A bound on the scrambling index of a primitive matrix using Boolean rank

Mahmud Akelbek ${ }^{\text {a,b,* }}$, Sandra Fital ${ }^{\text {b }}$, Jian Shen ${ }^{\text {a, }}{ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Texas State University, San Marcos, TX 78666, United States
${ }^{\text {b }}$ Department of Mathematics, Weber State University, Ogden, UT 84408, United States

A R T I CLE IN F O

Article history:

Received 10 April 2009
Accepted 19 June 2009
Available online 15 July 2009
Submitted by S. Kirkland

AMS classification:

15A48
05C20
05C50
$05 C 75$

Keywords:

Scrambling index
Primitive matrix
Boolean rank

Abstract

The scrambling index of an $n \times n$ primitive matrix A is the smallest positive integer k such that $A^{k}\left(A^{t}\right)^{k}=J$, where A^{t} denotes the transpose of A and J denotes the $n \times n$ all ones matrix. For an $m \times n$ Boolean matrix M, its Boolean rank $b(M)$ is the smallest positive integer b such that $M=A B$ for some $m \times b$ Boolean matrix A and $b \times n$ Boolean matrix B. In this paper, we give an upper bound on the scrambling index of an $n \times n$ primitive matrix M in terms of its Boolean rank $b(M)$. Furthermore we characterize all primitive matrices that achieve the upper bound.

Published by Elsevier Inc.

1. Introduction

For terminology and notation used here we follow [3]. A matrix A is called nonnegative if all its elements are nonnegative, and denoted by $A \geqslant 0$. A matrix A is called positive if all its elements are positive, and denoted by $A>0$. For an $m \times n$ matrix A, we will denote its (i, j)-entry by $A_{i j}$, its ith row by $A_{i,}$, and its j th column by A_{j}. For $m \times n$ matrices A and B, we say that B is dominated by A if $B_{i j} \leqslant A_{i j}$ for each i and j, and denote this by $B \leqslant A$. We denote the $m \times n$ all ones matrix by $J_{m, n}$ (and by J_{n} if $m=n$), the $m \times n$ all zeros matrix by $O_{m, n}$, the all ones n-vector by j_{n}, the $n \times n$ identity matrix by

[^0]I_{n}, and its i th column by $e_{i}(n)$. The subscripts m and n will be omitted whenever their values are clear from the context.

Let $D=(V, E)$ denote a digraph (directed graph) with vertex set $V=V(D)$, arc set $E=E(D)$ and order n. Loops are permitted but multiple arcs are not. A $u \rightarrow v$ walk in a digraph D is a sequence of vertices $u, u_{1}, \ldots, u_{t}, v \in V(D)$ and a sequence of arcs $\left(u, u_{1}\right),\left(u_{1}, u_{2}\right), \ldots,\left(u_{t}, v\right) \in E(D)$, where the vertices and arcs are not necessarily distinct. We shall use the notation $u \rightarrow v$ and $u \nrightarrow v$ to denote, respectively, that there is an arc from vertex u to vertex v and that there is no such an arc. Similarly, $u \xrightarrow{k} v$ and $u \xrightarrow{k} v$ denote, respectively, that there is a directed walk of length k from vertex u to vertex v, and that there is no such a walk.

For an $n \times n$ nonnegative matrix $A=\left(a_{i j}\right)$, its digraph, denoted by $D(A)$, is the digraph with vertex set $V(D(A))=\{1,2, \ldots, n\}$, and (i, j) is an arc of $D(A)$ if and only if $a_{i j} \neq 0$. Then, for a positive integer $r \geqslant 1$, the (i, j) th entry of the matrix A^{r} is positive if and only if $i \xrightarrow{r} j$ in the digraph $D(A)$. Since most of the time we are only interested in the existence of such walks, not the number of different directed walks from vertex i to vertex j, we interpret A as a Boolean $(0,1)$-matrix, unless stated otherwise. A Boolean (0,1)-matrix is a matrix with only 0 's and 1 's as its entries. Using Boolean arithmetic, $(1+1=$ $1,0+0=0,1+0=1)$, we have that $A B$ and $A+B$ are Boolean $(0,1)$-matrices if A and B are.

A digraph D is called primitive if for some positive integer t there is a walk of length exactly t from each vertex u to each vertex v. If D is primitive the smallest such t is called the exponent of D, denoted by $\exp (D)$. Equivalently, a square nonnegative matrix A of order n is called primitive if there exists a positive integer r such that $A^{r}>0$. The minimum such r is called the exponent of A, and denoted by $\exp (A)$. Clearly $\exp (A)=\exp (D(A))$.There are numerous results on the exponent of primitive matrices [3]. In 1950, Wielandt [7] stated that $\exp (A) \leqslant(n-1)^{2}+1$ and that equality is attained by W_{n}, where

$$
W_{2}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \text { and } W_{n}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \cdots & \vdots \\
0 & 0 & \cdots & 0 & 1 & 0 \\
1 & 0 & \cdots & \cdots & 0 & 1 \\
1 & 0 & \cdots & \cdots & 0 & 0
\end{array}\right] \text { when } n \geqslant 3
$$

Several authors (see, for example, [3, p. 81]) later proved that $\exp (A)=(n-1)^{2}+1$ if and only if $P A P^{t}=W_{n}$ for some permutation matrix P.

