Linear Algebra and its Applications 431 (2009) 1923-1931



Contents lists available at ScienceDirect

### Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

# A bound on the scrambling index of a primitive matrix using Boolean rank

Mahmud Akelbek <sup>a,b,\*</sup>, Sandra Fital <sup>b</sup>, Jian Shen <sup>a,1</sup>

<sup>a</sup> Department of Mathematics, Texas State University, San Marcos, TX 78666, United States
 <sup>b</sup> Department of Mathematics, Weber State University, Ogden, UT 84408, United States

#### ARTICLE INFO

Article history: Received 10 April 2009 Accepted 19 June 2009 Available online 15 July 2009

Submitted by S. Kirkland

AMS classification: 15A48 05C20 05C50 05C75

*Keywords:* Scrambling index Primitive matrix Boolean rank

#### ABSTRACT

The scrambling index of an  $n \times n$  primitive matrix A is the smallest positive integer k such that  $A^k(A^t)^k = J$ , where  $A^t$  denotes the transpose of A and J denotes the  $n \times n$  all ones matrix. For an  $m \times n$  Boolean matrix M, its Boolean rank b(M) is the smallest positive integer b such that M = AB for some  $m \times b$  Boolean matrix A and  $b \times n$  Boolean matrix B. In this paper, we give an upper bound on the scrambling index of an  $n \times n$  primitive matrix M in terms of its Boolean rank b(M). Furthermore we characterize all primitive matrices that achieve the upper bound.

Published by Elsevier Inc.

#### 1. Introduction

For terminology and notation used here we follow [3]. A matrix *A* is called *nonnegative* if all its elements are nonnegative, and denoted by  $A \ge 0$ . A matrix *A* is called *positive* if all its elements are positive, and denoted by A > 0. For an  $m \times n$  matrix *A*, we will denote its (i, j)-entry by  $A_{ij}$ , its *i*th row by  $A_{i}$ , and its *j*th column by  $A_{j}$ . For  $m \times n$  matrices *A* and *B*, we say that *B* is dominated by *A* if  $B_{ij} \le A_{ij}$  for each *i* and *j*, and denote this by  $B \le A$ . We denote the  $m \times n$  all ones matrix by  $J_{m,n}$  (and by  $J_n$  if m = n), the  $m \times n$  all zeros matrix by  $O_{m,n}$ , the all ones *n*-vector by  $j_n$ , the  $n \times n$  identity matrix by

<sup>\*</sup> Corresponding author. Address: Department of Mathematics, Texas State University, San Marcos, TX 78666, United States. *E-mail addresses:* am44@txstate.edu (M. Akelbek), sfitalakelbek@weber.edu (S. Fital), js48@txstate.edu (J. Shen).

<sup>&</sup>lt;sup>1</sup> Research supported in part by NSF (CNS 0835834), Texas Higher Education Coordinating Board (ARP 003615-0039-2007).

 $I_n$ , and its *i*th column by  $e_i(n)$ . The subscripts *m* and *n* will be omitted whenever their values are clear from the context.

Let D = (V, E) denote a *digraph* (directed graph) with vertex set V = V(D), arc set E = E(D) and order *n*. Loops are permitted but multiple arcs are not. A  $u \rightarrow v$  walk in a digraph *D* is a sequence of vertices  $u, u_1, \ldots, u_t, v \in V(D)$  and a sequence of arcs  $(u, u_1), (u_1, u_2), \ldots, (u_t, v) \in E(D)$ , where the vertices and arcs are not necessarily distinct. We shall use the notation  $u \rightarrow v$  and  $u \rightarrow v$  to denote, respectively, that there is an arc from vertex *u* to vertex *v* and that there is no such an arc. Similarly,  $u \rightarrow v$  and  $u \rightarrow v$  and  $u \rightarrow v$  denote, respectively, that there is a directed walk of length *k* from vertex *u* to vertex *v*, and that there is no such a walk.

For an  $n \times n$  nonnegative matrix  $A = (a_{ij})$ , its digraph, denoted by D(A), is the digraph with vertex set  $V(D(A)) = \{1, 2, ..., n\}$ , and (i, j) is an arc of D(A) if and only if  $a_{ij} \neq 0$ . Then, for a positive integer  $r \ge 1$ , the (i, j)th entry of the matrix  $A^r$  is positive if and only if  $i \xrightarrow{r} j$  in the digraph D(A). Since most of the time we are only interested in the existence of such walks, not the number of different directed walks from vertex *i* to vertex *j*, we interpret *A* as a Boolean (0, 1)-matrix, unless stated otherwise. A *Boolean* (0, 1)-matrix is a matrix with only 0's and 1's as its entries. Using *Boolean arithmetic*, (1 + 1 = 1, 0 + 0 = 0, 1 + 0 = 1), we have that *AB* and A + B are Boolean (0, 1)-matrices if *A* and *B* are.

