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Abstract

This paper presents results from two di/erent areas. The $rst area is monadic second-order
logic (MSO) over $nite structures, in particular over the so-called grids. These are structures
whose elements can be arranged as a matrix and which have two binary relations corresponding
to vertical and horizontal successors. For this logic, we study the expressive power of the alter-
nation of existential and universal monadic second-order quanti$ers, i.e., set quanti$ers. In Matz
et al. (Information and Computation, LICS’ 97, 1999, to appear) it had been shown that these
alternations cannot be limited to a $xed number without loss of expressiveness. In this paper, we
strengthen this result in several ways. Firstly, we show that there are MSO formulas that have
a very restricted form of k +1 set quanti$ers but are not equivalent to a formula with k quanti-
$ers. Secondly, we show that if we $x the number of such alternations, the expressive power of
formulas that start with a block of universal quanti$ers di/ers from the power of those that start
with an existential one—this was previously known only for coloured grids. Thirdly, we inves-
tigate how an additional pre$x of $rst-order (i.e., element) quanti$ers in7uences the expressive
power of MSO formulas. The second area that this paper is concerned with is two-dimensional
formal language theory. We study how the alternation of ($rst- and monadic second-order) quan-
ti$cations, on the one hand, relates to the dot-depth measure of two-dimensional (i.e., picture)
languages, on the other hand. That measure is the two-dimensional version of the classical notion
of dot-depth for (one-dimensional) starfree word languages. We show that the hierarchy induced
by this dot-depth cuts through the hierarchy given by monadic second-order quanti$cations. In
particular, beyond each level of the monadic second-order alternation hierarchy, there is a starfree
picture language. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

We give some background about the two areas of this paper in the following two
subsections.
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1.1. Quanti3er alternation in monadic second-order logic

In MSO over grids, one can quantify over elements as well as over subsets of the
universe of a grid. For example, an MSO-formula can express that a grid is a square by
asserting that every set of elements (=grid positions) that contains the top-left corner
and is closed under “diagonal successors” also contains the bottom-right corner.
MSO-formulas can be classi$ed by the alternation depth of set quanti$ers. One

speaks of a �k -formula (�k -formula) if its prenex normal form has a pre$x of k
alternating blocks of set quanti$ers starting with an existential (universal) block, fol-
lowed by a $rst-order kernel. A �k -formula is a formula that is equivalent to both a
�k -formula and a �k -formula.
The above example can easily be formalized as a �1-sentence. (It is also a �1-

sentence.)
In [17] it was shown that for the class of grids, �k+1-sentences are more expressive

than boolean combinations of �k -sentences. The proof of this “strictness of the monadic
(second-order quanti$er alternation) hierarchy” shows a stronger result, namely that a
very limited form of set quanti$cation suJces to exceed any level of the monadic hier-
archy in expressiveness: For every k, there is a formula of the form ∃ Kx1∀Kx2 · · · Q

Kxk+1

Q

KX’ (where Kx1; : : : ; Kxk+1 are tuples of $rst-order variables, KX is a tuple of set variables,
’ is a $rst-order formula, and

Q

is either ∃ or ∀, depending on whether k is even or
odd) that is not equivalent to any �k -formula (see [17, 18, 21].)
This leads us to the de$nition of the “$rst-order closure” of a class F of formulas:

A formula in the $rst-order closure of F results from a formula in the boolean closure
of F by pre$xing with $rst-order quanti$cations and negations. The above statement
shows that the $rst-order closure of �1 cannot be captured within any level of the
monadic hierarchy, which demonstrates the power of the $rst-order closure.
On the other hand, in [1], where the $rst-order closure is introduced, the authors

have shown that the expressiveness of �3 cannot be captured within any level of the
$rst-order closure of �1, which demonstrates the weakness of the $rst-order closure.
In this paper, we show that the expressiveness neither of �k+2 nor of the $rst-order

closure of �k+1 can be captured within �k+1 or the $rst-order closure of �k . Besides,
we show that �k and �k di/er in expressiveness even for the class of uncoloured grids,
a questions that had remained open in [17].
Motivation for studying the monadic hierarchy and the $rst-order closure is given in

[1]. The important observation is that the levels of the monadic alternation hierarchy
contain properties that are computationally complete for the respective levels of the
polynomial hierarchy, which correspond to the levels of the full second-order alterna-
tion hierarchy. Thus in some sense, the monadic alternation hierarchy is a “monadic
analogue” to the polynomial hierarchy.
But the levels of the polynomial hierarchy are closed under $rst-order quanti$cations,

whereas the levels of the monadic hierarchy are not. In [1] the authors argue that
in order to achieve progress in proving the strictness of the polynomial hierarchy
it is promising to study a certain variant of the monadic hierarchy (called “closed
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hierarchy”) that classi$es properties by the alternation of set quanti$cations only, i.e.,
disregarding the use of $rst-order quanti$cations. The $rst-order closure of the levels
of the monadic hierarchy are a $rst step in this investigation.

1.2. Dot-depth of starfree picture languages

The study of the above questions yields also results about picture languages. Pic-
ture languages are the two-dimensional analogue to formal word languages, i.e., sets
of matrices (=“pictures”) over a $nite alphabet. There are two partial concatenations
de$ned for pictures, which juxtapose pictures horizontally (or vertically, respectively),
provided they have the same height (or width, respectively). The notion of starfree-
ness carries over from words to pictures easily: A picture language is starfree if it
results from atomic pictures by repeated application of these concatenations, union,
and complement (in the set of all pictures).
There is a natural correspondence between coloured grids and pictures, so it should

be clear when we call a picture language �k -de$nable, �k -de$nable, etc. In [8] it has
been shown that for picture languages, �1 captures the expressiveness of a certain
kind of (non-deterministic) automata on pictures, so-called tiling systems. Thus, it is
justi$ed to call �1-de$nable picture languages recognizable. See [7] for a survey on
research related to this class. One central result (also presented in that paper) is the
fact that the class of recognizable picture languages is not closed under complement.
Theorem 2.26 shows that this is true even for a unary alphabet.
Other papers that investigate the class of recognizable picture languages are e.g.

[5, 9, 11, 20].
From standard automata theory we know that every starfree word language is rec-

ognizable. This is not the case for pictures: [14] gave an example for a starfree, non-
recognizable picture language, answering a question from [7]. In this paper we even
show that for every k, there is a starfree picture language that is not �k -de$nable.
Moreover, we compare quanti$er alternation and dot-depth. The dot-depth measures
the alternation of concatenations and boolean combinations in the de$nition of starfree
picture language and is a adaptation of the corresponding notion for word languages
(see [3]).

1.3. What follows

The remainder of the paper is structured as follows. In Section 2 we introduce all
the notions and notations needed in this paper, including the formal de$nition of the
quanti$er alternation hierarchy.
In Section 2.4 we state all our separation results, namely Theorems 2.16, 2.22, 2.24

and 2.26 and some corollaries. Theorem 2.16 shows that there is a �k -de$nable but
not �k -de$nable starfree picture language. Theorems 2.22 and 2.24 focus on slim grid
properties, i.e., ones where the lengths of grids are related to their heights by a fast
growing function. Theorem 2.16 states that the maximal growth rate achievable by
�k -formulas is the same for a fragment of �k that makes hardly any use of monadic
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second-order quanti$ers. Theorem 2.24 characterizes the above growth rate for �k -
formulas with an additional pre$x of $rst-order quanti$ers. Theorem 2.26 shows that
there is a �k -de$nable but not �k -de$nable grid property (or picture language over a
unary alphabet). Again, very limited use of monadic quanti$cation is needed here.
The proof of the above separation results is split into two parts: The $rst one (pre-

sented in Section 3) consists of showing that particular grid properties or picture lan-
guages are expressible by certain formulas or starfree expressions over pictures, whereas
the second part (presented in Section 4) shows that they are not expressible by certain
other formulas.
Section 3 is structured as follows. Section 3.1 shows some easy inclusion results

that relate the dot-depth hierarchy with (certain fragments of the $rst-order closure of)
the monadic alternation hierarchy. Section 3.2 introduces some more notation that is
useful for the following three subsections.
Sections 3.3 and 3.4 exhibit particular starfree picture languages (called Numk) on

level k of the dot-depth hierarchy. These picture languages (or rather their correspond-
ing grid properties) are the witnesses for the strictness of the monadic alternation
hierarchy, and they are very similar to the grid properties of [17, 18, 21].
In Section 3.5 we exhibit particular grid properties in the $rst-order closure of the

levels of the monadic second-order hierarchy. These picture languages witness, for
example, that FO(�k+1) is strictly more expressive than FO(�k) for every k. These
witnesses are in some sense similar (and depend on) the mentioned picture languages
Numk . In both cases the fundamental idea is to establish iterated counting mechanisms
to ensure that pictures (or grids) are very “slim” in the sense that their width is large
compared to the height. However, this time these mechanisms are substantially more
sophisticated than in the preceding subsections.
Section 4 is structured as follows. In Section 4.1 we recall the automata theoretic

technique used in [17, 18]. A picture of height m and width n can be represented by a
word of length n whose symbols are columns of height m. The fundamental idea of the
mentioned technique is to pass from a �k -formula ’ over pictures to a family (Am)m¿1
of $nite automata (NFA) on words, where for each m, the NFA Am recognizes exactly
those words that represent models of ’ that have height m. Furthermore, Am can be
chosen with state set size k-fold exponential in m. This asymptotic bound enables to
apply standard pumping techniques for $nite automata.
Finally, we give a conclusion in Section 5. In Section 5.1 we sum up the technical

contributions of this paper.
Status of this work: In this paper I present the essential new contributions of my

Ph.D. thesis [16], which contains more results (published in [14, 15, 17]).

2. Pictures, grids, and alternation---de�nitions and results

In this section we will de$ne the previously mentioned notions formally and observe
some easy facts. In Section 2.4 we will state the main results of this paper.
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Some basic notations: We write N for the set of natural numbers (without zero).
For every n; m¿0, we write [n] for {0; : : : ; n− 1} and [n; m] for {n; n+ 1; : : : ; m}.
If a binary relation f is a partial function, we use the usual notations, for example

f(m) for “the” element n with (m; n)∈f (if it exists). We write domf for the set of
all m for which f(m) is de$ned.
We say that a partial function f :N− →N “is g(O(m))” if there is a c¿1 such for

almost all m∈ domf we have f(m)6g(cm). We also use the �- and the �-notation
in the usual meaning.
For a set M , the powerset of M is denoted by P(M).

2.1. Grids and logic

2.1.1. Grids
Grids are particular relational structures over the signature �Grids= {S1; S2} containing

the binary “successor” relation symbols S1 and S2. The universe of a grid is of the
form [m]× [n]. The grid of height m and width n is the �Grids-structure

[m]× [n] := ([m]× [n]; Sm;n
1 ; Sm;n

2 );

where Sm;n
1 and Sm;n

2 are the “vertical” and the “horizontal” successor relations on
[m]× [n], containing all pairs ((i; j); (i+1; j)) and all pairs ((i; j); (i; j+1)), respectively,
from [m]× [n]. Let size([m]× [n])= (m; n).
The expressions row, column, top, bottom, etc., are interpreted as in the terminology

of matrices; e.g. the leftmost column contains exactly the vertices (i; 0) for 06i6m−1,
and the top row consists of all vertices (0; j) for 06j6n− 1.
We adjoin unary predicate symbols X1; : : : ; Xt to the signature of grids, obtaining the

signature �Gridst = �Grids ∪{X1; : : : ; Xt}. A t-bit grid (for some t¿0) is a structure over
the signature �Gridst , i.e. of the form R=(dom R; SR

1 ; S
R
2 ; X

R
1 ; : : : ; X

R
t ), whose restriction

to �Grids is a grid. So grids are 0-bit grids.
The classes of grids and t-bit grids will be denoted Grids and Gridst , respectively.
A di/erent version of grids is obtained via the signature �Grids ∪{61;62} with

binary relation symbols 61;62. In this context, a grid is considered as the structure

([m]× [n]; Sm;n
1 ; Sm;n

2 ;6m;n
1 ;6m;n

2 );

where 6m;n
1 = {((i; j); (i′; j)) ∈ ([m] × [n]) × ([m]× [n]) | i6i′}, and 6m;n

2 = {((i; j);
(i; j′))∈ ([m]× [n])× ([m]× [n]) | j6j′}. That means that 6m;n

1 (and 6m;n
2 ) are the

re7exive and transitive closure of Sm;n
1 (and Sm;n

2 , respectively).

2.1.2. Monadic second-order logic over grids
We use x; y; x1; : : : as $rst-order variables and X; Y; : : : as monadic second-order vari-

ables (i.e., set variables). Atomic formulas (over �Grids) are of the form x=y, Xy,
S1xy, or S2xy for $rst-order variables x; y and a set variable X . Their intended mean-
ings are that x; y are equal, y is an element of X , or that y is a vertical (or horizontal,
respectively) successor of x.
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Monadic second-order formulas over � (MSO-formulas for short) are built up as
usual from atomic formulas. Formally, if ’ and  are MSO-formulas, x is a $rst-order
variable, and X is a set variable, then ’∨  , ¬’, ∃x’, and ∃X’ are MSO-formulas, too.
We may use the other propositional connectives, like →, ∧, etc., as well as universal
quanti$cations as abbreviations with their usual meaning.
First-order formulas are MSO-formulas in which no second-order quanti$er occurs.

FO denotes the class of $rst-order formulas.
In Section 2.2.2 we will give two extensions of the syntax of formulas.
The set of variables occurring free in a formula ’ is denoted free(’).
If free(’)⊆{X1; : : : ; Xt ; x1; : : : ; xm}, we sometimes write ’(X1; : : : ; Xt ; x1; : : : ; xm). If R

is a grid and U1; : : : ; Ut and u1; : : : ; um are subsets and elements, respectively, of the
domain of R, then we write R |=’[U1; : : : ; Ut ; u1; : : : ; um] to indicate that ’ is true in
R under the assignment that maps Xi to Ui and xj to uj for all i; j. If ’ is a sentence,
i.e., free(’)= ∅, then we write Mod0(’) for the set of all grids in which ’ is true.
If ’ is a formula over �Grids with free(’)⊆{X1; : : : ; Xt}, we write Mod t(’) for the

set of t-bit grids in which ’ is true with the implicitly given assignment to the set
variables X1; : : : ; Xt . This way, we consider the formula ’ as a sentence over �Gridst .
If L=Mod t(’), we say that ’ de3nes L. If F is a set of formulas, then we call a

set L of t-bit grids F-de3nable if there is a formula ’∈F with L=Mod t(’).

2.2. Closures and alternation

We have motivated in Section 1 to measure the complexity of monadic second-order
formulas by the alternation of existential and universal set quanti$cations.
We will continue to de$ne the di/erent levels of the monadic quanti$er alterna-

tion hierarchy. As mentioned before, we will also be interested in $rst-order alter-
nation and the interference of these two. Besides, we will introduce the “unary TC-
operator” (for the transitive closure) and “the monadic  -operator” (for unique choice)
as syntactic extensions of monadic second-order formulas. Some of our separation
results give nontrivial facts about their expressive power in monadic second-order
logic.
In order to be able to state and prove all these facts formally, we will have to

introduce some more general notations.
Let F be a class of formulas. Then co-F denotes the class of formulas ¬’ with

’∈F. The (1) boolean closure of F, denoted B(F), (2) positive boolean closure of
F, denoted PB(F), (3) existential 3rst-order closure of F, denoted �01(F), (4) uni-
versal 3rst-order closure of F, denoted �0

1 (F), (5) existential second-order closure
of F, denoted �1(F), (6) 3rst-order closure of F, denoted FO(F), respectively,
is de$ned as the smallest superclass of F that is closed under (1) boolean combi-
nations, i.e., ¬ and ∨. (2) positive boolean combinations, i.e., ∧, ∨. (3) existential
$rst-order quanti$cations and positive boolean combinations, (4) universal $rst-order
quanti$cations and positive boolean combinations, (5) existential second-order quan-
ti$cations and positive boolean combinations, (6) existential $rst-order quanti$cations
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and boolean combinations, respectively. In Section 2.2.2 we will introduce two more
closure operations on formula classes.
In [17] it is shown how separation results for formula classes involving these closures

can be transferred from one class of structures (like grids) to another (say graphs) by
the encoding technique (called “strong $rst-order reductions”).

2.2.1. Alternation hierarchies for monadic logic
Now, we are ready to de$ne several alternation hierarchies for monadic logic. One

bene$t of the notions of “closures” introduced above is that these de$nitions are quite
succinct.

De�nition 2.1 (Alternation hierarchies). Let F be a class of formulas. We de$ne

�00(F) =F and �0k+1(F) = �01(co-�
0
k(co−F));

�0(F) =F and �k+1(F) = �1(co-�k(co-F))

for every k¿0. Let �0
k(F)= co-�0k (co-F) and �k(F)= co-(�k(co-F) for every k.

We write �k , and �k instead of �k(FO), �k(FO), respectively.

(Note that the re-de$nition of �01(F) and �1(F) is compatible with the original
one, provided we identify formulas of the form ’ and ¬¬’.)
Let k¿0. A �k -formula is of the form

∃ KX 1¬∃ KX 2 · · · ¬∃ KX k’

for a $rst-order ’ and second-order variable tuples KX1; : : : ; KXk .
The class �k of formulas (as well as the class of properties de$nable by such

formulas) is known as “the kth level of the monadic quanti$er alternation hierarchy”.
There is some arbitrariness in choosing �k to be “the level k”. Other possible choices
would be �k , or �k ∪�k , or the boolean closure of �k , or the class �k introduced
below. The class of properties de$nable by formulas in �1, i.e., in the existential
fragment of monadic second-order logic, is often called “monadic NP”, but we avoid
this term because it is not a complexity class.

De�nition 2.2. Two formulas ’,  are equivalent over grids i/ ’ ↔  is true in
all grids under all assignments. For a set F of formulas we write KF for the set of
all formulas that are equivalent over grids to a formula in F. Let �k = K�k ∩ K�k for
every k. The �1-closure of F is given by

�1(F) = �1(B(F)) ∩�1(B(F)):

Besides, F(Gridst) := {Modt(’) |’∈F; free(’)⊆{X1; : : : ; Xt}}. In this notation, we
omit Gridst if t is clear from the context.

We sometimes write “�k -formula” instead of “ K�k -formula” and so on.
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2.2.2. The unary TC-operator and the monadic  -operator
Our proof of the fact that the monadic second-order quanti$er alternation hierarchy

is strict will show that one can de$ne properties “high” in the hierarchy with a very
limited form of set quanti$cations. In order to formulate this observation precisely, we
introduce two extensions of the syntax of formulas which may—in some situations—
replace set quanti$cations.
The unary transitive closure operator: The $rst one is the “unary transitive clo-

sure operator” (TC-operator). If ’ is a formula and x; y are $rst-order variables, then
TC(x; y; ’)xy is a formula whose free variables are x, y, and the free variables of ’.
(Actually, the occurrences of x and y inside ’ are bound, and the ones outside the
brackets are free and we usually omit them.)
The intended meaning of the formula TC(x; y; ’) is that x and y are in the re7exive

and transitive closure of the binary relation given by {(x′; y′) | x′; y′ satisfy ’}.
Formally, if ’(x; y; KZ; Kz) is a formula, where KZ and Kz are $rst- and second-order

variable tuples, respectively, of possibly di/erent lengths, then the satisfaction rela-
tion M |=TC(x; y; ’)[u; v; KW; Kw] holds for two elements u; v, a tuple KW of subsets,
and a tuple Kw of elements of domM i/ there are elements u0; : : : ; um ∈ domM for
some m¿0 such that u= u0, v= um, and M |=’[ui; ui+1; KW; Kw] for all i∈{0; : : : ;
m− 1}.
Let F be a class of formulas. F is closed under application of the unary TC-

operator i/ for every ’∈F and all $rst-order variables x; y we have that TC(x; y; ’)
is in F.
The monadic  -Operator: The second extension of the syntax of formulas will be

described now.
If ’ and  are formulas and KX =(X1; : : : ; Xt) is a tuple of set variables that are

free in ’, then “ ( KX (’))” is meant to be a formula in which the free variables are
those of ’ and those of  but not the variables in KX . It shall express that  holds for
“the unique” tuple KX that makes ’ true. Of course, this only makes sense in case ’
uniquely determines a tuple KX , and this depends on the considered class of structures.
Formally, let C be a class of structures and let KY be a tuple of $rst- and second-order

variables such that ’=’( KX ; KY ) and  =  ( KX ; KY ), i.e., every free variable of ’ or  
appears either in KX or in KY . Let us write KX = KX

′
to abbreviate the $rst-order formula∧t

i=1(∀x(Xix ↔ X ′
i x)).

Assume that the formula ∃! KX’, which abbreviates ∃ KX∀ KX ′
(’(X ′; KY ) ↔ KX = KX

′
), is

true in all C-classes under all assignments; then

 ( KX (’); KY )

is also a formula with free variables among KY . (In order to stress that such a formula
ful$lls the above constraint, we call it an “allowed” formula.)
The satisfaction relation is de$ned as follows. For a structure M of C and a tuple KV

(to be assigned to KY ) of subsets and elements of domM , we have M |=  ( KX (’); KY )[V ]
i/ M |=  [ KU; KV ] for the unique tuple KU for which M |=’[ KU; KV ].
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Let F be a class of formulas and C be a class of structures over the same signature.
Let �U;C

1 (F) be the set of allowed formulas of the form

 ( KX (’); KY );

where ’( KX ; KY ) is a formula in B(F), the formula  ( KX ; KY ) is $rst order, KX is a tuple
of set variables, and KY is a tuple of $rst-order and=or set variables of possibly di/erent
length.

