
Parallel Solution of Certain Toeplltz Least-Squares Problems

A. Bojairczyk and R. P. Brent

Centre fm Mathematical Analysis
The Australian National University
GPO Box 4
Canberra ACT 2601, Australia

Submitted by G. W. Stewart

ABSTRACT

We describe a systolic algorithm for solving a Toeplitz least-squares problem of
special form. Such problems arise, for example, when Volterra convolution equations
of the first kind are solved by regularization. The systolic algorithm is based on a
sequential algorithm of Elden, but we show how the storage requirements of Eldbn’s
algorithm can be reduced from 0(n’) to O(n). The sequential algorithm takes time
0(n”); the systolic algorithm takes time O(n) using a linear systolic array of O(n)
cells. We also show how large problems may be decomposed and solved on a small
systolic array.

1. INTRODUCTION

In this paper we discuss a systolic algorithm for solving the regularized
linear least-squares problem

mp { IlKf - gl12 + P’llLf II21 0.1)

where both K and L are upper triangular n x n Toeplitz matrices. Such
problems arise when a Volterra convolution equation of the first kind,

/
fK(t-s)f(s)ds=g(t),

0

is solved by the regularization technique with a differential operator as
stabilizing functional.

Our systolic algorithm is based on a sequential algorithm of Elden [2]
which computes a QR decomposition by plane rotations. We present an

LINEAR ALGEBRA AND ITS APPLZCATZONS 77:43-60 (1986) 43

0 Elsevier Science Publishing Co., Inc., 1986
52 Vanderbilt Ave., New York, NY 10017 00243795/86/$3.50

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81143519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

44 A. BOJANCZYK AND R. P. BRENT

implementation of Elden’s algorithm that requires O(n) time on a one-dimen-
sional systolic array of n processors. The storage requirements are O(n)
instead of O(n’) as in Elden’s original approach. This storage saving is
possible at the expense of some extra computation. A similar observation was
made by Brent and Luk [l] and exploited in a systolic algorithm for the
solution of Toeplitz systems of equations.

The paper is organized as follows. In Section 2 we briefly outline Elden’s
algorithm. The systolic implementation is developed in Section 3. In Section 4
we consider the case when the size of the matrix exceeds the number of
processors available.

2. ELDhN’S ALGORITHM AND ITS MODIFICATION

The minimization problem (1.1) can be written in an equivalent standard
form as

m#Yf - El 11. (2.1)

The solution of (2.1) is obtained in two steps. In the first step we
transform the matrix

into upper triangular form KP
0

using a sequence of plane rotations; the

right-hand-side vector g
[1

[1
is transformed by the same sequence of plane

0 -
rotations into the vector

[1 it* In the second step the solution vector f is

computed by solving the upper triangular system

K,,f = g. (2.2)

Because of the Toeplitz structure of both triangular matrices K and pL,
the triangularization of the matrix K, can be done efficiently by annihilating
successive diagonals rather than columns of the matrix pL. This is the basic
idea of Elden’s algorithm.

PARALLEL SOLUTION OF TOEPLITZ PROBLEMS

Illustrating by an example, consider the augmented matrix

K g
[1 pL 0 =

kl

4

k2 .
kl k2

12 *
4 12

. . . kn g1

g2
. .

. . . .
. . . .

. k2 .

kl g*

. . .
4 0

0

45

(2.3)

First we zero all elements on the main diagonal of L by rotating in the
planes (l,n+l),..., (n,2n). Because the matrices K and L have constant
elements along diagonals, each row of the matrix K (L) is a “shortened” copy
of the first row of the matrix K (L). Thus it is sufficient to rotate only in the
plane (1, n + 1) and change all other elements so the updated matrices Kc’)
and L(” have Toeplitz structure. In addition, we have to update the right-
hand-side vector, this time rotating in all the planes (1, n + l), . . . , (n,2n).
Note that the lower part of the right-hand-side vector is filled in. The result of
the transformation is

0 p .

0 zp

. . .

. .
. .

. . .

. .
. .

46 A. BOJANCZYK AND R. P. BRENT

We continue this process, recursively annihilating successive superdiago-
nals of the transformed matrix L. All steps are virtually the same as the first
except that we operate on smaller and smaller matrices. Typically, after the
ith step the matrix has the following form:

k’,” k’:’

ki2' kf?

kc,” . . .

0 . . . 0 (cC$. . .

k(l)
n

k (2)
n-1

k','ii+,

k(i)
1

p

z/y1

0

0

(1)
g1

d2’

g(i)
1

g(i)
”

h’l’

h',"

(2.4)

Rows i + 1 to n of the top triangular matrix and the whole bottom
triangular matrix have Toeplitz structure. Thus we can proceed as in the first
step, calculating only one pair of cosine and sine, and rotating in one plane,
namely the plane (i + 1, n + l), except for the transformation of the last
column of the augmented matrix. After n steps the minimization problem
(2.1) is transformed to the equivalent problem

whose solution is obtained by applying the back-substitution process to the
equation (2.2).