A digraph *D* is called *primitive* if for some positive integer *t* there is a walk of length exactly *t* from each vertex *u* to each vertex *v*. If *D* is primitive the smallest such *t* is called the *exponent* of *D*, denoted by  $\exp(D)$ . Equivalently, a square nonnegative matrix *A* of order *n* is called *primitive* if there exists a positive integer *r* such that  $A^r > 0$ . The minimum such *r* is called the *exponent* of *A*, and denoted by  $\exp(A)$ . Clearly  $\exp(A) = \exp(D(A))$ . There are numerous results on the exponent of primitive matrices [3]. In 1950, Wielandt [7] stated that  $\exp(A) \leq (n-1)^2 + 1$  and that equality is attained by  $W_n$ , where

$$W_{2} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \text{ and } W_{n} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 & 0 \\ 1 & 0 & \cdots & \cdots & 0 & 1 \\ 1 & 0 & \cdots & \cdots & 0 & 0 \end{bmatrix} \text{ when } n \ge 3.$$

Several authors (see, for example, [3, p. 81]) later proved that  $exp(A) = (n - 1)^2 + 1$  if and only if  $PAP^t = W_n$  for some permutation matrix *P*.

The scrambling index of a primitive digraph *D* is the smallest positive integer *k* such that for each pair of vertices *u* and *v*, there exists some vertex w = w(u, v) (dependent on *u* and *v*) such that  $u \xrightarrow{k} w$  and  $v \xrightarrow{k} w$  in *D*. The scrambling index of *D* is denoted by k(D). For  $u, v \in V(D)$  ( $u \neq v$ ), we define the local scrambling index of *u* and *v* as

$$k_{u,v}(D) = \min\{k : u \xrightarrow{k} w \text{ and } v \xrightarrow{k} w \text{ for some } w \in V(D)\}.$$

Then

$$k(D) = \max_{u,v \in V(D)} \{k_{u,v}(D)\}.$$

An analogous definition for scrambling index can be given for nonnegative matrices. The *scrambling index* of a primitive matrix *A*, denoted by k(A), is the smallest positive integer *k* such that any two rows of  $A^k$  have at least one positive element in a coincident position. The scrambling index of a primitive matrix *A* can also be equivalently defined as the smallest positive integer *k* such that  $A^k(A^t)^k = J$ , where  $A^t$  denotes the transpose of *A*. If *A* is the adjacency matrix of a primitive digraph *D*, then k(D) = k(A). As a result, throughout the paper, where no confusion occurs, we use the digraph *D* and the adjacency matrix A(D) interchangeably.

In [1,2], Akelbek and Kirkland obtained an upper bound on the scrambling index of a primitive digraph D in terms of the order and girth of D, and gave a characterization of the primitive digraphs with the largest scrambling index.

**Theorem 1.1** [1]. Let D be a primitive digraph with n vertices and girth s. Then

$$k(D) \leq n - s + \begin{cases} \left(\frac{s-1}{2}\right)n, & \text{when } s \text{ is odd,} \\ \left(\frac{n-1}{2}\right)s, & \text{when } s \text{ is even.} \end{cases}$$

When s = n - 1, an upper bound on k(D) in terms of the order of a primitive digraph D can be achieved [1]. We state the theorem in terms of primitive matrices below.

**Theorem 1.2** [1]. Let A be a primitive matrix of order  $n \ge 2$ . Then

$$k(A) \leq \left\lceil \frac{(n-1)^2 + 1}{2} \right\rceil. \tag{1}$$

Equality holds in (1) if and only if there is a permutation matrix P such that  $PAP^t$  is equal to  $W_2$  or  $J_2$  when n = 2 and  $W_n$  when  $n \ge 3$ .

The digraph  $D(W_n)$  is called the Wielandt graph and denoted by  $D_{n-1,n}$ . It is a digraph with a Hamilton cycle  $1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$  together with an arc from vertex n-1 to vertex 1. For simplicity, let  $h_n = \left\lceil \frac{(n-1)^2+1}{2} \right\rceil$ . The next proposition gives some information about the Wielandt graph  $D_{n-1,n}$ .

**Proposition 1.3** [1]. For  $D_{n-1,n}$ , where  $n \ge 3$ ,

- (a)  $k_{n,\lfloor \frac{n}{2} \rfloor}(D_{n-1,n}) = h_n$ , and for all other pairs of vertices u and v of  $D_{n-1,n}$ ,  $k_{u,v}(D_{n-1,n}) < h_n$ .
- (b) There are directed walks from vertices n and  $\lfloor \frac{n}{2} \rfloor$  to vertex 1 of length  $h_n$ , that is  $n \xrightarrow{h_n} 1$  and  $\lfloor \frac{n}{2} \rfloor \xrightarrow{h_n} 1$ .

For an  $m \times n$  Boolean matrix M, we define its *Boolean rank* b(M) to be the smallest positive integer b such that for some  $m \times b$  Boolean matrix A and  $b \times n$  Boolean matrix B, M = AB. The Boolean rank of the zero matrix is defined to be zero. M = AB is called a *Boolean rank factorization* of M.

In [4], Gregory et al. obtained an upper bound on the exponent of a primitive Boolean matrix in terms of Boolean rank.

