Smooth muscle specific disruption of the endothelin A receptor in mice reduces arterial pressure and affects vascular development
Donald Kohan, Lisa Lesniewski, Anthony Donato, Lise Sorensen, Dean Li, Alfred van Hoek, Deborah Stuart

Department of Medicine, University of Utah Health Sciences Center, USA
E-mail address: donald.kohan@hsc.utah.edu (D. Kohan)

The role of vascular smooth muscle endothelin A receptors (ETA) in development and normal physiology remains incompletely understood. To address this, mice were generated with smooth muscle-specific knockout (KO) of ETA. Mice were homozygous for loxP-flanked exons 6–8 of the ETA gene (floxed) or were also hemizygous for a transgene expressing Cre recombinase under control of the smooth muscle-specific SM22 promoter (KO mice). Genotyping at 17 days postnatal yielded a 5:1 ratio of floxed: KO mice. Smooth muscle actin staining of embryos at day E9.5 revealed increased tortuosity in dorsal aortae. Mice surviving to weaning developed and bred normally. ETA KO mice aged 2–3 months manifested EDNRA gene recombination in all organs tested. Aortas from KO mice had a >90% reduction in ETA mRNA content, but no differences between genotypes in ET-1 or ETB mRNA levels. The addition of 0.01–100 nM ET-1 to isolated femoral arteries from floxed, but not KO, mice dose-dependently decreased vessel diameter (up to 80% reduction in the presence of ETB blockade). Intravenous infusion of ET-1 into floxed, but not KO, mice acutely increased mean arterial pressure (MAP) (by ~10 mm Hg). Telemetric analysis revealed decreased MAP in KO mice (by ~7–10 mm Hg); this MAP reduction was evident on normal and high salt diets. In conclusion, ETA is important for vascular development and is involved in the maintenance of arterial pressure under physiological conditions.

doi:10.1016/j.jlfs.2014.01.038

Potential association between circulatory level of endothelin-1 and metabolic syndrome in Bangladeshi rural women: A population-based cross-sectional study
Majedul Islamab,c, Subrina Jesminab,c, Arifur Rahmanbd, AKM Ahsan Habibjbd, Shimama Akterjkc, Nobutake Shimojoj, Sohel Zaedd, Naoto Yamaguchik, Sayeeda Nusrat Sultanaik, Satoru Kawanoi, Hidechika Akashii, Takashi Miyachii, Taro Mizutaniii

aFaculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
bHealth & Disease Research Center for Rural Peoples (HDRCRP), Mohammadpur, Dhaka 1207, Bangladesh
cNational Center for Global Health and Medicine (NCGM), 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
idShahid Ziaur Rahman Medical College, Bogra, Bangladesh
E-mail address: majedul1987@yahoo.com (M. Islam)

Background: Metabolic alterations and endothelial dysfunction are interrelated processes in type 2 diabetes and metabolic syndrome (MetS) that often develop in parallel. In this study we assessed the association of vasoactive peptide, endothelin-1 (ET-1) with MetS conducted in a study in rural Bangladeshi women. Design and methods: Plasma level of ET-1 was measured by ELISA and MetS was defined according to the criteria of NCEP-ATP III. Logistic regression was used to examine the association between circulatory ET-1 level and MetS and its components. Results: A total of 1485 rural Bangladeshi women aged ~15 years were studied using a population based cross-sectional survey. The prevalence rate of MetS was 25.05% (NCEP ATP III). Mean values of BMI, waist circumference, blood pressure (SBP, DBP), plasma level of fasting glucose, triglyceride, HDL, cholesterol, insulin and vascular endothelial growth factor were significantly higher in MetS group compared to non-MetS group. ET-1 levels were significantly increased in MetS subjects (MetS vs. non-MetS: 4.32 ± 0.24 vs. 3.41 ± 0.18, p = 0.003). In multivariable analyses, we found that ET-1 had significant positive associations with DBP (beta = 0.051, p = 0.001) and SBP (beta = 0.028, p < 0.001) even after adjusting for age. We also found that mean plasma levels of ET-1 increased in direct proportion to levels of MetS components. Conclusions: We here demonstrate for the first time that in Bangladeshi rural women, plasma level of ET-1 is related to MetS and its components, suggesting a possible role of ET-1 as a surrogate biomarker for the disease and its complications. This is the first study assessing ET-1 in MetS subjects from a South Asian country.

doi:10.1016/j.jlfs.2014.01.040

Abstracts e71

n = 4). Incubation induced ETB-mediated contraction in mesenteric, but not in femoral arteries. Arterial ligation had little effect on contractile or relaxant function of murine femoral arteries and did not induce a contractile response to S6c. Conclusions: Neointimal lesion formation did not induce S6c-mediated contraction in mouse femoral arteries, possibly because ETB receptor activity cannot be induced in this artery. These data do not support the need for mixed ETA/ETB antagonists for inhibition of neointimal lesion formation. The study was supported by the BHF (project grant and CoRE). Adner et al. (1998) Acta Physiol Scand, 163,121; Azuma et al. (1994) Am J Physiol, 267, H2259; Skovsted et al. (2012) Life Sci, 91, 593.

doi:10.1016/j.jlfs.2014.01.037

Plasma endothelin-1 level is a predictor of 10-year mortality in a general population: The Tanashimaru study
Kanako Yokoi, Hisashi Adachiab, Yuji Hirai4, Mika Enomoto, Ako Fukami, Akiko Tanaka-Kasahara, Sachiko Nakamura, Yume Nohara, Tsutomu Imaiatsu

4Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume, Japan
5Departments of Internal Medicine and Community Medicine, Kurume University School of Medicine, Kurume, Japan
E-mail address: yokoi_kanako@kurume-u.ac.jp (K. Yokoi)

Background: Endothelin-1 (ET-1) is a potent vasoconstrictor and an elevated plasma level is a prognostic marker in patients with cardiovascular diseases and/or malignancies. We hypothesized that an elevated plasma level might be a prognostic marker even in subjects without apparent cardiovascular disease or malignancy at baseline. Methods and results: We measured plasma ET-1 levels in 1440 healthy subjects over 40 years of age (580 men, 860 women) who were periodically followed for 10 years. The follow-up rate was 96.8%. Baseline plasma ET-1 levels were categorized into quartiles. Baseline plasma ET-1 levels were significantly associated with age, blood pressure, high-density lipoprotein-cholesterol, renal function, uric acid and all-cause death, but not with cardiovascular or cancer death. Kaplan–Meier curves demonstrated that all-cause mortality was significantly higher in the highest quartile of ET-1 than in the lowest quartile. Cox proportional hazards regression analysis demonstrated that ET-1 was an independent predictor of all-cause death [hazard ratio: 1.11, 95% confidence interval (CI) 1.01–1.23 per 1 pg/ml difference]. The hazard ratio of all-cause death in the highest quartile of plasma ET-1 (~5.9 pg/ml) vs. the lowest quartile after adjusting for confounding factors was 1.54 (95% CI 1.09–2.20). Conclusions: The plasma ET-1 level may be a predictor of all-cause death in a healthy population.

doi:10.1016/j.jlfs.2014.01.039

CrossMark