Because K, is not Toeplitz, it would seem that n(n + 1)/2 elements have
to be stored. However, during the back-substitution process, in order to
determine successive components of the solution vector only one row of the
matrix K, is needed at a time. But row i can be recovered from its last
element and row i + 1, by applying an inverse rotation in the plane (i, n + 1).
Thus, by regenerating rows we are able to reduce storage to O(n) at the
expense of some extra computation.

PARALLEL SOLUTION OF TOEPLITZ PROBLEMS 47

The process of recovering rows and back substitution can be illustrated by
considering its i th step. After i - 1 steps have been completed we have the
following picture:

(ri-i+l)+

(utl) -+

L

k’”
”

kj:;”

kin~-i+l) k(,“-i+l)
* kj”-i+l)l

0 . . . 0 z(n;i+l) z(n;i+l) . . .
n-r+2 n-1+3 Ytl’

X Ii h-i+1 = I_ i

C:

0

(1)
g1 u gy

g(y:i+l)
n r+l

(Cl, sl),...*(cn-i+l, sn-i+l
) I)

(2.5)

where dots represent coefficients and unknowns to be computed, and only

48 A. BOJAkZYK AND R. P. BRENT

elements within boxes, including rotation parameters (c,, sr), . . . ,

(‘n-i+17 ‘n-i+11 are actually stored.
In the ith step, by applying to rows n - i + 1 and n + 1 the inverse

transformation to that which zeroed the (n - i + 1)th diagonal of the matrix
L in the t~an~a~zation step, we get the (n - i)th row of I(,+, i.e. the
coefficients krdi),. . . , kin-“‘. This allows us to compute the next component
f;, _ i of the solution vector f via back substitution. Now we store the following
quantities:

(n - i)th row of K,, i.e.

last column of L, i.e.

kc,“‘,..., k;;;-‘,

first row of L, i.e.

solution vector, i.e.

rhs vector, i.e.

rotation parameters, i.e.

These correspond to the quantities within boxes in (2.5) with i replaced by
i + 1.

The complete algorithm can be represented as follows.

PARALLEL SOLUTION OF TOEPLITZ PROBLEMS

ALGORITHM BE.

Data:
k= [k[l],...,k[u]],

I= [z[ll,...,~[nll,

g= MLd41~
h= [o,...,o],

f= [o,...,o].
Phase 1 (triangularization):

for i = 1 2 , >..., n do

(a) calculate so that s[i]k[l] = c[i]Z[i];

k[l],k[2],...,k[n-i+l]

O,Z[i +l],...,Z[n] 1
c[il := s[i] k[l],...,k[n-i+l]

-s[i] c[i] I[Z[i],..., Z[n] 1 ’
1

:= [- c[i] s[i] g[il,...,g[n]
s[i] c[i] I[1 h[l],...,h[n-i+l] ’

Phase 2 (back substitution):

for i=n,n-l,...,ldo

k[l],...,k[n-i+l]

Z[i],...,Z[n] I

c[i] -s[i] k[l],k[2],...,k[n-i+l]

s[il CM I[O,Z[i+l],...,Z[n] ’
I

n-i

g[i] - c k[j+l]f[i+ j] k[l].
j=l

50 A. BOJANCZYK AND R. P. BRENT

3. SYSTOLIC IMPLEMENTATION

In this section we describe a systolic version of Algorithm BE. First we
consider the case when the problem “fits” the systolic array, i.e., the
dimension n of the problem is equal to the number N of processing cells. The
case n > N is considered in Section 4.

The complexity of systolic algorithms is measured in units of time. A time
unit is the maximal time that is necessary for a processor (often called a cell)
to perform its set of operations together with transferring data to and from
neighboring processors.

The cost of data transfer may be greater than the cost of arithmetic
operations in the typical case when the number of arithmetic operations
performed during one unit of time is moderate. Thus we shall mainly focus on
data communication. We assume that we have at our disposal a synchronous

c k, g, - c k, g, t- c k, g,
+ ------ -------

s 1, 11 + s 1, h + s I, h

InitiiAy all 9. C’ and h registers are empty

If new data on input lines then

end

If new data on input lines then

FIG. 1. Phase 1 cell definitions.

PARALLEL SOLUTION OF TOEPLITZ PROBLEMS 51

Cl
k’zo’ g$”

81

G k:“’ g:“’
S‘S

FIG. 2. Computation of phase 1.

