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1. Introduction

For terminology and notation used here we follow [3]. A matrix A is called nonnegative if all its
elements are nonnegative, and denoted by A > 0. A matrix A is called positive if all its elements are
positive, and denoted by A > 0. For anm x n matrix A, we will denote its (i, j)-entry by Aj;, its ith row
by A; , and its jth column by A j. For m x n matrices A and B, we say that B is dominated by A if Bj <Aj;
for each i and j, and denote this by B <A. We denote the m x n all ones matrix by Jm, (and by Jj if
m = n), the m x n all zeros matrix by Oy, 5, the all ones n-vector by j,, the n x n identity matrix by
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I, and its ith column by e;(n). The subscripts m and n will be omitted whenever their values are clear
from the context.

Let D = (V,E) denote a digraph (directed graph) with vertex set V = V(D), arc set E = E(D) and
order n. Loops are permitted but multiple arcs are not. Au — v walk in a digraph D is a sequence of
vertices u,uy, ..., u;, v € V(D) and a sequence of arcs (u, uq), (uq,uz), ..., (us,v) € E(D), where the
vertices and arcs are not necessarily distinct. We shall use the notation u — v and u—v to denote,
respectively, that there is an arc from vertex u to vertex v and that there is no such an arc. Similarly,

u —k> vand u LR v denote, respectively, that there is a directed walk of length k from vertex u to vertex
v, and that there is no such a walk.

For ann x nnonnegative matrix A = (aj), its digraph, denoted by D(A), is the digraph with vertex
set V(D(A)) = {1,2,...,n},and (i,j) isanarcof D(A) ifand only if a; # 0.Then, for a positive integer

r > 1, the (i,j)th entry of the matrix A" is positive if and only if i —r>j in the digraph D(A). Since most
of the time we are only interested in the existence of such walks, not the number of different directed
walks from vertex i to vertex j, we interpret A as a Boolean (0, 1)-matrix, unless stated otherwise. A
Boolean (0, 1)-matrix is a matrix with only 0’s and 1's as its entries. Using Boolean arithmetic, (1 + 1 =
1,04+0=0, 14 0 = 1), we have that AB and A + B are Boolean (0, 1)-matrices if A and B are.

A digraph D is called primitive if for some positive integer t there is a walk of length exactly t from
each vertex u to each vertex v. If D is primitive the smallest such t is called the exponent of D, denoted
by exp(D). Equivalently, a square nonnegative matrix A of order n is called primitive if there exists a
positive integer r such that A" > 0. The minimum such r is called the exponent of A, and denoted by
exp(A).Clearlyexp(A) = exp(D(A)).There are numerous results on the exponent of primitive matrices
[3]. In 1950, Wielandt [ 7] stated that exp(A) <(n — 1)? + 1 and that equality is attained by W,, where

0 1 0 0 0]
0 O 1 0 - 0
W2=E (1)] and W,=1|"* ° o e o Ul whenn>3.
o o --- 0 1 0
1 0 -+ -« 0 1
1t 0 -~ -~ 0 0]

Several authors (see, for example, [3, p. 81]) later proved that exp(A) = (n — 1)? + 1 if and only if
PAP! = W, for some permutation matrix P.
The scrambling index of a primitive digraph D is the smallest positive integer k such that for each

. . . k
pair of vertices u and v, there exists some vertex w = w(u, v) (dependent on u and v) such that u — w

and v LY w in D. The scrambling index of D is denoted by k(D). For u,v € V(D) (u # v), we define the
local scrambling index of u and v as

kyy(D) = min{k : u l> wand v L w for some w € V(D)}.
Then
k(D) = max {k,,(D)}.
u,veV(D)

An analogous definition for scrambling index can be given for nonnegative matrices. The scrambling
index of a primitive matrix A, denoted by k(A), is the smallest positive integer k such that any two rows
of A have at least one positive element in a coincident position. The scrambling index of a primitive
matrix A can also be equivalently defined as the smallest positive integer k such that A¥ (At)’< = J,where
A® denotes the transpose of A. If A is the adjacency matrix of a primitive digraph D, then k(D) = k(A).
As a result, throughout the paper, where no confusion occurs, we use the digraph D and the adjacency
matrix A(D) interchangeably.

