly, the novel CS-based technique, although
much faster than the standard approach, may be
reproducible and accurate enough to replace the
standard multi–breath-hold CMR approach.

High agreement between the standard and CS
technique was also achieved for LVESV, with a
nonsignificant difference of 2.0 ml (Table 4). With the
presented single–breath-hold CS technique, LV mass
was also measured accurately, with a difference
versus the standard technique of 2% (95% CI: �16.8%
to þ12.8%). This interval for LV mass quantification
is small considering that the intraoperator variability
for standard multi–breath-hold LV mass measure-
ments was reported to be �12.3% to þ15.9% (22).

However, LVEDV was statistically smaller with
the CS approach by 9.9 ml (Table 4). Similarly, with
other highly-accelerated single–breath-hold tech-
niques that are based on spatiotemporal correlations
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TABLE 4 Compariso

Multislice CS Techniq

LVEF, %

LVEDV, ml

LVESV, ml

LVSV, ml

LV mass, g

Validation (n ¼ 12
volunteers)

Flow – LVSV, ml

Flow – LVSV, ml

Values are mean � SD.

Abbreviations as in Tabl
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such as kt-BLAST (12), TPAT (13), or TSENSE
(24), slightly smaller LVEDVs (�8.2 to �4.9 ml) and
slightly larger LV mass (1.1 to 13.1 g) were found
versus the conventional multi–breath-hold tech-
nique (LVESV was not significantly different).
Temporal filtering of the accelerated acquisitions
could result in such an underestimation of LVEDV
if, for example, the increase in LV volume during
atrial contraction was missed. In preliminary tests,
we determined the CS parameters that could track
n of Standard Multi–Breath-Hold CMR Versus Single–Breath-Hold

ue and Validation

Standard CMR
(n ¼ 33)

CS Technique CMR
(n ¼ 33)

Mean
Difference p Value

49.8 � 15.8 48.5 � 15.9 1.3 � 4.3 0.11

176.4 � 56.9 166.5 � 59.0 9.9 � 10.2 0.0009

94.5 � 63.2 92.4 � 66.4 2.0 � 11.7 0.24

82.8 � 25.6 74.1 � 22.7 8.7 � 12.8 0.11

128.8 � 32.1 131.2 � 32.6 �2.5 � 9.6 0.18

Aortic flow reference CS technique CMR

86.3 � 16.1 91.9 � 14.1 �5.6 � 6.5 0.01

Aortic flow reference Standard CMR

86.3 � 16.1 102.4 � 15.3 �16.2 � 11.7 0.0006

es 1 and 2.
the premature septal contraction in left bundle
branch block, a short-lived contraction occurring
during the first 30 to 60 ms after the R-wave trigger
(25). Thus, the presented technique is able to
detect phenomena occurring immediately after the
R-wave. Alternatively, at a lower signal-to-noise
ratio, the endocardial border, and consequently
blood-filled intertrabecular spaces, might be less
well detected, potentially resulting in a “smaller”
endocardial contour (i.e., underestimation of LVEDV
and overestimation of LV mass). If blood-filled
intertrabecular spaces are nearly absent in the
“compacted” end-systolic phase and are “under-
estimated” in end-diastole by accelerated tech-
niques, this may result in more precise ejection
volumes, which was observed in this study because
LVSVCS correlated better with aortic flow than the
standard approach.

