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The scrambling index of an n × n primitive matrix A is the small-

est positive integer k such that Ak(At)k = J, where At denotes the

transpose of A and J denotes the n × n all onesmatrix. For anm × n

Boolean matrix M, its Boolean rank b(M) is the smallest positive

integer b such that M = AB for some m × b Boolean matrix A and

b × n Boolean matrix B. In this paper, we give an upper bound on

the scrambling index of an n × n primitive matrix M in terms of

its Boolean rank b(M). Furthermore we characterize all primitive

matrices that achieve the upper bound.

Published by Elsevier Inc.

1. Introduction

For terminology and notation used here we follow [3]. A matrix A is called nonnegative if all its

elements are nonnegative, and denoted by A� 0. A matrix A is called positive if all its elements are

positive, and denoted by A > 0. For anm × nmatrix A, we will denote its (i, j)-entry by Aij , its ith row

by Ai., and its jth column by A.j . Form × nmatrices A and B, we say that B is dominated by A if Bij � Aij

for each i and j, and denote this by B � A. We denote the m × n all ones matrix by Jm,n (and by Jn if

m = n), the m × n all zeros matrix by Om,n, the all ones n-vector by jn, the n × n identity matrix by
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In, and its ith column by ei(n). The subscriptsm and nwill be omitted whenever their values are clear

from the context.

Let D = (V , E) denote a digraph (directed graph) with vertex set V = V(D), arc set E = E(D) and

order n. Loops are permitted but multiple arcs are not. A u → v walk in a digraph D is a sequence of

vertices u, u1, . . . , ut , v ∈ V(D) and a sequence of arcs (u, u1), (u1, u2), . . . , (ut , v) ∈ E(D), where the

vertices and arcs are not necessarily distinct. We shall use the notation u → v and u�v to denote,

respectively, that there is an arc from vertex u to vertex v and that there is no such an arc. Similarly,

u
k→ v and u

k
� v denote, respectively, that there is a directed walk of length k from vertex u to vertex

v, and that there is no such a walk.

For an n × n nonnegative matrix A = (aij), its digraph, denoted by D(A), is the digraph with vertex

set V(D(A)) = {1, 2, . . . , n}, and (i, j) is an arc ofD(A) if and only if aij /= 0. Then, for a positive integer

r � 1, the (i, j)th entry of the matrix Ar is positive if and only if i
r→ j in the digraph D(A). Since most

of the time we are only interested in the existence of such walks, not the number of different directed

walks from vertex i to vertex j, we interpret A as a Boolean (0, 1)-matrix, unless stated otherwise. A

Boolean (0, 1)-matrix is a matrix with only 0’s and 1’s as its entries. Using Boolean arithmetic, (1 + 1 =
1, 0 + 0 = 0, 1 + 0 = 1), we have that AB and A + B are Boolean (0, 1)-matrices if A and B are.

A digraph D is called primitive if for some positive integer t there is a walk of length exactly t from

each vertex u to each vertex v. If D is primitive the smallest such t is called the exponent of D, denoted

by exp(D). Equivalently, a square nonnegative matrix A of order n is called primitive if there exists a

positive integer r such that Ar > 0. The minimum such r is called the exponent of A, and denoted by

exp(A). Clearly exp(A) = exp(D(A)). There arenumerous results on theexponent of primitivematrices

[3]. In 1950,Wielandt [7] stated that exp(A) �(n − 1)2 + 1 and that equality is attained byWn, where

W2 =
[
1 1

1 0

]
and Wn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0

0 0 1 0 · · · 0

...
...

. . .
. . . · · · ...

0 0 · · · 0 1 0

1 0 · · · · · · 0 1

1 0 · · · · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
when n� 3.

Several authors (see, for example, [3, p. 81]) later proved that exp(A) = (n − 1)2 + 1 if and only if

PAPt = Wn for some permutation matrix P.