The scrambling index of a primitive digraph D is the smallest positive integer k such that for each pair of vertices u and v, there exists some vertex $w=w(u, v)$ (dependent on u and v) such that $u \xrightarrow{k} w$ and $v \xrightarrow{k} w$ in D. The scrambling index of D is denoted by $k(D)$. For $u, v \in V(D)(u \neq v)$, we define the local scrambling index of u and v as

$$
k_{u, v}(D)=\min \{k: u \xrightarrow{k} w \text { and } v \xrightarrow{k} w \text { for some } w \in V(D)\} .
$$

Then

$$
k(D)=\max _{u, v \in V(D)}\left\{k_{u, v}(D)\right\} .
$$

An analogous definition for scrambling index can be given for nonnegative matrices. The scrambling index of a primitive matrix A, denoted by $k(A)$, is the smallest positive integer k such that any two rows of A^{k} have at least one positive element in a coincident position. The scrambling index of a primitive matrix A can also be equivalently defined as the smallest positive integer k such that $A^{k}\left(A^{t}\right)^{k}=J$, where A^{t} denotes the transpose of A. If A is the adjacency matrix of a primitive digraph D, then $k(D)=k(A)$. As a result, throughout the paper, where no confusion occurs, we use the digraph D and the adjacency matrix $A(D)$ interchangeably.

In [1,2], Akelbek and Kirkland obtained an upper bound on the scrambling index of a primitive digraph D in terms of the order and girth of D, and gave a characterization of the primitive digraphs with the largest scrambling index.

Theorem 1.1 [1]. Let D be a primitive digraph with n vertices and girth s. Then

$$
k(D) \leqslant n-s+\left\{\begin{array}{lc}
\left(\frac{s-1}{2}\right) n, & \text { when } s \text { is odd, } \\
\left(\frac{n-1}{2}\right) s, & \text { when } s \text { is even. }
\end{array}\right.
$$

When $s=n-1$, an upper bound on $k(D)$ in terms of the order of a primitive digraph D can be achieved [1]. We state the theorem in terms of primitive matrices below.

Theorem 1.2 [1]. Let A be a primitive matrix of order $n \geqslant 2$. Then

$$
\begin{equation*}
k(A) \leqslant\left\lceil\frac{(n-1)^{2}+1}{2}\right\rceil \tag{1}
\end{equation*}
$$

Equality holds in (1) if and only if there is a permutation matrix P such that PAP ${ }^{t}$ is equal to W_{2} or J_{2} when $n=2$ and W_{n} when $n \geqslant 3$.

The digraph $D\left(W_{n}\right)$ is called the Wielandt graph and denoted by $D_{n-1, n}$. It is a digraph with a Hamilton cycle $1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$ together with an arc from vertex $n-1$ to vertex 1 . For simplicity, let $h_{n}=\left\lceil\frac{(n-1)^{2}+1}{2}\right\rceil$. The next proposition gives some information about the Wielandt graph $D_{n-1, n}$.
Proposition 1.3 [1]. For $D_{n-1, n}$, where $n \geqslant 3$,
(a) $k_{n,\left\lfloor\frac{n}{2}\right\rfloor}\left(D_{n-1, n}\right)=h_{n}$, and for all other pairs of vertices u and v of $D_{n-1, n}, k_{u, v}\left(D_{n-1, n}\right)<h_{n}$.
(b) There are directed walks from vertices n and $\left\lfloor\frac{n}{2}\right\rfloor$ to vertex 1 of length h_{n}, that is $n \xrightarrow{h_{n}} 1$ and $\left\lfloor\frac{n}{2}\right\rfloor \xrightarrow{h_{n}} 1$.

For an $m \times n$ Boolean matrix M, we define its Boolean $\operatorname{rank} b(M)$ to be the smallest positive integer b such that for some $m \times b$ Boolean matrix A and $b \times n$ Boolean matrix $B, M=A B$. The Boolean rank of the zero matrix is defined to be zero. $M=A B$ is called a Boolean rank factorization of M.

In [4], Gregory et al. obtained an upper bound on the exponent of a primitive Boolean matrix in terms of Boolean rank.

Proposition 1.4 [4]. Suppose that $n \geqslant 2$ and that M is an $n \times n$ primitive Boolean matrix with $b(M)=b$. Then

$$
\begin{equation*}
\exp (M) \leqslant(b-1)^{2}+2 \tag{2}
\end{equation*}
$$

In [4], Gregory et al. also gave a characterization of the matrices for which equality holds in (2). In [5], Liu et al. gave a characterization of primitive matrices M with Boolean rank b such that $\exp (M)=$ $(b-1)^{2}+1$.