**Proposition 1.4** [4]. Suppose that  $n \ge 2$  and that M is an  $n \times n$  primitive Boolean matrix with b(M) = b. Then

$$\exp(M) \leq (b-1)^2 + 2.$$
 (2)

In [4], Gregory et al. also gave a characterization of the matrices for which equality holds in (2). In [5], Liu et al. gave a characterization of primitive matrices M with Boolean rank b such that  $\exp(M) = (b-1)^2 + 1$ .

In this paper, we give an upper bound on the scrambling index of a primitive matrix M using Boolean rank b = b(M), and characterize all Boolean primitive matrices that achieve the upper bound.

#### 2. Main results

We start with a basic result.

**Lemma 2.1.** Suppose that A and B are  $n \times m$  and  $m \times n$  Boolean matrices respectively, and that neither has a zero line. Then

- (a) AB is primitive if and only if BA is primitive.
- (b) If AB and BA are primitive, then

$$|k(AB) - k(BA)| \leq 1.$$

(3)

**Proof.** Part (a) was proved by Shao [6]. We only need to show part (b). Since AB and BA are primitive matrices, A and B have no zero rows. Then  $AA^t \ge I_n$  and  $BJ_nB^t = J_m$ . Suppose k(AB) = k. By the definition of scrambling index

$$(AB)^k ((AB)^t)^k = J_n.$$

Then

$$(BA)^{k+1}((BA)^{t})^{k+1} = B(AB)^{k}AA^{t}((AB)^{t})^{k}B^{t} \ge B(AB)^{k}I_{n}((AB)^{t})^{k}B^{t}$$
$$= B(AB)^{k}((AB)^{t})^{k}B^{t} = BJ_{n}B^{t} = J_{m}.$$

Thus  $k(BA) \leq k + 1 = k(AB) + 1$ . The result follows by exchanging the roles of *A* and *B*.

**Proposition 2.2** [5]. Let M be an  $n \times n$  primitive Boolean matrix, and M = AB be a Boolean rank factorization of M. Then neither A nor B has a zero line.

**Theorem 2.3.** Let M be an  $n \times n$  ( $n \ge 2$ ) primitive matrix with Boolean rank b(M) = b. Then

$$k(M) \leq \left\lceil \frac{(b-1)^2 + 1}{2} \right\rceil + 1.$$
 (4)

**Proof.** Let M = AB be a Boolean rank factorization of M, where A and B are  $n \times b$  and  $b \times n$  Boolean matrices respectively. Then by Lemma 2.2 neither A nor B has a zero line. By Lemma 2.1, we have

$$k(M) = k(AB) \leq k(BA) + 1.$$

Since *BA* is primitive and *BA* is a  $b \times b$  matrix, by Theorem 1.2,

$$k(BA) \leqslant \left\lceil \frac{(b-1)^2 + 1}{2} \right\rceil,$$

from which Theorem 2.3 follows.  $\Box$ 

From (1) we see that no matrix of full Boolean rank n can attain the upper bound in (4). Further, since the only  $n \times n$  primitive Boolean matrix with Boolean rank 1 is  $J_n$ , no matrix of Boolean rank 1 can attain the upper bound in (4). Thus we may assume that  $2 \le b \le n - 1$ .

For simplicity, let

$$h = \left\lceil \frac{(b-1)^2 + 1}{2} \right\rceil.$$

Recall from Theorem 1.2 that  $k(W_b) = h$ . We first make some observations about  $W_b$ . Recall that  $D = D(W_b)$  is the Wielandt graph  $D_{b-1,b}$  with *b* vertices.

**Lemma 2.4.** If  $b \ge 3$ , then the zero entries of  $(W_b)^{h-1} (W_b^t)^{h-1}$  occur only in the  $(b, \lfloor \frac{b}{2} \rfloor)$  and  $(\lfloor \frac{b}{2} \rfloor, b)$  positions.

**Proof.** By Proposition 1.3 we know that  $k_{b,\lfloor \frac{b}{2} \rfloor}(D_{b-1,b}) = h$ , and for all other pairs of vertices u and v,  $k_{u,v}(D_{b-1,b}) < h$ . Therefore in  $W_b^{h-1}$  every pair of rows intersect with each other except rows b and  $\lfloor \frac{b}{2} \rfloor$ . Thus the only zero entries of  $(W_b)^{h-1} (W_b^t)^{h-1}$  are in the  $\left(b, \lfloor \frac{b}{2} \rfloor\right)$  and  $\left(\lfloor \frac{b}{2} \rfloor, b\right)$  positions.  $\Box$ 

For an  $n \times n$  ( $n \ge 2$ ) matrix A, let  $A(\{i_1, i_2\}, \{j_1, j_2\})$  be the submatrix of A that lies in the rows  $i_1$  and  $i_2$  and the columns  $j_1$  and  $j_2$ .

## **Lemma 2.5.** For $b \ge 3$ , $W_b^{h-1}\left(\left\{ \left\lfloor \frac{b}{2} \right\rfloor, b\right\}, \{b-1, b\}\right)$ is either $\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$ or $\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$ .