The scrambling index of a primitive digraph D is the smallest positive integer k such that for each

pair of vertices u and v, there exists some vertexw = w(u, v) (dependent on u and v) such that u
k→w

and v
k→w in D. The scrambling index of D is denoted by k(D). For u, v ∈ V(D) (u /= v), we define the

local scrambling index of u and v as

ku,v(D) = min{k : u
k→w and v

k→w for some w ∈ V(D)}.
Then

k(D) = max
u,v∈V(D)

{ku,v(D)}.
An analogous definition for scrambling index can be given for nonnegative matrices. The scrambling

index of a primitivematrix A, denoted by k(A), is the smallest positive integer k such that any two rows

of Ak have at least one positive element in a coincident position. The scrambling index of a primitive

matrixA can alsobe equivalently definedas the smallest positive integer k such thatAk(At)k = J,where

At denotes the transpose of A. If A is the adjacency matrix of a primitive digraph D, then k(D) = k(A).
As a result, throughout the paper, where no confusion occurs, we use the digraph D and the adjacency

matrix A(D) interchangeably.
In [1,2], Akelbek and Kirkland obtained an upper bound on the scrambling index of a primitive

digraph D in terms of the order and girth of D, and gave a characterization of the primitive digraphs

with the largest scrambling index.
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Theorem 1.1 [1]. Let D be a primitive digraph with n vertices and girth s. Then

k(D) � n − s +
⎧⎨⎩
(
s−1
2

)
n, when s is odd,(

n−1
2

)
s, when s is even.

When s = n − 1, an upper bound on k(D) in terms of the order of a primitive digraph D can be

achieved [1]. We state the theorem in terms of primitive matrices below.

Theorem 1.2 [1]. Let A be a primitive matrix of order n� 2. Then

k(A) �
⌈

(n − 1)2 + 1

2

⌉
. (1)

Equality holds in (1) if and only if there is a permutation matrix P such that PAPt is equal to W2 or J2 when

n = 2 and Wn when n� 3.

The digraph D(Wn) is called the Wielandt graph and denoted by Dn−1,n. It is a digraph with a

Hamilton cycle 1 → 2 → · · · → n → 1 together with an arc from vertex n − 1 to vertex 1. For

simplicity, let hn =
⌈

(n−1)2+1

2

⌉
. The next proposition gives some information about the Wielandt

graph Dn−1,n.

Proposition 1.3 [1]. For Dn−1,n, where n� 3,

(a) kn,� n
2�(Dn−1,n) = hn, and for all other pairs of vertices u and v of Dn−1,n, ku,v(Dn−1,n) < hn.

(b) There are directedwalks fromvertices n and
⌊
n
2

⌋
to vertex 1 of length hn, that is n

hn→ 1 and
⌊
n
2

⌋
hn→ 1.

For anm × n BooleanmatrixM, we define its Boolean rank b(M) to be the smallest positive integer

b such that for somem × b Boolean matrix A and b × n Boolean matrix B, M = AB. The Boolean rank

of the zero matrix is defined to be zero. M = AB is called a Boolean rank factorization ofM.

In [4], Gregory et al. obtained an upper bound on the exponent of a primitive Boolean matrix in

terms of Boolean rank.

Proposition 1.4 [4]. Suppose that n� 2 and that M is an n × n primitive Boolean matrix with b(M) = b.
Then

exp(M) �(b − 1)2 + 2. (2)

In [4], Gregory et al. also gave a characterization of the matrices for which equality holds in (2). In

[5], Liu et al. gave a characterization of primitive matricesM with Boolean rank b such that exp(M) =
(b − 1)2 + 1.

In this paper,we give anupper boundon the scrambling indexof a primitivematrixM usingBoolean

rank b = b(M), and characterize all Boolean primitive matrices that achieve the upper bound.

2. Main results

We start with a basic result.

Lemma 2.1. Suppose that A and B are n × m and m × n Boolean matrices respectively, and that neither

has a zero line. Then

(a) AB is primitive if and only if BA is primitive.
(b) If AB and BA are primitive, then

|k(AB) − k(BA)| � 1. (3)
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Proof. Part (a) was proved by Shao [6]. We only need to show part (b). Since AB and BA are primitive

matrices,A andBhavenozero rows. ThenAAt � In andBJnB
t = Jm. Suppose k(AB) = k. By thedefinition

of scrambling index

(AB)k((AB)t)k = Jn.

