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ABSTRACT 

We describe a systolic algorithm for solving a Toeplitz least-squares problem of 
special form. Such problems arise, for example, when Volterra convolution equations 
of the first kind are solved by regularization. The systolic algorithm is based on a 
sequential algorithm of Elden, but we show how the storage requirements of Eldbn’s 
algorithm can be reduced from 0( n’) to O(n). The sequential algorithm takes time 
0( n”); the systolic algorithm takes time O(n) using a linear systolic array of O(n) 
cells. We also show how large problems may be decomposed and solved on a small 
systolic array. 

1. INTRODUCTION 

In this paper we discuss a systolic algorithm for solving the regularized 
linear least-squares problem 

mp { IlKf - gl12 + P’llLf II21 0.1) 

where both K and L are upper triangular n x n Toeplitz matrices. Such 
problems arise when a Volterra convolution equation of the first kind, 

/ 
fK(t-s)f(s)ds=g(t), 

0 

is solved by the regularization technique with a differential operator as 
stabilizing functional. 

Our systolic algorithm is based on a sequential algorithm of Elden [2] 
which computes a QR decomposition by plane rotations. We present an 
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implementation of Elden’s algorithm that requires O(n) time on a one-dimen- 
sional systolic array of n processors. The storage requirements are O(n) 
instead of O(n’) as in Elden’s original approach. This storage saving is 
possible at the expense of some extra computation. A similar observation was 
made by Brent and Luk [l] and exploited in a systolic algorithm for the 
solution of Toeplitz systems of equations. 

The paper is organized as follows. In Section 2 we briefly outline Elden’s 
algorithm. The systolic implementation is developed in Section 3. In Section 4 
we consider the case when the size of the matrix exceeds the number of 
processors available. 

2. ELDhN’S ALGORITHM AND ITS MODIFICATION 

The minimization problem (1.1) can be written in an equivalent standard 
form as 

m#Yf - El 11. (2.1) 

The solution of (2.1) is obtained in two steps. In the first step we 
transform the matrix 

into upper triangular form KP 
0 

using a sequence of plane rotations; the 

right-hand-side vector g 
[ 1 

[ 1 
is transformed by the same sequence of plane 

0 - 
rotations into the vector 

[ 1 it* In the second step the solution vector f is 

computed by solving the upper triangular system 

K,,f = g. (2.2) 

Because of the Toeplitz structure of both triangular matrices K and pL, 
the triangularization of the matrix K, can be done efficiently by annihilating 
successive diagonals rather than columns of the matrix pL. This is the basic 
idea of Elden’s algorithm. 
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Illustrating by an example, consider the augmented matrix 

K g 
[ 1 pL 0 = 

kl 

4 

k2 . 
kl k2 

12 * 
4 12 

. . . kn g1 

g2 
. . 

. . . . 
. . . . 

. k2 . 

kl g* 

. . . 
4 0 

0 

45 

(2.3) 

First we zero all elements on the main diagonal of L by rotating in the 
planes (l,n+l),..., (n,2n). Because the matrices K and L have constant 
elements along diagonals, each row of the matrix K (L) is a “shortened” copy 
of the first row of the matrix K (L). Thus it is sufficient to rotate only in the 
plane (1, n + 1) and change all other elements so the updated matrices Kc’) 
and L(” have Toeplitz structure. In addition, we have to update the right- 
hand-side vector, this time rotating in all the planes (1, n + l), . . . , (n,2n). 
Note that the lower part of the right-hand-side vector is filled in. The result of 
the transformation is 

0 p . 

0 zp 

. . . 

. . 
. . 

. . . 

. . 
. . 
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We continue this process, recursively annihilating successive superdiago- 
nals of the transformed matrix L. All steps are virtually the same as the first 
except that we operate on smaller and smaller matrices. Typically, after the 
ith step the matrix has the following form: 

k’,” k’:’ . . . . . . . . . 

ki2' kf? . . . . . . 

kc,” . . . 

0 . . . 0 (cC$ . . . 

k(l) 
n 

k (2) 
n-1 

k','ii+, 

k(i) 
1 

p 

z/y1 

0 

0 

(1) 
g1 

d2’ 

g(i) 
1 

g(i) 
” 

h’l’ 

h'," 

(2.4) 

Rows i + 1 to n of the top triangular matrix and the whole bottom 
triangular matrix have Toeplitz structure. Thus we can proceed as in the first 
step, calculating only one pair of cosine and sine, and rotating in one plane, 
namely the plane (i + 1, n + l), except for the transformation of the last 
column of the augmented matrix. After n steps the minimization problem 
(2.1) is transformed to the equivalent problem 

whose solution is obtained by applying the back-substitution process to the 
equation (2.2). 