In [1,2], Akelbek and Kirkland obtained an upper bound on the scrambling index of a primitive
digraph D in terms of the order and girth of D, and gave a characterization of the primitive digraphs
with the largest scrambling index.
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Theorem 1.1 [1]. Let D be a primitive digraph with n vertices and girth s. Then

kD) < N %) n, whensisodd,
k(D) <n—s
%) s, whensis even.

When s = n — 1, an upper bound on k(D) in terms of the order of a primitive digraph D can be
achieved [1]. We state the theorem in terms of primitive matrices below.

Theorem 1.2 [1]. Let A be a primitive matrix of order n > 2. Then

(n_l)ZHW

5 (1)

k(A) < [

Equality holds in (1) if and only if there is a permutation matrix P such that PAP is equal to W or |, when
n = 2 and W, whenn > 3.

The digraph D(W,) is called the Wielandt graph and denoted by D,_1 . It is a digraph with a
Hamilton cycle 1 —- 2 — --- — n — 1 together with an arc from vertex n — 1 to vertex 1. For

2
simplicity, let h, = [w-‘ The next proposition gives some information about the Wielandt
graph Dy—1 5.

Proposition 1.3 [1]. For D1 5, where n > 3,

(a) knvL%J (Dn—1,) = hy, and for all other pairs of vertices u and v of Dp—1 n, kKyy(Dn—11) < hp.

hy by
(b) There are directed walks from vertices n and [%J to vertex 1 of length hy, thatisn — 1 and LgJ — 1.

Foranm x n Boolean matrix M, we define its Boolean rank b(M) to be the smallest positive integer
b such that for some m x b Boolean matrix A and b x n Boolean matrix B, M = AB. The Boolean rank
of the zero matrix is defined to be zero. M = AB is called a Boolean rank factorization of M.

In [4], Gregory et al. obtained an upper bound on the exponent of a primitive Boolean matrix in
terms of Boolean rank.

Proposition 1.4 [4]. Suppose that n > 2 and that M is an n X n primitive Boolean matrix with b(M) = b.
Then

exp(M) <(b — 1)> + 2. (2)

In [4], Gregory et al. also gave a characterization of the matrices for which equality holds in (2). In
[5], Liu et al. gave a characterization of primitive matrices M with Boolean rank b such that exp(M) =
(b—172%+1.

In this paper, we give an upper bound on the scrambling index of a primitive matrix M using Boolean
rank b = b(M), and characterize all Boolean primitive matrices that achieve the upper bound.

2. Main results
We start with a basic result.

Lemma 2.1. Suppose that A and B are n x m and m X n Boolean matrices respectively, and that neither
has a zero line. Then

(a) AB is primitive if and only if BA is primitive.
(b) If AB and BA are primitive, then

|k(AB) — k(BA)| <1. (3)
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Proof. Part (a) was proved by Shao [6]. We only need to show part (b). Since AB and BA are primitive
matrices, A and B have no zero rows. Then AA" > I, and BJ,,B' = J,,,. Suppose k(AB) = k.By the definition
of scrambling index

BB ((ABH* = Jy.
Then

(BA)I<+1 ((BA)I')’(+1 ZB(AB)kAAt((AB)t)kBt > B(AB)kIn((AB)f)kBt
=B(AB)"((AB)")*B" = BJnB" = Jpn.
Thus k(BA) <k + 1 = k(AB) + 1. The result follows by exchanging the roles of Aand B. [

Proposition 2.2 [5]. Let M be an n X n primitive Boolean matrix, and M = AB be a Boolean rank factor-
ization of M. Then neither A nor B has a zero line.

Theorem 2.3. Let M be an n X n (n > 2) primitive matrix with Boolean rank b(M) = b. Then

12
k(M) < [“’2“} Y ()

Proof. Let M = AB be a Boolean rank factorization of M, where A and Baren x b and b x n Boolean
matrices respectively. Then by Lemma 2.2 neither A nor B has a zero line. By Lemma 2.1, we have

k(M) = k(AB) <k(BA) + 1.
Since BA is primitive and BA is a b x b matrix, by Theorem 1.2,
b—1)2%+1
k(BA) < [(Z)W ,

from which Theorem 2.3 follows. [

From (1) we see that no matrix of full Boolean rank n can attain the upper bound in (4). Further,
since the only n x n primitive Boolean matrix with Boolean rank 1 is J,;, no matrix of Boolean rank 1
can attain the upper bound in (4). Thus we may assume that 2<b<n — 1.