**Proof.** By Proposition 1.3, we know that  $k_{\lfloor \frac{b}{2} \rfloor, b}(D_{b-1,b}) = h$  and  $\lfloor \frac{b}{2} \rfloor \xrightarrow{h} 1$  and  $b \xrightarrow{h} 1$ . From the digraph  $D_{b-1,b}$ , we know that the directed walks of length *h* from vertices  $\lfloor \frac{b}{2} \rfloor$  and *b* to vertex 1 are either

$$\begin{bmatrix} b \\ -2 \end{bmatrix} \xrightarrow{h-1} b - 1 \xrightarrow{1} 1$$
 and  $b \xrightarrow{h-1} b \xrightarrow{1} 1$ 

or

$$\left\lfloor \frac{b}{2} \right\rfloor \xrightarrow{h-1} b \xrightarrow{1} 1$$
 and  $b \xrightarrow{h-1} b - 1 \xrightarrow{1} 1$ .

For the first case, if  $\left\lfloor \frac{b}{2} \right\rfloor \stackrel{h-1}{\to} b - 1$  and  $b \stackrel{h-1}{\to} b$ , then  $b \stackrel{h-1}{\to} b - 1$  and  $\left\lfloor \frac{b}{2} \right\rfloor \stackrel{h-1}{\to} b$ . Otherwise it contradicts  $k_{\left\lfloor \frac{b}{2} \right\rfloor, b}(D_{b-1, b}) = h$ . Similarly, for the second case if  $\left\lfloor \frac{b}{2} \right\rfloor \stackrel{h-1}{\to} b$  and  $b \stackrel{h-1}{\to} b - 1$ , then  $b \stackrel{h-1}{\to} b$  and  $\left\lfloor \frac{b}{2} \right\rfloor \stackrel{h-1}{\to} b - 1$ . The result follows by applying these to the matrix  $W_b^{h-1}$ .  $\Box$ 

**Theorem 2.6.** Suppose *M* is an  $n \times n$  Boolean matrix with  $3 \le b = b(M) \le n - 1$ . Then *M* is primitive and k(M) = h + 1 if and only if *M* has a Boolean rank factorization M = AB, where *A* and *B* have the following properties:

- (i)  $BA = W_b$ ,
- (ii) some row of A is  $e_{\lfloor \frac{b}{2} \rfloor}^{t}(b)$ , some row of A is  $e_{b}^{t}(b)$ , and
- (iii) no column of B is  $e_{b-1}(b) + e_b(b)$ .

**Proof.** First suppose *M* is primitive with k(M) = h + 1, and  $M = \widetilde{AB}$  is a Boolean rank factorization of *M*. By Lemma 2.1,  $\widetilde{BA}$  is primitive and  $k(\widetilde{BA}) \ge h$ . But  $\widetilde{BA}$  is a  $b \times b$  matrix. By Theorem 1.2,  $k(\widetilde{BA}) \le h$ . Therefore  $k(\widetilde{BA}) = h$ . Also by Theorem 1.2, there is a permutation matrix *P* such that  $P\widetilde{BA}P^t = W_b$ . Let  $B = P\widetilde{B}$  and  $A = \widetilde{AP}^t$ . Then  $AB = \widetilde{AP}^t P\widetilde{B} = \widetilde{AB} = M$ . Thus *A* and *B* satisfy condition (i). Since *M* is primitive, we have  $\sum_{i=1}^{b} A_i = j_n = \sum_{i=1}^{b} B_i^t$ . Since k(M) = h + 1, the matrix  $M^h$  must

Since *M* is primitive, we have  $\sum_{i=1}^{b} A_{i} = j_n = \sum_{i=1}^{b} B_{i}^t$ . Since k(M) = h + 1, the matrix *M*<sup>n</sup> must have two rows that do not intersect. Without loss of generality, suppose rows *p* and *q* of *M*<sup>h</sup> do not intersect. Then entries in the (p, q) and (q, p) positions of  $M^h(M^t)^h$  are zero. Since matrix *B* has no zero row, we have  $BB^t \ge I_b$ . Thus

$$\begin{split} M^{h}(M^{t})^{h} &= (AB)^{h}((AB)^{t})^{h} = A(BA)^{h-1}BB^{t}((BA)^{t})^{h-1}A^{t} \\ &= A(W_{b})^{h-1}BB^{t}(W_{b}^{t})^{h-1}A^{t} \\ &\geq A(W_{b})^{h-1}I_{b}(W_{b}^{t})^{h-1}A^{t} = A(W_{b})^{h-1}(W_{b}^{t})^{h-1}A^{t} \\ &= AZA^{t} \\ &= \left[J_{n,\left\lfloor\frac{b}{2}\right\rfloor-1} \middle| \sum_{i=1}^{b-1}A_{.i} \middle| J_{n,b-\left\lfloor\frac{b}{2}\right\rfloor-1} \middle| \sum_{i=1}^{b}A_{.i} \right]A^{t} \\ &= j_{n}\left(\sum_{i=1}^{\lfloor\frac{b}{2}\right\rfloor-1}A_{.i}\right)^{t} + \left(\sum_{i=1}^{b-1}A_{.i}\right)\left(A_{.\left\lfloor\frac{b}{2}\right\rfloor}\right)^{t} + j_{n}\left(\sum_{i=\left\lfloor\frac{b}{2}\right\rfloor+1}^{b-1}A_{.i}\right)^{t} + \left(\sum_{i=1}^{b}A_{.i}\right)(A_{.b})^{t}, \end{split}$$