Because K, is not Toeplitz, it would seem that n(n + 1)/2 elements have 
to be stored. However, during the back-substitution process, in order to 
determine successive components of the solution vector only one row of the 
matrix K, is needed at a time. But row i can be recovered from its last 
element and row i + 1, by applying an inverse rotation in the plane (i, n + 1). 
Thus, by regenerating rows we are able to reduce storage to O(n) at the 
expense of some extra computation. 



PARALLEL SOLUTION OF TOEPLITZ PROBLEMS 47 

The process of recovering rows and back substitution can be illustrated by 
considering its i th step. After i - 1 steps have been completed we have the 
following picture: 

(ri-i+l)+ 

(utl) -+ 

L 

k’” 
” 

kj:;” 

kin~-i+l) k(,“-i+l) . . . . . 
* kj”-i+l)l 

0 . . . 0 z(n;i+l) z(n;i+l) . . . 
n-r+2 n-1+3 Ytl’ 

X Ii h-i+1 = I_ i 

C: 

0 

(1) 
g1 u gy 

g(y:i+l) 
n r+l 

(Cl, sl),...*(cn-i+l, sn-i+l 
) I) 

(2.5) 

where dots represent coefficients and unknowns to be computed, and only 
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elements within boxes, including rotation parameters (c,, sr), . . . , 

(‘n-i+17 ‘n-i+11 are actually stored. 
In the ith step, by applying to rows n - i + 1 and n + 1 the inverse 

transformation to that which zeroed the (n - i + 1)th diagonal of the matrix 
L in the t~an~a~zation step, we get the (n - i)th row of I(,+, i.e. the 
coefficients krdi),. . . , kin-“‘. This allows us to compute the next component 
f;, _ i of the solution vector f via back substitution. Now we store the following 
quantities: 

(n - i)th row of K,, i.e. 

last column of L, i.e. 

kc,“‘,..., k;;;-‘, 

first row of L, i.e. 

solution vector, i.e. 

rhs vector, i.e. 

rotation parameters, i.e. 

These correspond to the quantities within boxes in (2.5) with i replaced by 
i + 1. 

The complete algorithm can be represented as follows. 
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ALGORITHM BE. 

Data: 
k= [k[l],...,k[u]], 

I= [z[ll,...,~[nll, 

g= MLd41~ 
h= [o,...,o], 

f= [o,...,o]. 
Phase 1 (triangularization): 

for i = 1 2 , >..., n do 

(a) calculate so that s[i]k[l] = c[i]Z[i]; 

k[l],k[2],...,k[n-i+l] 

O,Z[i +l],...,Z[n] 1 
c[il := s[i] k[l],...,k[n-i+l] 

-s[i] c[i] I[ Z[i],..., Z[n] 1 ’ 
1 

:= [- c[i] s[i] g[il,...,g[n] 
s[i] c[i] I[ 1 h[l],...,h[n-i+l] ’ 

Phase 2 (back substitution): 

for i=n,n-l,...,ldo 

k[l],...,k[n-i+l] 

Z[i],...,Z[n] I 

c[i] -s[i] k[l],k[2],...,k[n-i+l] 

s[il CM I[ O,Z[i+l],...,Z[n] ’ 
I 

n-i 

g[i] - c k[j+l]f[i+ j] k[l]. 
j=l 
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3. SYSTOLIC IMPLEMENTATION 

In this section we describe a systolic version of Algorithm BE. First we 
consider the case when the problem “fits” the systolic array, i.e., the 
dimension n of the problem is equal to the number N of processing cells. The 
case n > N is considered in Section 4. 

The complexity of systolic algorithms is measured in units of time. A time 
unit is the maximal time that is necessary for a processor (often called a cell) 
to perform its set of operations together with transferring data to and from 
neighboring processors. 

The cost of data transfer may be greater than the cost of arithmetic 
operations in the typical case when the number of arithmetic operations 
performed during one unit of time is moderate. Thus we shall mainly focus on 
data communication. We assume that we have at our disposal a synchronous 

c k, g, - c k, g, t- c k, g, 
+ ------ ------- 

s 1, 11 + s 1, h + s I, h 

InitiiAy all 9. C’ and h registers are empty 

If new data on input lines then 

end 

If new data on input lines then 

FIG. 1. Phase 1 cell definitions. 
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Cl 
k’zo’ g$” 

81 

G k:“’ g:“’ 
S‘S 

FIG. 2. Computation of phase 1. 
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system of n linearly connected microprogrammable cells. This allows us to 
change the set of operations performed by each cell when necessary. Our 
approach is slightly different from the usual approach where truly special-pur- 
pose devices with a fixed set of operations are considered. 