For simplicity, let

h:{w—lf+1]
2

Recall from Theorem 1.2 that k(W) = h. We first make some observations about Wj. Recall that
D = D(W,) is the Wielandt graph D_1 , with b vertices.

Lemma 2.4. If b > 3, then the zero entries of (W;,) ! (Wé)hfl occur only in the (b, \_%J) and (\_%J ,b)
positions.

Proof. By Proposition 1.3 we know that k, HJ (Dp—1,) = h, and for all other pairs of vertices u and v,
L2

kyy(Dp—1,p) < h. Therefore in Wg” every pair of rows intersect with each other except rows b and
\_%J Thus the only zero entries of (Wb)h_1 (Wg)hfl are in the (b, [gj) and ([%J ,b) positions. [

Forann x n (n>2) matrix A, let A({i1, i}, {j1,j2}) be the submatrix of A that lies in the rows i; and
iy and the columns j; and j;.
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Lemma 2.5. Forb>3, W™ (“gJ .b} Ab— l,b}) is either [(1) (1)] or [(1) (ﬂ

Proof. By Proposition 1.3, we know that k[ Jb(Db 1) = hand L J h — landb LY 1. From the digraph
Dp_1 p, we know that the directed walks of length h from vertices EJ and b to vertex 1 are either

b_
h]l 111 llhllll'
or

b [ _
bJ’LQb—ln and b"5'p—151.

For the first case, if [QJ h:>1 b—1andb h;l b, then b 2l b—1and LgJ ol b. Otherwise it contra-

dicts k[ Jb(Db 1,5) = h. Similarly, for the second case if L J —31 b and bh;l b — 1, then bh—7»1 b and

L%J "' b — 1. The result follows by applying these to the matrix W', [J

Theorem 2.6. Suppose M is an n X n Boolean matrix with 3<b = b(M) <n — 1. Then M is primitive
and k(M) = h + 1 if and only if M has a Boolean rank factorization M = AB, where A and B have the
following properties:

(i) BA = W),
(ii) some row of Ais el , ((b), some row of Ais e}, (b), and
2
(iii) no column of Bis ep_1(b) + ep(b).

Proof. First suppose M is primitive with k(M) = h + 1,and M = AB is a Boolean rank factorization
of M. By Lemma 2.1, BAis primitive and k(BA) > h. But BAisab x b matrix. By Theorem 1.2, k(BA) <h.
Therefore k(BA) = h. Also by Theorem 1.2, there is a permutation matrix P such that PBAP! = Wp. Let
B =PBand A = AP'. Then AB = APtPB AB = M. Thus A and B satisfy condition (i).

Since M is primitive, we have Zl 1Ai=jn= Z 1 Bt Since k(M) = h + 1, the matrix M" must

have two rows that do not intersect. Without loss of generality, suppose rows p and q of M" do not
intersect. Then entries in the (p, q) and (g, p) positions of M" (M?)" are zero. Since matrix B has no zero
row, we have BB' > I;,. Thus

Mh(Mt)h
— (AB)"((AB))" = A(BA)"1BB!((BA)))H 1Al
— A(Wb)hleBt <W£>h—1 At

> AW, (Wg)h_l A = A(W,)" 1 (Wg)h_1 Al

L%J—l ' b—1 ¢ b—1 ' b
=Jn| 2 A +(ZA.,-) <A-L%J> il 2 A 2 A A
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where Z = (Wb)h_1 (Wf,)hf] is the b x b matrix which has zero entries only in the (\_%J ,b) and

(b, L%J) positions. Since AZA! is dominated by M"(M*)" and M"(M!)" has zero entries in the (p, q)
and (q, p) positions, the entries in the (p, q) and (g, p) positions of AZA are also zero. Thus

M=

Api | Agp =0 (5)

HR b—1
D At | oA | Ayt Z Agi +
i=1 i=1 i3] i=[ 2 ]+1 _

—l

N

|

and

15]-1 b—1 b
Z Api + (Z Aqi) L%J + Z Apl Z Aqi Apb =0. (6)
i=1 i=1 I- J"'l : J

ThenAg = 0andAp; = Ofori=1,...,b—1andi #
have

AqL%JApth + AgpApp = 0. (7)