where  $Z = (W_b)^{h-1} (W_b^t)^{h-1}$  is the  $b \times b$  matrix which has zero entries only in the  $\left( \left\lfloor \frac{b}{2} \right\rfloor, b \right)$  and  $\left( b, \left\lfloor \frac{b}{2} \right\rfloor \right)$  positions. Since  $AZA^t$  is dominated by  $M^h(M^t)^h$  and  $M^h(M^t)^h$  has zero entries in the (p, q) and (q, p) positions, the entries in the (p, q) and (q, p) positions of  $AZA^t$  are also zero. Thus

$$\sum_{i=1}^{\lfloor \frac{b}{2} \rfloor - 1} A_{qi} + \left( \sum_{i=1}^{b-1} A_{pi} \right) A_{q \lfloor \frac{b}{2} \rfloor} + \sum_{i=\lfloor \frac{b}{2} \rfloor + 1}^{b-1} A_{qi} + \left( \sum_{\substack{i=1\\i \neq \lfloor \frac{b}{2} \rfloor}}^{b} A_{pi} \right) A_{qb} = 0$$

$$(5)$$

and

$$\sum_{i=1}^{\frac{b}{2} - 1} A_{pi} + \left(\sum_{i=1}^{b-1} A_{qi}\right) A_{p \lfloor \frac{b}{2} \rfloor} + \sum_{i=\lfloor \frac{b}{2} \rfloor + 1}^{b-1} A_{pi} + \left(\sum_{\substack{i=1\\i \neq \lfloor \frac{b}{2} \rfloor}}^{b} A_{qi}\right) A_{pb} = 0.$$
(6)

Then  $A_{qi} = 0$  and  $A_{pi} = 0$  for i = 1, ..., b - 1 and  $i \neq \lfloor \frac{b}{2} \rfloor$ . Substituting these back in (5) and (6), we have

$$A_{q\left\lfloor\frac{b}{2}\right\rfloor}A_{p\left\lfloor\frac{b}{2}\right\rfloor} + A_{qb}A_{pb} = 0.$$
<sup>(7)</sup>

Thus rows  $A_{p.}$  and  $A_{q.}$  are disjoint. Since *A* has no zero rows, each of these rows has precisely one nonzero entry. Therefore some row of *A* is  $e_{b}^{t}(b)$  and some row of *A* is  $e_{b}^{t}(b)$ . This concludes (ii).

We claim *B* cannot have a column which is equal to  $u = e_{b-1}(b) + e_b(b)$ . Otherwise, suppose some column of *B* is *u*. Since *B* has no zero row, by Proposition 2.2,  $BB^t \ge I_b + uu^t$ . Thus

$$M^{h}(M^{t})^{h} = (AB)^{h}((AB)^{t})^{h} = A(BA)^{h-1}BB^{t}((BA)^{t})^{h-1}A^{t}$$
  
=  $A(W_{b})^{h-1}BB^{t}(W_{b}^{t})^{h-1}A^{t}$   
 $\geq A(W_{b})^{h-1}(I_{b} + uu^{t})(W_{b}^{t})^{h-1}A^{t}$   
=  $A\left[(W_{b})^{h-1}(W_{b}^{t})^{h-1} + (W_{b}^{h-1}u)(W_{b}^{h-1}u)^{t}\right]A^{t}.$ 

By Lemma 2.4,  $W_b^{h-1}\left(\left\{\left\lfloor \frac{b}{2} \right\rfloor, b\right\}, \{b-1, b\}\right)$  is either  $\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$  or  $\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$ . Then  $W_b^{h-1}u \ge e_{\lfloor \frac{b}{2} \rfloor}(b) + e_b(b)$ . By Lemma 2.4, the zero entries of  $W_b^{h-1} (W_b^t)^{h-1}$  are in the  $\left(b, \lfloor \frac{b}{2} \rfloor\right)$  and  $\left(\lfloor \frac{b}{2} \rfloor, b\right)$  positions. Therefore  $W_b^{h-1} (W_b^t)^{h-1} + \left(W_b^{h-1}u\right) \left(W_b^{h-1}u\right)^t = J_b$ . Since *A* has no zero lines, we have  $M^h(M^t)^h = AJ_bA^t = J_n$ , which is a contradiction to k(M) = h + 1. This proves (iii).