Then

(BA)k+1((BA)t)k+1=B(AB)kAAt((AB)t)kBt � B(AB)kIn((AB)
t)kBt

=B(AB)k((AB)t)kBt = BJnB
t = Jm.

Thus k(BA) � k + 1 = k(AB) + 1. The result follows by exchanging the roles of A and B. �

Proposition 2.2 [5]. Let M be an n × n primitive Boolean matrix, and M = AB be a Boolean rank factor-

ization of M. Then neither A nor B has a zero line.

Theorem 2.3. Let M be an n × n (n� 2) primitive matrix with Boolean rank b(M) = b. Then

k(M) �
⌈

(b − 1)2 + 1

2

⌉
+ 1. (4)

Proof. Let M = AB be a Boolean rank factorization of M, where A and B are n × b and b × n Boolean

matrices respectively. Then by Lemma 2.2 neither A nor B has a zero line. By Lemma 2.1, we have

k(M) = k(AB) � k(BA) + 1.

Since BA is primitive and BA is a b × b matrix, by Theorem 1.2,

k(BA) �
⌈

(b − 1)2 + 1

2

⌉
,

from which Theorem 2.3 follows. �

From (1) we see that no matrix of full Boolean rank n can attain the upper bound in (4). Further,

since the only n × n primitive Boolean matrix with Boolean rank 1 is Jn, no matrix of Boolean rank 1

can attain the upper bound in (4). Thus we may assume that 2� b� n − 1.

For simplicity, let

h =
⌈

(b − 1)2 + 1

2

⌉
.

Recall from Theorem 1.2 that k(Wb) = h. We first make some observations about Wb. Recall that

D = D(Wb) is the Wielandt graph Db−1,b with b vertices.

Lemma 2.4. If b� 3, then the zero entries of (Wb)
h−1

(
Wt

b

)h−1
occur only in the

(
b,
⌊
b
2

⌋)
and

(⌊
b
2

⌋
, b
)

positions.

Proof. By Proposition 1.3 we know that k
b,
⌊
b
2

⌋(Db−1,b) = h, and for all other pairs of vertices u and v,

ku,v(Db−1,b) < h. Therefore in W
h−1
b every pair of rows intersect with each other except rows b and⌊

b
2

⌋
. Thus the only zero entries of (Wb)

h−1
(
Wt

b

)h−1
are in the

(
b,
⌊
b
2

⌋)
and

(⌊
b
2

⌋
, b
)
positions. �

For an n × n (n� 2)matrix A, let A({i1, i2}, {j1, j2}) be the submatrix of A that lies in the rows i1 and

i2 and the columns j1 and j2.
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Lemma 2.5. For b� 3,W
h−1
b

({⌊
b
2

⌋
, b
}
, {b − 1, b}

)
is either

[
1 0
0 1

]
or
[
0 1
1 0

]
.

Proof. By Proposition 1.3,we know that k⌊ b
2

⌋
,b
(Db−1,b) = h and

⌊
b
2

⌋
h→ 1 and b

h→ 1. From the digraph

Db−1,b, we know that the directed walks of length h from vertices
⌊
b
2

⌋
and b to vertex 1 are either⌊

b

2

⌋
h−1→ b − 1

1→ 1 and b
h−1→ b

1→ 1,

or ⌊
b

2

⌋
h−1→ b

1→ 1 and b
h−1→ b − 1

1→ 1.

For the first case, if
⌊
b
2

⌋
h−1→ b − 1 and b

h−1→ b, then b
h−1
� b − 1 and

⌊
b
2

⌋
h−1
� b. Otherwise it contra-

dicts k⌊ b
2

⌋
,b
(Db−1,b) = h. Similarly, for the second case if

⌊
b
2

⌋
h−1→ b and b

h−1→ b − 1, then b
h−1
� b and⌊

b
2

⌋
h−1
� b − 1. The result follows by applying these to the matrix W

h−1
b . �

Theorem 2.6. Suppose M is an n × n Boolean matrix with 3� b = b(M) � n − 1. Then M is primitive

and k(M) = h + 1 if and only if M has a Boolean rank factorization M = AB, where A and B have the

following properties:

(i) BA = Wb,

(ii) some row of A is et⌊ b
2

⌋(b), some row of A is etb(b), and

(iii) no column of B is eb−1(b) + eb(b).