. Substituting these back in (5) and (6), we

N

T
b
2

—

Thus rows A, and A4, are disjoint. Since A has no zero rows, each of these rows has precisely one

nonzero entry. Therefore some row of A is erVJ (b) and some row of A is eg (b). This concludes (ii).
2
We claim B cannot have a column which is equal to u = ep_1(b) + e, (b). Otherwise, suppose some

column of B is u. Since B has no zero row, by Proposition 2.2, BB* > I, + uut. Thus
M"(M")" = (AB)" ((AB)")" = A(BA)"~"BB'((BA)")"~'A"

h—1
—A(W,)" 1B (Wg) Al
h—1

> A(W,)i! (Ib + uuf) (wg) Al

=A [(Wb)h” (wWi)"™ + (W) (W )]Af

By Lemma 2.4, Wg_l ({ LgJ ,b} b — 1,b}> is either [:) (1)] or [? ;] Then Wg'_lu >EHJ (b) +

ep(b). By Lemma 2.4, the zero entries of Wﬂ_l (Wg)h_] are in the (b, LgJ) and ([gJ ,b) positions.

_ t
Therefore W[}” (Wg)h ! + (Wg_lu) (Wl’;_]u> = Jp. Since A has no zero lines, we have Mh(M[)h =

AJpAt = J,, which is a contradiction to k(M) = h + 1. This proves (iii).

Finally, suppose that M = AB is a Boolean rank factorization of M and A and B satisfy (i), (ii) and
(iii). By Proposition 2.2 and Lemma 2.1(a), neither A nor B has a zero line and the matrix M is primitive
since W) is. By Theorem 2.3, k(M) < h + 1. Since BA = W}, and A has no zero row, each column of B
is dominated by a column of W},. Thus each column of B is in the set S; = {e1(b), e2(b),...,ep(b),u},
where u = ey_1(b) + ep(b). But by (iii), no column of B is u. Hence each column of B is in the set
S r= {e1(b),ex(b),...,ep(b)}. Therefore BBt < Ip. Also since matrix B has no zero row, BB' > Ij,. Hence
BB* = Iy. Thus

M" (M) = (AB)" ((AB)")" = A(BA)" BB ((BA)")" A"

— AW, (Wb)h_1 Al

-1

=AW, (wg)h Al

=AZA',
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Table 1
(b>3).
M J 0 0 00 0 J 0 0 0] 0]
0 o j o o]o 0 o j o o]o
Mi=1g o 0o J olyJ Ma=1g o 0o J o]y
0 o o o Jlo 0 o o o J|o
I o 0o o oo 7 o o o0 oo
o o o0 oo 7 o o o J|o]
m J o0 0 olo o
0 o j o o0lo o
My=|0 0 0 J of(J J
0 o o o J|lo o
I o 0o 0o 0|0 o
T o 0 0 0]o0 o0
lJ o o o J|o ol

where, by Lemma 2.4, Z = (Wp)P—1 (Wg)h_l is the b x b matrix which has zero entries only in the
([gj ,b) and (b, \_%J) positions. By (ii) some row of A is et[bJ (b) and some row of A is elf) (b). Without
2

loss of generality, suppose row p of A is e[ J(b) and row g of A is e,tJ (b). Then

[SI=2

hongtyhy ot t _ _
(MY (M")")pq = e, (b)AZA eq(b) = Z[ng =0.
Hence k(M) > h. Therefore k(M) = h+ 1.0

Next we will reinterpret conditions (i)-(iii) of Theorem 2.6 to show that if k(M) = h + 1, then M
is one of the three basic types of matrices in Theorem 2.7.

Theorem 2.7. Suppose M is an n x n Boolean matrix with b(M) = b, where 3<b<n — 1. Then M is
primitive with k(M) = h + 1 if and only if there is a permutation matrix P such that PMP* has one of the
forms in Table 1.

InTable 1 the rows and columns of My, M, and M3 are partitioned conformally, so that each diagonal
block is square, and the top left hand submatrix common to each has b blocks in its partitioning.

Proof. Suppose M is primitive, b >3, and k(M) = h 4 1. Then by Theorem 2.6(i), M has a Boolean
rank factorization M = AB such that BA = W), As shown in the proof of Theorem 2.6, we know that
each column of B is in the set S{ = {e1(b),ex(b),...,ep(b)}. Since B has no zero column, each row of
A is dominated by a row of W}, Therefore each row of A is in the set S, = {e} (b), e5(b), ..., e} (b),v'},
where v = ej(b) + ep(b).