52 A. BOJANCZYK AND R. P. BRENT

system of n linearly connected microprogrammable cells. This allows us to
change the set of operations performed by each cell when necessary. Our
approach is slightly different from the usual approach where truly special-pur-
pose devices with a fixed set of operations are considered.

There are two types of operations being performed in phase 1: determina-
tion of the rotation parameters c and s, and application of the rotations.
These two operations can be separated in the sense that only one cell, the
boundary cell, will generate a plane rotation while the other (internal) cells
apply and propagate a rotation. The array which implements phase 1 and its
cell definitions are illustrated in Figure 1 for the case n = 4. Here, the
rightmost cell is the boundary cell; the other cells are internal cells.

Prior to execution of Phase 1, the vectors k = (k j”), k(20), . . . , k f)), 1 =
(I (0) 1 , . . . , Zi”), and g = (gp’, . . . , g?)) are loaded into the cells, one component
per cell. The components of the vector k stay in the same cells throughout the
computation. The vectors h and 1 move from cell to cell from left to right, the
latter being successively annihilated in the boundary cell. The rotation
parameters, which are generated in the rightmost cell, move in the opposite
direction, meeting consecutive components of the transformed vectors k and

If new data cm input lines then

begin

end.

If new data cm input lines then

begin

g+-g-kf

FIG. 3. Phase 2 cell definitions.

PARALLEL SOLUTION OF TOEPLITZ PROBLEMS 53

c2
k(32) ~(22)

s2

i-----j ;::I

1’1
icl

k:" El

r---l

FIG. 4. Computation of phase 2.

54 A. BOJAtiCZYK AND R. P. BRENT

2 in the appropriate order. The computation is illustrated in Figure 2.
Successive rows in the figure illustrate the state of the systolic array at
successive units of time.

The way in which the transformed coefficients are stored in the systolic
array after phase 1 is completed allows us to start phase 2 without any I/O
delays. In phase 2 the cells regenerate rows of the matrix K, and simulta-
neously accumulate the inner products for back substitution. The cell defini-
tions are given in Figure 3. Rotation parameters and partial inner-product
terms move from left to right, the Zi move in the opposite direction, and the
ki stay in their cells. To ensure that each x is able to accumulate the
appropriate terms, adjacent cells are active on alternate cycles. Hence,
the output is collected from the rightmost cell every second cycle. The
computation is illustrated in Figure 4 for n = 4.

Notice that in both phases only about one half of the cells are doing useful
work at any time. Even-numbered cells operate at even time units, and
odd-numbered cells operate at odd time units. This guarantees that computa-
tions in neighboring cells are separated and prevents conflicts or races.

4. SIMULATING THE FULL ARRAY

In this section we show how a fixed-size linear array of N cells, supported
by an appropriate memory system for partial results, can generate a sohrtion
to (2.1) for an arbitrary n > N. Both phases of Algorithm BE have to be
refined, as now our systolic array can effectively work on only a part of the
matrices K and L.

In phase 1, the triangularization phase, we repeat an annihilation step

followed by an update step a number of times until the whole matrix is
processed.

The annihilation step is exactly the same as in phase 1 for the case when
n = N. On completion of the annihilation step the first N diagonals of L are

zeroed. Figure 5 shows the structure of the transformed matrix
K

[1 PL
and the

transformed right-hand-side vector
g

[I
h for n = 9 and N = 4. Notice that

n - N superdiagonals of the matrix L are unchanged and that the elements
of the transformed matrix K are determined by the elements of its upper left
N x N triangular submatrix.

The update step restores the Toeplitz structure of the last n - N rows of
the matrix K and updates nonzero elements of the matrix L accordingly.
This is done as follows.

PARALLEL SOLUTION OF TOEPLITZ PROBLEMS

k:” k!j’ k’,” k$” k, k, k, k, k, gf”

kf’ kg’ k&2’ k, gp

kf’ kf’ k 7 gP
k\4’ k, g$“’

kl“’ . k (01
5 g,

FIG. 5. Structure of the transformed augmented matrix.

55

First, we complete the rotation in plane (1, n + 1) by rotating the remain-
ing (not yet transformed) parts of the vectors k and 1, i.e., the vectors

(k’,?),,,..., k’,O’) and (I$\,,..., IA’)). Then, rotating in plane (2, n + l), we
obtain the correct values for the second row of K,. As the last transformation,
we rotate in plane (N, n + 1) the vectors (kc,N,-,‘,, . . . , kiN- “) and
(Z’lVP 1) N+1 Z’N- 1) ,...1 n).