2.2.3. Some calculation rules
Some calculation rules may be deduced from the well-known rules of predicate logic.

For example, the following inclusions hold for every formula class F:

�k(F) ⊆ �k(F) ⊆ B(�k(F)) for all k ¿ 1:

co-�k(F) = �k(co-F) for all k ¿ 0:

�1(�k(F)) ⊆ �k(F) for all k ¿ 0:

�0k(F) ⊆ �k(F) if k ¿ 0 and FO ⊆F = B(F):⋃
k¿0

�0k(F) = FO(F):

(For the fourth line the crucial point is that $rst-order quanti$cations may be replaced
by set quanti$cations relativized by a $rst-order formula that asserts for a set that it is
a singleton.) All of these closure operations are monotone wrt set inclusion. Some of
such rules are applied, e.g. in Remark 3.45.
The closure �U1F of a formula class F may be understood as a particular form of

the �1-closure of F, where the membership in both �1(B(F)) and �1(B(F)) is due
to the fact that the tuple KX of sets that is quanti$ed over is determined uniquely by a
formula in the boolean closure of F. This is formalized by the following proposition.

Remark 2.3. Let F be a class of formulas. If ’( KX ; KY ) is a formula in B(F) and
 ( KX ; KY ) is a $rst-order such that  ( KX (’); KY ) is allowed, then this formula is equivalent
over C to both of the formulas ∃ KX (’ ∧  ) and ∀ KX (’→  ); which are in �1(B(F))
and �1(B(F)), respectively. Thus �1(F)⊆�U1 (F).

2.3. Words and pictures

Words: The notations we use for words and formal languages, called “word lan-
guages” here, are fairly standard. We recall some of them. Let 0 be an alphabet, i.e.,
a $nite set of so-called letters. A word over 0 is a $nite sequence of letters from
0. The empty word (of length 0) will be denoted by 1. The set of all words (or all
non-empty words) over 0 will be denoted by 0∗ (or 0+, respectively).
If w= a0 : : : an−1 is a word of length n, we write w〈i〉 instead of ai for every

i∈{0; : : : ; n− 1}.
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The concatenation of words and word languages is de$ned as usual, and it may
be iterated as follows. We let L0 = {1} and 1 Lk+1 =L · Lk . Then L∗=

⋃
k¿0 L

k and
L+ =

⋃
k¿1 L

k .
If w= xyz for four (possibly empty) words w; x; y; z, then x; y; z are called pre3x,

in3x, and su=x, respectively, of w. For every word language L, we denote by pref (L)
(and pref+(L)) the set of all pre$xes (and all non-empty pre$xes, respectively) of
words in L.
One notation that is non-standard is the following. For a word language L⊆0∗, the

cyclic closure of L is given by cycl(L)= {vu | u; v∈0∗; uv∈L}.
Pictures: The “two-dimensional” analogue to a word is called a picture. Many nota-

tions for words can be de$ned similarly for pictures. We pick out some that are useful
for our purposes.
Let (m; n)∈ (N×N)∪{(0; 0)}. Recall that [n] = {0; : : : ; n− 1}. A picture over 0 of

size (m; n) is an (m×n)-matrix over 0, i.e. a mapping P : [m]×[n]→0. For a picture
P of size (m; n), we de$ne the height of P as KP=m, the width of P as |P|= n,
and size(P)= (m; n). We write P〈i; j〉 (rather than P(i; j)) for the component of P at
position (i; j). The empty picture is the picture with size (0; 0) and is denoted by 1.
We use the notations 0∗;∗ (and 0+;+), for the set of all (or all non-empty, respec-

tively) pictures over 0. If m; n¿1, then 0m;n denotes the set of all pictures of size
(m; n) over 0. If m¿1 then 0m;+ =

⋃
n¿1 0

m;n and 0m;∗=0m;+ ∪{1}.
A set of non-empty pictures is called a picture language.
Note that unlike in [7] and other publications, the domain of a picture of size (m; n) is

of the form {0; : : : ; m− 1}×{0; : : : ; n− 1} rather than of the form {1; : : : ; m}×{1; : : : ; n}.
Another di/erence is that we do not allow the empty picture in “picture languages”.
See also Remark 3.1.
For every non-empty picture P over 0, let top(P) be the word over 0 in the top

row of P, i.e., if P is of size (m; n), then top(P)=P〈0; 0〉 · · ·P〈0; n− 1〉.
We extend top to a mapping 0+;+→0+ in the usual way. As usual, we write

top−1(L) for the pre-image of the word language L under this mapping, i.e., top−1(L)
is the set of non-empty pictures of 0 whose top row is in L. (We only use this
notation when the alphabet 0 is clear from the context.) A picture language of the
form top−1(L) (for a word language L) is called top-pre-image of L.
Next, we de$ne two partial concatenations for pictures. The $rst one, called “column

concatenation”, juxtaposes two pictures next to each other (i.e., concatenates the right
column of one picture with the left column of the other) provided they have the same
height.
Let P and Q be pictures of size (k; l) and (m; n), respectively. If k =m¿1, then the

column concatenation of P and Q is de$ned by

P ©| Q: [k]× [l+ n]→0; (i; j) �→
{

P〈i; j〉 if j ¡ l;
Q〈i; j − l〉 if j ¿ l:

1 Unfortunately, this notation sometimes con7icts with the k-fold Cartesian product, which is considered
a di/erent operation. I hope that the reader can always guess what is meant.
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Besides, P©| 1= 1©| P=P for every picture P.
These de$nitions can be extended to sets of pictures as usual, i.e., for L;M ⊆0∗;∗

we de$ne L©| M = {P©| Q |P ∈L; Q∈M}. The ©|-symbol is often omitted.
This concatenation can be iterated: For a set L⊆0∗;∗ of pictures we set L1;0 := {1}

and L1; k+1 :=L1; k©| L. We set L1;∗ :=
⋃

k¿0 L
1; k and L1;+ :=

⋃
k¿1 L

1; k . Since here the
$rst superscript is always 1, we allow to drop it, thus writing Lk instead of L1; k and
so on.
A partial row concatenation, denoted �, can be de$ned similarly: for two pictures

P;Q of the same width, P�Q is the picture that results from P by appending Q
to the bottom. This row concatenation, however, will be used much less frequently
than the column concatenation. Its iteration is de$ned as follows. For a set L⊆0∗;∗

of pictures we set L0;1 := {1} and Lk+1;1 =Lk;1�L. We de$ne L∗;1 =
⋃

k¿0 L
k;1 and

L+;1 =
⋃

k¿1 L
k;1.

Words vs. pictures: A non-empty picture of size (m; n) over alphabet 0 may be
viewed as a word over alphabet 0m;1 of length n, the so-called column word. The
set of all column words of pictures of height m of a given picture language L is
called the height-m fragment of L. These de$nitions are made formal in De$ni-
tion 4.1. We will not identify a picture with its column word, but some frequently
used notions like “in$x” of a picture, etc., will advocate this view. For example,
if P, Q, R are (possibly empty) pictures for which PQR is de$ned, then Q is an
“in$x” and P is a “pre$x” of PQR. Furthermore, cycl(L) and pref+(L) denote the
cyclic closure and the set of non-empty pre$xes, respectively, of a picture language
L.
Conversely, every non-empty word is identi$ed with a picture of height 1 over the

same alphabet, and the empty word is identi$ed with the empty picture. Consequently,
every word language not containing the empty word is also a picture language.
Cyclic: It is sometimes very helpful to think of pictures as if the rightmost column

was connected to the leftmost column forming a ring-like stripe. Whenever this ring
structure is referred to, we will indicate this by using the word “cyclic”. For example,
if P;Q; R are pictures for which PQR is de$ned, then RP will be called a “cyclic in$x”
of PQR.
Coloured grids vs. Pictures: Recall from Section 2.1 the de$nition of grids and t-bit

grids. To every t-bit grid ([m]×[n]; S1; S2; X1; : : : ; Xt) we may associate a non-empty
picture P over alphabet {0; 1}t of the same size, where P〈i; j〉=(b1; : : : ; bt)∈{0; 1}t
with ∀s : bs=1↔ (i; j)∈Xs.
Conversely, from every non-empty picture over alphabet {0; 1}t of size (m; n) we

may extract an assignment of sets X P
1 ; : : : ; X

P
t to the set variables X1; : : : ; Xt , namely by

de$ning X P
s to be the set of positions (i; j) for which the sth component of P〈i; j〉 is 1.

This way we obtain for every non-empty picture P over {0; 1}t the t-bit grid whose
associated picture is P.
We allow ourselves to be imprecise when distinguishing t-bit grids from pictures over

{0; 1}t . For example, if P is a picture of size (m; n) over {0; 1}t and ’(X1; : : : ; Xt) is a
formula over signature �Grids, then we write P |=’ instead of [m]×[n] |=’[X P

1 ; : : : X
P
t ].
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We write Modt(’) for the set of pictures P over 0= {0; 1}t with P |=’, i.e., the set
of pictures associated to models of ’. If L is a picture language over alphabet 0 and
F a class of formulas over grids, then we say that L is F-de$nable and write L∈F

(or L∈F(0)) i/ there is an F-formula ’(X1; : : : ; Xt) over �Grids, i.e., a sentence ’
over �Gridst , such that L=Modt(’).
Binary number representations: For every m; n¿0 with n62m−1 we write BIN (n; m)

for the binary representation of length m of the number n, least signi$cant bit $rst.
Conversely, if w is a word of length m over {0; 1}, then dual(w)=

∑m−1
i=0 2

iw〈i〉 is
the number represented by w in binary, least signi$cant bit $rst.
It will be technically convenient to consider the binary representation with least

signi$cant bit $rst, i.e., the other way round than usual.

2.3.1. Di@erent notions of locality
This subsection is concerned with the transfer of the important notions of locality,

locally threshold testability, and recognizability from word languages to picture lan-
guages. Let us brie7y recall some basic facts about these notions in the world of word
languages.
Local word languages: A word language L (over some alphabet 0 not containing

#) is local i/ there is a set � of words of length 2 over 0∪{#} such that L is the set
of those words w for which all in$xes of length 2 of the word #w# are in �.
Locally threshold testable word languages: For two words u; w we let occ(u; w) be

the number of occurrences of w as an in$x of u.
A word language L is locally threshold testable i/ it is a $nite union of equivalence

classes of equivalence relations ∼=d; t , where u ∼=d; t v holds for two words u; v and two
numbers d; t¿1 i/ for each word w of length 6d we have occ(u; w) and occ(v; w)
are either both ¿t or both ¡t.
Intuitively, a word language is locally threshold testable i/ membership of a word

can be decided by counting the numbers of occurrences of in$xes of bounded length
up to a $xed threshold.
Local picture languages: Now, we de$ne when to call a picture language “local”.

These de$nitions will be compatible with our agreement to identify word languages
with picture languages all of whose elements have height 1.
Let P be a picture of size (m; n) over 0. If 06i6i′6m− 1 and 06j6j′6n− 1,

we write P([i; i′]×[j; j′]) for the picture P′ of size (i′− i+1; j′− j+1) over 0 de$ned
by P′〈x; y〉=P〈i + x; j + y〉 for every (x; y)∈ [0; i′ − i]×[0; j′ − j]. The picture P′ is
called a subblock of P.
Let # be a new symbol not in 0. By P̂ we denote the picture of size (m+2; n+2)

over 0∪{#} that results from P by surrounding it with the symbol #, i.e.,

P̂〈i; j〉 =
{

P〈i − 1; j − 1〉 if (i; j) ∈ [1; m]× [1; n];
# if i ∈ {0; m+ 1} ∨ j ∈ {0; n+ 1}:
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A picture language L is local if there is a set �⊆ (0∪{#})2;2 such that L is the set
of non-empty pictures P over 0 such that all (2×2)-subblocks of P̂ are in �. In that
case we write L(�)=L. We call � a local tiling system and its elements tiles.
A picture language is recognizable if it is the image of a local picture language

under some alphabet projection, i.e., under some possibly non-injective renaming of
letters. This is one of the various natural adaptations of the notion of recognizability of
word languages by nondeterministic $nite automata. In our context, recognizable picture
languages are important because they are exactly the �1-de$nable picture languages.
See [7] for a survey on this subject.
Two simple examples of local pictures languages follow.

Example 2.4. Consider

L = {P ∈ {0; 1}+;+ | ∀(i; j) ∈ dom P : i �= 0→ P〈i; j〉 = 0};
M = {P ∈ {0; 1}+;+ | ∀(i; j) ∈ dom P : P〈i; j〉 = 1↔ i = j}

i.e., L is the set of all non-empty pictures over {0; 1} that have no 1 in a non-top row,
and M is the set of pictures over {0; 1} that have 1’s exactly in the “diagonal” that
starts in the upper left corner. Then L and M are local because

L =L

({
a c
b d

∈ {0; 1; #}2;2
∣∣∣∣ b; d �= 1 ∨ a; c = #

})
;

M =L

({
a c
b d

∈ {0; 1; #}2;2
∣∣∣∣d = 1↔ (a = 1 ∨ a = b = c = #)

})
:

Remark 2.5. Every local picture language is $rst-order de$nable (in the signature with
two binary successor relation symbols, but without orderings).

The above remark is a special case of a more general result of [8] that states that
the class of $rst-order de$nable picture languages coincides with the class of locally
threshold testable picture languages. Though this notion is not needed in this paper,
we introduce it here for the interested reader. It is a straightforward adaptation of the
corresponding notion for word languages, see Section 2.3.1.

De�nition 2.6 (Cf. Giammarresi and Restrivo [6; 7] and Giammarresi [8]). For two
pictures P; R we let occ(P; R) be the number of occurrences of R as a subblock of
P. A picture language L is locally threshold testable i/ it is a $nite union of equiva-
lence classes of equivalence relations ∼=d; t , where P ∼=d; t Q holds for two pictures P;Q
and two numbers d; t¿1 i/ for each picture R of height and width 6d we have that
occ(P; R) and occ(Q; R) are either both ¿t or both ¡t.

Cyclically local picture languages: Recall that the word “cyclic” indicates that one
should imagine the rightmost column of a picture as connected to the leftmost column.
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With this intuition, it is straightforward to deduce a de$nition of “cyclically local
picture language” and the like.

De�nition 2.7 (Cyclic subblocks). Let P and Q be pictures. Q is a cyclic subblock of
P i/ it is a subblock of some picture in cycl{P}. A properly cyclic subblock of P is
a picture of the form P([i; i′]× [j′; n − 1])©| P([i; i′]× [0; j]), where 06i6i′6 KP and
06j¡j′6|P|.

Obviously, a picture Q is a cyclic subblock of P i/ it is a subblock or a properly
cyclic subblock. For example, the words ca as well as ab are (as (1× 2)-pictures)
cyclic subblocks of abc, but the word abca is not.
Let P be a picture of size (m; n) over 0 and # a new symbol not in 0. By P̃ we

denote the picture of size (m+2; n) over 0∪{#} that results from P by attaching one
row of #’s to the top and one to the bottom, i.e.,

P̃〈i; j〉 =
{

P〈i − 1; j〉 if (i; j) ∈ [1; m]× [0; n− 1];
# if i ∈ {0; m+ 1}; j ∈ [0; n− 1]:

A picture language L is cyclically local if there is a set �⊆ (0 ∪ {#})2;2 such that
L is the set of non-empty pictures P over 0 such that � cyclically tiles P̃, i.e., such
that all cyclic 2× 2-subblocks of P̃ are in �.
The next example illustrates the de$nition of cyclic locality. The idea of a counting

mechanism, which plays a crucial rôle here, will be important later on (see De$ni-
tion 3.15).

Example 2.8. For a picture C ∈{0; 1}m;1, we have that dual(C�) is the number rep-
resented by C in binary, where the least signi$cant bit is at the top.
Let L be the language of non-empty pictures P over {0; 1} for which dual(C′�)=dual

(C�) + 1mod 2 KP for every two cyclically successive columns C; C′ of P. Then L is
a cyclically local picture language. To see this, let � be the set of cyclic (2× 2)-
subblocks of

# # # # # # # #

1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 0

0 0 0 1 1 1 1 0

# # # # # # # #

Then L is indeed the set of pictures P for which � cyclically tiles P̃.

We conclude with two simple propositions, whose proofs are left to the reader.



O. Matz / Theoretical Computer Science 270 (2002) 1–70 15

Proposition 2.9. Let 0 be an alphabet. If L is a local (or cyclically local) word
language; then top−1(L) is a picture language with the respective property.

Proposition 2.10. Let : :0→� be a alphabet projection. If L⊆�+;+ is a local (or
cyclically local; or locally threshold testable; respectively) picture language; then so
is :−1(L).

2.3.2. Alternation hierarchies for starfree picture languages
Starfreeness: The class of starfree word languages is the smallest class of word

languages (over a $xed alphabet) that contains all $nite word languages and is closed
under concatenation, union, and complement (relative to the set of all words over the
$xed alphabet).
This notion can be easily transferred to picture languages. The set of starfree pic-

ture languages over 0 (denoted SF(0)) is the smallest class of picture languages over
alphabet 0 that contains all $nite picture languages and is closed under both concate-
nations � and ©| as well as under union and complement (relative to the set of all
non-empty pictures over 0).
Since the set of pictures of height 1 over a $xed alphabet is a starfree picture

language, the notion of starfreeness is compatible with our identi$cation of words with
pictures of height 1.
The following proposition from [14] gives an example of a starfree picture

language.

Example 2.11. Let Corners be the set of non-empty pictures P over {0; 1} such that
whenever P〈i; j〉=P〈i′; j〉=P〈i; j′〉=1 then also P〈i′; j′〉=1. (Intuitively: Whenever
three corners of a rectangle carry a 1, then also the fourth one does.) Corners is a
starfree picture language.
To see this, let L :=

⋃
(w({0; 1}∗;∗)x)� ({0; 1}∗;∗)� (y({0; 1}∗;∗)z); where the union

ranges over all quadruples (w; x; y; z)∈{0; 1}4 such that wxyz ∈ 1∗01∗. Then L is the
set of all pictures over {0; 1} such that exactly one of its four corners carries an 0.
Clearly, ({0; 1}∗;∗)� (({0; 1}∗;∗)L({0; 1}∗;∗))� ({0; 1}∗;∗) is the complement of

Corners, so Corners is starfree. Note that the use of the empty picture is non-essential—
one may eliminate the use of {0; 1}∗;∗ from the above de$nitions, resulting in slightly
more complex expressions.
In [14] it is shown that Corners is not recognizable.

There is a certain relation between the starfree word languages and $rst-order logic:
the starfree word languages are exactly those which are de$nable by a formula in
$rst-order logic with the built-in order relation. This indicates that “starfreeness” is a
robust notion for word languages.
However, [24] shows that the notion of “starfreeness” is not as robust for picture

languages. The author gives an example of a non-starfree picture language that is
de$nable in $rst-order logic with the two partial successor relations.
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It turns out that, nevertheless, the class of starfree picture languages is rich enough
to contain picture languages beyond arbitrarily high levels of the monadic hierarchy,
which is one of our main results. The proof shows that there is a certain relation
between the alternation of quanti$ers (or, equivalently, of existential quanti$ers and
negations) on one side and the alternation of concatenation and negations on the other.
The investigation of this relation is prepared now.
Alternation: Recall from the introduction that we plan to prove all of our separation

results uniformly, both those that involve starfreeness and those that deal with monadic
second-oder logic only.
We de$ne an alternation hierarchy for starfree picture languages. Later we will

prove that this hierarchy “cuts through” the monadic alternation hierarchy in the sense
that in level k + 1 of this alternation hierarchy for starfree picture languages,
there is a picture language that is not on level k of the monadic alternation
hierarchy.
Let L be a class of picture languages over some $xed alphabet 0. The ©| -closure,

the ©| �-closure, the ∪∩-closure, and the boolean closure of L are de$ned as the
smallest superset of L that is closed under ©| -concatenations, or under both �- and ©|
-concatenations, or under both union and intersection, or under both union and comple-
ment (relative to 0+;+), respectively. We denote these classes by ©| -cl(L), ©| �-cl(L),
∪∩-cl(L), and B(L), respectively.
The following de$nition is a straightforward adaptation of the dot-depth hierarchy

of starfree word languages.

De�nition 2.12 (Dot-depth hierarchy). dot-depth0(0) is the class of all $nite or co$-
nite picture languages over 0, and

dop-depthk+1(0) = B(©| � -cl(dot-depthk(0)))
for every k¿0.

Intuitively, a picture language over alphabet 0 is in dot-depthk(0) i/ it can be con-
structed from $nite picture languages by k alternations of (row-=column-) concatenation
on one side and boolean combinations on the other side.
The dot-depth hierarchy of word languages is a well studied hierarchy (see e.g.

[3, 19]), which is strict and exhausts the class of starfree word languages. The strict-
ness of the dot-depth hierarchy of picture languages can be deduced easily from the
strictness of the dot-depth hierarchy of word languages because the dot-depth levels
are compatible with our identi$cation of words with pictures of height 1.
Every level of the dot-depth hierarchy is closed under boolean combinations, which

is not the case for the monadic hierarchy. So if we want to deduce also facts like
“�k �=�k” from the result that our alternation hierarchy of starfree picture languages
“cuts through” the monadic hierarchy, we need a version of this alternation hierarchy
that gives reasonable distinctions between �- and �-branches.
I suggest the following. (Recall the de$nitions from the previous page.)
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De�nition 2.13 (Local alternation hierarchy). Let 0 be an alphabet.
Let �loc0 (0) denote the smallest class of picture languages over 0 that contains

all local and all cyclically local picture languages and all top-pre-images of locally
threshold testable word languages, and that is closed under boolean combinations.
For every k¿0, let

�lock+1(0) = ∪ ∩ -cl(©| -cl(B(�lock )))(0):

For every k¿0, let �loc
k (0) denote the class of picture language that contains all

complements of languages in �lock (0), and �lock (0)=�lock (0) ∩�loc
k (0).