In this paper, we give an upper bound on the scrambling index of a primitive matrix M using Boolean rank $b=b(M)$, and characterize all Boolean primitive matrices that achieve the upper bound.

2. Main results

We start with a basic result.
Lemma 2.1. Suppose that A and B are $n \times m$ and $m \times n$ Boolean matrices respectively, and that neither has a zero line. Then
(a) $A B$ is primitive if and only if $B A$ is primitive.
(b) If $A B$ and $B A$ are primitive, then

$$
\begin{equation*}
|k(A B)-k(B A)| \leqslant 1 . \tag{3}
\end{equation*}
$$

Proof. Part (a) was proved by Shao [6]. We only need to show part (b). Since $A B$ and $B A$ are primitive matrices, A and B have no zero rows. Then $A A^{t} \geqslant I_{n}$ and $B J_{n} B^{t}=J_{m}$. Suppose $k(A B)=k$. By the definition of scrambling index

$$
(A B)^{k}\left((A B)^{t}\right)^{k}=J_{n} .
$$

Then

$$
\begin{aligned}
(B A)^{k+1}\left((B A)^{t}\right)^{k+1} & =B(A B)^{k} A A^{t}\left((A B)^{t}\right)^{k} B^{t} \geqslant B(A B)^{k} I_{n}\left((A B)^{t}\right)^{k} B^{t} \\
& =B(A B)^{k}\left((A B)^{t}\right)^{k} B^{t}=B J_{n} B^{t}=J_{m} .
\end{aligned}
$$

Thus $k(B A) \leqslant k+1=k(A B)+1$. The result follows by exchanging the roles of A and B.
Proposition 2.2 [5]. Let M be an $n \times n$ primitive Boolean matrix, and $M=A B$ be a Boolean rank factorization of M. Then neither A nor B has a zero line.

Theorem 2.3. Let M be an $n \times n(n \geqslant 2)$ primitive matrix with Boolean rank $b(M)=b$. Then

$$
\begin{equation*}
k(M) \leqslant\left\lceil\frac{(b-1)^{2}+1}{2}\right\rceil+1 . \tag{4}
\end{equation*}
$$

Proof. Let $M=A B$ be a Boolean rank factorization of M, where A and B are $n \times b$ and $b \times n$ Boolean matrices respectively. Then by Lemma 2.2 neither A nor B has a zero line. By Lemma 2.1, we have

$$
k(M)=k(A B) \leqslant k(B A)+1 .
$$

Since $B A$ is primitive and $B A$ is a $b \times b$ matrix, by Theorem 1.2,

$$
k(B A) \leqslant\left\lceil\frac{(b-1)^{2}+1}{2}\right\rceil,
$$

from which Theorem 2.3 follows.
From (1) we see that no matrix of full Boolean rank n can attain the upper bound in (4). Further, since the only $n \times n$ primitive Boolean matrix with Boolean rank 1 is J_{n}, no matrix of Boolean rank 1 can attain the upper bound in (4). Thus we may assume that $2 \leqslant b \leqslant n-1$.

For simplicity, let

$$
h=\left\lceil\frac{(b-1)^{2}+1}{2}\right\rceil .
$$

Recall from Theorem 1.2 that $k\left(W_{b}\right)=h$. We first make some observations about W_{b}. Recall that $D=D\left(W_{b}\right)$ is the Wielandt graph $D_{b-1, b}$ with b vertices.

Lemma 2.4. If $b \geqslant 3$, then the zero entries of $\left(W_{b}\right)^{h-1}\left(W_{b}^{t}\right)^{h-1}$ occur only in the $\left(b,\left\lfloor\frac{b}{2}\right\rfloor\right)$ and $\left(\left\lfloor\frac{b}{2}\right\rfloor, b\right)$ positions.

Proof. By Proposition 1.3 we know that $k_{b,\left\lfloor\frac{b}{2}\right\rfloor}\left(D_{b-1, b}\right)=h$, and for all other pairs of vertices u and v, $k_{u, v}\left(D_{b-1, b}\right)<h$. Therefore in W_{b}^{h-1} every pair of rows intersect with each other except rows b and $\left\lfloor\frac{b}{2}\right\rfloor$. Thus the only zero entries of $\left(W_{b}\right)^{h-1}\left(W_{b}^{t}\right)^{h-1}$ are in the $\left(b,\left\lfloor\frac{b}{2}\right\rfloor\right)$ and $\left(\left\lfloor\frac{b}{2}\right\rfloor, b\right)$ positions.

For an $n \times n(n \geqslant 2)$ matrix A, let $A\left(\left\{i_{1}, i_{2}\right\},\left\{j_{1}, j_{2}\right\}\right)$ be the submatrix of A that lies in the rows i_{1} and i_{2} and the columns j_{1} and j_{2}.