Proof. First suppose M is primitive with k(M) = h + 1, and M = ÃB̃ is a Boolean rank factorization

ofM. By Lemma 2.1, B̃Ã is primitive and k(̃BÃ) � h. But B̃Ã is a b × bmatrix. By Theorem 1.2, k(̃BÃ) � h.

Therefore k(̃BÃ) = h. Also by Theorem 1.2, there is a permutation matrix P such that PB̃ÃPt = Wb. Let

B = PB̃ and A = ÃPt . Then AB = ÃPtPB̃ = ÃB̃ = M. Thus A and B satisfy condition (i).

Since M is primitive, we have
∑b

i=1 A.i = jn = ∑b
i=1 B

t
i.. Since k(M) = h + 1, the matrix Mh must

have two rows that do not intersect. Without loss of generality, suppose rows p and q of Mh do not

intersect. Then entries in the (p, q) and (q, p) positions ofMh(Mt)h are zero. Sincematrix B has no zero

row, we have BBt � Ib. Thus

Mh(Mt)h

= (AB)h((AB)t)h = A(BA)h−1BBt((BA)t)h−1At

= A(Wb)
h−1BBt

(
Wt

b

)h−1
At

� A(Wb)
h−1Ib

(
Wt

b

)h−1
At = A(Wb)

h−1
(
Wt

b

)h−1
At

= AZAt

=

⎡⎢⎢⎢⎣Jn,⌊ b
2

⌋
−1

b−1∑
i=1

A.i J
n,b−

⌊
b
2

⌋
−1

b∑
i=1

i /=
⌊
b
2

⌋
A.i

⎤⎥⎥⎥⎦ At

= jn

⎛⎜⎜⎝
⌊
b
2

⌋
−1∑

i=1

A.i

⎞⎟⎟⎠
t

+
⎛⎝b−1∑

i=1

A.i

⎞⎠(A
.
⌊
b
2

⌋)t

+ jn

⎛⎜⎜⎝ b−1∑
i=
⌊
b
2

⌋
+1

A.i

⎞⎟⎟⎠
t

+

⎛⎜⎜⎜⎝
b∑

i=1

i /=
⌊
b
2

⌋
A.i

⎞⎟⎟⎟⎠ (A.b)
t ,
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where Z = (Wb)
h−1

(
Wt

b

)h−1
is the b × b matrix which has zero entries only in the

(⌊
b
2

⌋
, b
)
and(

b,
⌊
b
2

⌋)
positions. Since AZAt is dominated by Mh(Mt)h and Mh(Mt)h has zero entries in the (p, q)

and (q, p) positions, the entries in the (p, q) and (q, p) positions of AZAt are also zero. Thus⌊
b
2

⌋
−1∑

i=1

Aqi +
⎛⎝b−1∑

i=1

Api

⎞⎠ A
q
⌊
b
2

⌋ +
b−1∑

i=
⌊
b
2

⌋
+1

Aqi +

⎛⎜⎜⎜⎝
b∑

i=1

i /=
⌊
b
2

⌋
Api

⎞⎟⎟⎟⎠ Aqb = 0 (5)

and ⌊
b
2

⌋
−1∑

i=1

Api +
⎛⎝b−1∑

i=1

Aqi

⎞⎠ A
p
⌊
b
2

⌋ +
b−1∑

i=
⌊
b
2

⌋
+1

Api +

⎛⎜⎜⎜⎝
b∑

i=1

i /=
⌊
b
2

⌋
Aqi

⎞⎟⎟⎟⎠ Apb = 0. (6)

Then Aqi = 0 and Api = 0 for i = 1, . . . , b − 1 and i /=
⌊
b
2

⌋
. Substituting these back in (5) and (6), we

have

A
q
⌊
b
2

⌋A
p
⌊
b
2

⌋ + AqbApb = 0. (7)

Thus rows Ap. and Aq. are disjoint. Since A has no zero rows, each of these rows has precisely one

nonzero entry. Therefore some row of A is et⌊ b
2

⌋(b) and some row of A is etb(b). This concludes (ii).