There are two types of operations being performed in phase 1: determina- 
tion of the rotation parameters c and s, and application of the rotations. 
These two operations can be separated in the sense that only one cell, the 
boundary cell, will generate a plane rotation while the other (internal) cells 
apply and propagate a rotation. The array which implements phase 1 and its 
cell definitions are illustrated in Figure 1 for the case n = 4. Here, the 
rightmost cell is the boundary cell; the other cells are internal cells. 

Prior to execution of Phase 1, the vectors k = (k j”), k(20), . . . , k f)), 1 = 
(I (0) 1 , . . . , Zi”), and g = (gp’, . . . , g?)) are loaded into the cells, one component 
per cell. The components of the vector k stay in the same cells throughout the 
computation. The vectors h and 1 move from cell to cell from left to right, the 
latter being successively annihilated in the boundary cell. The rotation 
parameters, which are generated in the rightmost cell, move in the opposite 
direction, meeting consecutive components of the transformed vectors k and 

If new data cm input lines then 

begin 

end. 

If new data cm input lines then 

begin 

g+-g-kf 

FIG. 3. Phase 2 cell definitions. 
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1’1 
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k:" El 

r---l 

FIG. 4. Computation of phase 2. 



54 A. BOJAtiCZYK AND R. P. BRENT 

2 in the appropriate order. The computation is illustrated in Figure 2. 
Successive rows in the figure illustrate the state of the systolic array at 
successive units of time. 

The way in which the transformed coefficients are stored in the systolic 
array after phase 1 is completed allows us to start phase 2 without any I/O 
delays. In phase 2 the cells regenerate rows of the matrix K, and simulta- 
neously accumulate the inner products for back substitution. The cell defini- 
tions are given in Figure 3. Rotation parameters and partial inner-product 
terms move from left to right, the Zi move in the opposite direction, and the 
ki stay in their cells. To ensure that each x is able to accumulate the 
appropriate terms, adjacent cells are active on alternate cycles. Hence, 
the output is collected from the rightmost cell every second cycle. The 
computation is illustrated in Figure 4 for n = 4. 

Notice that in both phases only about one half of the cells are doing useful 
work at any time. Even-numbered cells operate at even time units, and 
odd-numbered cells operate at odd time units. This guarantees that computa- 
tions in neighboring cells are separated and prevents conflicts or races. 

4. SIMULATING THE FULL ARRAY 

In this section we show how a fixed-size linear array of N cells, supported 
by an appropriate memory system for partial results, can generate a sohrtion 
to (2.1) for an arbitrary n > N. Both phases of Algorithm BE have to be 
refined, as now our systolic array can effectively work on only a part of the 
matrices K and L. 

In phase 1, the triangularization phase, we repeat an annihilation step 

followed by an update step a number of times until the whole matrix is 
processed. 

The annihilation step is exactly the same as in phase 1 for the case when 
n = N. On completion of the annihilation step the first N diagonals of L are 

zeroed. Figure 5 shows the structure of the transformed matrix 
K 

[ 1 PL 
and the 

transformed right-hand-side vector 
g 

[ I 
h for n = 9 and N = 4. Notice that 

n - N superdiagonals of the matrix L are unchanged and that the elements 
of the transformed matrix K are determined by the elements of its upper left 
N x N triangular submatrix. 

The update step restores the Toeplitz structure of the last n - N rows of 
the matrix K and updates nonzero elements of the matrix L accordingly. 
This is done as follows. 
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k:” k!j’ k’,” k$” k, k, k, k, k, gf” 

kf’ kg’ k&2’ k, gp 

kf’ kf’ k 7 gP 
k\4’ k, g$“’ 

kl“’ . k (01 
5 g, 

FIG. 5. Structure of the transformed augmented matrix. 
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First, we complete the rotation in plane (1, n + 1) by rotating the remain- 
ing (not yet transformed) parts of the vectors k and 1, i.e., the vectors 

(k’,?),,,..., k’,O’) and (I$\,,..., IA’)). Then, rotating in plane (2, n + l), we 
obtain the correct values for the second row of K,. As the last transformation, 
we rotate in plane (N, n + 1) the vectors (kc,N,-,‘,, . . . , kiN- “) and 
(Z’lVP 1) N+1 Z’N- 1) ,...1 n ). 