Lemma 2.5. For $b \geqslant 3, W_{b}^{h-1}\left(\left\{\left\lfloor\frac{b}{2}\right\rfloor, b\right\},\{b-1, b\}\right)$ is either $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ or $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
Proof. By Proposition 1.3, we know that $k_{\left\lfloor\frac{b}{2}\right\rfloor, b}\left(D_{b-1, b}\right)=h$ and $\left\lfloor\frac{b}{2}\right\rfloor \xrightarrow{h} 1$ and $b \xrightarrow{h} 1$. From the digraph $D_{b-1, b}$, we know that the directed walks of length h from vertices $\left\lfloor\frac{b}{2}\right\rfloor$ and b to vertex 1 are either

$$
\left\lfloor\frac{b}{2}\right\rfloor \xrightarrow{h-1} b-1 \xrightarrow{1} 1 \text { and } b \xrightarrow{h-1} b \xrightarrow{1} 1
$$

or

$$
\left\lfloor\frac{b}{2}\right\rfloor \xrightarrow{h-1} b \xrightarrow{1} 1 \text { and } b \xrightarrow{h-1} b-1 \xrightarrow{1} 1 .
$$

For the first case, if $\left\lfloor\frac{b}{2}\right\rfloor \stackrel{h-1}{\rightarrow} b-1$ and $b \stackrel{h-1}{\rightarrow} b$, then $b \stackrel{h-1}{\rightarrow} b-1$ and $\left\lfloor\frac{b}{2}\right\rfloor^{\stackrel{h-1}{\leftrightarrows}} b$. Otherwise it contradicts $k_{\left\lfloor\frac{b}{2}\right\rfloor, b}\left(D_{b-1, b}\right)=h$. Similarly, for the second case if $\left\lfloor\frac{b}{2}\right\rfloor \xrightarrow{h-1} b$ and $b \xrightarrow{h-1} b-1$, then $b \stackrel{h-1}{\rightarrow} b$ and $\left\lfloor\frac{b}{2}\right\rfloor \stackrel{h-1}{\nrightarrow} b-1$. The result follows by applying these to the matrix W_{b}^{h-1}.

Theorem 2.6. Suppose M is an $n \times n$ Boolean matrix with $3 \leqslant b=b(M) \leqslant n-1$. Then M is primitive and $k(M)=h+1$ if and only if M has a Boolean rank factorization $M=A B$, where A and B have the following properties:
(i) $B A=W_{b}$,
(ii) some row of A is $e_{\left\lfloor\frac{b}{2}\right\rfloor}^{t}(b)$, some row of A is $e_{b}^{t}(b)$, and
(iii) no column of B is $e_{b-1}(b)+e_{b}(b)$.

Proof. First suppose M is primitive with $\underset{\sim}{k}(M)=h+\underset{\sim}{\mathcal{B}}$, and $M=\widetilde{A} \widetilde{A}$ is a Boolean rank factorization of M. By Lemma $2.1, \widetilde{B} \widetilde{A}$ is primitive and $k(\widetilde{B} \widetilde{A}) \geqslant h$. But $\widetilde{B} \widetilde{A}$ is a $b \times b$ matrix. By Theorem $1.2, k(\widetilde{B} \widetilde{A}) \leqslant h$. Therefore $k(\widetilde{B} \widetilde{A})=h$. Also by Theorem 1.2 , there is a permutation matrix P such that $P \widetilde{\sim} \widetilde{A} \widetilde{A}^{t}=W_{b}$. Let $B=P \widetilde{B}$ and $A=\widetilde{A} P^{t}$. Then $A B=\widetilde{A} P^{t} P \widetilde{B}=\widetilde{A} \widetilde{B}=M$. Thus A and B satisfy condition (i).

Since M is primitive, we have $\sum_{i=1}^{b} A_{. i}=j_{n}=\sum_{i=1}^{b} B_{i}^{t}$. Since $k(M)=h+1$, the matrix M^{h} must have two rows that do not intersect. Without loss of generality, suppose rows p and q of M^{h} do not intersect. Then entries in the (p, q) and (q, p) positions of $M^{h}\left(M^{t}\right)^{h}$ are zero. Since matrix B has no zero row, we have $B B^{t} \geqslant I_{b}$. Thus