Finally, suppose that M = AB is a Boolean rank factorization of M and A and B satisfy (i), (ii) and (iii). By Proposition 2.2 and Lemma 2.1(a), neither A nor B has a zero line and the matrix M is primitive since  $W_b$  is. By Theorem 2.3,  $k(M) \le h + 1$ . Since  $BA = W_b$  and A has no zero row, each column of B is dominated by a column of  $W_b$ . Thus each column of B is in the set  $S_1 = \{e_1(b), e_2(b), \ldots, e_b(b), u\}$ , where  $u = e_{b-1}(b) + e_b(b)$ . But by (iii), no column of B is u. Hence each column of B is in the set  $S'_1 = \{e_1(b), e_2(b), \ldots, e_b(b)\}$ . Therefore  $BB^t \le I_b$ . Also since matrix B has no zero row,  $BB^t \ge I_b$ . Hence  $BB^t = I_b$ . Thus

$$M^{h}(M^{t})^{h} = (AB)^{h}((AB)^{t})^{h} = A(BA)^{h-1}BB^{t}((BA)^{t})^{h-1}A^{t}$$
  
=  $A(W_{b})^{h-1}I_{b}(W_{b}^{t})^{h-1}A^{t}$   
=  $A(W_{b})^{h-1}(W_{b}^{t})^{h-1}A^{t}$   
=  $AZA^{t}$ .

 $(b \ge 3).$ I I . . . . . . Ι Ι  $M_1 =$  $M_2 =$ I J J J . . . n J J n Λ n Λ Ι . . . -n J . . . . . . J J J J  $M_3 =$ J . . . n n n 0\_

where, by Lemma 2.4,  $Z = (W_b)^{h-1} (W_b^t)^{h-1}$  is the  $b \times b$  matrix which has zero entries only in the  $\left(\left\lfloor \frac{b}{2} \right\rfloor, b\right)$  and  $\left(b, \left\lfloor \frac{b}{2} \right\rfloor\right)$  positions. By (ii) some row of A is  $e_{\lfloor \frac{b}{2} \rfloor}^t(b)$  and some row of A is  $e_b^t(b)$ . Without loss of generality, suppose row p of A is  $e_{\lfloor \frac{b}{2} \rfloor}^t(b)$  and row q of A is  $e_b^t(b)$ . Then

$$(M^{h}(M^{t})^{h})_{pq} = e_{p}^{t}(b)AZA^{t}e_{q}(b) = Z_{\lfloor \frac{b}{2} \rfloor b} = 0.$$

Hence k(M) > h. Therefore k(M) = h + 1.  $\Box$ 

Table 1

Next we will reinterpret conditions (i)–(iii) of Theorem 2.6 to show that if k(M) = h + 1, then M is one of the three basic types of matrices in Theorem 2.7.

**Theorem 2.7.** Suppose *M* is an  $n \times n$  Boolean matrix with b(M) = b, where  $3 \le b \le n - 1$ . Then *M* is primitive with k(M) = h + 1 if and only if there is a permutation matrix *P* such that PMP<sup>t</sup> has one of the forms in Table 1.

In Table 1 the rows and columns of  $M_1$ ,  $M_2$  and  $M_3$  are partitioned conformally, so that each diagonal block is square, and the top left hand submatrix common to each has *b* blocks in its partitioning.

**Proof.** Suppose *M* is primitive,  $b \ge 3$ , and k(M) = h + 1. Then by Theorem 2.6(i), *M* has a Boolean rank factorization M = AB such that  $BA = W_b$ . As shown in the proof of Theorem 2.6, we know that each column of *B* is in the set  $S'_1 = \{e_1(b), e_2(b), \dots, e_b(b)\}$ . Since *B* has no zero column, each row of *A* is dominated by a row of  $W_b$ . Therefore each row of *A* is in the set  $S_2 = \{e_1^t(b), e_2^t(b), \dots, e_b^t(b), v^t\}$ , where  $v = e_1(b) + e_b(b)$ .

Next, we note that for each  $1 \le i \le b$ , the outer product  $B_iA_i$  is dominated by  $W_b$ . Since each  $B_i$  and  $A_i$  must be in  $S'_1$  and  $S_2$  respectively and  $(B_i, A_i)$  must be one of the following pairs:  $(e_i, e_{i+1}^t)$ ,  $1 \le i \le b - 1$ ,  $(e_{b-1}, e_1^t)$ ,  $(e_b, e_1)$ , or  $(e_{b-1}, v^t)$ , where  $e_i = e_i(b)$  for any  $i \in \{1, 2, ..., b\}$ . Thus, for each i,  $1 \le i \le b - 2$ ,  $(e_i, e_{i+1}^t) = (B_{k_i}, A_{k_i})$  for some  $k_i$ . This also holds for i = b - 1 because, by (ii), some row of A must equal  $e_b^t$ . Some outer product  $B_jA_j$  has a 1 in the (b, 1) position, hence  $(B_{k_b}, A_{k_b}) = (e_b, e_1^t)$  for some  $k_b$ . Finally some outer product  $B_jA_j$  must have a 1 in the (b - 1, 1) position, hence for some  $k_{b+1}$ ,  $(B_{k_{b+1}}, A_{k_{b+1}})$  is one of  $(e_{b-1}, e_1^t)$  or  $(e_{b-1}, v^t)$ . It follows from the above argument that there is an  $n \times n$  permutation matrix Q such that

$$BQ^t = [\overline{B}|\widetilde{B}]$$
 and  $QA = \begin{bmatrix} \overline{A} \\ \overline{A} \end{bmatrix}$ 