The presented CS approach acquires 1 slice per 2
heart beats, whereas kt-BLAST acquires 1 slice per 1.6
heart beats (12) and TPAT acquires 1 slice per 2.5 heart
beats (13). If the acquisition time is corrected for
spatial resolution, the CS approach is approximately 2
and 3 times faster than kt-BLAST and TPAT, respec-
tively, and it is 4 to 5 times faster than TPAT if cor-
rected for temporal resolution. The elegant real-time
CS approach of Feng et al. (26) acquires 1 slice per heart
beat, but voxels are 3 times larger and temporal reso-
lution is 1.5 times lower versus that in the current
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(A, C, E, and G) Bland-Altman. (B, D, F, and H) Linear regressions (diagonal line is line of identity). LVEDV ¼ left ventricular end-diastolic

volume; LVESV ¼ left ventricular end-systolic volume; LVSV ¼ left ventricular stroke volume; other abbreviations as in Figure 6.
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FIGURE 8 Validation of CS and Standard Cardiac Magnetic Resonance Imaging for Quantification of LVSV Versus Aortic Outflow

(A and C) Bland-Altman. (B and D) Linear regressions (diagonal line is line of identity). The novel CS approach was more accurate than the

conventional technique (A and C: underestimation of 5.6 � 6.5 ml vs. 16.2 � 11.7 ml; p ¼ 0.012), and its variability versus aortic flow was lower

(B and D). Abbreviations as in Figures 6 and 7.
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study. Future studies are needed to determine
whether this higher speed achieved by the presented
CS approach is translated into higher accuracy and
reproducibility versus other highly-accelerated
techniques.

The presented CS technique also offers the advan-
tage that functional information in at least a single
plane can be obtained in patients unable to hold their
breath for several heart beats or in patients with
arrhythmias.
VALIDATION OF THE NOVEL SINGLE–BREATH-HOLD

CS TECHNIQUE. To accurately account for the
long-axis shortening of the LV, a set of radial long-
axis acquisitions was proposed, which achieved
good reproducibility in humans and excellent agree-
ment for volumes in porcine hearts (27). In the
current approach, we combined long-axis CS acqui-
sitions to benefit from their high in-plane spatial
resolution to accurately assess the position of the
mitral valve annulus, and short-axis CS acquisitions
were added to minimize partial volume artifacts that
can occur near the papillary muscles on long-axis
orientations. In the volunteer group without mitral
insufficiency, the flow in the ascending aorta was
used as a reference for LVSV. When this multislice
CS acquisition scheme was combined with the 3D
LV model–based analysis, the LVSV results indicated
that the single–breath-hold CS approach was more
accurate than the conventional multi–breath-hold
approach when volumetric LVSV was compared with
aortic flow (difference 5.6 ml vs. 16.2 ml, respec-
tively; p ¼ 0.012) (Figure 8A). More importantly,
LVSVCS was not only more precise but also less
variable than that found with the conventional
approach (i.e., smaller SD of 6.5 ml/beat vs. 11.7 ml/
beat of the standard multi–breath-hold approach in
comparison with aortic flow) (Table 4, Figure 8B).
One might infer from these LVSV results that LVEDV
and LVESV were also measured more accurately by
the CS approach as compared with the conventional
multi–breath-hold approach. Most likely the higher
accuracy of the CS approach was due to the fact that
this technique allows correct tracking of the 3D mo-
tion of the base of the heart during the cardiac cycle;



TABLE 5 Intraobserver and Interobserver Variabilities of the Single–Breath-Hold

Multislice CS Technique

Bland-Altman (n ¼ 33) Correlation (n ¼ 33)