We omit the explicit mentioning of 0 if it is clear from the context. �lock is called
the kth level of the local alternation hierarchy.

Note that in this hierarchy, the row concatenation is completely disregarded. Thus
it certainly does not exhaust the starfree picture languages. For example, the singleton
picture language {( aa)} is in none of the �lock , as one easily veri$es by induction on k.
There are several ways to modify the de$nition of this hierarchy in order to make it

look more familiar. Firstly, one could choose to replace the ©| -closure in the de$nition
of �lock by the ©| �-closure. Then the resulting hierarchy would exhaust the class of
starfree picture languages.
Secondly, level zero could be modi$ed to contain also all $rst-order de$nable (i.e.,

all locally threshold testable) picture languages.
A third possibility is to modify the recursive de$nition in such a way that every

level of the hierarchy is closed under positive boolean combinations as well as ©| - and
�-concatenations.
The most important reason for the above de$nition is that by considering this hier-

archy, we can state (and prove) the strongest separation results we have: clearly, all of
the above modi$cations would make the levels larger and thus our separation results
weaker.

Proposition 2.14. B(�lock )(0)⊆ dot-depthk+1(0) for every k¿0.

This proposition is shown in Section 3.1.1. In Section 3.1.2, Theorem 3.4, we will
show that �lock ⊆�0k (�

U
1 )⊆�k for every k¿1.

Syntax vs. semantics: Since this paper concentrates on expressiveness results, I chose
not to introduce unnecessary syntactic notions. However, the reader who is used to such
notions as “regular” or “starfree expressions” may easily $ll this gap. There are a few
remarks on the lengths of starfree expressions in Paragraph 3:3:1.

2.4. Separation results

In this subsection I present all separation results we have. The proofs of these results
will be presented in the following sections.
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Fig. 1. Picture Languages Separated from �k . In this diagram, line indicate (not necessarily proper) inclusions,
all of which are easy. For the k¿1 under consideration, the bottom-most class—and therefore all the others,
are not contained in �k , provided that the underlying alphabet has at least two symbols.

2.4.1. Separation results for pictures
Recall that if 0 is an alphabet of the form {0; 1}t , we write �k(0) for the class of

�k -de$nable picture languages over 0.
In [17], the following separation results have been shown (not all of them stated

explicitly):

Fact 2.15. For every k¿1; the following classes contain a picture language over
{0; 1}2k that is not in �k (see Fig. 1):
• FO61 ;62 and thus FOTC;
• �0

k (�1) and thus also the superclasses FO(�1) and �k; �k+1; and �k+1.

The two de$nability parts (one for FO61 ;62 and one for �0
k (�

U
1 )) of the above

proof are due to Schweikardt. They require two very similar constructions with subtle
di/erences and do not give any results about starfree picture languages. The $rst con-
tribution of this paper is the following theorem, which says that the local alternation
hierarchy for picture languages cuts through the monadic second-order quanti$er alter-
nation hierarchy for picture languages. It is shown in Section 3.3 (Corollary 3.25) and
Section 4.1 (Corollary 4.3).

Theorem 2.16. For every k¿1;

�loc
k ({0; 1}2k)* �k({0; 1}2k);

i.e.; there is a starfree picture language over alphabet {0; 1}2k in the complement
of the kth level of local alternation hierarchy which is not in the kth level of the
monadic second-order quanti3er alternation hierarchy.



O. Matz / Theoretical Computer Science 270 (2002) 1–70 19

Since �loc
k ⊆ dot-depthk+1⊆ SF ⊆FO61 ;62 and �loc

k ⊆�0
k (�

U
1 ), this reproves and ex-

tends Fact 2.15 and shows the following.

Corollary 2.17. For every k¿1; the following classes contain a picture language over
{0; 1} that is not in �k :
• dot-depthk+1 and thus SF; FO61 ;62 ; and FOTC;
• �0

k (�
U
1 ) and thus FO(�1) as well as �k; �k+1; and �k+1.

The above implies in particular that SF*�1, which has $rst been shown in [14],
solving an open problem from [7]. It had even been unknown whether every regular
picture language is in �1, where “regular” means that it results from $nite picture
languages in a $nite number of applications of row-=column-concatenations, boolean
combinations, and the Kleene-like iteration of row-=column-concatenations. These ques-
tions are somewhat natural to ask because in the one-dimensional case, �1 re7ects
the notion of recognizability by non-deterministic automata, so that by the Kleene
Theorem, the classes of regular and �1-de$nable classes of word languages
coincide.
Note that in Fact 2.15, Theorem 2.16, and Corollary 2.17, there is no $xed bound

on the alphabet size for which the respective picture language classes can be separated.
However, with standard encoding techniques, this can be repaired, except for the class
�loc

k . In [16], I give a variant of the local alternation hierarchy, the generalized local
alternation hierarchy, which enables this encoding in the following sense: If the local
alternation hierarchy is replaced by the generalized variant, then the levels become
larger, but Theorem 3:1 and Proposition 2.14 remain true, and Theorem 2.16 remains
true even if the alphabet {0; 1}2k is replaced by {0; 1}.
In Section 2.4.2 we shall summarize the separation results we have for pictures over

a one-letter alphabet.

2.4.2. Separation results for (non-coloured) grids
The investigation of starfree picture languages over a singleton alphabet does not

make much sense because the class of starfree picture languages over a singleton
alphabet is very poor—in particular, every starfree language over a one-letter alphabet
is �1-de$nable, see e.g. [12]. However, there are non-trivial separations concerning the
expressiveness of certain fragments of monadic second-order logic. In this context it is
more canonical to refer to “grids” (i.e., particular $nite structures) rather than “pictures
over a trivial alphabet”.
The growth technique: Recall that for a set L of grids, size(L) is the set of all (m; n)

such that the grid of size (m; n) is in L.
Our separation results for the class of non-coloured grids are of two types. The $rst

one is concerned with classes L of grids where size(L) is a function, i.e., for every
m there is exactly one grid of height m in L. Separations of the $rst type are then
witnessed by k-fold exponential functions for increasing k. This has been called “the
growth technique” in [1].
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The second type of separation results is by classes of grids L where size(L) is a
non-functional relation of N. The separation �k * �k is witnessed by a set L of grids
where the function m �→ min{n | (m; n)∈ size(L)} is (k + 1)-fold exponential. This is
further explained in Theorem 2.26.

De�nition 2.18. A sentence ’ over �Grids de3nes a relation r⊆N2 i/ r= {(m; n) |
[m]× [n] |= ’}. A relation r is F-de$nable (for a class of formulas F over �Grids),
if there is a sentence ’ that de$nes r.
Let f :N− → N be a partial function. Then f is called at most k-fold exponential

if f(m) is sk(O(m)), where s0(m)=m and sk+1(m)= 2sk (m) for every m¿1, k¿0.
We call f at least k-fold exponential if f is total and f(m) is sk(V(m)). If f is

both at most and at least k-fold exponential, i.e, if f is total and f(m) is sk(W(m)),
then we say that f is k-fold exponential.

The following notion is convenient to state some of our results succinctly.

De�nition 2.19 (Asymptotic bounds for formula classes). Let F be a class of formu-
las over �Grids. We say that
• “F is at most k-fold exponential” i/ f is at most k-fold exponential for every
F-de$nable function f;

• “F is at least k-fold exponential” i/ f is at least k-fold exponential for some
F-de$nable function f;

• “F is k-fold exponential” i/ F is both at most and at least k-fold exponential.

Example 2.20. In [5], the author shows that �1 is singly (i.e. one-fold) exponential.
This means that every �1-de$nable function is at most singly exponential, and there is
one particular singly exponential, �1-de$nable function (namely m �→ 2m).

There is a more detailed investigation of the class of �1-de$nable functions in
[5]. It is shown that this class is closed under certain operations and deduced that,
for example, every polynomial with non-negative integer coeJcients is �1-
de$nable.
In [17], Example 2.20 is extended to higher levels of the monadic alternation

hierarchy.

Fact 2.21. For every k¿1; the formula class �1(�0
k−1(�1)) is at least k-fold expo-

nential; and thus so are the larger classes �k; �k ; B(�k).
On the other hand; B(�k) is at most k-fold exponential; thus the above formula

classes are k-fold exponential.

We reprove the $rst statement and extend it to the following, which is the second
contribution of this paper (and equal to Corollary 3.33).
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Fig. 2. Separation results for grids.

Theorem 2.22. For every k¿1; the formula class �U1 (�
0
k−1(�

U
1 )) is at least k-fold

exponential (and thus; by the above fact; also k-fold exponential).

In [1], the $rst-order closure has been introduced and the following has been shown.

Fact 2.23. FO(�1) is at most two-fold exponential.

We reprove and extend the above theorem the following way, which is the third
contribution of this paper (consequence of Theorems 3:44 and 4.6).

Theorem 2.24. Let k¿1. The formula class �0
2 (�

U
1 (�

0
k−1(�

U
1 ))) is at least (k+1)-fold

exponential; and thus so are the larger classes �0
2 (�k) and FO(�k).

On the other hand; the formula class FO(�k) is at most (k + 1)-fold exponential;
thus the above; smaller formula classes are (k + 1)-fold exponential.

Fig. 2 illustrates some of the separation results stated in the above two theorems for
grid classes separated by asymptotic growth rates.
Referring to Theorem 2.22, the above may be rephrased as follows: With respect

to the growth rate of functions, the $rst-order closure is as powerful as ‘one more’
alternation in the monadic hierarchy. However, this should be read with some caution
because the focus of attention to asymptotic growth rate bounds is quite essential
here—it is by no means true that any alternation of $rst-order quanti$cations can be
replaced by one block of monadic quanti$cations. See also Corollary 2.25.
It is a challenging unsolved problem to prove that �0

j (�k)$�0
j+1(�k) over grids

for every j; k. We only know that this holds for 1-bit grids and k =1.
The separations witnessed by fast growing function are summarized in Corollary 2.25.
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Fig. 3. The monadic hierarchy over grids.

Corollary 2.25. For every k¿0; the following classes of formulas allow to de3ne a
set of grids that is not B(�k)-de3nable and (if k¿1) neither FO(�k−1)-de3nable:
• �U1 (FO

61 ;62 ) and thus �U1 (FO
TC);

• �U1 (�
0
k (�

U
1 )) and thus �1(FO(�1)) as well as �k+1 and �k+1;

• �1(�0
k (�

U
1 )) and thus �1(�0

k (�1)) and �k+1;
• if k¿1; also �0

2 (�
U
1 (�

0
k−1(�

U
1 ))) and thus �0

2 (�k); FO(�k); �0
1 (�k); FO(�k).

The result “FO(�k)$FO(�k+1) for the class of grids” may be rephrased informally
as follows: The monadic hierarchy quanti$er remains strict when one considers the
$rst-order closure of each level. However, this result should not be overestimated be-
cause the $rst-order closure of �k is de$ned somewhat arti$cially in the sense that—in
contrast to the levels of “closed” hierarchy of [2]—$rst-order quanti$cations are added
only in the outermost level of second-order quanti$cations.
Separation results with non-functional relations: While the previous results imply

the situation depicted in Fig. 3 for the classes of 1-bit grids, it remained open in
[17, 18, 21] how the situation is for the class of non-coloured grids. We know that
B(�k)$�k+1 for the class of grids by Theorem 2.22, but the same theorem tells us
that if there is a function f witnessing that �k and �k are incomparable, then the
reason is not only the asymptotic growth rate of f.
However, this separation result can be shown using a witness set that is not a

functional relation. This shows that Fig. 3 is correct for grids, too, and it implies
that the class of recognizable (i.e., �1-de$nable) picture languages is not closed under
complement even in the case of a trivial alphabet. This disproves a conjecture from
[13]. Precisely, the following consequence of Theorem 3.44 and Corollary 4.4 is the
fourth and last contribution of this paper.

Theorem 2.26. For every k¿1; there is a (k+1)-fold function f such that the relation
{(m; n) |f(m) divides n} is de3nable in �0

1 (�
U
1 (�

0
k−1(�

U
1 ))) (and thus in �0

1 (�k) and
�k) but not in �k .

A corollary of the above theorem (for k =1) is that the class of recognizable picture
languages is not closed under complement even for a unary alphabet, because this
picture language class corresponds to �1 over grids.
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2.4.3. Separation results for graphs
In this paper, we restricted our interest to particular $nite structures, namely grids.

However, this restriction is not essential, because [17] provides an encoding technique
that allows us to transfer certain separation results of Corollary 2.17 from coloured
grids to other structures, say graphs. This encoding technique, called strong $rst-order
reductions, allows us to transfer separation results that deal with formula classes that
result from the class of $rst-order formulas by repeated application of the closures
introduced in Section 2.2.
With those techniques, we can conclude the following from Corollaries 2.17 and

2.25.

Theorem 2.27. Let k¿1. The following formula classes allow to de3ne (within the
class of graphs) a class of connected undirected 3nite graphs (of bounded degree)
that is not de3nable in �k :

FOTC; �0
k−1(�1); FO(�1); �k ; �k+1; �k+1:

Besides; the following formula classes allow to de3ne (within the class of graphs) a
class of connected undirected 3nite graphs (of bounded degree) that is not de3nable
in B(�k) and neither in FO(�k−1):

�k+1; �1(�0
k−1(�1)); �1(�0k−1(�1)):

The reason why not all of the separation results from Corollary 2.17 carry over to
graphs arises from the fact that the class of (structures isomorphic to) grids is itself
not $rst-order de$nable within the class of �Grids-structures.

3. De�nability results

A separation result typically requires two parts. The $rst one states that a certain
property, say of pictures, is a member of a certain class, e.g., expressible by a certain
type of formula. The second part states that it is not a member of some other class.
In this section we collect all the de$nability results, i.e., all $rst parts. These are

sometimes referred to as “upper bound proofs”, but this term is misleading for our
purposes because an essential idea for our de$nability results is to give lower bounds
on the asymptotic growth rates of functions whose associated sets of grids are de$nable
in a certain fragment.
Our strategy is the following. In Section 3.2 we will introduce some more notation

that will be helpful later on. In Subsection 3.3, the most important subsection of this
section, we develop a sequence (Numk)k¿1 of picture languages for which we will
prove membership in �loc

k−1. The membership of Numk in level k of the dot-depth
hierarchy as well as its de$nability in some other fragments of monadic second-order
logic we are interested in then follows easily because �loc

k is a subset of, e.g., �k .
These and some other easy inclusions will be presented in Section 3.1.2.
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In Sections 3.4 and 3.5 we use Numk to show the additional de$nability results for
Theorems 2.22 and 2.24, respectively.
Talking about formulas: When we talk about formulas, it is often convenient to mix

syntax and semantics. For example, when we say “the formula ’(x; y) asserts for (a
picture P and) a position x that x has some property A, provided that position y has
property B”, we really mean that for every non-empty picture P and every u; v∈ dom P,
if v has property B, then P |= ’[u; v] i/ u has property A.

3.1. Easy inclusion results

In the next four subsections we will state and prove de$nability results for the
local alternation hierarchy. Before we do that, we collect some easy inclusion results
that show how to transfer these de$nability results to some other classes of picture
languages.
In Section 3.1.1 we show that level k of the local alternation hierarchy is contained

in level k + 1 of the dot-depth hierarchy.
Section 3.1.2 shows how to transfer these de$nability results to classes of picture

languages as de$ned by certain fragments of monadic second-order logic. It states e.g.
�lock ⊆�k .

3.1.1. Dot-depth and the local alternation hierarchy
Now we will prepare the proof of Proposition 2.14, which states that level k of the

local alternation hierarchy is contained in level k + 1 of the dot-depth hierarchy.
Before we do that, let us make an observation that deals with the empty picture.

Remark 3.1. For convenience and because I preferred not to consider “empty grids”,
picture languages must not contain the empty picture, and complementation is also
relative to the set of non-empty pictures.
However, in proofs and examples like Example 2.11 we will frequently use the empty

picture and complementation wrt 0∗;∗, so it is necessary to note that this does not a/ect
the de$nition of the dot-depth hierarchy or the class of starfree picture languages.
Formally, if dot-depth′k(0)⊆P(0∗;∗) is de$ned as in De$nition 2.12 but with com-

plementation relative to 0∗;∗, then we have that for every k¿0 and every L⊆0∗;∗

that

L ∈ dot-depth′k(0) ⇔ L\{1} ∈ dot-depthk(0)
and the same is true for the classes SF(0) and �lock , etc. The proof is easy, see e.g.
[12, Lemma 3:7]. The essential point is that ©| and � distribute over ∪.

Lemma 3.2. Every local or cyclically local picture language is of dot-depth 1.

Proof. It suJces to show that for every (2× 2)-picture Q over 0 ∪ {#}, the sets LQ,
MQ, and NQ of non-empty pictures P such that Q is a subblock of P̂, a properly cyclic
subblock of P̃, or a cyclic subblock of P̃, respectively, are of dot-depth one.
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So let Q be a 2× 2 be a picture over 0∪ {#}. It suJces to consider the nine cases
that Q is of one of the forms

a b
c d

;
a b
# #

;
# b
# d

;
# #
c d

;
a #
c #

;
a #
# #

;
# b
# #

;
# #
c #

; or
# #
# d

; where a; b; c; d ∈ 0:

(In the other cases, say if Q= a #
# d , then Q cannot occur as a subblock of any picture,

thus LQ =MQ =NQ = ∅.)
In the $rst case,

LQ =0∗;∗ � (0∗;∗Q0∗;∗)� 0∗;∗;

MQ =0∗;∗ �
((

b
d

)
©| 0∗;∗©|

(
a
c

))
� 0∗;∗:

In the second case,

LQ =0∗;∗ � (0∗ab0∗);

MQ =0∗;∗ � (b0∗a):

In the third case,

LQ =0∗;∗ �
((

b
d

)
©| 0∗;∗

)
� 0∗;∗;

MQ = ∅:
The other six cases are similar. In every case, the three sets LQ and MQ and thus

NQ =LQ ∪MQ are of dot-depth one.

The following facts are stated here without proof.

Lemma 3.3. Every locally threshold testable word language is of dot-depth 1; and if L
is a word language of dot-depth 1; then top−1(L) is a picture language of dot-depth 1.

Now, we are ready to prove the announced connection between the dot-depth hi-
erarchy and the local alternation hierarchy, i.e., that B(�lock )(0)⊆ dot-depthk+1(0) for
every k¿0.

Proof of Proposition 2.14. The proof is by induction on k. The case k =0 follows
from Propositions 3:2, 3:3 and Lemma 3.3.
So assume the claimed implication is true for some k¿0. Then B(�lock+1)=B(∩∪-

cl(©| -cl(B(�lock ))))=B(©| -cl(B(�lock )))⊆B(©| -cl(dot-depthk+1))= dot-depthk+2.

3.1.2. Local and monadic alternation hierarchy
In this section we will show how to pass from a picture language of some given

level of the local alternation hierarchy to a formula of monadic second-order logic of
some particular shape.
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The following is the main result of this section.

Theorem 3.4. For every k¿0; every picture language in �lock is de3nable by a
�0k (�

U
1 )-formula.

Before we turn to the proof of this theorem, let us conclude the following corollary,
which will be used in the proofs of Corollaries 3.25 and 3.32.

Corollary 3.5. Let k¿0. Every picture language in �lock is de3nable by a formula in
FO61 ;62 ; in �0k (�

U
1 ); in �0k (�1); in FO(�U1 ); and in FO(�1). Every picture language

in �loc
k is de3nable in �0

k (�1).
If k¿1; then every picture language in �lock (or �loc

k ; respectively) is de3nable in
�k (or �k; respectively).

Proof. We have �lock ⊆FO61 ;62 by Proposition 3.9, and �lock ⊆�0k (�
U
1 )⊆

FO(�U1 )⊆FO(�1) by Proposition 2:3 and Theorem 3.4.
If k¿1, then �lock ⊆�0k (�1)⊆�0k (�1)⊆�k and �loc

k ⊆�0
k (�1)⊆�k by calculation

rules of Section 2.2.3.

We prepare the proof of Theorem 3.4 with the following de$nition. For both i∈{1; 2},
let 4i be the pre-order on N×N de$ned by (m1; m2) 4i (n1; n2) i/ mi6ni.

Lemma 3.6. There are 3rst-order formulas smaller(x; Z) and larger(x; Z) such that
smaller(x; Z) asserts that Z = {z | z42 x}; and larger(x; Z) asserts that Z =
{z | z ¡2 x}.

The proof is easy.
Throughout Section 3, the following formulas will be useful. The formula top(x)=

¬∃y(S1yx) asserts that position x is in the top row. Similarly, there are $rst-order
formulas bottom(x); left(x); right(x) that assert that x is at the respective border.
Recall the de$nition of (properly) cyclic subblock from De$nition 2.7.

Proposition 3.7. Let t¿1 and 0= {0; 1}t . Let Q be a non-empty picture over 0∪{#}.
Let KX be the variable tuple (X1; : : : ; Xt). There are �U1 -formulas has-subblockQ( KX );
has-properly-cyclic-subblockQ( KX ); has-cyclic-subblockQ( KX ) that assert for a picture
P that Q is a subblock of P̂; a properly cyclic subblock of P̃; or a cyclic subblock
of P̃; respectively.