$$
\begin{aligned}
& M^{h}\left(M^{t}\right)^{h} \\
& =(A B)^{h}\left((A B)^{t}\right)^{h}=A(B A)^{h-1} B B^{t}\left((B A)^{t}\right)^{h-1} A^{t} \\
& =A\left(W_{b}\right)^{h-1} B B^{t}\left(W_{b}^{t}\right)^{h-1} A^{t} \\
& \geqslant A\left(W_{b}\right)^{h-1} I_{b}\left(W_{b}^{t}\right)^{h-1} A^{t}=A\left(W_{b}\right)^{h-1}\left(W_{b}^{t}\right)^{h-1} A^{t} \\
& =A Z A^{t} \\
& =\left[J_{n\left\lfloor\left\lfloor\frac{b}{2}\right\rfloor-1\right.}\left|\sum_{i=1}^{b-1} A_{. i}\right| J_{n, b-\left\lfloor\frac{b}{2}\right\rfloor-1} \sum_{\substack{i=1 \\
i \neq\left\lfloor\frac{b}{2}\right\rfloor}}^{b} A_{i}\right] A^{t} \\
& =j_{n}\left(\sum_{i=1}^{\left\lfloor\frac{b}{2}\right\rfloor-1} A_{i}\right)^{t}+\left(\sum_{i=1}^{b-1} A_{i}\right)\left(A_{\left\lfloor\left\lfloor\left\lfloor\frac{b}{2}\right\rfloor\right.\right.}\right)^{t}+j_{n}\left(\sum_{i=\left\lfloor\frac{b}{2}\right\rfloor+1}^{b-1} A_{i i}\right)^{t}+\left(\sum_{\substack{i=1 \\
i \neq\left\lfloor\frac{b}{2}\right\rfloor}}^{b} A_{i}\right)\left(A_{. b}\right)^{t},
\end{aligned}
$$

where $Z=\left(W_{b}\right)^{h-1}\left(W_{b}^{t}\right)^{h-1}$ is the $b \times b$ matrix which has zero entries only in the $\left(\left\lfloor\frac{b}{2}\right\rfloor, b\right)$ and (b, $\left.\left\lfloor\frac{b}{2}\right\rfloor\right)$ positions. Since $A Z A^{t}$ is dominated by $M^{h}\left(M^{t}\right)^{h}$ and $M^{h}\left(M^{t}\right)^{h}$ has zero entries in the (p, q) and (q, p) positions, the entries in the (p, q) and (q, p) positions of $A Z A^{t}$ are also zero. Thus

$$
\begin{equation*}
\sum_{i=1}^{\left\lfloor\frac{b}{2}\right\rfloor-1} A_{q i}+\left(\sum_{i=1}^{b-1} A_{p i}\right) A_{q\left\lfloor\frac{b}{2}\right\rfloor}+\sum_{i=\left\lfloor\frac{b}{2}\right\rfloor+1}^{b-1} A_{q i}+\left(\sum_{\substack{i=1 \\ i \neq\left\lfloor\frac{b}{2}\right\rfloor}}^{b} A_{p i}\right) A_{q b}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{\left\lfloor\frac{b}{2}\right\rfloor-1} A_{p i}+\left(\sum_{i=1}^{b-1} A_{q i}\right) A_{p\left\lfloor\frac{b}{2}\right\rfloor}+\sum_{i=\left\lfloor\frac{b}{2}\right\rfloor+1}^{b-1} A_{p i}+\left(\sum_{\substack{i=1 \\ i \neq\left\lfloor\frac{b}{2}\right\rfloor}}^{b} A_{q i}\right) A_{p b}=0 . \tag{6}
\end{equation*}
$$

Then $A_{q i}=0$ and $A_{p i}=0$ for $i=1, \ldots, b-1$ and $i \neq\left\lfloor\frac{b}{2}\right\rfloor$. Substituting these back in (5) and (6), we have

$$
\begin{equation*}
A_{q\left\lfloor\frac{b}{2}\right\rfloor} A_{p\left\lfloor\frac{b}{2}\right\rfloor}+A_{q b} A_{p b}=0 . \tag{7}
\end{equation*}
$$

Thus rows A_{p}. and A_{q}. are disjoint. Since A has no zero rows, each of these rows has precisely one nonzero entry. Therefore some row of A is $e_{\left\lfloor\frac{b}{2}\right\rfloor}^{t}(b)$ and some row of A is $e_{b}^{t}(b)$. This concludes (ii).

We claim B cannot have a column which is equal to $u=e_{b-1}(b)+e_{b}(b)$. Otherwise, suppose some column of B is u. Since B has no zero row, by Proposition $2.2, B B^{t} \geqslant I_{b}+u u^{t}$. Thus

$$
\begin{aligned}
M^{h}\left(M^{t}\right)^{h} & =(A B)^{h}\left((A B)^{t}\right)^{h}=A(B A)^{h-1} B B^{t}\left((B A)^{t}\right)^{h-1} A^{t} \\
& =A\left(W_{b}\right)^{h-1} B B^{t}\left(W_{b}^{t}\right)^{h-1} A^{t} \\
& \geqslant A\left(W_{b}\right)^{h-1}\left(I_{b}+u u^{t}\right)\left(W_{b}^{t}\right)^{h-1} A^{t} \\
& =A\left[\left(W_{b}\right)^{h-1}\left(W_{b}^{t}\right)^{h-1}+\left(W_{b}^{h-1} u\right)\left(W_{b}^{h-1} u\right)^{t}\right] A^{t} .
\end{aligned}
$$