Next, we note that for each 1 <i<b, the outer product B;A; is dominated by W}. Since each B ;
and A; must be in S} and S, respectively and (B, A;.) must be one of the following pairs: (e;, e§+1),
1<i<b—1,(ep—1,€), (en, e1),0r (ep—1, V"), where e; = e;(b) foranyi € {1,2,...,b}. Thus, for eachi,
1<i<b-2, (e,-, ef+1) = (B.k;, Ai;.) for some k;. This also holds fori = b — 1because, by (ii), some row
of A must equal efj. Some outer product B jA; has a1 in the (b, 1) position, hence (B ,,Ax,.) = (ep, el)
for some kj. Finally some outer product B jA;, must have a 1in the (b — 1, 1) position, hence for some
Kp41, (B kyy1»Aky,,.) is one of (ep—1,€}) or (ep—1, v'). It follows from the above argument that there is
an n X n permutation matrix Q such that



1930 M. Akelbek et al. / Linear Algebra and its Applications 431 (2009) 1923-1931

BQ' = [B|B] and QA = H,

A
where
i jnleg ]
B= [e1j;] leajp, |-+ |ebjf1b] and A =
Jnp1€h
L jnye}
for some ny, ..., np > 1, and where each (B, A;.) is one of (ep—1,e}) or (ep—1,v"). Thus B and A can be

one of the following pairs of matrices:
= 1 e .
Bi=ep—1jm,» A1 =ime€; for some my > 1;
By :eb_ufﬂz, Ay = jmzvt for some my > 1;

: t
- . 1 = [ime
B3=[€b—11£n3|€b—11f,3}, A3 = [ﬁ} for some m3, p3 > 1.
3

It is now readily verified that

[ﬂ [BIBi] = M; for 1<i<3,

1

so that QMQ! is one of the matrices in Table 1.
Finally, since the Boolean rank factorization

Al -~
M; = [KJ [BIBi]
satisfies conditions (i)~ (iii) of Theorem 2.6, each M; is primitive and k(M) = h + 1. [

When b(M) = 2, we have the following result.

Theorem 2.8. Suppose M is an n X n primitive Boolean matrix with b(M) = b = 2. Then k(M) = 2 if
and only if M has a Boolean rank factorization M = AB, where A and B have the following properties:

(i) BA= Wy 0rBA = |5,
(i) some row of Ais €{ (2), some row of A is €5 (2), and
(iii) no column of Bis e1(2) + e2(2).

Proof. First suppose M is primitive with k(M) = 2, and M = AB is a Boolean rank factorization of

M. By Lemma 2.1, BAis primitive and k(BA) >1.But BAis a2 x 2 matrix. By Theorem 1.2, k(BA) <1,

Therefore k(BA) = 1. Also by Theorem 1.2, there is a permutation matrix P such that PBAPt W> or

PBAP! = J,.Let B = PBand A = AP!. Then AB = AP'PB = AB = M. Thus A and B satisfy condition (i).
Proof of the conditions (ii) and (iii) are similar to the proof of Theorem 2.6. [

By a similar argument, we can reinterpret conditions (i)-(iii) of Theorem 2.8 to show that if M
satisfies k(M) = 2, then M is one of the 21 basic types of matrices which we will show in the following.

Theorem 2.9. Suppose M is an n x n Boolean matrix with b(M) = b = 2. Let M = AB be a Boolean rank
factorization. Then M is primitive with k(M) = 2 if and only if there is a permutation matrix P such that
PMP! has one of the forms in Table 2 if BA = W, or PMP® has one of the forms in Table 3 if BA = J;.
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Table 2
(b =2).
J]o
0 J|O 0o J|o
J o] J o] ’8#.
0y T 17 ! b
J JlJ
Table 3
(b=2).
_ rf J o0 o/ o]
[J J o o f] 0 0 J J|o J
0 0 J J I J J 0o o|J o0
J J o of 0 0o 0 J Jlo Jf
o o J J 7 I 1 1 15 I
U J J J|J Il
_ i 0
;o o o 4|0
0o 0 J|
I .
- U J JJ
7 J 7 J olyJ o
0 o0 0o 0 J|o J
J J J 1 gl
I 71 17
U J 0 0o J|o J
- 71 Iy
%
. ' o J J|of
o J I o oy
g 15y oo | - - = <
Jo0 ol ool )0 0l 0) gy 11 )
AALE | B L R
J ] T J 0o J 0 J ;0 4 o
U J JlJ J U J JJ J k d . d

In Tables 2 and 3 the rows and columns of each matrix are partitioned conformally, so that each
diagonal block is square.
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