Now we describe the systolic implementation of the update step. Before
executing the update step, the systolic array has data stored as in the last row
in Figure 2 with ki’s shifted to the right by one cell. New data, i.e.,
remaining parts of unprocessed vectors k and 1, are fed into the systolic array
via its leftmost cell. During the computation, rotation parameters stay in fixed
cells, and both k and Z data streams move from left to right, but the Zi move
twice as fast as the ki. All cells perform the same set of operations, namely a
single rotation (see the definition in Figure 6).

The computation is illustrated in Figure 7 for n = 9 and N = 4.
After N units of time the transformed ki and Zi begin to emerge at the

other end of the systolic array. When all components of k and 1 are

56 A. BOJAtiCZYK AND R. P. BRENT

k
1

FIG. 6. Cell definition for update step (phase 1).

processed, the first 2 n - N rows of the augmented matrix have the following
form:

k’,2) k$‘) k(82) gP’
k’,3’ kf’ k(73) gy’

kc;” kf’ . . . k(,4’ g$4’

k\4’ . . . kf’ g$4’

$’ . . .

The first N components of the last column of K are saved in auxiliary
storage for the back substitution phase. Rows N + 1 and n + 1 serve as data
for a new annihilation-update cycle. The annihilation-update cycle is applied

I 1
i times to smaller and smaller matrices until the triangularization phase is

completed.
Phase 2, the back-substitution phase, is also a sequence of pairs of steps,

this time the solution and the update steps. In the solution step we recover N
components of the solution vector. The update step restores the structure of
the problem for the next solution step. Each update step decreases the size of
the problem by N, i.e., n becomes n - N.

The solution step operates on the N X N bottom-right triangular subma-
trix of a current copy of the matrix K,. From these data, using the systolic

PARALLEL SOLUTION OF TOEPLITZ PROBLEMS

r--l

El
c2 s2 I k$" g&!' k',2'

I!"
7 h:" gy

k&” g”,’
SZ

(1) kf4

q” h&l’ g&2’

1

1

c3 s3

ki2) gj,?' kp’
$2) h(42) g$3'

c, s3

kf’ gf’ @’

57

I
El

c4 s4
k$s) g$3' kv'

$3'

1

c4 84
$31 gb-' k>4'

FIG. 7. The update step (phase 1).

58 A. BOJANCZYK AND R. P. BRENT

array described in Section 3, we can compute the last N components of the
solution vector. Additionally, the solution step produces the (n - N)th row of
the matrix K, and the first row of the current copy of L. This is illustrated in
Figure 8, where n = 9, N = 4.

The update step implicitly regenerates the last N components of rows
n-N,..., 1 of the matrix K,, and (making use of N already computed
components of the solution vector) performs partial back substitution on the
available segments of rows n - N to 1. This computation gives us a new
right-hand-side vector g and, at the same time, the (n - N)th column of the
matrix K,. The new g and the (n - N)th column of K, serve as data for a
new solution-update step in which n is replaced by n - N.

FIG. 8. Effect of the first solution step.

- ,$I __ ,@’ __ kr' _ ,@’ -

- 146’ ft - 1p fs - 19 f 7--1g~=o fed

FIG. 9. Data before update step (phase 2).

(c. s >a,, + (c, S)i,,i

(:)-cs 3(:);

go,,t + g,, - F;

k + km

Cell definition for update step (phase 2).

PARALLEL SOLUTION OF TOEPLITZ PROBLEMS 59

r

I I

I I

(c2.s2) Ai

ks2’ kf’

1p gC’

I J

(cq,s4) f7
ki4’ kf'
15” (31

g4

I

L

I

(cz,sz) Ai
k?’ k(42’
1p d?

FIG. 11. The update step (phase 2).

60 A. BOJANCZYK AND R. P. BRENT

Before the update step starts, data are stored in the systolic array as shown
in Figure 9. This storage scheme corresponds to the one left after the solution
step is finished. The new data-i.e., the rotation parameters, the nth column
of the matrix K,, and the components of the right-hand-side vector g-are
input through the leftmost cell and move to the right. The rotation parameters
and the gi move at normal speed, but the k, stay in each cell they pass for
one extra time unit, thus taking twice as long to move through the systolic
array. The components of f and I stay in fixed cells throughout the
computation. The function of each cell is identical and is defined in Figure
10.

Figure 11 illustrates part of the process for the case n = 9, N = 4.

We thank Dr. M. A. Saunders for introducing us to the algorithm of

EtiBn [2].

REFERENCES

1 R. P. Brent and F. T. Luk, A systolic array for the linear-time solution of Toeplitz
systems of equations, 1. VLSI and Comput. Systems l(l):l-22 (1983).

2 L. Eldbn, An efficient algorithm for the reg,ularization of ill-conditioned least
squares problems with triangular Toeplitz matrix, SIAM J. Sci. Statist. Cornput.
5(1):229-236 (Mar. 1984).

Received 28 August 1984; revised 28 January 1985