By Lemma 2.4, $W_{b}^{h-1}\left(\left\{\left\lfloor\frac{b}{2}\right\rfloor, b\right\},\{b-1, b\}\right)$ is either $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ or $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Then $W_{b}^{h-1} u \geqslant e_{\left\lfloor\frac{b}{2}\right\rfloor}(b)+$ $e_{b}(b)$. By Lemma 2.4, the zero entries of $W_{b}^{h-1}\left(W_{b}^{t}\right)^{h-1}$ are in the $\left(b,\left\lfloor\frac{b}{2}\right\rfloor\right)$ and $\left(\left\lfloor\frac{b}{2}\right\rfloor, b\right)$ positions. Therefore $W_{b}^{h-1}\left(W_{b}^{t}\right)^{h-1}+\left(W_{b}^{h-1} u\right)\left(W_{b}^{h-1} u\right)^{t}=J_{b}$. Since A has no zero lines, we have $M^{h}\left(M^{t}\right)^{h}=$ $A J_{b} A^{t}=J_{n}$, which is a contradiction to $k(M)=h+1$. This proves (iii).

Finally, suppose that $M=A B$ is a Boolean rank factorization of M and A and B satisfy (i), (ii) and (iii). By Proposition 2.2 and Lemma 2.1(a), neither A nor B has a zero line and the matrix M is primitive since W_{b} is. By Theorem 2.3, $k(M) \leqslant h+1$. Since $B A=W_{b}$ and A has no zero row, each column of B is dominated by a column of W_{b}. Thus each column of B is in the set $S_{1}=\left\{e_{1}(b), e_{2}(b), \ldots, e_{b}(b), u\right\}$, where $u=e_{b-1}(b)+e_{b}(b)$. But by (iii), no column of B is u. Hence each column of B is in the set $S_{1}^{\prime}=\left\{e_{1}(b), e_{2}(b), \ldots, e_{b}(b)\right\}$. Therefore $B B^{t} \leqslant I_{b}$. Also since matrix B has no zero row, $B B^{t} \geqslant I_{b}$. Hence $B B^{t}=I_{b}$. Thus

$$
\begin{aligned}
M^{h}\left(M^{t}\right)^{h} & =(A B)^{h}\left((A B)^{t}\right)^{h}=A(B A)^{h-1} B B^{t}\left((B A)^{t}\right)^{h-1} A^{t} \\
& =A\left(W_{b}\right)^{h-1} I_{b}\left(W_{b}^{t}\right)^{h-1} A^{t} \\
& =A\left(W_{b}\right)^{h-1}\left(W_{b}^{t}\right)^{h-1} A^{t} \\
& =A Z A^{t},
\end{aligned}
$$

Table 1

where, by Lemma $2.4, Z=\left(W_{b}\right)^{h-1}\left(W_{b}^{t}\right)^{h-1}$ is the $b \times b$ matrix which has zero entries only in the $\left(\left\lfloor\frac{b}{2}\right\rfloor, b\right)$ and $\left(b,\left\lfloor\frac{b}{2}\right\rfloor\right)$ positions. By (ii) some row of A is $e_{\left\lfloor\frac{b}{2}\right\rfloor}^{t}(b)$ and some row of A is $e_{b}^{t}(b)$. Without loss of generality, suppose row p of A is $e_{\left\lfloor\frac{b}{2}\right\rfloor}^{t}(b)$ and row q of A is $e_{b}^{t}(b)$. Then

$$
\left(M^{h}\left(M^{t}\right)^{h}\right)_{p q}=e_{p}^{t}(b) A Z A^{t} e_{q}(b)=Z_{\left\lfloor\frac{b}{2}\right\rfloor b}=0 .
$$

Hence $k(M)>h$. Therefore $k(M)=h+1$.
Next we will reinterpret conditions (i)-(iii) of Theorem 2.6 to show that if $k(M)=h+1$, then M is one of the three basic types of matrices in Theorem 2.7.

Theorem 2.7. Suppose M is an $n \times n$ Boolean matrix with $b(M)=b$, where $3 \leqslant b \leqslant n-1$. Then M is primitive with $k(M)=h+1$ if and only if there is a permutation matrix P such that $P M P^{t}$ has one of the forms in Table 1.

In Table 1 the rows and columns of M_{1}, M_{2} and M_{3} are partitioned conformally, so that each diagonal block is square, and the top left hand submatrix common to each has b blocks in its partitioning.

Proof. Suppose M is primitive, $b \geqslant 3$, and $k(M)=h+1$. Then by Theorem 2.6(i), M has a Boolean rank factorization $M=A B$ such that $B A=W_{b}$. As shown in the proof of Theorem 2.6, we know that each column of B is in the set $S_{1}^{\prime}=\left\{e_{1}(b), e_{2}(b), \ldots, e_{b}(b)\right\}$. Since B has no zero column, each row of A is dominated by a row of W_{b}. Therefore each row of A is in the set $S_{2}=\left\{e_{1}^{t}(b), e_{2}^{t}(b), \ldots, e_{b}^{t}(b), v^{t}\right\}$, where $v=e_{1}(b)+e_{b}(b)$.