Mean SD % Mean % SD r slope p Value

Intraobserver

LVEF, % �0.4 �3.4 �2.5 �13.3 0.97 0.99 <0.00001

LVEDV, ml �2.1 �6.5 �1.4 �4.5 0.99 0.99 <0.00001

LVESV, ml 0.1 �4.5 �0.4 �7.0 0.99 1.02 <0.00001

LVSV, ml �2.2 �8.1 �3.8 �15.0 0.94 0.94 <0.00001

LV mass, g �0.5 �11.2 �0.8 �7.9 0.93 1.06 <0.00001

Interobserver

LVEF, % 1.1 �3.9 0.7 �19.0 0.96 1.02 <0.00001

LVEDV, ml �10.8 �11.2 �7.4 �8.4 0.98 1.06 <0.00001

LVESV, ml �7.0 �7.5 �9.7 �11.0 0.99 1.03 <0.00001

LVSV, ml �3.8 �10.0 �6.6 �21.4 0.90 1.03 <0.00001

LV mass, g 0.1 �13.7 �0.2 �9.6 0.92 0.93 <0.00001

Abbreviations as in Tables 1 and 2.
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inaccurate slice positioning at the base of the heart
with conventional short-axis slices can translate into
relatively large errors (28). Furthermore, with a sin-
gle–breath-hold approach, all acquired slices are
registered in space, which allows for more precise
post-processing. With an accurate measurement of
the LVSV, the quantification of mitral insuffi-
ciency should theoretically benefit (when mitral
regurgitant volume is calculated as LVSV � aortic
forward flow).

We observed a slight overestimation of the
LVSVCS of 5.6 ml/beat in comparison with that of
aortic flow. Because underestimation of aortic flow
by the phase-contrast technique is unlikely in
tricuspid aortic valves (29), overestimation of
LVSVCS may be considered. LV trabeculations are
typically included into the endocardial LV contour
in the end-diastolic but less so in the compacted
end-systolic phase, potentially resulting in a small
underestimation of LVESV and thus overestimation
of LVSV. Captur et al. (30) reported a mass of LV
trabeculations in volunteers of 8.2% of the total LV
mass (corresponding to 10.1 g in our volunteer
population), which can explain the small over-
estimation of the LVSVCS in the present study.

ROBUSTNESS OF THE NEW SINGLE–BREATH-HOLD

MULTISLICE CS APPROACH. For the LVEF mea-
surements by the CS technique, intraobserver and
interobserver reproducibilities were �3.4% and
�3.9%, respectively (see Table 5 for SD of the dif-
ferences). For the interobserver variability of the
standard multi–breath-hold technique, �3% to �6%
were reported (31,32), closely matching the repro-
ducibility of the novel CS technique. Similarly, for
the LVESV, the reported SD was approximately
�9.5% in volunteers (32) and �7 ml in patients (31),
again matching the �8.4% and �7.5 ml for the CS
technique.

However, for LVEDV and LV mass, SDs of approx-
imately �1% and �5.5% (32) and �5.5 ml and �6.5 g
(31) were achieved, respectively, which are lower
than the CS values reported here (�8.4%, �9.6%,
�11.2 ml, and �13.7 g, respectively).

STUDY LIMITATIONS. It should be mentioned that
this accelerated single–breath-hold CS approach is
adequate for LVEF and LV volume/mass measure-
ments, whereas the evaluation of small pathological
structures as present in cardiomyopathies or con-
genital heart diseases is assumed to be more reliable
when performed on conventional cine images.

A current limitation of the CS approach is its sus-
ceptibility for fold-over artifacts (Figures 5A and 5B).
Therefore, the field of view must cover the entire
anatomy, and thus, some penalty in spatial resolution
may occur in relation to the patient’s anatomy. In
addition, the sparsity in the temporal domain may
be limited in anatomic regions of very high flow;
therefore, in some acquisitions, flow-related artifacts
occurred in the phase-encoding direction during
systole (Figures 5C and 5D). Also, in its current
version, the sequence was prospectively triggered;
thus, it did not cover the very last phases of the
cardiac cycle. Finally, the reconstruction times for the
CS images lasted 1.75 min, precluding an immediate
assessment of image quality or using these images to
plan next steps of a CMR examination. However,
graphic processing unit–based reconstruction algo-
rithms can be used in the future to overcome this
limitation.

CONCLUSIONS

The results showed that CS-based MR acquisitions
were applicable to the heart in a clinical setting. This
novel, fast acquisition strategy allows for covering
the entire LV with high temporal and spatial resolu-
tion within a single breath-hold. The image quality
based on these results is adequate to yield highly
accurate measures of LVEF, LV volumes, and LV
mass.
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