Proof. Similar to the proof of Lemma 3.2, it suJces to consider the nine cases that
Q is of one of the forms

a b
c d

;
a b
# #

;
# b
# d

;
# #
c d

;
a #
c #

;
a #
# #

;
# b
# #

;
# #
c #

; or
# #
# d

; where a; b; c; d ∈ 0:
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Let us consider the $rst case. Let KY be the variable tuple (Y1; : : : Yt). We need the
following $rst-order formulas:

• stripes( KY ; KX ) :=

(
t∧

s=1

1∧
j= 0

row-closed(Yjs)

)

∧∀x0; x1
(
left(x0)∧ S2x0x1→

t∧
s=1

1∧
j= 0

(Xsxj ↔ Yjsxj)

)
;

where row-closed2(X ) is a $rst-order formula that asserts that X is a union of
rows. stripes( KY ; KX ) asserts that Ys= {(i; j′) ∈ dom P | (i; j)∈X P

s } for every s6t, i.e.
Ys is the union of all those rows whose leftmost position is contained in Xs.

• For every (i; j)∈ domQ, the formula

>ij( KX ; x) =
∧

s∈{1;:::;t}
(i;j)∈XQ

s

Xsx ∧
∧

s∈{1;:::;t}
(i;j) =∈XQ

s

¬Xsx

asserts that, for all s, the sth component of Q〈i; j〉 is 1 i/ x∈Xs.
Let us write Kx for the variable tuple x00; x01; x10; x11.

has-subblockQ( KX )

:= ∃ Kx
(
S1x00x10 ∧ S1x01x11 ∧ S2x00x01 ∧

m−1∧
i=0

n−1∧
j=0
(>ij(X1; : : : ; Xt ; xij))

)

has-properly-cyclic-subblock ′Q( KY ; KX )

:= S1x00x10 ∧ right(x00) ∧
1∧

i=0
(>i0( KX ; xi0)) ∧

1∧
i=0
(>i1( KY ; xi0));

has-cyclic-subblock ′Q( KY ; KX )

:= has-subblockQ( KX ) ∨ has-properly-cyclic-subblock ′Q( KY ; KX ):

Then the formulas has-subblockQ( KX ); has-properly-cyclic-subblock ′Q( KY ; KX ), and has-
cyclic-subblock ′Q( KY ; KX ) assert for a picture P over {0; 1}t that Q is a subblock, a
properly cyclic subblock, a cyclic subblock, respectively, of P, provided that for all
j; s, the set Ys is the (uniquely determined) union of all those rows whose leftmost
position is contained in Xs.
Thus,

has-properly-cyclic-subblockQ( KX )

:= has-properly-cyclic-subblock ′Q( KY (stripes( KY ; KX ); KX ))

is a �U1 -formula that asserts that Q is a properly cyclic subblock of P, as required. An
analogous construction works for has-cyclic-subblockQ.
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This completes the proof for the $rst case, i.e., that the boundary symbol # does not
appear in Q. The other eight cases require minor modi$cations, which we sketch now.
Let us consider the second and fourth case, i.e., that Q is of the form

a b
# #

or
# #
a b

;

respectively, with a; b∈0. In these cases, we remove the variables x10; x11 (or the vari-
ables x00; x11, respectively) from the variable tuple Kx and add bottom(x00) (or top(x10),
respectively) as a conjunct in the scope of the existential quanti$er in the de$nition of
has-subblockQ. The other two formulas are modi$ed similarly.
Let us consider the cases Q is of the form

# a
# b

or
a #
b #

;

respectively. Then we remove the variables x00; x1;0 (or x0;1; x1;1, respectively) from
the variable tuple Kx and add left(x01) (or right(x0;0), respectively) in the de$nition of
has-subblockQ. The formula has-properly-cyclic-subblock ′Q can be chosen such that it
is always false.
The remaining four cases (where all but one position of Q are #) are even simpler.

This completes the proof of Proposition 3.7.

Proposition 3.8. Every picture language in �loc0 is de3nable in �U1 .

Proof. Since �U1 is closed under boolean combinations, it suJces to consider the cases
$rstly of those picture languages that are de$ned by demanding the non-occurrence of
a particular (2×2)-picture as a (cyclic or ordinary) subblock and, secondly, of top-pre-
image of locally threshold testable word languages.
The $rst type of picture language is in �U1 by Proposition 3.7.
Every locally threshold testable word language is known to be $rst-order de$nable (in

the signature with one successor relation symbol S but without ordering). A $rst-order
sentence ’ in this signature translates easily (by replacing S with S2 and relativizing
quanti$cations to top) to a $rst-order sentence ’′ in our signature �Grids in such a way
that ’′ is true for those non-empty pictures whose top row ful$lls ’. This completes
the proof.

A proof for the following easy fact can be found in [24].

Proposition 3.9. Every starfree picture language is de3nable in FO61 ;62 .

The crucial idea of the proof is that a concatenation can be imitated by an existential
$rst-order quanti$cation, just like in the well-known word language case.
We will do a similar proof for Theorem 3.4. It will be essential to relativize quan-

ti$cations in some $rst-order formula, say ’, in such a way that the resulting formula
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asserts for the picture left (or right) from a given position the same as ’ asserts for
the whole picture. This idea is made precise by the following de$nition.

De�nition 3.10. Let Kx be the variable tuple (x1; : : : ; xn). Let ’( Kx), ’′( Kx; z) be formulas
in the signature �Gridst , where t¿0.

’′ relativizes ’ to 42 z i/ for all non-empty pictures P over {0; 1}t , all (i; j)∈ dom P,
and all x1; : : : ; xn 42 (i; j):

P |= ’′[ Kx; (i; j)] ⇔ P([0; KP − 1]× [0; j]) |= ’[ Kx]:

’′ relativizes ’ to¡2z i/ for all non-empty pictures P over {0; 1}t , all (i; j)∈ dom P,
and all x1; : : : ; xn ¡2 (i; j):

P |= ’′[ Kx; (i; j)] ⇔ P([0; KP − 1]× [j; |P| − 1]) |= ’[ Kx]:

A class of formulas F is 42-relativizable i/ for every ’∈F there are F-formulas
that relativize ’ to 42 z and to ¡2 z, respectively.

Lemma 3.11. For all k¿0; the formula class �0k (�
U
1 ) is 42-relativizable.

Proof. We argue by induction on k.
For the induction base k =0, let  ( KX (’( KX ; KY ); KY )) be some �U1 -formula, i.e., ’( KX ;

KY );  ( KX ; KY ) are $rst-order and KX is a tuple of set variables, whereas the tuple KY may
contain $rst-order as well as set variables. Let Z be a fresh set variable.
Let ’′( KX ; Z; KY ) and  ′( KX ; Z; KY ) result from ’ and  , respectively, by relativizing $rst-

order quanti$cations to Z . For every Xi in the tuple KX , let us write “Xi⊆Z” instead
of ∀x(Xix→Z). Let ’′′( KX ; Z; KY ; z)=’′ ∧ smaller(z; Z) ∧∧i(Xi⊆Z). Since ∃! KX (’) is
valid, so is ∃! KXZ(’′′). Thus 2  ′( KXZ(’′′); KY ; z) is an allowed �U1 -formula. It is easy to
see that it relativizes  to 42 z. A similar construction can be done to get a �U1 -formula
that relativizes  to ¡2 z.
The induction step is simple, using relativization of $rst-order quanti$cations by a

�U1 -formula ?(y; z) that asserts that y 42 z. (Such a formula exists by Lemma 3.6.) A
formula that relativizes ’ to ¡z can be obtained similarly. This $nishes the induction
and thus the proof.

The reader who is not interested in the formula classes �0k (�
U
1 ) may prove (similarly)

that the classes �0k (�1) and (if k¿1) also �k are 42-relativizable.
Now, we can state the lemma that clari$es the mentioned idea that $rst-order quan-

ti$cations may replace (column-)concatenations.

Lemma 3.12. Let F be a 42-relativizable class of formulas that contains all 3rst-
order formulas. If L1; L2 are picture languages (over some alphabet {0; 1}t) and de-
3nable in F; then L1©| L2 is de3nable in �01(F).

2 Note that we added z to the list of potentially free variables in  .
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In particular; if F is closed under conjunction; disjunction; and existential 3rst-
order quanti3cations; then the set of F-de3nable picture languages is closed under
column concatenation.

Proof. Write KX for the variable tuple (X1; : : : ; Xt). Let ’1( KX ) and ’2( KX ) be formulas
in F that de$ne L1 and L2, respectively. Let ’′

1( KX ; z) and ’′
2( KX ; z) be F-formulas that

relativize ’1 to 42 z and ’2 to ¡2 z, respectively. Let ’( KX )=∃z; z′(S2zz′ ∧’′
1( KX ; z)∧

’′
2( KX ; z′)). Then ’ de$nes L1©| L2.

We conclude this section with the proof of its main result, Theorem 3.4, which states
that �lock ⊆�0k (�

U
1 ).

Proof of Theorem 3.4. We argue by induction on k. The case k =0 is Proposition 3.8.
Assume �lock ⊆�0k (�

U
1 ) is true for some k.

Since �lock+1 is a subset of the smallest superset of B(�
loc
k ) that is closed under union,

intersection, and column concatenation, the claimed implication follows from the fact
that �0k+1(�

U
1 )⊇B(�0k (�

U
1 )) and that �

0
k+1(�

U
1 ) is closed under disjunction, conjunction,

and (in the sense of Lemma 3.12) column concatenation.

Note that the proof shows that Theorem 3.4 remains true if the inductive de$nition
of the local alternation hierarchy is modi$ed as follows: �lock+1 is the smallest superclass
of B(�lock ) that is closed under positive boolean combinations as well as ©| - and �-
concatenations.

3.2. Attributed alphabets

In this subsection we will introduce some notation that will be helpful later on. Since
this notation might seem strange at $rst sight, I would like to motivate it.
It will be agreed that it is extraordinarily helpful to allow free variables to be

chosen arbitrarily and not only from the “anonymous” set {X1; X2; : : :}. This improves
readability; it allows us to indicate a particular relationship between free variables by
choosing similar, suggestive names.
This section will be chie7y concerned with starfree picture languages over alphabets

of (0–1)-tuples. Suppose we would use only alphabets of the form {0; 1}t for some t.
This would make notations diJcult for the same reasons as in the context of formulas,
as I will illustrate in an example. Suppose we want to construct a starfree word language
L over {0; 1}3 from two languages M , N over {0; 1}2 in such a way that L contains
those words over {0; 1}3 whose letterwise restriction to the $rst two components is
in M whereas the letterwise restriction to the second two ones is in N . Then we
would have to write L=(M ⊗{0; 1}∗)∩ ({0; 1}∗⊗N ), where the ⊗ means “letterwise
pairing”. Note that the understanding is further complicated by the fact that what used
to be the $rst component in (symbols of words in) the language N is the second
component in L.
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The main idea to avoid such complications is to give names to the components of
letters, i.e., to have families over some $nite index set as alphabet symbols. Such fam-
ilies are called “data base tuples” in data base theory, and the elements of the index
set are called “attributes”. Suppose in the above example these “attributed” alphabets
are chosen in such a way that the second component in M and the $rst compo-
nent in N correspond to the same attributes, i.e., @; A; B are di/erent attributes, and M
and N are over alphabets {0; 1}{@;A} and {0; 1}{A;B}, respectively. If a∈{0; 1}{@;A} and
b∈{0; 1}{A;B} are two letters, then the join a ./ b is de$ned i/ a(A)= b(A), namely by
(a ./ b)(@)= a(@), and (a ./ b)(A)= a(A)= b(A), and (a ./ b)(B)= b(B). This join oper-
ation is lifted to an operation ©./ on words and pictures in the usual (i.e., letterwise)
way. This operation is in turn lifted to sets of words or pictures, thus we will simply
write L=M ©./ N in the above situation.
Formally, let I be a $nite set of so-called “attributes”. By {0; 1}I we denote the set

of functions I→{0; 1}, i.e., {0; 1}I is the set of I -indexed families over {0; 1}.
If I; J are attribute sets and a∈{0; 1}I ; b∈{0; 1}J , and if a(@)= b(@) for every

@∈ I ∩ J , then a ./ b is the element of {0; 1}I∪J with

(a ./ b)(@) =

{
a(@) if @ ∈ I;

b(@) if@ ∈ J:

If a(@) �= b(@) for some @∈ I ∩ J , then “a ./ b” is not de$ned.
This (partial) operation is extended to a (total) operation on sets as usual: If L⊆

{0; 1}I ; M ⊆{0; 1}J then L ./ M = {a ./ b | a∈L; b∈M}. We will use sets of the
form {0; 1}I as alphabets. The operation ./ is also extended to pictures over such
alphabets: If P is a picture over {0; 1}I and Q is a picture over {0; 1}J of equal size,
and if “(P〈i; j〉) ./ (Q〈i; j〉)” is de$ned for every position (i; j)∈ dom P, then P ©./ Q is
de$ned, namely as the picture of size size(P) over {0; 1}I∪J with

(P ©./ Q)〈i; j〉(P〈i; j〉) ./ (Q〈i; j〉)

for every (i; j)∈ dom P. Again, this partial operation is lifted to a total operation on
sets as usual.
Some more notation is needed for attributed alphabets. If @ is some attribute and

b∈{0; 1}, then (b)@ ∈{0; 1}{@} is de$ned by ((b)@)(@)= b. This way, (·)@ is an alpha-
bet projection from {0; 1} to {0; 1}@, which is lifted to pictures and picture languages
the usual way. If a∈{0; 1}I is some I -indexed family and J ⊆ I , then restrJ (a) is the
restriction of a to a J -indexed family. Again, restrJ (·) is an alphabet projection from
{0; 1}I to {0; 1}J and is lifted to pictures and picture languages.
Likewise, we consider for some @∈ I the alphabet projection pr@ : {0; 1}I → {0; 1},

a �→ a(@). It can be lifted to pictures, i.e., if P is a picture over {0; 1}I and @∈ I ,
then we write pr@(P) for the picture of the same size over {0; 1} with (pr@(P))〈i; j〉
=(P〈i; j〉)(@) for every position (i; j) of P, and analogously for picture
languages.
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Remark 3.13. Let L; M be picture languages over alphabets {0; 1}I and {0; 1}J , re-
spectively, and let �= {0; 1}I∪J .
Then L©./M =(L©./ �++)∩ (M ©./ �++) and L©./ �++ = {P ∈�++ | restrI (P)∈L}.
With these identities one easily deduces that the class of local picture languages is

closed under ©./ from the fact that it is closed under inverse projections (Proposition
2.10) and intersection.

We sometimes write (0)I for the letter a∈{0}I .

3.3. Counting cyclically—the central de3nability results

In this subsection we shall introduce the sequence (Numk)k of those picture languages
that witness almost all non-inclusion results of this paper. The crucial point is that the
pictures of these languages are very “slim” in the sense that the pictures are very wide
compared to their height.
For every k¿1, we de$ne the k-fold exponential function fk : N→N as follows.

f1(m) = 2m;

fk+1(m) = fk(m)2fk (m):

The pictures of Numk will be of size (m;fk(m)) for m¿1.
Throughout this section, we consider the attributes num-1; num-2; : : : ; end-1;

end-2; : : : . For every k¿1 the attribute set Ik is $xed as Ik = {num-1; : : : ; num-k; end-
1; : : : ; end-k}.
The picture language Numk will be de$ned as a certain picture language over alphabet

{0; 1}Ik . For every l6k, the restriction of a picture in Numk to attribute num-l will
establish a counting mechanism that cyclically enumerates binary numbers of length
fl(m). The projection to attribute end-l will mark the ends of these binary number
representations.
We start with the following auxiliary de$nition.

De�nition 3.14. For every k¿1, let OnlyTopk be the set of non-empty pictures P over
{0; 1}{num-k; end-k} such that prnum-k(P)〈i; j〉= prend-k(P)〈i; j〉=0 for all (i; j)∈ dom P
with i �= 0.

In other words, OnlyTopk =(L)num-k ©./ (L)end-k for the local picture language L=
({0; 1}+ � {0}∗∗) of Example 2.4. As a consequence of that example, OnlyTopk is a
local picture language.
Now we will de$ne, for every k; m¿1, a picture Pkm of height m over alphabet

{0; 1}Ik , and then the picture language Numk over {0; 1}Ik .

De�nition 3.15. For every m¿1 let P1m be the picture of size (m;f1(m)) over {0; 1}I1
for which
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Fig. 4. The picture prnum-k+1(Pk+1; m).

• prnum-1(P1m) is the picture over {0; 1} whose jth column holds the binary represen-
tation of j for every j∈{0; : : : ; 2m−1} (least signi$cant bit at the top), (cf. Example
2.8),

• prend-1(P1m) is the picture over {0; 1} such that for all (i; j)∈ dom P= [m]×[2m]

prend-1(P1m)〈i; j〉 = 1 ⇔ ∀j′ ¿ j: prnum-1(P1m)〈i; j′〉 = 1:

For every k¿1; m¿1, let Pk+1; m be the picture of size (m;fk+1(m)) over alphabet
{0; 1}{num-k+1; end-k+1} such that
• prnum-k+1(top(Pk+1; m))=BIN(0; fk(m)) · · ·BIN(2fk (m)−1; fk(m)) is the word of
length fk+1(m) that consists of the concatenation of the reverse binary represen-
tations (of length fk(m)) of the numbers 0; : : : ; 2fk (m) − 1,

• prend-k+1(top(Pk+1; m))= 0fk+1(m)−11, and
• Pk+1; m ∈OnlyTopk+1.
For every k¿1, let

Numk =
⋃

m¿1
{P1m}+ ©./ · · · ©./ {Pk−1;m}+ ©./ {Pk;m}:

The picture prnum-1(P1;3) is displayed as (1). As an illustration of De$nition 3.15,
Fig. 4 displays the projection of Pk+1; m to its attribute num-k +1. Note that the length
of Pk+1; m is indeed 2fk (m) · fk(m)=fk+1(m).
The following is the main theorem of this subsection. When this theorem is proved,

most of the “hard work” of this section will have been done. Theorem 3.27 follows
quite simply and rest of the hard work is for Theorem 3.44.
These three theorems and the easy inclusion results from Section 3.1 provide all

de$nability results needed for the separation results announced in Section 2.4.

Theorem 3.16. cycl(Num+k ) is in �loc
k−1 for every k¿1.

Note that this will in particular imply that Numk is �loc
k−1, which in turn allows us

to deduce that the function fk is �k -de$nable in the sense of De$nition 2.18. Both
[18, 21] construct monadic second-order formulas that de$ne such k-fold exponential
function inductively over k. (It is fk in [21] and a very similar function in [18].)
However, both of these inductions require the simultaneous construction of two other
formulas, which makes the proof diJcult to understand.
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My point is that considering the picture language cycl(Num+k ) instead of Numk

makes the induction required for the construction a lot simpler.
Contrary to this simpli$cation, the detour over the local alternation hierarchy com-

plicates the construction of such formulas. However, this detour is non-essential. The
reader who is interested in de$nability results only for monadic second-order logic may
extract easily an inductive proof that directly constructs, say, �k -formulas. That means
that the following may be proved via induction over k:

cycl(Num+k ) ∈
{

�1 if k = 1;

�k−1 if k ¿ 2:

(In the induction step one constructs from a �k -sentence(!) for cycl(Num+k ) a �k -
sentence for cycl(Num+k+1).)
The following proposition serves as an induction basis for Theorem 3.16.

Proposition 3.17. cycl(Num+1 ) is in �loc
0 .

This proposition is an almost immediate consequence of Example 2.8. The picture
language considered in that example is prnum-1(cycl(Num

+
1 )). Nevertheless, it is in-

structive to carry out the proof in more detail because the veri$cation of counting
mechanisms in pictures in cycl(Num+k ) for k¿1 will depend on the same ideas.

De�nition 3.18. Let Allow be the set of (2× 2)-pictures
a c
b d

over {0; 1} for which ((a; c)= (1; 0))↔ (b �=d). Let Forb= {0; 1}2;2\Allow.

In other words, Allow is the set of (2× 2) subblocks pictures that result from column
concatenating columns that are successive binary number representations, i.e., Allow
the set of cyclic (2× 2)-subblocks of the picture

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

: (1)

For the proof of Proposition 3.17 we need the following lemma, whose proof is left
to the reader.

Lemma 3.19 (Cyclic Counting Lemma). Let m; n¿1 and x0; : : : ; xn−1 be words of
length m over alphabet {0; 1}. Then the following are equivalent:
1: dual (x( j+1)mod n) = (dual (xj) + 1)mod 2m for every j∈{0; : : : ; n−1};
2: • xj〈0〉 �= x( j+1)mod n〈0〉 for every j∈{0; : : : ; n−1}.
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•
(

xj〈i〉 x( j+1)mod n〈i〉
xj〈i + 1〉 x( j+1)mod n〈i + 1〉

)
∈Allow for all j∈{0; : : : ; n− 1},

i∈{0; : : : ; m− 1}.

Proof of Proposition 3.17. Let 0= {0; 1}I1 .

�=

{
a c

b d
∈ 02;2

∣∣∣∣∣ prnum-1

(
a c

b d

)
∈ Allow

∧(prend-1(a) = 1↔ prend-1(b) = prnum-1(a) = 1)}

∪
{
a c

# #

∣∣∣∣∣ prend-1(a) = 1↔ prnum-1(a) = 1

}

∪
{
# #

d d

∣∣∣∣∣ prnum-1(b) �= prnum-1(d)

}
:

Let P be a non-empty picture over 0, say of size (m; n). Let x0; x1; : : : ; xn−1 be the
words of length m over 0 such that xi is the transposed column i of P, i.e.,

xi = P〈0; i〉 : : : P〈m− 1; i〉:
� is chosen in such a way that every cyclic (2× 2)-subblock of P̃ is in � i/
• prnum-1(x0); : : : ; prnum-1(xn−1) have the second property of Lemma 3.19 (“the Cyclic
Counting Lemma”), and

• for every x among x0; : : : ; xn−1, the word prend-1(x) is determined by prend-1(x)= 0i1j

i/ j is maximal such that 1j is a suJx of prnum-1(x).
Thus (by Lemma 3.19) Num+1 is the set of non-empty pictures P over 0 such that �
cyclically tiles P̃, thus Num+1 is cyclically local in particular �loc

0 .