Next, we note that for each $1 \leqslant i \leqslant b$, the outer product $B_{i} A_{i .}$ is dominated by W_{b}. Since each B_{i} and $A_{i .}$ must be in S_{1}^{\prime} and S_{2} respectively and ($B_{.}, A_{i .}$) must be one of the following pairs: (e_{i}, e_{i+1}^{t}), $1 \leqslant i \leqslant b-1,\left(e_{b-1}, e_{1}^{t}\right),\left(e_{b}, e_{1}\right)$, or $\left(e_{b-1}, v^{t}\right)$, where $e_{i}=e_{i}(b)$ for any $i \in\{1,2, \ldots, b\}$. Thus, for each i, $1 \leqslant i \leqslant b-2,\left(e_{i}, e_{i+1}^{t}\right)=\left(B_{. k_{i}}, A_{k_{i}}\right)$) for some k_{i}. This also holds for $i=b-1$ because, by (ii), some row of A must equal e_{b}^{t}. Some outer product $B_{. j} A_{j}$. has a 1 in the $(b, 1)$ position, hence $\left(B_{. k_{b}}, A_{k_{b}}\right)=\left(e_{b}, e_{1}^{t}\right)$ for some k_{b}. Finally some outer product $B_{j} A_{j}$. must have a 1 in the ($b-1,1$) position, hence for some $k_{b+1},\left(B_{. k_{b+1}}, A_{k_{b+1}}\right)$ is one of $\left(e_{b-1}, e_{1}^{t}\right)$ or $\left(e_{b-1}, v^{t}\right)$. It follows from the above argument that there is an $n \times n$ permutation matrix Q such that

$$
B Q^{t}=[\bar{B} \mid \widetilde{B}] \quad \text { and } \quad Q A=\left[\begin{array}{l}
\bar{A} \\
\widetilde{A}
\end{array}\right] \text {, }
$$

where

$$
\bar{B}=\left[e_{1} j_{n_{1}}^{t}\left|e_{2} j_{n_{2}}^{t}\right| \cdots \mid e_{b} j_{n_{b}}^{t}\right] \text { and } \bar{A}=\left[\begin{array}{c}
\frac{j_{n_{1}} e_{2}^{t}}{j_{n_{2}} e_{3}^{t}} \\
\frac{\cdots}{j_{n_{b-1}} e_{b}^{t}} \\
j_{n_{b}} e_{1}^{t}
\end{array}\right]
$$

for some $n_{1}, \ldots, n_{b} \geqslant 1$, and where each $\left(\widetilde{B}_{i}, \widetilde{A}_{i .}\right)$ is one of $\left(e_{b-1}, e_{1}^{t}\right)$ or $\left(e_{b-1}, v^{t}\right)$. Thus \widetilde{B} and \widetilde{A} can be one of the following pairs of matrices:

$$
\begin{aligned}
& \widetilde{B}_{1}=e_{b-1} j_{m_{1}}^{t}, \quad \widetilde{A}_{1}=j_{m_{1}} e_{1}^{t} \text { for some } m_{1} \geqslant 1 ; \\
& \widetilde{B}_{2}=e_{b-1} j_{m_{2}}^{t}, \quad \widetilde{A}_{2}=j_{m_{2}} v^{t} \text { for some } m_{2} \geqslant 1 ; \\
& \widetilde{B}_{3}=\left[e_{b-1} j_{m_{3}}^{t} \mid e_{b-1} j_{p_{3}}^{t}\right], \quad \widetilde{A}_{3}=\left[\frac{j_{m_{3}} e_{1}^{t}}{j_{p_{3}} v^{t}}\right] \text { for some } m_{3}, p_{3} \geqslant 1 .
\end{aligned}
$$

It is now readily verified that

$$
\left[\frac{\bar{A}}{\widehat{A_{i}}}\right]\left[\bar{B} \mid \widetilde{B_{i}}\right]=M_{i} \text { for } 1 \leqslant i \leqslant 3 \text {, }
$$

so that $Q M Q^{t}$ is one of the matrices in Table 1.
Finally, since the Boolean rank factorization

$$
M_{i}=\left[\frac{\bar{A}}{\widehat{A}_{i}}\right]\left[\bar{B} \mid \widetilde{B_{i}}\right]
$$

satisfies conditions (i)-(iii) of Theorem 2.6, each M_{i} is primitive and $k(M)=h+1$.
When $b(M)=2$, we have the following result.
Theorem 2.8. Suppose M is an $n \times n$ primitive Boolean matrix with $b(M)=b=2$. Then $k(M)=2$ if and only if M has a Boolean rank factorization $M=A B$, where A and B have the following properties:
(i) $B A=W_{2}$ or $B A=J_{2}$,
(ii) some row of A is $e_{1}^{t}(2)$, some row of A is $e_{2}^{t}(2)$, and
(iii) no column of B is $e_{1}(2)+e_{2}(2)$.