We claim B cannot have a columnwhich is equal to u = eb−1(b) + eb(b). Otherwise, suppose some

column of B is u. Since B has no zero row, by Proposition 2.2, BBt � Ib + uut . Thus

Mh(Mt)h=(AB)h((AB)t)h = A(BA)h−1BBt((BA)t)h−1At

=A(Wb)
h−1BBt

(
Wt

b

)h−1
At

� A(Wb)
h−1

(
Ib + uut

) (
Wt

b

)h−1
At

=A

[
(Wb)

h−1
(
Wt

b

)h−1 +
(
W

h−1
b u

) (
W

h−1
b u

)t]
At .

By Lemma 2.4, W
h−1
b

({⌊
b
2

⌋
, b
}
, {b − 1, b}

)
is either

[
1 0

0 1

]
or

[
0 1

1 0

]
. Then W

h−1
b u� e⌊ b

2

⌋(b) +
eb(b). By Lemma 2.4, the zero entries of W

h−1
b

(
Wt

b

)h−1
are in the

(
b,
⌊
b
2

⌋)
and

(⌊
b
2

⌋
, b
)
positions.

ThereforeW
h−1
b

(
Wt

b

)h−1 +
(
W

h−1
b u

) (
W

h−1
b u

)t = Jb. Since A has no zero lines, we haveMh(Mt)h =
AJbA

t = Jn, which is a contradiction to k(M) = h + 1. This proves (iii).

Finally, suppose that M = AB is a Boolean rank factorization of M and A and B satisfy (i), (ii) and

(iii). By Proposition 2.2 and Lemma 2.1(a), neither A nor B has a zero line and thematrixM is primitive

since Wb is. By Theorem 2.3, k(M) � h + 1. Since BA = Wb and A has no zero row, each column of B

is dominated by a column of Wb. Thus each column of B is in the set S1 = {e1(b), e2(b), . . . , eb(b), u},
where u = eb−1(b) + eb(b). But by (iii), no column of B is u. Hence each column of B is in the set

S′
1 = {e1(b), e2(b), . . . , eb(b)}. Therefore BBt � Ib. Also since matrix B has no zero row, BBt � Ib. Hence

BBt = Ib. Thus

Mh(Mt)h=(AB)h((AB)t)h = A(BA)h−1BBt((BA)t)h−1At

=A(Wb)
h−1Ib

(
Wt

b

)h−1
At

=A(Wb)
h−1

(
Wt

b

)h−1
At

=AZAt ,
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Table 1

(b� 3).

M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 J 0 0 · · · 0 0

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

.

.

.

0 0 · · · J 0 0 0

0 0 · · · 0 J 0 J

0 0 · · · 0 0 J 0

J 0 · · · 0 0 0 0

J 0 · · · 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 J 0 0 · · · 0 0

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

.

.

.

0 0 · · · J 0 0 0

0 0 · · · 0 J 0 J

0 0 · · · 0 0 J 0

J 0 · · · 0 0 0 0

J 0 · · · 0 0 J 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 J 0 0 · · · 0 0 0

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

.

.

.
.
.
.

0 0 · · · J 0 0 0 0

0 0 · · · 0 J 0 J J

0 0 · · · 0 0 J 0 0

J 0 · · · 0 0 0 0 0

J 0 · · · 0 0 0 0 0

J 0 · · · 0 0 J 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where, by Lemma 2.4, Z = (Wb)
h−1

(
Wt

b

)h−1
is the b × b matrix which has zero entries only in the(⌊

b
2

⌋
, b
)
and

(
b,
⌊
b
2

⌋)
positions. By (ii) some row of A is et⌊ b

2

⌋(b) and some row of A is etb(b). Without

loss of generality, suppose row p of A is et⌊ b
2

⌋(b) and row q of A is etb(b). Then

(Mh(Mt)h)pq = etp(b)AZA
teq(b) = Z⌊ b

2

⌋
b

= 0.