The observation stated in the above lemma, namely that—speaking informally—
counting is a local process, has been one of the two 3 essential improvements of the
de$nability part of the proof of [21] compared to [18] because it made it possible
to save quanti$er alternations in the monadic second-order formulas that de$ne “slim”
picture languages. This observation has been used previously in [5] (see Example 2.20)
and it can also be found implicit in [12, Example 2:4]. What is new here is to continue
the counting process cyclically.
Proposition 3.17 proves Theorem 3.16 for the case k =1. Our aim is to do the proof

of Theorem 3.16 by induction on k. We will sketch the strategy for this informally.

3 The other improvement is to start the induction appropriately, i.e., at k =1 with the exponential function
f1 instead of at k =0 with the identity. This allows to save one quanti$er alternation and, moreover, this
allows to describe the counting pattern in FO61 ;62 .
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Checking membership in cycl(Num+k+1) for some picture P over {0; 1}Ik+1 whose
restriction to Ik is in cycl(Num+k ) means essentially to check that the component cor-
responding to the attribute num-k + 1 enumerates all binary representations of length
fk(m), where m is the height of P. The idea for this is similar to the case k =1,
namely to exploit the Cyclic Counting Lemma 3.19 in order to verify the counting
mechanism locally. The di/erence is that—unlike in the case k =1—corresponding
bits of successive binary number representations are no more horizontally neighboured,
but at horizontal cyclic distance fk(m) from each other. The restriction of P to the
Ik -components can be used to determine such corresponding positions because if the
restriction of P to attribute set Ik is in cycl(Num+k ), then two positions are at hori-
zontal cyclic distance fk(m) from each other i/ the restriction to Ik -components of the
cyclic in$x of P between these positions is in cycl(Numk). Some additional tricks are
necessary to control the existence of particular cyclic in$xes on the next level of the
local alternation hierarchy.
We will carry out the sketched proof formally. For this, we need the following

technical lemma. Its essential statement is the equivalence of Items 1 and 2, which states
that Num+k+1 results from Num+k by enlarging the underlying alphabet (i.e. passing from
attribute set Ik to Ik+1) and then forbidding particular cyclic in$xes.

Lemma 3.20. Let k¿1; let �= {0; 1}Ik+1 . Let U1; U2; U3 be the word languages over
� de3ned as follows:

U1 =
⋃

b∈{0;1}
(10∗10)end-k ©./ ({0; 1}b{0; 1}∗b)num-k+1 ©./ �+;

U2 =
⋃

a c
b d

∈Forb

(0+10+{0; 1})end-k ©./ (ab{0; 1}∗cd)num-k+1 ©./ �+;

U3 = (0∗1)end-k ©./ (1∗)num-k+1 ©./ (∼ (0∗1))end-k+1 ©./ �+

∪(0∗1)end-k ©./ (∼ (1∗))num-k+1 ©./ (∼ (0∗))end-k+1 ©./ �+:

For every m¿1 let binm abbreviate BIN(0; fk(m)) · · ·BIN(2fk (m)−1; fk(m)); i.e.; the
word of length fk+1(m) that consists of the reverse binary representations (of length
fk(m)) of the numbers 0; : : : ; 2fk (m) − 1.
The following are equivalent for every P ∈ cycl(Num+k )©./OnlyTopk+1 of height m: 4

1: P ∈ cycl(Num+k+1);
2: top(P) has no cyclic in3x of length fk(m)+2 in U1 ∪U2 and none of length fk(m)
in U3.

Proof. Let P ∈ cycl(Num+k ) ©./ OnlyTopk+1 and m be the height of P.

4 Recall OnlyTopk+1 from De$nition 3.14.
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P can be cyclically partitioned in blocks of length fk(m) whose top rows end in a
position that carries a 1 for the attribute end-k. Let x0; : : : ; xn be the sequence of top
rows of these blocks.
We apply Lemma 3.19 to the projections prend-k(xj) (for j∈{0; : : : ; n − 1}. The

assertion that top(P) has no cyclic in$x of length fk(m)+2 in U1 (and in U2, respec-
tively) is equivalent to the $rst (and second, respectively) subitem of item 2 in Lemma
3.19, which makes sure that the projection of the top row to the attribute num-k + 1
establishes the desired counting mechanism.
The additional assertion that top(P) has no cyclic in$x of length fk(m) in U3 is

equivalent to the statement that the sequence of words x0; : : : ; xn−1 can be grouped
into sequences of 2fk (m) of these words such that (1) exactly those of these words
whose projection to attribute num-k + 1 represents the maximal binary number have
a 1 in the attribute of end-k + 1 of last position, and (2) all other positions have a
0 in the attribute of end-k + 1. That makes sure that the projection of the top row
to the attribute end-k + 1 marks the ends of blocks of length fk+1(m) that are in
cycl(Num+k+1):

A precise proof can be found in [16].
The important point of Lemma 3.20 is that Num+k+1 results from Num+k by enlarging

the underlying alphabet (i.e., passing from attribute set Ik to Ik+1) and then forbidding
particular cyclic in$xes. The next lemmas show how this “forbidding” can be done on
the next level of the alternation hierarchy for starfree picture languages.
Firstly, we remark that it is easy to forbid certain pictures as (non-cyclic) in$xes:

Suppose M;K are picture languages over 0. Then the set of all pictures of M that do
not have an in$x in K is given by M\(0∗;∗K0∗;∗). If M and K are in �loc

k−1, then this
set is in �loc

k .
The situation is more complicated when we deal with cyclic in$xes because a cyclic

in$x consists of a pre$x and a suJx and it is not possible to control its length etc. as
easily as usual in$xes.
However, in our particular case (see Lemma 3.20), the languages Num+k (which will

play the role of M) and also the languages top−1((U1 ∩�fk (m)+2)∪ (U2 ∩�fk (m)+2))
and top−1(U3 ∩�fk (m)) (which will play the rôle of K) have certain properties that
can be exploited.
The next de$nition and proposition state that property of top−1(U1 ∪U2) and top−1

(U3).

De�nition 3.21 (Su=x–pre3x decomposition). A picture language L over alphabet 0
is �loc

0 -su=x=pre3x-decomposable (or sp-decomposable for short) i/ there are n¿1
and picture languages U1; : : : ; Un; V1; : : : ; Vn ∈�loc

0 such that for all non-empty pictures
P;Q over 0 we have PQ∈L i/ there is an i6n with P ∈Vi, Q∈Ui.

Proposition 3.22. Let a; b∈{0; 1}. The word languages 10∗; {0; 1}b{0; 1}∗; 0+10∗;
0{0; 1}∗; ab{0; 1}∗ are sp-decomposable.
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Proof. To see that ab{0; 1}∗ is sp-decomposable, consider V1 = {a}, U1 = b{0; 1}∗,
V2 = ab{0; 1}∗, U2 = {0; 1}+. The other cases are even simpler.

Lemma 3.23 (Cyclic In$x Lemma). Let L1; L2 be sp-decomposable picture languages.
Then cycl((L1 ∩ cycl(Num+k ))(L2 ∩ cycl(Num+k )))∈�lock .

Proof. Choose U1; : : : ; Un; V1; : : : ; Vn according to De$nition 3.21 for L1, and likewise
U ′
1; : : : ; U

′
m; V

′
1 ; : : : ; V

′
m for L2. As an abbreviation, let M = cycl(Num+k ). By the above

proposition,

cycl((L1 ∩M)(L2 ∩M)) = (L1 ∩M)(L2 ∩M) ∪ (L2 ∩M)(L1 ∩M)

∪
(
M ∩ ⋃

j6m
(V ′

j (L1 ∩M)U ′
j )

)

∪
(
M ∩ ⋃

i6n
(Vi(L2 ∩M)Ui)

)
;

which is clearly in �lock . (For the inclusion “⊆” note that by de$nition of Numk we
have that for all pictures P;Q; R of equal height we have: PQR∈ cycl(Num∗

k )∧Q∈ cycl
(Num∗

k )→PR∈ cycl(Num∗
k ). A precise proof of the latter statement can be found in

[16].

By Remark 3.13, the above lemma remains true if ∩ is replaced by ©./.
In the next lemma we will combine the above lemma and Lemma 3.20 (Items 1 and

2) in order to construct, for a given k, a picture language K3 ∈�lock such that for every
picture P in cycl(Num+k ) ©./ OnlyTopk+1 over {0; 1}Ik+1 we have P ∈K3⇔P =∈Numk+1.
This will suJce to complete the proof of Theorem 3.16.

Lemma 3.24. Let k¿1 such that cycl(Num+k )∈�loc
k−1({0; 1}Ik ). Let � :={0; 1}Ik+1 .

Let U1; U2; U3 as in Lemma 3:20.
For every a; b; c; d∈{0; 1}; there are picture languages Lbb; Labcd ; L; K1; K2; K3 in

�lock (�) such that for all P ∈ cycl(Num+k ) ©./ OnlyTopk+1 we have
1: P ∈Lbb i@ top(P) has a cyclic in3x of length fk(m) + 2 in

(10∗10)end-k ©./ ({0; 1}b{0; 1}∗b)num−k+1 ©./ �+:

2: P ∈Labcd i@ top(P) has a cyclic in3x of length fk(m) + 2 in

(0+10+{0; 1})end-k ©./ (ab{0; 1}∗cd)num-k+1 ©./ �+:

3: P ∈L i@ top(P) has a cyclic in3x of length fk(m) in U3.
4: P ∈K1 i@ top(P) has a cyclic in3x of length fk(m) + 2 in U1.
5: P ∈K2 i@ top(P) has a cyclic in3x of length fk(m) + 2 in U2.
6: P ∈K3 i@ top(P) has a cyclic in3x of length fk(m)+2 in U1 ∪U2 or one of length

fk(m) in U3.
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Proof. The $rst three claim are immediate consequences of Lemma 3.23. We give the
choice of L1 and L2 in the application of that lemma. The remaining three claims are
consequences.
Ad1. Let b∈{0; 1}. Choose

L1 = top−1((10∗)end-k ©./ ({0; 1}b{0; 1}∗)num−k+1 ©./ �+);

L2 = top−1((10{0; 1}∗)end-k ©./ ({0; 1}b{0; 1}∗)num−k+1 ©./ �+);

Lbb = cycl((L1 ©./ cycl(Num+k ))(L2 ©./ cycl(Num+k ))):

By Lemma 3.23 and Proposition 3.22, Lbb is in �lock . It is easy to show that for every
P ∈ cycl(Num+k ) ©./ OnlyTopk+1 we have that P ∈Lbb i/ top(P) has a cyclic in$x of
the desired form.
Ad 2. For every a; b; c; d∈{0; 1}, choose

L1 = top−1((0+10∗)end−k ©./ (ab{0; 1}∗)num−k+1 ©./ �+);

L2 = top−1((0{0; 1}∗)end-k ©./ (cd{0; 1}∗)num−k+1 ©./ �+);

Labcd = cycl((L1 ©./ cycl(Num+k ))(L2 ©./ cycl(Num+k ))):

Again, by Lemma 3.23 and Proposition 3.22, Labcd is in �lock . Again, the proof that
Labcd has the property claimed in Item 1 is easy.
Ad 3. L=cycl((top−1(U3) ©./ cycl(Num+k ))(�

+;+ ©./ cycl(Num+k )))∪ cycl((top−1
(U3)©./ cycl(Num+k ))) is in �lock (exploit Lemma 3.23 with L1 = top−1(U3) and L2 =
�+;+) and has the desired property by similar arguments.
Ad 4,5 and 6. Choose K1 =L00 ∪L11, K2 =

⋃
a c
b d ∈Forb

Labcd, and K3 =K1 ∪K2 ∪L.

Then K1, K2, and K3 are in �lock and have the desired properties.

The sixth claim of the above lemma is the key for the following proof of Theo-
rem 3.16, which states that cycl(Num+k ) is in �loc

k−1 for every k¿1.

Proof of Theorem 3.16. The proof is by induction. By Proposition 3.17, cycl(Num+1 )
is in �loc

0 , which is the induction basis. So let k¿1 with cycl(Num+k ) is in �loc
k−1,

choose K3 as in Lemma 3.24. By Lemma 3.20, we have

cycl(Num+k+1) = (cycl(Num+k ) ©./ OnlyTopk+1)\K3:

Since cycl(Num+k )∈�loc
k−1⊆�loc

k and K3 ∈�lock and OnlyTopk+1 ∈�loc
0 , it follows that

cycl(Num+k+1) is in �loc
k , which completes the induction.

The following corollary provides the de$nability result for Theorem 2.16, stating that
�loc

k ({0; 1}2k)*�k({0; 1}2k) for all k¿1. For a picture language L, we de$ne size(L)
as {size(P) | P ∈L}.
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Corollary 3.25. For every k; the languages cycl(Num+k ); Num+k ; and Numk are in
�0

k−1({0; 1}Ik ); in �0
k−1(�

U
1 ) in �0

k−1(�1); in �k−1; in FO(�1); and in FO61 ;62 .

Proof. Let k¿1. We $rst show membership in �loc
k−1. For cycl(Num+k ), this is Theo-

rem 3.16, and for the other two languages, this follows from

Num+k = cycl(Num+k ) ©./ top−1(({0; 1}∗1)end-k);

Numk = cycl(Num+k ) ©./ top−1((0∗1)end-k);

because {0; 1}∗1 and 0∗1 are locally threshold testable word languages, so that their
top-pre-images are in �loc

0 , and because �loc
k−1 is closed under join. Membership in the

other listed classes follows from Theorem 3.4 and Corollary 3.5.

3.3.1. Digression: length of starfree expressions
The notion of “starfreeness” of a picture language may alternatively be introduced

via “starfree picture expressions”. Starfree picture expressions over alphabet � are built
as follows: For every a∈�, the term a is a starfree picture expression, and if e and
f are starfree picture expressions, then so are the terms (e ©| f); (e � f); ∼e, and
(e∪f).
The semantics is de$ned in a straightforward manner. Then a picture language is

starfree i/ it is de$ned by a starfree expression.
With this syntactic notion one may investigate the length |r| of an expression r, i.e.,

the number of symbols in r.
In [22] the author shows the following surprising fact. There is a sequence (rk)k¿1

of starfree word expressions such that the length of the shortest word matching rk is
not elementary in the length of rk , i.e., not bounded by fi(|r|) for any $xed i.
A proof of this fact can also be extracted from the constructions of this subsection.

Note that these hardly used the row concatenation �. A careful analysis of these
constructions—in particular, those of Lemmas 3.23, 3.24 and Theorem 3.16—shows
that the height-1 fragment of cycl(Numk) is de$ned by a starfree word expression
rk of length singly exponential in k, and we know that the length of the only word
matching rk is fk(1), i.e., more than a tower of 2’s of height k.
Concerning the length of starfree picture expressions, one may extract from these

proofs that there is a sequence (ek)k¿1 of expressions such that ek is of length 2O(k)

and de$nes cycl(Numk).

3.4. Interrupted counting—more de3nability results

This subsection contains more de$nability results, which are need for examples to
show that �k $�k+1 for the class of coloured grids or the class of graphs.
We will show that pref+(Num+k ) is in �loc

k−1 for every k. With respect to monadic
logic this will in particular imply that the k-fold exponential function fk is �k -de$nable
(rather than just �k -de$nable as shown in the previous subsection).
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The idea and the justi$cation for the headline of this subsection is that the counting
mechanism in Num+k is interrupted somewhere in the middle. In the previous sub-
section, the validity of the counting mechanism was essentially checked by excluding
particular patterns as cyclic in$xes. The trick works as well if that counting mecha-
nism is interrupted somewhere, provided we forbid these patterns only as (non-cyclic)
in$xes. Thus this subsection will be quite analogous to the previous one.
The following lemma, for instance, is the counterpart of the Cyclic Counting Lemma

3.19 for the case of “interrupted counting”. Here we bene$t from considering binary
number representations with least signi$cant bit $rst.

Lemma 3.26 (Pre$x Counting Lemma). Let n ¿ 0 and x0; : : : ; xn ∈{0; 1}+ with m=
|x0|= · · · = |xn−1|¿|xn|¿1: Then the following are equivalent:
1: dual(xj) = jmod 2|xj| for all j ¿ n.

2:

• x0 ∈ 0+;
• xj〈0〉 �= xj+1〈0〉 for all j∈{0; : : : ; n− 1};

•
(

xj〈i〉 xj+1〈i〉
xj〈i + 1〉 xj+1〈i + 1〉

)
∈Allow for every j∈{0; : : : ; n− 1}

and
i∈{0; : : : ; |xj+1| − 2}.

The proof is as simple as that of Lemma 3.19 and thus omitted.
We wish to show the following counterpart of Theorem 3.16.

Theorem 3.27. pref+(Num+k )∈�loc
k−1 for every k ¿ 1.

The induction basis is given by the counterpart of Theorem 3:17:

Proposition 3.28. pref+(Numk
1)∈�loc

0 .

Proof. Let 0 = {0; 1}I1 . We will show that pref+(Num
+
1 ) is a local picture language.

Let �⊆ (0∪{#})2;2 as in Proposition 3.17.
Let �′ be the following subset of (0∪{#})2;2:

�′ = �∪
{
# c
# d

∣∣∣∣ c; d ∈ {(0)num-1 ./ (0)end-1; #
}

∪
{
a #
b #

∣∣∣∣ prend-1(a) = 1⇔ prend-1(b) = prnum-1(a) = 1
}

∪
{
a #
# #

∣∣∣∣ prend-1(a) = 1⇔ prnum-1(a) = 1
}

∪
{
# #
b #

∣∣∣∣ b ∈ 0
}

:
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Let P be a non-empty picture over 0, say of size (m; n). For every i6n − 1, let
xi=P〈0; i〉 : : : P〈m− 1; i〉.

�′ is chosen in such a way that �′ contains all (2× 2)-subblocks of P̂ i/
• prnum-1(x0); : : : ; prnum-1(xn−1) ful$ll the second property of the Pre$x Counting Lemma
3.26, and

• (like in the proof of Proposition 3.17) for every x among x0; : : : ; xn−1, the prend-1(x)
is determined by prend-1(x) = 0i1j i/ j is maximal such that 1j is a suJx of
prnum-1(x).

Thus L(�′) = pref+(Num1).

The following is the counterpart of Lemma 3.20.

Lemma 3.29. Let k¿1; let � = {0; 1}Ik+1 . Let U1; U2; U3 and binm as in Lemma 3:20.
Let

U4 = (pref +(0
∗1)))end-k ©./ (∼ 0∗)num-k+1 ©./ �+:

The following are equivalent for every P ∈ pref+(Num+k ©./OnlyTopk+1) of height m.
1: P ∈ pref+(Num+k+1);
2: top(P) has no in3x of length fk(m) + 2 in U1 ∪U2 and none of length fk(m) in

U3 and no pre3x in U4.

The proof of this lemma is very similar to the proof of Lemma 3.20, except for the
di/erence that the Pre$x Counting Lemma 3.26 is used instead of the Cyclic Counting
Lemma 3.19.
The following lemma is analogous to Lemma 3.23.

Lemma 3.30. Let N such that cycl(N+)∈�loc
k−1(�). Let L1; L2 ∈�loc

0 (�). Then there
is a picture language L in �lock (�) such that for a non-empty picture P in pref+(N

+)
we have that P has an in3x in (L1 ∩ cycl(N+))L2 i@ P ∈L.

Proof. Simply choose L = �∗;∗(L1 ∩ cycl(N+))L2�∗;∗. Then L∈�lock .

The proof of Lemma 3.30 is much simpler than that of Lemma 3.23 because it is
so much simpler to exclude a particular pattern as a (non-cyclic) in3x than as a cyclic
in3x.

Lemma 3.31. Let k¿1 and � := {0; 1}Ik+1 . There is a picture language K4 in �loc1 (�)
such that for all P ∈ pref+(Num+k )©./OnlyTopk+1 we have P ∈K4 i@ top(P) has a
pre3x in U4; where U4 is as in Lemma 3:29.

Proof. Choose K4 = top−1(U4)©| �∗;∗. Since U4 is locally threshold testable, K4 is in
©| (�loc

0 )⊆�loc1 (�).

Now, we are ready to do the proof of the main result of this subsection. It is very
analogous to that of Theorem 3.16.
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Proof of Theorem 3.27. By induction. The induction basis is provided by Proposi-
tion 3.28.
For the induction step, let U1; U2; U3 as in Lemma 3.20, and let k¿1 with pref+

(Num+k )∈�loc
k−1. Like in Lemma 3.24 one shows (using Lemma 3.30 instead of Lemma

3.23) that there is a K3 ∈�loc
k ({0; 1}Ik+1) such that P ∈K3 i/ top(P) has an in$x of

length fk(m)+ 2 in U1 ∪U2 or one of length fk(m) in U3. Choose K4 as in the above
lemma. By Lemma 3.29, Items 1–2,

pref +(Num+k+1) = (pref +(Num+k ) ©./ OnlyTopk+1) \ (K3 ∪ K4) ∈ �loc
k :

Like the previous subsection we close this one with a few corollaries that depend
on results of Section 3.1.

Corollary 3.32. Let k¿1; �= {0; 1}Ik . There is a picture languages L in �loc
k (�);

�0
k−1(�

U
1 ); in �0

k−1(�1); in �k−1; in FO(�1); and in FO61 ;62 ; such that

size(L) = {(m; n) | n = fk(m)}:

Besides; there are no distinct pictures P; P′ ∈L with sizeP = sizeP′.