Now we describe the systolic implementation of the update step. Before 
executing the update step, the systolic array has data stored as in the last row 
in Figure 2 with ki’s shifted to the right by one cell. New data, i.e., 
remaining parts of unprocessed vectors k and 1, are fed into the systolic array 
via its leftmost cell. During the computation, rotation parameters stay in fixed 
cells, and both k and Z data streams move from left to right, but the Zi move 
twice as fast as the ki. All cells perform the same set of operations, namely a 
single rotation (see the definition in Figure 6). 

The computation is illustrated in Figure 7 for n = 9 and N = 4. 
After N units of time the transformed ki and Zi begin to emerge at the 

other end of the systolic array. When all components of k and 1 are 
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k 
1 

FIG. 6. Cell definition for update step (phase 1). 

processed, the first 2 n - N rows of the augmented matrix have the following 
form: 

k’,2) k$‘) . . . . . k(82) gP’ 
k’,3’ kf’ . . . . k(73) gy’ 

kc;” kf’ . . . k(,4’ g$4’ 

k\4’ . . . kf’ g$4’ 

$’ . . . 

The first N components of the last column of K are saved in auxiliary 
storage for the back substitution phase. Rows N + 1 and n + 1 serve as data 
for a new annihilation-update cycle. The annihilation-update cycle is applied 

I 1 
i times to smaller and smaller matrices until the triangularization phase is 

completed. 
Phase 2, the back-substitution phase, is also a sequence of pairs of steps, 

this time the solution and the update steps. In the solution step we recover N 
components of the solution vector. The update step restores the structure of 
the problem for the next solution step. Each update step decreases the size of 
the problem by N, i.e., n becomes n - N. 

The solution step operates on the N X N bottom-right triangular subma- 
trix of a current copy of the matrix K,. From these data, using the systolic 
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r--l 

El 
c2 s2 I k$" g&!' k',2' 

I!" 
7 h:" gy 

k&” g”,’ 
SZ 

(1) kf4 

q” h&l’ g&2’ 

1 

1 

c3 s3 

ki2) gj,?' kp’ 
$2) h(42) g$3' 

c, s3 

kf’ gf’ @’ 
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I 
El 

c4 s4 
k$s) g$3' kv' 

$3' 

1 

c4 84 
$31 gb-' k>4' 

FIG. 7. The update step (phase 1). 
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array described in Section 3, we can compute the last N components of the 
solution vector. Additionally, the solution step produces the (n - N)th row of 
the matrix K, and the first row of the current copy of L. This is illustrated in 
Figure 8, where n = 9, N = 4. 

The update step implicitly regenerates the last N components of rows 
n-N,..., 1 of the matrix K,, and (making use of N already computed 
components of the solution vector) performs partial back substitution on the 
available segments of rows n - N to 1. This computation gives us a new 
right-hand-side vector g and, at the same time, the (n - N)th column of the 
matrix K,. The new g and the (n - N)th column of K, serve as data for a 
new solution-update step in which n is replaced by n - N. 

FIG. 8. Effect of the first solution step. 

- ,$I __ ,@’ __ kr' _ ,@’ - 

- 146’ ft - 1p fs - 19 f 7--1g~=o fed 

FIG. 9. Data before update step (phase 2). 

( c. s >a,, + (c, S)i,,i 

(:)-cs 3(:); 

go,,t + g,, - F; 

k + km 

Cell definition for update step (phase 2). 
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r 

I I 

I I 

(c2.s2) Ai 

ks2’ kf’ 

1p gC’ 

I J 

(cq,s4) f7 
ki4’ kf' 
15” (31 

g4 

I 

L 

I 

(cz,sz) Ai 
k?’ k(42’ 
1p d? 

FIG. 11. The update step (phase 2). 
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Before the update step starts, data are stored in the systolic array as shown 
in Figure 9. This storage scheme corresponds to the one left after the solution 
step is finished. The new data-i.e., the rotation parameters, the nth column 
of the matrix K,, and the components of the right-hand-side vector g-are 
input through the leftmost cell and move to the right. The rotation parameters 
and the gi move at normal speed, but the k, stay in each cell they pass for 
one extra time unit, thus taking twice as long to move through the systolic 
array. The components of f and I stay in fixed cells throughout the 
computation. The function of each cell is identical and is defined in Figure 
10. 

Figure 11 illustrates part of the process for the case n = 9, N = 4. 

We thank Dr. M. A. Saunders for introducing us to the algorithm of 

EtiBn [2]. 
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