where

$$\overline{B} = \begin{bmatrix} e_1 j_{n_1}^t | e_2 j_{n_2}^t | \cdots | e_b j_{n_b}^t \end{bmatrix} \text{ and } \overline{A} = \begin{bmatrix} \frac{J_{n_1} e_2^t}{j_{n_2} e_3^t} \\ \frac{J_{n_2} e_3^t}{j_{n_b-1} e_b^t} \\ \frac{J_{n_b-1} e_b^t}{j_{n_b} e_1^t} \end{bmatrix}$$

for some  $n_1, \ldots, n_b \ge 1$ , and where each  $(\tilde{B}_{.i}, \tilde{A}_{i.})$  is one of  $(e_{b-1}, e_1^t)$  or  $(e_{b-1}, v^t)$ . Thus  $\tilde{B}$  and  $\tilde{A}$  can be one of the following pairs of matrices:

$$\widetilde{B}_1 = e_{b-1}j_{m_1}^t, \quad \widetilde{A}_1 = j_{m_1}e_1^t \text{ for some } m_1 \ge 1;$$
  

$$\widetilde{B}_2 = e_{b-1}j_{m_2}^t, \quad \widetilde{A}_2 = j_{m_2}v^t \text{ for some } m_2 \ge 1;$$
  

$$\widetilde{B}_3 = \left[e_{b-1}j_{m_3}^t | e_{b-1}j_{p_3}^t\right], \quad \widetilde{A}_3 = \left[\frac{j_{m_3}e_1^t}{j_{p_3}v^t}\right] \text{ for some } m_3, p_3 \ge 1.$$

It is now readily verified that

$$\begin{bmatrix} \overline{A} \\ \overline{A_i} \end{bmatrix} \begin{bmatrix} \overline{B} | \widetilde{B_i} \end{bmatrix} = M_i \text{ for } 1 \leq i \leq 3,$$

so that QMQ<sup>t</sup> is one of the matrices in Table 1.

Finally, since the Boolean rank factorization

$$M_i = \begin{bmatrix} \overline{A} \\ \overline{A_i} \end{bmatrix} \begin{bmatrix} \overline{B} | \widetilde{B_i} \end{bmatrix}$$

satisfies conditions (i)–(iii) of Theorem 2.6, each  $M_i$  is primitive and k(M) = h + 1.  $\Box$ 

When b(M) = 2, we have the following result.

**Theorem 2.8.** Suppose *M* is an  $n \times n$  primitive Boolean matrix with b(M) = b = 2. Then k(M) = 2 if and only if *M* has a Boolean rank factorization M = AB, where *A* and *B* have the following properties:

- (i)  $BA = W_2$  or  $BA = J_2$ ,
- (ii) some row of A is  $e_1^t(2)$ , some row of A is  $e_2^t(2)$ , and
- (iii) no column of *B* is  $e_1(2) + e_2(2)$ .

**Proof.** First suppose *M* is primitive with k(M) = 2, and  $M = \widetilde{AB}$  is a Boolean rank factorization of *M*. By Lemma 2.1,  $\widetilde{BA}$  is primitive and  $k(\widetilde{BA}) \ge 1$ . But  $\widetilde{BA}$  is a  $2 \times 2$  matrix. By Theorem 1.2,  $k(\widetilde{BA}) \le 1$ . Therefore  $k(\widetilde{BA}) = 1$ . Also by Theorem 1.2, there is a permutation matrix *P* such that  $P\widetilde{BAP}^t = W_2$  or  $P\widetilde{BAP}^t = J_2$ . Let  $B = P\widetilde{B}$  and  $A = \widetilde{AP}^t$ . Then  $AB = \widetilde{AP}^t P\widetilde{B} = \widetilde{AB} = M$ . Thus *A* and *B* satisfy condition (i). Proof of the conditions (ii) and (iii) are similar to the proof of Theorem 2.6.  $\Box$ 

By a similar argument, we can reinterpret conditions (i)–(iii) of Theorem 2.8 to show that if M satisfies k(M) = 2, then M is one of the 21 basic types of matrices which we will show in the following.

**Theorem 2.9.** Suppose *M* is an  $n \times n$  Boolean matrix with b(M) = b = 2. Let M = AB be a Boolean rank factorization. Then *M* is primitive with k(M) = 2 if and only if there is a permutation matrix *P* such that  $PMP^t$  has one of the forms in Table 2 if  $BA = W_2$  or  $PMP^t$  has one of the forms in Table 3 if  $BA = J_2$ .