Proof. Choose L= pref+(Num+k )©./ top
−1((0∗1)end-k)©./ �+. Membership of L in �loc

k−1
follows from Theorem 3.27 and the fact that the word languages {0; 1}∗0;∼(0∗1), and
0+ are locally threshold testable, so that their top-pre-images are �loc

0 .
Membership in the other listed classes follows from Theorem 3.4 and Corollary 3.5.

The additional claim is immediate from the fact that there are no distinct pictures
P; P′ ∈ pref+(Num+k ) with sizeP = sizeP

′.

The following provides the $rst half of the proof of Theorem 2.22, i.e., the fact that
for every k, the class �U1 (�

0
k−1(�

U
1 )) (and hence the other, larger formula classes of

that theorem) are at least k-fold exponential.

Corollary 3.33. Let k¿1. The formula class �U1 (�
0
k−1(�

U
1 )) is at least k-fold expo-

nential; and thus so are the classes �1(�0
k−1(�1)); �1(FO(�1)); �k ; �1(FO61 ;62 ); and

�1(FOTC).

Proof. Let F be one of the formula classes listed in Corollary 3.32. Let KX be the
variable tuple (X1; : : : ; X2k).
Let I : {0; 1}Ik → {0; 1}2k be a bijection. By Theorems 3:27 and 3:5 we may choose

’( KX )∈F such that ’ de$nes I(pref+(Num+k )). Choose a $rst-order formula  ( KX )
such that  de$nes I(top−1(0∗1)end-k). Then  ( KX’( KX )) is (by the additional claim
of Corollary 3.32) an allowed �U1 (F)-formula, and it asserts for the grid of size (m; n)
that n = fk(m).
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3.5. Twin counting—yet more de3nability results

In this subsection we will develop some de$nability results that allow for more
separation results than those of Section 3.3, among them �k �=�k over non-coloured
grids and FO(�k)$FO(�k+1) for the classes of grids or of graphs.
These de$nability results depend on some di/erent approach unlike Section 3.4,

which was very analogous to Section 3.3. This time we leave the detour of the starfree
alternation hierarchy somewhat earlier so that the main theorem states the de$nability
by monadic second-order formulas rather than membership in some level of the starfree
alternation hierarchy.
However, a similarity between Sections 3.3 and 3.4, on one hand, and Section 3.5,

on the other, is that we construct “slim” picture languages by exploiting counting
mechanisms. But this time there are two of them in the same picture and two patterns
of the two mechanisms belong together like twins, which explains the title of this
subsection.
Recall the de$nition of the functions fk :N→ N.

f1(m) = 2m;

fk+1(m) = fk(m)2fk (m):

Furthermore, let gk(m) = lcm{fk(m) + 1; : : : ; 2fk(m)} for every m and every k. We
will show in Proposition 3.50 that gk is (k + 1)-fold exponential.
The main result of this subsection is Theorem 3.44. It states that, for every k,

there are two picture languages Lk ; Mk de$nable in certain fragments of the $rst-order
closure of �k and such that size(Lk) = {(m; n) | gk(m) divides n} and size(Mk) = gk .
The picture language Lk is even de$nable in �k . In Section 4 we will show that Lk

and Mk are not de$nable in �k and neither in FO(�k−1) because gk is a (k + 1)-fold
exponential function.
This implies the separation results FO(�k)$FO(�k) and �k �=�k .

3.5.1. Attributed alphabets and free variables
In Section 2.3 we de$ned how to associate a non-empty picture over {0; 1}t to a

t-bit grid and then what we call the picture language over {0; 1}t de3ned by a formula
with free variables among X1; : : : ; Xt . Since now we wish to construct formulas de$ning
picture languages over attributed alphabets, we require the (straightforward) adaptions
of these de$nitions to this case.
Let I be a set of attributes, let (X@)@∈I be a tuple of monadic second-order vari-

ables. An I-coloured grid is a grid expanded by monadic predicates (X@)@∈I . To every
I -coloured grid we associate a non-empty picture over {0; 1}I . We say that this picture
ful$lls a formula ’((X@)@∈I ) i/ the I -coloured grid it is associated to makes (with the
implicitly given assignment) ’ true. A formula ’((X@)@∈I ) de3nes the picture language
of those pictures over {0; 1}I that ful$l ’.
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It would have been a natural idea to let the attributes themselves serve as free set
variables, but this con7icts with our conventions to use capital letters for second-order
variables.

3.5.2. The twin language
Recall the attribute sets Ik = {num-1; : : : ; num-k; end-1; : : : ; end-k} for every k. Let

act (for “active”) be a fresh attribute not in any of the Ik .
For this section we $x some k ¿ 1.
Let  be some bijection de$ned on Ik ∪{act} such that Ik ∪{act} and its image under

 are disjoint. We use  also to denote the mapping {0; 1}Ik∪{act} → {0; 1} (Ik∪{act})

de$ned by  (a) :  (@) �→ a(@) for all @ ∈ Ik ∪{act}. This alphabet projection is further
extended to pictures and picture languages in the usual way.
We turn to the de$nition of the twin language. We proceed in several steps.

Lk = Numk ©./ (1+;+)act ;

S = (0+;1)Ik∪{act}:

So Lk is a picture language over alphabet {0; 1}Ik ∪{act} whose restriction to Ik is the
counting pattern introduced in De$nition 3.15. The picture language S is over the same
alphabet and contains all columns (i.e., pictures of length 1) that have, at each position,
a 0 in every component.
For all m¿1 and all j ∈ {1; : : : ; fk(m)} let

twink;m;j = {P ∈ (Lk ©| Sj) ©./  (Sj ©| Lk ) | KP=m};

ptwink;m;j = {P ∈ pref+(Lk) ©./  (S+) | KP = m}

∪{P ∈ (Lk ©| S+) ©./  (Sj|pref+(Lk )) | KP=m};

xtwink =
⋃

m¿1

((⋃
j
twink;m;j

)∗
©|
(⋃

j

ptwink;m;j

))
;

iso-xtwink =
⋃

m¿1

(⋃
j
(twink;m;j)∗ ©| ptwink;m;j

)
:

These picture languages are over alphabet {0; 1}{Ik∪ (Ik )∪{act; (act)}}. Fig. 5 illustrates a
member of twink;m; j (together with two other members of ptwink;m; j). Roughly speak-
ing, a picture in twink;m; j results by joining two copies (over disjoint alphabets) of the
picture Pkm of height m in Numk in such a way that these copies may overlap. Ad-
ditionally, the components associated with the two copies of attribute act mark those
positions that belong to the respective copy of Pkm, i.e., where the respective counting
process is “active”. In the position in the areas to the right and left, in which one
counting process is not active, the components corresponding to its copy of the alpha-
bet have a 0. Note that there is no area in which both counting processes are non-active
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Fig. 5. The twin language.

because a picture of height m in Lk has length fk(m). Let us call the width j of each
of the areas to the right and left, where one counting process is not active, “o/set”.
Note that the width of the picture of height m in twink;m; j is fk(m) + j.
A picture in ptwink;m; j (“p” standing for “pre$x”) is of one of two di/erent types

(see last two boxes in Fig. 5). Either it results from a non-empty pre$x of the picture
over alphabet {0; 1}Ik of height m in Numk by joining with a picture of zeros over
a disjoint copy of that alphabet, or it results from a picture in twink;m; j by clipping
o/ something—possibly empty—in the rightmost area. In both cases each of the two
copies of the “act”-component carries a 1 whenever the respective counting process is
active. This way, for every j∈{1; : : : ; fk(m)} and every n∈{1; : : : ; fk(m) + j} there is
exactly one picture of size (m; n) in ptwink;m; j.
A picture in xtwink is a concatenation of several pictures from twink;m; j (for the

same height m, but possibly di/erent “o/sets” j) and one picture from ptwink;m; j.
A picture in iso-xtwink is a picture in xtwink where the o/sets j are equal in all of

the subblocks from twink;m; j and ptwink;m; j.
The following theorem will imply all other de$nability results of this subsection.

Theorem 3.34. iso-xtwink is de3nable in �0
k−1(�

U
1 ).

We will prove Theorem 3.34 for the cases k = 1 and k¿1 separately.
How to prove Theorem 3.34, case k =1. In this part we assume that k =1.
We have reached one of the few points where our notations for attributed alphabets,

which are motivated in the beginning of this section, make things more complicated
rather than easier. That is why we will sometimes use the following abbreviation.
Consider the alphabet {0; 1}{act;  (act)}. In the following, we will sometimes write ( ij )
instead of (i)act ©./ (j) {act} for i; j∈{0; 1}, as if {0; 1}{act;  (act)} was equal to the alphabet
{0; 1}×{0; 1}.
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Remark 3.35. Let us use the just explained short-hand notation. Choose the word
language M and the picture language M ′ as follows:

M =

(((
1
0

)+(
1
1

)∗(
0
1

)+)∗ (
1
0

)∗)∖
{1};

M ′ = top−1(M) ∩
(⋃

a
a+;1

)+
;

where the union ranges over a∈{0; 1}{act;  (act)}. Then M is local, and M ′ is the set
of non-empty pictures over {0; 1}{act;  (act)} whose top row is in M and in which two
positions have the same letter if they are in the same column. Clearly, M ′ is local by
locality of M . In the above short-hand notation,

M ′ =

(((
1
0

)+;+(
1
1

)∗;∗(
0
1

)+;+
)∗ (

1
0

)∗;∗)∖
{1}:

Let us use the abbreviation 0=(0)num-1 ./ (0)end-1 ./ (0)act .

Proposition 3.36. N =(0∗;∗©| (L1©| 0+;+)∗©| pref (L1))\{1} is a local picture language.

Proof. It is straightforward to construct a local tiling system �′ de$ning pref+(L1)=
pref+(Num1)©./((1)act)∗;∗ from the one given for pref+(Num+1 ) in the proof of Proposi-
tion 3.28. In order to construct a local tiling system for N , this �′ can easily modi$ed
by removing the tile

(1)num-1 ./ (1)end-1
#

./ (1)act ; (0)num-1 ./ (0)end-1
#

./ (1)act ;

which allows the counting process wrap around, and adding tiles that allow to reset
the counting process via a non-empty sequence of columns of 0’s.

Proposition 3.37. xtwin1 is local.

Proof. We claim

xtwin1 = N ©./  (N ) ©./ M ′; (2)

where M ′ is chosen as in Remark 3.35 and N is chosen as in the previous proposition.
Then we are $nished because the class of local picture languages is closed under
intersection (and thus, by Remark 3.13, under join). A precise proof for the above
equation can be found in [16]. Informally, we may argue as follows:
Consider the join of two picture languages N and  (N ). This is the set of pictures

that consist of two distinct copies of the counting processes (one in the attributes of Ik
and the other in those of  (Ik)) that are reset independently from each other. Whenever
one of the counting processes are “active”, i.e., the corresponding columns represent
binary numbers in succession, the respective attribute act or  (act), respectively, equals
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Fig. 6. Two pictures in iso-xtwin1.

one. Between the two columns where the counting processes wraps around, i.e., is reset
to zero, there is a non-empty sequence of columns that carry a zero in all components
of Ik ∪{act} or  (Ik ∪{act}), respectively.
By joining M ′ to this picture language we control the counting mechanisms via the

act- and  (act)-attribute to synchronize in the way illustrated in Fig. 6. That means,
whenever the counting process represented by the attributes Ik terminates and starts to
repeat zero columns, the other copy has to be active already. Whenever the second
counting process (represented by the attributes  (Ik)) terminates and starts to repeat
zero columns, the $rst one has to be restarted immediately.
Note that M ′ is designed in such a way that it allows for both types of $nishing

these simultaneous counting processes: Either the $rst or the second counting process
is active in the last column, corresponding to the values ( 10 ) or (

0
1 ) in the attributes

(act;  (act)).

We use the previous proposition to prove the following, which is the claim of
Theorem 3.34 for the case k =1.

Proposition 3.38. iso-xtwin1 is de3nable in �U1 .

Proof. There is a $rst-order formula less(Xleq; X (act)) such that less asserts for a grid
of height m that

Xleq = {(0; j) | (0; 0); : : : ; (0; j) =∈ X (act)};
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i.e., that Xleq is the set of all top-row positions up to (but not including) the $rst
position in X (act).
There is a $rst-order formula maxless(Xleq; Xmaxleq) that asserts that Xmaxleq contains

those positions that are in a column whose top row position is in Xleq and has no right
successor in Xleq.
There is a $rst-order formula o@sets(Xo@s ; X (act)) that asserts that Xo@s contains those

top row positions that are not in X (act) but whose right successor is.
There is a $rst-order formula transport(Xrow;Y;Xnum-1) that asserts that Xrow is a union

of rows with Xrow ∩Y =Xnum-1 ∩Y .
Choose

’( KX ) = less(Xleq; X (act)) ∧maxless(Xleq; Xmaxleq)

∧transport(Xrow; Xmaxleq; Xnum-1):

Then for every I1 ∪{ (act)}-coloured grid R there is exactly one tuple KX =(Xleq; Xmaxleq;
Xo@s ; Xrow) of subsets of dom R that ful$lls ’ because less(Xleq; X (act))∧maxless(Xleq;
Xmaxleq) determines the column that the set Xmaxleq contains (it is the $rst hatched one
in Fig. 6), and thus transport(Xrow; Xmaxleq; Xnum-1) determines Xrow uniquely.
Choose 5

 ( KX ; (X@)@∈(I1∪ (I1)∪{act; (act)})) = transport(Xrow; Xo@s ; Xnum-1):

Then  ( KX (’); (X@)) is an allowed �U1 -formula which asserts for a (I1 ∪  (I1)∪{act;
 (act)})-coloured grid whose associated picture P is in xtwin1 that P is in iso-xtwin1
because it asserts that the colouring of those rows that precede the rows in which the
second copy of the counting process starts are equal. See Fig. 6.
Since xtwin1 is local by the previous Proposition, there is a $rst-order formula I

that asserts for a (I1 ∪  (I1)∪{act;  (act)})-coloured grid that its associated picture is
in xtwin1. Thus I∧  ( KX (’); (X@)) de$nes iso-xtwin1. This formula is �U1 because �U1
is closed under intersection.
This completes the proof of Proposition 3.38 and thus the proof of Theorem 3.34

for the case k =1.

How to prove Theorem 3.34, case k¿1. For the proof of Theorem 3.34 we will need
the following proposition, which will be proved in Section 3.5.3. Recall that (0)I
denotes the letter in {0; 1}I all of whose components are 0.

Proposition 3.39. cycl(Lk©| (0)
∗;∗
Ik∪{act}) is in �loc

k−1.

Proof of Theorem 3.34, case k¿2. We use the following abbreviations: 0=(0)Ik∪{act},
the mapping ’ : {0; 1}Ik →{0; 1}Ik∪{act}; a �→ a ./ (1)act , and �= {0; 1}Ik∪ (Ik )∪{act;  (act)},
and L=Lk =Numk©./(1+;+)act .

5 List of potentially free variables is enlarged for formal reasons. Note that the two tuples are disjoint.
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Let M ′ be the local picture languages of Remark 3.35. For a picture language U
over some alphabet 0 we will write KU for the complement 0+;+\U of U in 0+;+.
We wish to show that iso-xtwink is the set of all non-empty pictures P over � that

ful$l the following properties:
1. restr{act;  (act)}(P)∈M ′.
2. P has no pre$x in

M1 = (1+;+)act ©./ pref+(L) ©./ �+;+;

M2 = (1∗;∗0+;1)act ©./ ( KL ©| 0+;1) ©./ �+;+:

3. P has no in$x in

N1 = ((0)act ./ �)+;1((1+;+)act ©./ KL ©./ �+;+)((0)act ./ �)+;1;

N2 = ((0) (act) ./ �)+;1((1+;+) (act) ©./  ( KL) ©./ �+;+)((0) (act) ./ �)+;1;

N3 = ((0) (act) ./ �)+;1((1+;+0+;+) (act) ©./ cycl(’(L)0∗;∗) ©./ �+;+)

((1) (act) ./ �)+;1:

4. P has no suJx in

K1 = ((0)act ./ �)+;1((1+;+)act ©./ pref +(L) ©./ �+;+);

K2 = ((0) (act) ./ �)+;1((1+;+) (act) ©./  (pref +(L)) ©./ �+;+):

Before we verify these properties 1–4, let us note how this implies that iso-xtwink ∈
�0

k−1(�
U
1 ). By choice of L and Theorems 3.16, 3.27 and Proposition 3.39, the languages

pref+(L); L;  (L); cycl(’(L)0∗;∗), and  (pref+(L)) are �loc
k−1, thus their complements

are �lock−1 and hence in �0k−1(�
U
1 )(�). Since �0k−1(�

U
1 ) is closed under ©./ and (by

Lemma 3.12) under column concatenation, the picture languages M1; M2; N1; N2; N3; K1;
K2 are in �0k−1(�

U
1 ). Since �0k−1(�

U
1 ) is closed under union and column concatena-

tion, the picture languages (M1 ∪M2)�∗;∗; �∗;∗(N1 ∪N2 ∪N3)�∗;∗, and �∗;∗(K1 ∪K2)
are in �0k−1(�

U
1 ). Thus the picture language iso-xtwink =(M ′©./�+;+)\((M1 ∪M2)�∗;∗

∪�∗;∗(N1 ∪N2 ∪N3)�∗;∗ ∪�∗;∗(K1 ∪K2)) is in �0
k−1(�

U
1 ).

It is easy to verify that every picture P in iso-xtwink ful$ls properties 1–4. Let us
consider the converse direction. Let P be a non-empty picture over � with properties 1–
4. Again, we sometimes write ( ij ) instead of (i)act ©./ (j) (act) for every i; j∈{0; 1}. By
property 1 there are n¿1 and pictures P1; : : : ; Pn such that P=P1 : : : Pn and

restr{act; (act)}(Pj) ∈
(
1
0

)+;+(
1
1

)∗;∗(
0
1

)+;+

for all j6n− 1 and

restr{act; (act)}(Pn) ∈
(
1
0

)+;+(
1
1

)∗;∗(
0
1

)+;+

∪
(
1
0

)+;+

:
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Thus for every j6n there are P′
j ; P

′′
j ; P′′′

j such that
• P=P′

j P
′′
j P′′′

j ,
• restr{act;  (act)}(P′

j )∈ ((1)act ./ (0) (act))+;+,
• restr{act;  (act)}(P′′

j )∈ ((1)act ./ (1) (act))∗;∗,
• restr{act;  (act)}(P′′′

j )∈ ((0)act ./ (1) (act))∗;∗,
• P′′′

j = 1⇒ j= n; P′′
n = 1.

We have that

∀j 6 n : P′′′
j �= 1⇒ P′

jP
′′
j ∈ (1+;+)act ©./ L ©./ �+;+: (3)

For j=1 this follows because P has no pre$x in M2. For j¿1 this follows because
P has no in$x in N1. We also have

∀j ¡ n : P′′
j P

′′′
j ∈  ((1+;+)act ©./ L) ©./ �+;+; (4)

because P has no in$x in N2. Besides,

P′′′
n �= 1⇒ P′′

n P
′′′
n ∈  ((1+;+)act ©./ pref +(L)) ©./ �+;+; (5)

because P has no suJx in K2. Moreover,

P′′′
n = 1⇒ Pn ∈ (1+;+)act ©./ pref +(L) ©./ �+;+: (6)

In case n=1 this is true because P has no pre$x in M1. In case n¿2 this is true
because P has no suJx in K1. Finally,

∀j 6 n : P′′′
j �= 1⇒ |P′

j| = |P′
1|: (7)

This is shown by induction on j. It is immediate for the case j=1. So let j¡n with
|P′

j |= |P′
1 | and P′′′

j+1 �= 1. Since P has no in$x in N3 we have that P′′
j P′′′

j P′
j+1 ∈ cycl(’(L)

0∗;∗) ©./ �+;+. Since pract(P
′′
j ); pract(P

′
j+1)∈ 1∗;∗ and pract(P′′′

j )∈ 0∗;∗, this implies P′′
j

P′
j+1 ∈ cycl(’(L)) ©./ �+;+, thus |P′′

j |+ |P′
j+1|=fk(m), where m= KP. By (3) it follows

|P′
j |+|P′′

j |=fk(m)= |P′′
j |+|P′

j+1|, thus |P′
j+1|= |P′

j |. So by induction hypothesis |P′
j+1|=

|P′
1 |. This completes the induction and thus the proof for (7).
Now we are ready to show that P ∈ iso-xtwink . Choose j= |P′

1 |. By (3), (4), (7) and
choice of j we have that Pj ∈ twink;m; j for every j6n−1. If P′′′

n �= 1, then Pn ∈ptwink;m; j

by (3), (5), (7) and choice of j; if P′′′
n = 1, then Pn ∈ptwink;m; j (independently from

the choice of j by (6)).
This implies P=P1 : : : Pn∈(twink;m;j)∗ptwink;m; j⊆iso-xtwink . This completes the proof

of Theorem 3.34.

3.5.3. Inserting a sequence of zero columns
In this section we will prove Proposition 3.39. First we shall sketch informally what

has to be done. Let :(Numk)= (Numk©./(1+;+)act©| (0+;+)Ik∪{act}). We wish to show
that cycl(:(Numk)) is in �loc

k−1, exploiting that cycl(Numk) is �loc
k−1.