Hence k(M) > h. Therefore k(M) = h + 1. �

Next we will reinterpret conditions (i)–(iii) of Theorem 2.6 to show that if k(M) = h + 1, then M

is one of the three basic types of matrices in Theorem 2.7.

Theorem 2.7. Suppose M is an n × n Boolean matrix with b(M) = b, where 3� b� n − 1. Then M is

primitive with k(M) = h + 1 if and only if there is a permutation matrix P such that PMPt has one of the

forms in Table 1.

In Table 1 the rows and columns ofM1,M2 andM3 are partitioned conformally, so that each diagonal

block is square, and the top left hand submatrix common to each has b blocks in its partitioning.

Proof. Suppose M is primitive, b� 3, and k(M) = h + 1. Then by Theorem 2.6(i), M has a Boolean

rank factorization M = AB such that BA = Wb. As shown in the proof of Theorem 2.6, we know that

each column of B is in the set S′
1 = {e1(b), e2(b), . . . , eb(b)}. Since B has no zero column, each row of

A is dominated by a row ofWb. Therefore each row of A is in the set S2 = {
et1(b), e

t
2(b), . . . , e

t
b(b), v

t
}
,

where v = e1(b) + eb(b).
Next, we note that for each 1� i � b, the outer product B.iAi. is dominated by Wb. Since each B.i

and Ai. must be in S′
1 and S2 respectively and (B.i, Ai.) must be one of the following pairs: (ei, e

t
i+1),

1� i � b − 1,
(
eb−1, e

t
1

)
, (eb, e1), or

(
eb−1, v

t
)
, where ei = ei(b) for any i ∈ {1, 2, . . . , b}. Thus, for each i,

1� i � b − 2,
(
ei, e

t
i+1

)
= (B.ki , Aki.) for some ki. This alsoholds for i = b − 1because, by (ii), some row

of Amust equal etb. Some outer product B.jAj. has a 1 in the (b, 1) position, hence (B.kb , Akb.) = (
eb, e

t
1

)
for some kb. Finally some outer product B.jAj. must have a 1 in the (b − 1, 1) position, hence for some

kb+1, (B.kb+1
, Akb+1.) is one of

(
eb−1, e

t
1

)
or
(
eb−1, v

t
)
. It follows from the above argument that there is

an n × n permutation matrix Q such that
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BQt = [
B|̃B] and QA =

[
A

Ã

]
,

where

B =
[
e1j

t
n1

|e2jtn2 | · · · |ebjtnb
]

and A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

jn1e
t
2

jn2e
t
3

· · ·
jnb−1

etb

jnbe
t
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for some n1, . . . , nb � 1, and where each (̃B.i, Ãi.) is one of

(
eb−1, e

t
1

)
or
(
eb−1, v

t
)
. Thus B̃ and Ã can be

one of the following pairs of matrices:

B̃1=eb−1j
t
m1

, Ã1 = jm1
et1 for somem1 � 1;

B̃2=eb−1j
t
m2

, Ã2 = jm2
vt for somem2 � 1;

B̃3=
[
eb−1j

t
m3

|eb−1j
t
p3

]
, Ã3 =

[
jm3

et1
jp3v

t

]
for somem3, p3 � 1.

It is now readily verified that[
A

Ãi

] [
B|B̃i] = Mi for 1� i � 3,

so that QMQt is one of the matrices in Table 1.

Finally, since the Boolean rank factorization

Mi =
[
A

Ãi

] [
B|B̃i]

satisfies conditions (i)–(iii) of Theorem 2.6, each Mi is primitive and k(M) = h + 1. �

When b(M) = 2, we have the following result.