Proof. First suppose M is primitive with $k(M)=2$, and $M=\widetilde{A} \widetilde{B}$ is a Boolean rank factorization of M. By Lemma 2.1, $\widetilde{B} \widetilde{A}$ is primitive and $k(\widetilde{B} \widetilde{A}) \geqslant 1$. But $\widetilde{B} \widetilde{A}$ is a 2×2 matrix. By Theorem $1.2, k(\widetilde{B} \widetilde{A}) \leqslant 1$. Therefore $k(\widetilde{B} \widetilde{A})=1$. Also by Theorem 1.2, there is a permutation matrix P such that $P \widetilde{B} \widetilde{A} P^{t}=W_{2}$ or $P \widetilde{B} \widetilde{A} P^{t}=J_{2}$. Let $B=P \widetilde{B}$ and $A=\widetilde{A} P^{t}$. Then $A B=\widetilde{A} P^{t} P \widetilde{B}=\widetilde{A} \widetilde{B}=M$. Thus A and B satisfy condition (i).

Proof of the conditions (ii) and (iii) are similar to the proof of Theorem 2.6.
By a similar argument, we can reinterpret conditions (i)-(iii) of Theorem 2.8 to show that if M satisfies $k(M)=2$, then M is one of the 21 basic types of matrices which we will show in the following.

Theorem 2.9. Suppose M is an $n \times n$ Boolean matrix with $b(M)=b=2$. Let $M=A B$ be a Boolean rank factorization. Then M is primitive with $k(M)=2$ if and only if there is a permutation matrix P such that $P M P^{t}$ has one of the forms in Table 2 if $B A=W_{2}$ or $P M P^{t}$ has one of the forms in Table 3 if $B A=J_{2}$.

Table 2
($b=2$).

$\left[\begin{array}{ll|ll}0 & J & 0 & 0 \\ J & 0 & J & J \\ \hline J & 0 & J & J \\ J & J & J & J\end{array}\right]$.

Table 3
($b=2$).

| $\left[\begin{array}{llll}J & J & 0 & 0 \\ 0 & 0 & J & J \\ J & J & 0 & 0 \\ 0 & 0 & J & J\end{array}\right]$, | $\left[\begin{array}{llll\|l}J & J & 0 & 0 & J \\ 0 & 0 & J & J & 0 \\ J & J & 0 & 0 & J \\ 0 & 0 & J & J & 0 \\ J & J & J & J & J\end{array}\right]$, |
| :--- | :--- |\(\left[\begin{array}{llll|l}J \& J \& 0 \& 0 \& 0

0 \& 0 \& J \& J \& J

J \& J \& 0 \& 0 \& 0

0 \& 0 \& J \& J \& J

\hline J \& J \& J \& J \& J\end{array}\right],\left[$$
\begin{array}{llll|ll}J & J & 0 & 0 & J & 0 \\
0 & 0 & J & J & 0 & J \\
J & J & 0 & 0 & J & 0 \\
0 & 0 & J & J & 0 & J \\
\hline J & J & J & J & J & J \\
J & J & J & J & J & J\end{array}
$$\right]\),

In Tables 2 and 3 the rows and columns of each matrix are partitioned conformally, so that each diagonal block is square.

Acknowledgments

The authors would like to thank Prof. Steve Kirkland and a referee for their many useful comments and suggestions.

References

[1] M. Akelbek, S.J. Kirkland, Coefficients of ergodicity and the scrambling index, Linear Algebra Appl. 430 (2009) 1111 -1130.
[2] M. Akelbek, S.J. Kirkland, Primitive digraphs with the largest scrambling index, Linear Algebra Appl. 430 (2009) 1099-1110.
[3] R.A. Brualdi, H.J. Ryser, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1991.
[4] D.A. Gregory, S.J. Kirkland, N.J. Pullman, A bound on the exponent of a primitive matrix using Boolean rank, Linear Algebra Appl. 217 (1995) 101-116.
[5] B.L. Liu, L.H. You, G.X. Yu, On extremal matrices of second largest exponent by Boolean rank, Linear Algebra Appl. 422 (2007) 186-197.
[6] J.Y. Shao, On the exponent of primitive digraph, Linear Algebra Appl. 64 (1985) 21-31.
[7] H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Zeit. 52 (1958) 642-645.

[^0]: * Corresponding author. Address: Department of Mathematics, Texas State University, San Marcos, TX 78666, United States.

 E-mail addresses: am44@txstate.edu (M. Akelbek), sfitalakelbek@weber.edu (S. Fital), js48@txstate.edu (J. Shen).
 ${ }^{1}$ Research supported in part by NSF (CNS 0835834), Texas Higher Education Coordinating Board (ARP 003615-0039-2007).