Intuitively, the pictures in cycl(:(Numk)) are those that result from a picture P in
cycl(Numk) by joining an additional component act that is always 1, and then cyclically
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inserting an in$x from (0+;+)I∪{act} between the two columns of P that mark the “end”
and the “beginning” of the corresponding Numk -picture in cycl({P}).
Our strategy to prove Proposition 3.39 is to give a suJcient criterion for such

a mapping : to respect the local hierarchy. For this purpose we abstract somewhat
from the particular situation we have.
Let I be a $nite set of attributes, act =∈ I , and 0= {0; 1}I ; �= {0; 1}I∪{act}. Let

c; c′; d; d′ ∈0 and C = c� c′∗;1 and D=d�d′∗;1.
De$ne the alphabet projection ’ :0→�; a �→ a ./ (1)act as in the proofs of Proposi-

tion 3.38 and Theorem 3.34. We lift ’ to pictures and picture languages as usual. Let
0∈� be de$ned by pr@(0)= 0 for all @∈ I ∪{act}, again like in the above proofs.
For every P ∈0+;+ let

:(P) = {’(P)}

∪⋃{’(P′C) ©| 0∗;∗ ©| ’(DP′′) |P ∈ P′CDP′′};

∪{0∗;∗ ©| ’(DP′C) ©| 0∗;∗|P ∈ DP′C}:

Proposition 3.40. (1) :(L1 ∪L2)= :(L1)∪ :(L2) for all picture languages L1; L2⊆
0+;+; and the same is true for ∩ instead of ∪.
(2) :(0+\L)= :(0+)\:(L) for every word language L⊆0+.
(3) :(0+;+\L)= :(0+;+)\:(L) for every picture language L⊆0+;+.
(4) :(L1 : : : Ln)= (0∗;∗:(L1)0∗;∗ : : : 0∗;∗:(Ln)0∗;∗)∩ :(0∗;∗) for all picture languages

L1; : : : ; Ln⊆0+;+.

Lemma 3.41. Let L⊆0+ be a word language over 0. If L is locally threshold
testable; then so is :(L). In particular; :(top−1(L)) is in �loc

0 for every locally thresh-
old testable word language L.

Proof. The second claim follows easily from the $rst one, using the equation :(top−1

(L))= :(0+;+)∩ top−1(:(L)). The $rst one is a consequence of the following two
auxiliary claims:
1. If is of the form L= {w∈0+ | x has t occurrences of the subblock x} for some

x∈0+ and some t¿1, then :(L) is locally threshold testable.
2. :(x0∗); :(0∗x) are locally threshold testable for every x∈0+.
For the $rst of these auxiliary claims, let x∈0+; t¿1, and L as above. Then :(L)

is the set of all words w∈�+ for which
• w∈ :(0+) and w has t di/erent occurrences of ’(x), or
• there are x′; x′′ with x= x′c dx′′ and w∈’(0∗x′c)0+’(dx′′0∗) and w has t − 1
di/erent occurrences of ’(x), or

• there is x′ with dx′c and w∈ 0∗’(dx′c)0∗ and w has t − 1 di/erent occurrences of
’(x).

It follows that :(L) is locally threshold testable.
The second auxiliary claim can be shown similarly but easier.
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Lemma 3.42. Let L⊆0+;+. If L is local or cyclically local; then :(L) is in �loc
0 .

Proof. We only consider the case that L is local, the other case in analogous. Choose
�⊆ (0∪{#})2;2 such that L(�)=L. We extend ’ to 0∪{#} by letting ’(#)= #. Let
�′ contain $rstly ’(�), secondly all (2× 2)-subblocks of

# # # #
’(c) 0 0 ’(d)
’(c′) 0 0 ’(d′)
’(c′) 0 0 ’(d′)
# # # #

or

# # #
# 0 #
# 0 #
# # #

and thirdly, in case

c d
# #

∈ �

all (2× 2)-subblocks of
’(c) 0 ’(d)
# # #

:

Then :(L) is the set of all pictures in L(�′) that are in ’(0+;+)0∗;∗’(0+;+) or in
0∗;∗’(0+;+)0∗;∗, but not in 0+;+, i.e.,

:(L) =L(�′) ∩ top−1((’(0)+0∗’(0)+ ∪ 0∗’(0)+0∗))\0+):
Thus :(L) is in �loc

0 .

Lemma 3.43. For every k¿0; if L∈�loc
k (0); then :(L)∈�loc

k (�).

Proof. We show by simultaneous induction on the de$nition on the local hierarchy
that
1. if L∈�lock , then :(L)∈�lock ,
2. if L∈B(�lock ), then :(L)∈B(�lock ),
3. if L∈©| -cl(B(�lock )), then there is an L′ ∈©| -cl(B(�lock )) with :(L)=L′ ∩ :(0+;+).
Claims 1 and 2 of the induction basis k =0 follow from Lemmas 3.41 and 3.42

using Proposition 3.40 (Items 1 and 3).
Claim 3 (both of the induction basis and the induction step) follows from Proposition

3.40, Item 4. Claims 1 and 2 of the induction step follow from Proposition 3.40, Items
1 and 3. This completes the induction.
Proposition 3:43 follows from Item 1 by Lemma 3:40, Item 3.

Now, we have collected all lemmas to present the proof of the result of this section.

Proof of Proposition 3.39. Choose I from the beginning of this section to be Ik . Let
C and D be the set of columns occurring as the last column or the $rst column,
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respectively, of pictures in Numk , i.e., C = c � (c′)∗;1, where c; c′ ∈{0; 1}Ik such that
pr@(c)= 1 for all @∈ Ik and pr@(c

′)= 1 for both @∈{num-1; end-1} and pr@(c′)@=0
for all @∈ Ik\{num-1; end-1}; and D=d+;1, where d∈{0; 1}Ik such that pr@(d)= 0 for
all @∈ Ik .
Proposition 3.39 follows from Lemma 3.43 and Theorem 3.16 and the observation

that

cycl(Numk ©./ (1+;+)act) ©| 0∗;∗ = :(cycl(Numk)):

This completes the proof and thus $lls the gap in the proof of Theorem 3.34.

3.5.4. Assembling the formulas
In this paragraph we shall prove the following main result of this subsection.

Theorem 3.44. For every k¿1; there is a �0
1 (�

U
1 (�

0
k−1(�

U
1 )))-sentence I and a �0

2(�
U
1

(�0
k−1(�

U
1 )))-sentence I′ that assert for the grid [m]× [n] that gk(m) | n and that

gk(m)= n; respectively.

Before we begin to develop the proof, we note that the formula classes of this
theorem are fragments of two more important (and easier to understand) fragments,
which allows to deduce Corollary 3:49.

Remark 3.45. For every k¿1;
• �U1 (�

0
k=1(�

U
1 ))⊆�k;

• �0
1(�k)⊆�k;

• �0
1(�k); �0

2(�k)⊂FO(�k);
• �0

2(�k)⊆�0
1(�k).

Thus the sentence I from Theorem 3.44 is in K�k and both the sentences I and I′

are in the $rst-order closure of �k .
Together with the non-de$nability results Corollary 4.4 and Theorem 4.6, the above

implies (among others) the following separation results over the class of grids: �k *�k

and �0
2(�k+1)*FO(�k) for all k¿1. The $rst non-inclusion solves an open problem

of [18, 21].
Again, we $x some k¿1.

Lemma 3.46. There is a 3rst-order formula mleq(X; Y ) that asserts for a grid
[m]× [n] and two sets X; Y ⊆ [m]× [n] that X is the unique set of top row positions
{0}×{1; : : : ; j}; where j6n− 1 is maximal with ({0}×{1; : : : ; j − 1})∩Y = ∅.

The proof is easy, cf. proof of Proposition 3.38, formula less.

Proposition 3.47. For every m; n¿1 and every j∈{1; : : : ; fk(m)} there is exactly one
picture of size (m; n) in (twink;m;j)∗©|ptwink;m;j.
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This is immediate by de$nition of twink;m;j and ptwink;m;j.

Lemma 3.48. Let us consider the attribute set J = Ik ∪  (Ik)∪{act;  (act); leq; o@s}.
We write KX to abbreviate the variable tuple ( KX@)@∈J .
There is a formula ’( KX ; x) in �0

k−1(�
U
1 ) such that for all m; n¿1 and all x∈ [m]

× [n] there is exactly one picture P of size (m; n) over {0; 1}J such that P; x |=’.
Moreover; we have the following for this picture P and this position x: if x=(i; j)∈

{0}×{1; : : : ; fk(m)}, then restrIk∪ (Ik )∪{act;  (act)}(P)∈ (twink;m; j)∗ ©|ptwink;m; j; and
x =∈{0}×{1; : : : ; fk(m)} i@ (0; 0)∈X P

o@s.

Proof. By Theorem 3.34, there exists a �0
k−1(�

U
1 )-formula iso-xtwink( KX ) that asserts

for a picture P over {0; 1}J that restrIk∪ (Ik )∪{act;  (act)}(P)∈ iso-xtwink .
The $rst-order formula  (Xo@s ; x)= top(x)∧Xo@s(x)∧∀x′(S2xx′→¬Xo@s x′) asserts

that x is the minimal top row position of X (act), provided that mleq(Xo@s ; X (act)) holds.
Let ’1( KX ; x) be the following �0

k−1(�
U
1 )-formula.

’1 = iso-xtwink ∧ mleq(Xo@s ; X (act)) ∧mleq(Xleq; Xend-k) ∧  :

For every m; n¿1 and every x∈ [m]× [n], we have the following: x∈{0}×{1; : : : ;
fk(m)} i/ there is a tuple KX =( KX@)@∈J of subsets of [m]× [n] such that the associated
picture ful$ls ’1, and in this case KX is determined uniquely by x (see Proposition
3.47) in such a way that the associated picture is in iso-xtwink .
By Theorems 3.27 and 3.4 there is a �0

k−1(�
U
1 )-formula pmarknumk( KX ) that asserts

for a non-empty picture P that restrIk P ∈ pref+(Num+k ). Let  ′( KX ) be a $rst-order
formula that asserts that X@=dom P for all @∈  (Ik)∪{act;  (act); o@s}.
Let I(Xleq; x)=¬Xleqx∧∀x′(S2x′x→¬Xleqx′). The $rst-order formula I asserts for

a set Xleq = {0}×{1; : : : ; j − 1} that x =∈{0}×{1; : : : ; j}.
Let

’2( KX ; x) = pmarknumk ∧mleq(Xleq; Xend-k) ∧ I ∧  ′:

For every m; n¿1 and every x∈ [m]× [n], we have the following: x =∈{0}×{1; : : : ;
fk(m)} i/ there is a tuple KX =( KX@)@∈J of subsets of [m]× [n] such that the associated
picture ful$ls ’2, and in this case KX is determined uniquely (independently from x).
The latter is because the conjunct pmarknumk determines the choice of X@ for every
attribute @∈ Ik , the conjunct mleq(Xleq; Xend-k) determines the choice of Xleq (namely
to be {0}×{1; : : : ;max{n − 1; fk(m) − 1}}), and  ′ determines the choice of X@ for
the remaining attributes @∈  (Ik)∪{act;  (act); o@s} (namely to dom P).
Let ’=’1 ∨’2. Then ’ has the desired property.

In the following proof we use the mapping col : N2→N, de$ned by col(i; j)= i.
For the position x of some grid, col(x) is the column number of x.
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Proof of Theorem 3.44. Let  ( KX ; x; y)=∃z(top(z)∧ left(z)∧Xo@sz)∨X (end-k)y. Let ’
( KX ; x; y) be as in the above lemma. 6 Then %(x; y)=  ( KX (’( KX ; x; y)); x; y) is an al-
lowed �U1 (�

0
k−1(�

U
1 ))-formula that asserts the following for a picture P of size (m; n)

and y∈{0}× [n]:
x =∈ {0} × {1; : : : ; fk(m)} ∨ fk(m) + col(x) | col(y) + 1:

The latter is true because in a picture of size (m; n) in (twink;m; j)∗ ©|ptwink;m; j (where
16j6fk(m)), the component corresponding to the attribute  (end-k) is 1 exactly in
those positions y that are in the top row and ful$l fk(m) + j | col(y) + 1.
Let ?(y)=∀x(%(x; y)). Then ?(y) is a �0

1 (�
U
1 (�

0
k−1(�

0
1)))-formula that asserts for

a position y in the top row that

∀j ∈ {1; : : : ; fk(m)} : fk(m) + j | col(y) + 1;
which is equivalent to

gk(m) = lcm{fk(m) + 1; : : : ; 2fk(m)} | col(y) + 1:
Choose

I = ∀y(top(y) ∧ right(y)→ ?(y));

I′ = ∀y(top(y)→ (right(y)↔ ?(y))):

Then I and I′ assert for the grid [m]× [n] that n is a (or the least, respectively)
number with gk(m) | n.
The sentence I is indeed in �0

1 (�
U
1 (�

0
k−1(�

U
1 ))), whereas the sentence I′ is in

�0
1(B(�

0
1(�

U
1 (�

0
k−1(�

U
1 )))))⊆�0

2(�
U
1 (�

0
k−1(�

U
1 ))), as required.

The sentence I from Theorem 3.44 shows (with Proposition 3.50, Item 4) the
de$nability result of Theorem 2.26. The corresponding non-de$nability part is
Corollary 4.4.
From Theorem 3.44 we conclude the following.

Corollary 3.49. For every k¿1; the formula class �0
2(�

U
1 (�

0
k−1(�

U
1 ))) is at least

(k + 1)-fold exponential; and thus so are �0
2(�k); �0

1(�k); FO(�k).

Proof. Take I′ from Theorem 3.44. Membership in the other classes follows from
Remark 3.45.

This corollary provides the de$nability result for Theorem 2.24. The corresponding
non-de$nability result (i.e., the upper bound for the asymptotic growth rate) is stated
in Theorem 4.6.

6 Note that we add x and y in the list of potentially free variables of  and ’, respectively, for formal
reasons.
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3.5.5. A number-theoretic proposition
Now we present the missing proof of the fact that for every k¿1, the function gk

from Theorem 3.44 is indeed (k + 1)-fold exponential.
For every m¿1, let

F(m) = max
{
lcm{x1; : : : ; xk} | k ¿ 1;

∑
i

xi = m
}

;

G(m) = lcm{m+ 1; m+ 2; : : : ; 2m};

H (m) = 2
√

m log m:

Recall that s0(m)=m and sk+1(m)= 2sk (m) for every m¿1; k¿0; and gk(m)=G(fk

(m)) for every k; m¿1.
We have fk(m) is sk(W(m)). It is easy to show that F(m)62m for every m¿1, but

this is a very rough bound. Landau [10] and Szaloy [23] (see also [4]) show very
precise approximations for F . We will only need the fact that F(m) is W(H (m)).

Proposition 3.50. Let k¿1.
1: G(m) is s1(V(m)).
2: G(m) is s1(mO(1)).
3: F ◦ fk is (k + 1)-fold exponential.
4: gk is (k + 1)-fold exponential.

Proof. For the $rst claim, let m¿1. Let p1; : : : ; pk be the distinct prime numbers
¡m, and p=

∏
i pi, and li= max{l |pl

i¡m} for every i6k. Then lcm{1; : : : ; m −
1}=∏i p

li
i =(1=p)

∏
i p

li+1
i ¿mk=p. On the other hand, lcm{1; : : : ; m− 1}¿∏i pi=p.

Thus (lcm{1; : : : ; m− 1})2¿p · mk=p=mk . k is V(m= log m), thus G(m)= lcm{m +
1; : : : ; 2m}¿lcm{1; : : : ; m− 1}¿mk=2 is mV(m= log m) = 2V(m), showing the $rst claim.
Now we need that F(m) is W(H (m)). Besides, s1(m1=2)= 2

√
m6H (m)6s1(m) for

all m, thus H (m) and F(m) are s1(mW(1)). This implies the second and third claim:
G(m)= lcm{m + 1; : : : ; 2m}6F(

∑2m
i=m+1 i) is F(O(m2))=H (O(m2))6s1(mO(1)); and

F(fk(m)) is F(sk(W(m)))= s1((sk(W(m)))W(1))= sk+1(W(m)).
The $rst and second claim imply that G(m) is s1(mW(1)). Thus gk(m)=G(fk(m)) is

G(sk(W(m))= sk+1(W(m)), i.e. the fourth claim.

The proof of the $rst claim is by Thomasz Schoen (private communication).

4. Non-de�nability results

In the previous section we have developed de$nability results, i.e., we have described
particular picture languages like Numk that are de$nable in certain classes of formulas,
e.g. level k of the monadic alternation hierarchy.
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Our aim was to develop separation results, so it remains to present the corresponding
non-de$nability results. This will be done in this section. For example, in Section 4.1
we will show that Numk is not de$nable in level k − 1 of the monadic hierarchy. This
part of a proof is often referred to as “lower bound” proof, but we avoid this phrase
because in our case, the non-de$nability result (at least for the class of non-coloured
grids) establishes an upper bound on the growth rates of functions that are de$nable
in, say, �k .
In Section 4.1 we shall give some more de$nitions relevant for this section.

4.1. The automaton method

The main idea for our non-de$nability proofs is to invoke standard pumping tech-
niques for $nite automata on words. In [17, 18] we have shown how to pass from a
formula ’ of monadic second-order logic over pictures to a family (Am)m¿1 of non-
deterministic $nite automata (NFAs). The NFA Am recognizes the set of those words
of columns of height m that satisfy (when considered as pictures of height m) the
formula ’. The important point is that if ’ is in �k , then (Am)m can be chosen such
that the number of states in Am is k-fold exponential in m.
Finite automata—some more notation: We use standard notations for nondetermin-

istic $nite automata on words. An NFA over alphabet 0 is a quintuple (Q;0; q0; �; F),
where Q is a $nite set of states, q0 ∈Q is an initial state, F ⊆Q is a set of $nal states,
and �⊆Q×0×Q is a transition relation. If A is such an NFA, q; p are states of A,
and w, is a word over 0, we write A : q w→p i/ there is a path from q to p labelled w.
If P⊆Q we write A: q w→P i/ there is a p∈P with A : q w→p. The set of (non-empty)
words recognized by A is {w∈0+ | q0 w→F}. (The reference to non-empty words has
technical reasons.)

A is called deterministic (DFA for short) i/ for every (q; a)∈Q×0 there is at
most one p∈Q with (q; a; p)∈�.
If R⊆N×N and m¿1, we write R(m) for {n | (m; n)∈R}.
From pictures to words: For our non-de$nability results for picture languages we will

use standard combinatorial methods for NFAs on words. Here we introduce notations
that perform the link.

De�nition 4.1. The column word of a non-empty picture, say of size (m; n), over
alphabet 0 is a word over 0m;1, namely

column-word




a00 · · · a0;n−1
...

...
am−1;0 · · · am−1;n−1


 =




a00
...

am−1;0


 · · ·




a0;n−1
...

am−1;n−1


 :

For a picture language L⊆0+;+ and an integer m¿1, the height-m fragment of L,
fragment denoted by L[m], is the set of all column words of pictures of height m
in L.
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Let t¿1. The column word of a t-bit grid R is the column word of the picture
over {0; 1}t associated to R. For a class M of t-bit grids, the height-m fragment of M
(denoted M [m]) is the height-m fragment of the set of pictures over {0; 1}t associated
to grids from M .

In Subsection 4.2.2, De$nition 4.16, we will slightly generalize this de$nition.
Recall the de$nition of Modt(’) from Section 13. The following has been shown

in [17, 18].

Theorem 4.2. Let k¿1; t¿0; and ’(X1; : : : ; Xt) be a �k -formula over �Grids. Let
0= {0; 1}t . There exists c¿1 such that for every m¿1 there is an NFA with sk−1(cm)
states that recognizes the word language Modt(’)[m] over alphabet 0m;1.

Corollary 4.3. Let k¿1; t¿0. Let L be a �k -de3nable picture language over alphabet
{0; 1}t . The partial function f :N− →N; m �→ min({n | ∃P ∈L : size P=(m; n)}is at
most k-fold exponential.

Proof. Let n¿1 and ’(X1; : : : ; Xt) be a �n-formula that de$nes L. By Theorem 4.2
there is a c such that for all m¿1 there is an NFA with sn−1(cm) states that accepts
L[m]. Since the shortest word accepted by an NFA (if it exists) cannot be longer than
number of states of this NFA, this implies that f(m)= min{|w| |w∈L[m]}6sn−1(cm)
= sn(m log2 c) for all m∈ domf.

The following can be inferred from the above in the case 7 t = 0.

Corollary 4.4. Let R be �k -de3nable relation; k¿1. Then the partial function N
− →N; m �→ min(R(m)) is at most k-fold exponential.

Theorem 3.44, Remark 3.45, and the above imply Theorem 2.26. In particular, one
may show the separation �k �=�k for the class of grids and every k¿1 by considering
the relation {(m; n) | gk(m) divides n}.
The following has been shown as a consequence of 4.2 in [17, 18].

Theorem 4.5. For every k; the formula class B(�k) is k-fold exponential.

4.2. Arguing against the 3rst-order closure

The results of this subsection can be found as preliminary communications in [13].
The following is the main result of this subsection.

Theorem 4.6. For all k¿1; every FO(�k)-de3nable function is at most (k + 1)-fold
exponential.

7 We adopt the view that {0; 1}0 is some singleton.
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The concept to show this bound is to exhibit a particular periodicity property of
�k -de$nable picture languages and to show that it is not destroyed by the $rst-order
closure. For this aim, we need to consider properties of classes of “pebbled” grids.
These are typical models of grid formulas with free $rst-order variables but without
free set variables. This concept is now explained in an example.
Suppose we have a FO( K�k)-formula ∃x1∀ x2’(x1; x2), where ’ is in K�k . Then we

may associate to ’ the set Mod(’) of “pebbled grids”, i.e., grids with two di/erently
marked positions. If m is, again, a $xed height, we may pass to the “height-m-fragment”
Mod(’)[m] as before. But this time, the word language Mod(’)[m] will not contain
words over a singleton alphabet, but words in which all but one or two positions
(corresponding to the columns of two marked grid positions) carry the same letter.
Again, Mod(’)[m] is recognizable by an NFA whose state set size is at most k-fold
exponential in m. Since in input words for this NFA all but two positions carry the
same letter, there are similar periodicity properties as for NFAs with a singleton input
alphabet. We will exhibit what happens to these periodicity properties when taking the
$rst-order quanti$cations into account.
Theorem 4.6 was shown for the special case k =1 in [1, 2] using Ehrenfeucht–FraYZss[e

games that are speci$cally tailored for FO(�1). Our method to argue against the $rst-
order closure results from the one in [1] by extracting the periodicity technique from
the description of Duplicator’s winning strategy (thus “de-gamifying” this proof). This
is combined with the automata-theoretic argument Theorem 4.2 against de$nability
in �k .