Theorem 2.8. Suppose M is an n × n primitive Boolean matrix with b(M) = b = 2. Then k(M) = 2 if

and only if M has a Boolean rank factorization M = AB, where A and B have the following properties:
(i) BA = W2 or BA = J2,

(ii) some row of A is et1(2), some row of A is et2(2), and
(iii) no column of B is e1(2) + e2(2).

Proof. First suppose M is primitive with k(M) = 2, and M = ÃB̃ is a Boolean rank factorization of

M. By Lemma 2.1, B̃Ã is primitive and k(̃BÃ) � 1. But B̃Ã is a 2 × 2 matrix. By Theorem 1.2, k(̃BÃ) � 1.

Therefore k(̃BÃ) = 1. Also by Theorem 1.2, there is a permutation matrix P such that PB̃ÃPt = W2 or

PB̃ÃPt = J2. Let B = PB̃ and A = ÃPt . Then AB = ÃPtPB̃ = ÃB̃ = M. Thus A and B satisfy condition (i).

Proof of the conditions (ii) and (iii) are similar to the proof of Theorem 2.6. �

By a similar argument, we can reinterpret conditions (i)–(iii) of Theorem 2.8 to show that if M

satisfies k(M) = 2, thenM is one of the 21 basic types ofmatriceswhichwewill show in the following.

Theorem 2.9. Suppose M is an n × n Boolean matrix with b(M) = b = 2. Let M = AB be a Boolean rank

factorization. Then M is primitive with k(M) = 2 if and only if there is a permutation matrix P such that

PMPt has one of the forms in Table 2 if BA = W2 or PMPt has one of the forms in Table 3 if BA = J2.
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Table 2

(b = 2). ⎡⎢⎣0 J 0

J 0 J

J 0 J

⎤⎥⎦,
⎡⎢⎣0 J 0

J 0 J

J J J

⎤⎥⎦,
⎡⎢⎢⎢⎢⎣
0 J 0 0

J 0 J J

J 0 J J

J J J J

⎤⎥⎥⎥⎥⎦.

Table 3

(b = 2).

⎡⎢⎢⎢⎢⎣
J J 0 0

0 0 J J

J J 0 0

0 0 J J

⎤⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎣
J J 0 0 J

0 0 J J 0

J J 0 0 J

0 0 J J 0

J J J J J

⎤⎥⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎣
J J 0 0 0

0 0 J J J

J J 0 0 0

0 0 J J J

J J J J J

⎤⎥⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

J J 0 0 J 0

0 0 J J 0 J

J J 0 0 J 0

0 0 J J 0 J

J J J J J J

J J J J J J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎣ J J 0

0 0 J

J J J

⎤⎥⎦,
⎡⎢⎢⎢⎢⎣
J J 0 J

0 0 J 0

J J J J

J J J J

⎤⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎣
J J 0 0

0 0 J J

J J J J

J J 0 0

⎤⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎣
J J 0 0

0 0 J J

J J J J

0 0 J J

⎤⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎣
J J 0 J 0

0 0 J 0 J

J J J J J

J J J J J

J J 0 J 0

⎤⎥⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎣
J J 0 J 0

0 0 J 0 J

J J J J J

J J J J J

0 0 J 0 J

⎤⎥⎥⎥⎥⎥⎥⎦,
⎡⎢⎣ J J J

J 0 0

0 J J

⎤⎥⎦,
⎡⎢⎢⎢⎢⎣
J J J J

J 0 0 J

0 J J 0

J 0 0 J

⎤⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎣
J J J J

J 0 0 J

0 J J 0

0 J J 0

⎤⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎣
J J J J

J 0 0 0

0 J J J

J J J J

⎤⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎣
J J J J J

J 0 0 J 0

0 J J 0 J

J 0 0 J 0

J J J J J

⎤⎥⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎣
J J J J J

J 0 0 J 0

0 J J 0 J

0 J J 0 J

J J J J J

⎤⎥⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎣
J J J J

J J J J

J 0 J 0

0 J 0 J

⎤⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎣
J J J J

J J J J

0 J 0 J

J 0 J 0

⎤⎥⎥⎥⎥⎦.

In Tables 2 and 3 the rows and columns of each matrix are partitioned conformally, so that each

diagonal block is square.
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