1930

Table 2

(b = 2).

| $\begin{bmatrix} 0\\ \frac{J}{J} \end{bmatrix}$                                                                                                                                                                                                         | $\begin{bmatrix} J & 0 \\ 0 & J \\ 0 & J \end{bmatrix},$                                                                                          | $\begin{bmatrix} 0 & J & 0 \\ J & 0 & J \\ J & J & J \end{bmatrix},$                                                                          |                                                                                           | $\begin{bmatrix} 0 & J & 0 \\ J & 0 & J \\ J & 0 & J \\ J & J & J \end{bmatrix}$                                                                                                                        | 0<br>                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Table 3 $(b = 2).$                                                                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                               |                                                                                           |                                                                                                                                                                                                         |                                 |
| $\begin{bmatrix} J & J & 0 & 0 \\ 0 & 0 & J & J \\ J & J & 0 & 0 \\ 0 & 0 & J & J \end{bmatrix},$                                                                                                                                                       | $\begin{bmatrix} J & J & 0 & 0 &   & J \\ 0 & 0 & J & J & 0 \\ J & J & 0 & 0 & J \\ 0 & 0 & J & J & 0 \\ \hline J & J & J & J & J \end{bmatrix},$ | $\begin{bmatrix} J & J & 0 & 0 & 0 \\ 0 & 0 & J & J & J \\ J & J & 0 & 0 & 0 \\ 0 & 0 & J & J & J \\ \hline J & J & J & J & J \end{bmatrix},$ | $\begin{bmatrix} J & J \\ 0 & 0 \\ J & J \\ 0 & 0 \\ \hline J & J \\ J & J \end{bmatrix}$ | 0       0       J         J       J       0         0       0       J         J       J       0         J       J       J         J       J       J         J       J       J         J       J       J | 0<br>J<br>0<br>J<br>J<br>J<br>J |
| $\begin{bmatrix} J & J & 0 \\ 0 & 0 & J \\ J & J & J \end{bmatrix},$                                                                                                                                                                                    | $\begin{bmatrix} J & J & 0 &   & J \\ 0 & 0 & J & 0 \\ J & J & J &   & J \\ \hline J & J & J &   & J \end{bmatrix}.$                              | $\begin{bmatrix} J & J & 0 & 0 \\ 0 & 0 & J & J \\ J & J & J & J \\ J & J & 0 & 0 \end{bmatrix},$                                             | $\begin{bmatrix} J & J \\ 0 & 0 \\ J & J \\ 0 & 0 \end{bmatrix}$                          | $ \begin{array}{c} 0 & 0 \\ J & J \\ J & J \\ J & J \\ \end{array} $                                                                                                                                    |                                 |
| $\begin{bmatrix} J & J & 0 & J & 0 \\ 0 & 0 & J & 0 & J \\ J & J & J & J & J \\ J & J & 0 & J & 0 \end{bmatrix}, \begin{bmatrix} J & J & J \\ J & 0 & 0 \\ J & 0 & 0 \end{bmatrix}, \begin{bmatrix} J & J & J \\ J & 0 & 0 \\ 0 & J & J \end{bmatrix},$ | $\begin{bmatrix} J & J & 0 & J & 0 \\ 0 & 0 & J & 0 & J \\ J & J & J & J & J \\ J & J & J & J$                                                    | $\begin{bmatrix} J & J & J & J \\ J & 0 & 0 & J \\ 0 & J & J & 0 \\ 0 & J & J & 0 \end{bmatrix},$                                             | $\begin{bmatrix} J & J \\ J & 0 \\ 0 & J \\ \hline J & J \end{bmatrix}$                   | J J<br>0 0<br>J J<br>J J                                                                                                                                                                                |                                 |
| $\begin{bmatrix} J & J & J & J & J \\ J & 0 & 0 & J & 0 \\ 0 & J & J & 0 & J \\ \overline{J} & 0 & 0 & J & 0 \\ J & J & J & J & J \end{bmatrix},$                                                                                                       | $\begin{bmatrix} J & J & J & J & J & J \\ J & 0 & 0 & J & 0 \\ 0 & J & J & 0 & J \\ 0 & J & J & 0 & J \\ J & J & J & J & J \end{bmatrix}.$        | $\begin{bmatrix} J & J & J & J \\ J & J & J & J \\ J & 0 & J & 0 \\ 0 & J & 0 & J \end{bmatrix}$                                              | J         J           J         J           0         J           J         0             | $\begin{bmatrix} J & J \\ J & J \\ 0 & J \\ J & 0 \end{bmatrix}.$                                                                                                                                       |                                 |

In Tables 2 and 3 the rows and columns of each matrix are partitioned conformally, so that each diagonal block is square.

#### Acknowledgments

The authors would like to thank Prof. Steve Kirkland and a referee for their many useful comments and suggestions.

#### References

- [1] M. Akelbek, S.J. Kirkland, Coefficients of ergodicity and the scrambling index, Linear Algebra Appl. 430 (2009) 1111–1130.
- [2] M. Akelbek, S.J. Kirkland, Primitive digraphs with the largest scrambling index, Linear Algebra Appl. 430 (2009) 1099–1110.
- [3] R.A. Brualdi, H.J. Ryser, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1991.
- [4] D.A. Gregory, S.J. Kirkland, N.J. Pullman, A bound on the exponent of a primitive matrix using Boolean rank, Linear Algebra Appl. 217 (1995) 101–116.
- [5] B.L. Liu, L.H. You, G.X. Yu, On extremal matrices of second largest exponent by Boolean rank, Linear Algebra Appl. 422 (2007) 186–197.
- [6] J.Y. Shao, On the exponent of primitive digraph, Linear Algebra Appl. 64 (1985) 21–31.
- [7] H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Zeit. 52 (1958) 642-645.