Some More Notation. The following de$nitions will be needed later. Let M;N be sets,
R⊆M ×N a relation, and L⊆N . Then

〈R〉L = {m ∈ M | ∃n ∈ L: (m; n) ∈ R}:
Let t; r¿0. An r-pebbled t-bit grid is a structure in the signature �Gridst ∪{x1; : : : ; xr}

= {S1; S2; X1; : : : ; Xt ; x1; : : : ; xr}, where X1; : : : ; Xt are unary predicate symbols and x1; : : : ;
xr are constant symbols, such that the restriction to �Grids= {S1; S2} is a grid. The set
of all r-pebbled t-bit grids is denoted Gridst; r .
An r-pebbled t-bit grid is a model of a formula ’(X1; : : : ; Xt ; x1; : : : ; xr) if it makes

’ true with the implicitly given assignment. The class of r-pebbled t-bit grids that are
models of ’ is denoted Modt; r(’).

4.2.1. Automata and periodicity wrt a certain letter
Let 0 be an alphabet and a∈0 be some $xed letter. Let n¿0 and p¿1. A word

language L over alphabet 0 is periodic (with threshold n, period p, wrt a) i/ for every
u; v∈0∗: uanv∈L⇔ uan+pv∈L. By (p; n)-periodic we mean “periodic with threshold
n and period p”. The explicit mentioning of a will be dropped if it is clear from
the context. A set N ⊆N∪{0} will be called (p; n)-periodic i/ {an | n∈N} is (p; n)-
periodic, i.e., if n′ ∈N↔ n′ + p∈N for every n′¿n.
The following de$nition will prove to be useful.
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De�nition 4.7. Let 0;� be alphabets, :0; :1⊆0×�.
The relation R(:0 ;:1)⊆0+×�+associated to (:0; :1) is given by

{((a1 : : : an); (a′1 : : : a
′
n)) | n¿ 0 ∧ ∃i((ai; a′i) ∈ :1 ∧ ∀j �= i((aj; a′j) ∈ :0))}:

In other words, if (u; v)∈R(:0 ;:1), then v results from u by replacing one letter ac-
cording to :1 and all the others according to :0. In our applications, :0 will be total,
functional, and injective, so that this replacement amounts to marking a position and
renaming of the other letters.
With this de$nition we can mimic the e/ect of $rst-order quanti$cations on the level

of height-m fragments of grid languages. The reader who wants a better motivation
for this de$nition now may read Sections 4.2.2 and 4.2.3 up to Lemma 4.21 and then
continue here.

Remark 4.8. Let p¿1, n¿0.
1. Every (p; n)-periodic word language is (p′; n′)-periodic for every multiple p′ of p
and every n′¿n.

2. Every boolean combination of (p; n)-periodic word languages is (p; n)-periodic.
3. If N ⊆N is (p; n)-periodic, and n′¿n, then {k | k + n′ ∈N} is (p; 0)-periodic.

We are interested in an asymptotic bound for the “threshold” n of the periodicity of
$xed height fragments de$nable by nested $rst-order quanti$cations. (Again, we refer
to Lemma 4.21 for a precise exposition of the relation to $rst-order quanti$cation.)
The next lemma shows why the length p of the period is essential for this.

Lemma 4.9. Let 0;� be alphabets; :0; :1⊆0×� and :0 total; functional and
injective; (a; a′)∈ :0. Let R=R(:0 ; :1). Let L⊆�∗ be (p; n)-periodic wrt a′. Then 〈R〉L
is (p; 2n+ p)-periodic wrt a.

Proof. We have to show that ua2n+pv∈ 〈R〉L⇔ ua2n+2pv∈ 〈R〉L for every u; v∈�∗.
So let ua2n+pv∈ 〈R〉L. There is a word in L that results from ua2n+pv by replacing

one letter at a single position according to :1 and all the others according to :0. We
will make a case distinction whether this position is in the “middle part” or not.
Formally, there are u′; x′; v′ ∈�∗ such that |u|= |u′|, |v|= |v′|, and |x′|=2n+p such

that ua2n+pvRu′x′v′ ∈L.
In case x′= a′2n+p we have ua2n+2pvRu′a′2n+2pv′ ∈L because L is (p; n)-periodic.
In case x′= a′ia1a′

j for some a1 with (a; a1)∈ :1 and i+j+1=2n+p we have i¿n
or j¿n. Assume that i¿n (the other case is analogous). Then ua2n+2pvRu′a′i+pa1a′

jv′

∈L.
So in every case ua2n+2pv∈ 〈R〉L.
Conversely, let ua2n+2pv∈ 〈R〉L. There are u′; v′; x′ ∈�∗ with |u|= |u′|, |v|= |v′|,

|x′|=2n+ 2p, and ua2n+2pvRu′x′v′ ∈L.
In case x′= a′2n+2p we have ua2n+pvRu′a′2n+pv′ ∈L as before.
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In case x′= a′ia1a′
j for some a1 with (a; a1)∈ :1 and i + j + 1=2n+ 2p we have

i¿n + p or j¿n + p. Assume that i¿n + p (the other case is analogous). Then
ua2n+pvRu′a′i−pa1a′

jv′ ∈L.
So in every case ua2n+pv∈ 〈R〉L. This completes the proof of Lemma 4.9.

The essential point of the above lemma is that when passing from L to 〈R〉L, the
period p remains the same whereas the threshold where this period starts increases by
a summand p as well as by a constant factor. We will need this lemma in a situation
where the period p is exponentially larger than the threshold n, so that a (single or
boundedly often repeated) application of this lemma results in a singly exponential
increase of that threshold.
The argument of the above proof is extracted from Duplicator’s winning strategy in

the proof of [1, Lemma 12:6].

Remark 4.10. Let n¿0 and p¿1. A word language L⊆{a}+ is (p; n)-periodic i/
there is a DFA A with S(A)= (p; n) that recognizes L.

As explained in the introduction of this subsection, we have to investigate periodicity
properties of NFAs whose input consists of words most of whose letters are identical.
Our aim is to show that when an NFA reads such an input, then in the “gaps” between
the designated positions it behaves very much like a unary NFA. This is stated in
Lemma 4.13, which is prepared by the following de$nition.

De�nition 4.11. Let a∈0. Let A=(Q;0; q0; �; F) and A′=(Q′; {a}; q′0; �′; ∅) be
NFAs. We say that A′ simulates A wrt a i/ there is a family (Fq;q′)q; q′∈Q of subsets
of Q′ such that

∀k ¿ 0: A : q ak→ q′ ⇔ A′ : q′0
ak→Fq;q′ : (8)

The following is shown in [4, Lemma 4:3, Theorem 4:4].

Theorem 4.12. Let N ⊆N be recognizable by some n-state NFA. Then there are
some k6(n + 2)2 and an integer p such that N is recognized by a DFA B with
states 0; : : : ; (k−1)+p such that B reaches the state k+((l−k)modp) after reading
an input of length l¿k.

We need a slightly stronger formulation of that theorem:

Lemma 4.13. Let A be an NFA with n states and a be a letter from its input alphabet.
Then there is p6n and a unary NFA A′ with S(A′)= (p; n2 + n) such that (1) A′

simulates A wrt a; and (2) no state of A′ on a cycle has more than one successor.

We do not present the proof of this lemma here. It is almost the same as for
[4, Lemma 4:3]. The essential observation is that the transition structure of the NFA
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constructed there does not depend on the initial and $nal state, so it can be carried
out uniformly for all pairs of initial=$nal state. The original proof, too, gives these
accurate bounds on the numbers of states (rather than the asymptotic ones stated in
[4, Lemma 4:3]). See [16] for details.
Recall the de$nition of F from Section 3.5.5, and that F(m)62m for all m.

Corollary 4.14. Let A be an NFA with n states and a be a letter from its input
alphabet. Then there is p∈{1; : : : ; F(n)} such that for all states q; q′ of A;

A : q a(n+1)
2

−→ q′ ⇔ A : q a(n+1)
2+p

−→ q′:

Proof. By Lemma 4.13 there is an NFA A′ and p′6n with S(A′)= (p′; n2 + n) such
that no state on a cycle of A′ has more than one successor and A′ simulates A wrt a.
Choose a family (Fq;q′)q; q′∈Q of sets of A′-states according to De$nition 4.11, i.e.

∀q; q′ ∈ Q ∀k ¿ 0 : A : q ak→ q′ ⇔ A′ : q′0
ak→Fq;q′ :

Let p¿1 be the least common multiple of the length of cycles in A′. Since the cycles
in A′ have pairwise disjoint state sets, p6F(p′)6F(n). Every path through A′ of
length ¿(n+ 1)2¿n2 + n passes through a state on a cycle, whose length divides p.
This implies the claim.

Now we will state the main result of this Section 4.2.1.

Theorem 4.15. Let a∈0. For every word language L⊆0+ that is recognized by an
NFA with n states; there is a p∈{1; : : : ; F(n)} such that L is (p; (n + 1)2)-periodic
wrt a.

Proof. Let A be an NFA with n states that recognizes L. Choose p6F(n) according

to Corollary 4.14. Then ua(n+1)
2
v∈L i/ ∃q1; q2 ∈Q ∃q3 ∈F : q0

u→ q1
a(n+1)

2

→ q2
v→ q3 i/

∃q1; q2 ∈Q ∃q3 ∈F : q0
u→ q1

a(n+1)
2+p

→ q2
v→ q3 i/ ua(n+1)

2+pv∈L.

4.2.2. From words to pebbled grids
The following de$nition is a slight generalization of De$nition 4.1.

De�nition 4.16. Let R be an r-pebbled t-bit grid of size (m; n). Then the column word
of R is a word of length n over alphabet ({0; 1}t+r)m de$ned as

column-word(R) =



Ka11
...
Kam1


 · · ·



Ka1n
...
Kamn


 ;

where for every (i; j)∈ [m]× [n], the word Kaij = a1ij : : : a
t
ija

t+1
ij : : : at+r

ij over {0; 1} is such
that
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• as
ij =1 i/ (i; j)∈X R

s for all s∈{1; : : : ; t},
• at+s

ij =1 i/ (i; j)= xRs for all s∈{1; : : : ; r}.
For a set L of r-pebbled t-bit grids and m¿1, the height-m fragment of L is given
by L[m] = {column-word(R) |R is of height m and R∈L}.

Proposition 4.17. If L⊆Grids0; r[m] is (p; n)-periodic; then so is its complement
Grids0; r[m]\L.

Proof. Immediate by the closure of (p; n)-periodic sets under boolean combinations
(Remark 4.8) and the fact that Grids0; r[m] is (1; 0)-periodic.

4.2.3. Periodicity properties of FO(�k)-de3nable relations
The following lemma can be proved easily.

Lemma 4.18. Let k¿0. For every �k -formula ’(x1; : : : ; xr) there is a �k -formula
’′(X1; : : : ; Xr) with

Modr;0(’′) = {(R; {u1}; : : : ; {ur}) | (R; u1; : : : ; ur) ∈ Mod0;r(’)}:
In particular; Modr;0(’′)[m] =Mod0; r(’)[m] for every m.

By the above lemma, the following corollary a consequence of Theorem 4.2.

Corollary 4.19. Let k¿1; r¿0; and ’(x1; : : : ; xr) be a �k -formula over �Grids. There
is a c¿1 such that for every m¿1 there is an sk−1(cm)-state NFA that recognizes
the word language Mod0; r(’)[m].

The following de$nition mimics the e/ect of $rst-order quanti$cations on the level
of formal languages.

De�nition 4.20. Let m¿1, r¿0. Let 0=({0; 1}r)m;1 and �=({0; 1}r+1)m;1. We de-
$ne the following subsets of 0×�:

:0 =








a1
...
am


 ;




a10
...

am0





∣∣∣∣∣∣∣ ∀i : ai ∈ {0; 1}r


 ;

:1 =








a1
...
am


 ;




a1b1
...

ambm





∣∣∣∣∣∣∣ b1 : : : bm ∈ 0∗10∗;∀i : ai ∈ {0; 1}r


 :

We de$ne the position choice relation for height m and index r as the relation
R(:0 ; :1)⊆0+×�+ associated to (:0; :1) in the sense of De$nition 4.7.

Note that in the above de$nition, :0 is total, functional, and injective.
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The next lemma states that, roughly speaking, the application of the 〈R〉-modality
for the position choice relation R for some $xed height does the same as an existential
$rst-order quanti$cation.

Lemma 4.21. Let m¿1. Let 0=({0; 1}r)m;1 and �=({0; 1}r+1)m;1. Let ’(x1; : : : ; xr)
be a 3rst-order formula. Let R be the position choice relation for height m and index
r. Then

Mod0;r(∃xr+1’)[m] = 〈R〉(Mod0;r+1(’)[m]):

Proof. Firstly, let w∈Mod0; r(∃ xr+1’)[m], say of length n. For every (i; j)∈ [m]× [n]
there is aij ∈{0; 1}r such that

w =




a00
...

am−1;0


 · · ·




a0;n−1
...

am−1;n−1


 :

There exists a (0; r)-grid A=([m]× [n]; x1; : : : ; xr) such that A |=∃ xr+1’ and w is the
column word of A (in the sense of De$nition 4.16). Thus there is xr+1 = (Ê; F̂)∈ [m]
× [n] with A; (Ê; F̂) |=’. For every (i; j)∈ [m]× [n] we de$ne a′ij ∈{0; 1}r+1 as follows:

a′ij =

{
aij1 if (i; j) = (Ê; F̂);

aij0 else:

Then

w=




a00
...

am−1;0


 · · ·




a0;n−1
...

am−1;n−1


R




a′00
...

a′m−1;0


 · · ·




a′0;n−1
...

a′m−1;n−1


 ∈

Mod0;r(’)[m]; thus w ∈ 〈R〉(Mod0;r+1(’)[m]):

The converse direction is similar.

The above lemma justi$es our interest in De$nitions 4.7 and 4.20. The reason why I
chose to present them and Lemma 4.9 earlier is that the latter is purely word-theoretic
and can be understood without any knowledge of grids and logic.
Now we combine the above lemma and Lemma 4.9 to state what a single $rst-order

quanti$cation can do to the periodicity of a $xed height fragment of some set of grids.

Lemma 4.22. Let m¿1; r¿0; and

Q∈{∃;∀}; and ’(x1; : : : ; xr+1) be a formula. If
Mod0; r+1(’)[m] is (p; n)-periodic; then Mod0; r(

Q

xr+1’)[m] is (p; 2n+ p)-periodic.

Proof. In case

Q

=∃, the claim is immediate from Lemmas 4.21 and 4.9.
In case

Q

=∀, we have that Mod0; r(¬’)[m] is (p; n)-periodic by Proposition 4.17.
Thus Mod0; r(∃xr+1¬’)[m] is (p; 2n+p)-periodic, and thus (again by Proposition 4.17)
so is Mod0; r(∀xr+1’)[m] =Mod0; r(¬∃xr+1¬’)[m].



66 O. Matz / Theoretical Computer Science 270 (2002) 1–70

Since we are interested in a non-de$nability argument for the $rst-order closure of
a given class of formulas, we have to apply the above lemma in iteration. This will
be done now.

Lemma 4.23. Let m¿1. For every r¿0 and every

Q

1; : : : ;

Q

r ∈{∃;∀}; if ’(x1; : : : ; xr)
is a formula such that Mod0; r(’)[m] is (p; n)-periodic; then Mod0;0(

Q

1x1 : : :

Q

rxr’)[m]
is (p; 2r(n+ p)− p)-periodic.

Proof. The proof is by induction on r. The case r=0 is trivial because 20(n+ p)−
p= n. So assume the claimed implication is true for some r. Let

Q

1; : : : ;

Q

r+1 ∈{∃;∀}
and ’(x1; : : : ; xr+1) be a formula such that Mod0; r+1(’)[m] is (p; n)-periodic. By
Lemma 4.22, Mod0; r(

Q

xr+1’)[m] is (p; 2n + p)-periodic. By induction hypothesis,
Mod0;0(

Q

1x1 : : :

Q

r+1xr+1’)[m] is (p; 2r(2n+p) +p)−p))-periodic, i.e., (p; 2r+1(n+
p)− p)-periodic. This completes the induction.

Now we will apply the above in the situation where ’ is a boolean combination of
�k -formulas. In the introduction to this subsection, I explained our interest in automata
running on inputs almost all of whose letters are identical. I mentioned the idea that
on such an input an NFA has similar periodicity properties as a unary NFA. However,
the truth is a little more complicated, as the proof of the next lemma shows. The point
is that we need the fact that if we have several NFAs, then we can $nd an appropriate
periodicity property that is common for these automata by building their cross-product
$rst.

Lemma 4.24. Let k¿1 and r¿0 and ’(x1; : : : ; xr) be a B(�k)-formula; and

Q

1; : : : ;

Q

r

∈{∃;∀}. Then there is some d¿0 and such that for every m¿1 there is some
p∈{1; : : : ; sk+1(dm)} such that

Mod0;0(

Q

1x1 : : :

Q

rxr’)[m]

is (p; sk+1(dm))-periodic.

Proof. Assume that ’(x1; : : : ; xr) is a boolean combination of the �k -formulas ’1; : : : ;
’j. By Corollary 4.19, for every i6j there is some constant ci such that for every
m¿1 there is a sk(cim)-state NFA that recognizes the word language Mod0; r(’i)[m].
Choose c= max{c1; : : : ; cj} and d with 2r((sk(cjm) + 1)2 + sk+1(cjm))6sk+1(dm)

for every m¿1.
Let m¿1. By choice of c there is, for every i, an NFA Ai=(Qi; ({0; 1}r)m; q0; i ; �i;

Fi) with sk(cm) states that recognizes Mod0; r(’i)[m]. Build the usual “cross-product
automaton” A=(Q1×· · ·×Qj; ({0; 1}r)m; (q01; : : : ; q0j); �; ∅) with state set of size n :=
(sk(cm))j6sk(cjm). Choose p with 16p6F(n)62n6sk+1(cjm)6sk+1(dm) according
to Corollary 4.14, i.e., such that for every q; q′ ∈Q:

A : q a(n+1)
2

→ q′ ⇔ A : q a(n+1)
2+p

→ q′:
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Then Mod0; r(’)[m] is (p; (n+1)2)-periodic. Thus Mod0;0(

Q

1x1 · · · Q

rxr’)[m] is (p; (2r

((n+ 1)2 + p))− p)-periodic by Lemma 4.23. The claim follows by choice of d.

Now we can prove Theorem 4.6, which states that for every k¿1, the class FO(�k)
is at most (k + 1)-fold exponential in the sense of De$nition 2.19.

Proof of Theorem 4.6. Let f :N−→N be de$nable by a FO(�k)-sentence  . Clearly,
we may assume that  is of the form

Q

1x1 · · · Q

rxr’, where r¿0 and ’ is a B(�k)-
formula.
For every m¿1, we have {an |f(m)= n}=Lf[m] =Mod0;0( )[m], where a is the

element of ({0}r)m.
Choose d as in the above lemma, i.e., such that for all m∈ domf there is a p¿1

such that the set {f(m)} is (p; sk+1(dm))-periodic. Then this implies that f(m)6sk+1
(dm) for all m∈ domf.

As a consequence of Theorem 4.6, all subclasses of FO(�k) are at most (k+1)-fold
exponential. Together with Corollary 3.49 this implies that for every k¿1, the formula
classes of that corollary are (k + 1)-fold exponential.
Together with Corollary 4:5, this implies Theorem 2.22. In particular, we now have

all separation claims from Corollary 2:25.

5. Conclusion

5.1. Technical review

In the introduction I summarized the separation results that were to be proved in
this paper. Let us now review what we have done from a technical point of view. The
technical contribution of this paper consists of three parts.
Firstly, we have redone the “de$nability part” of the proof of [17] showing the

strictness of the monadic quanti$er alternation hierarchy over pictures. This time, we
proceeded via starfree picture languages, i.e., we constructed picture languages (corre-
sponding to sets of coloured grids) beyond a given level of the monadic hierarchy by
applying column concatenation and boolean combinations in alternation. This showed
that the latter alternation is so powerful that its expressive power cannot be captured
by a smaller number of alternations of set quanti$er blocks in the monadic hierarchy.
We deduced that “very little” set quanti$cation is necessary to leave any level of the

monadic hierarchy. More precisely, we obtained the following, which has been stated
already in [17]: In the context of pictures of coloured grids, it is the alternation of
3rst-order quanti$cations followed by a single block of set quanti$cations that makes
our properties hard wrt the monadic hierarchy. This set quanti$cation could even been
limited to “unique” ones, where quanti$cation is permitted only to $x a tuple of sets
that is uniquely determined by a $rst-order formula, i.e., we could pass to a formula
in the $rst-order closure of �U1 over coloured grids.
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The second technical contribution of this paper was to construct a formula in the
$rst-order closure of �k (even of �k) that allows us to de$ne a grid property that
represents a (k +1)-fold exponential function. As a by-product we obtained a formula
in �k that allows us to de$ne a grid property that represents a relation R for which
m �→ min R(m) is a (k + 1)-fold exponential function. The latter shows together with
known facts that also over non-coloured grids, the levels of the monadic hierarchy are
not closed under complement, a problem that had remained open in [17].
The third technical contribution was to show that no formula in the $rst-order closure

of �k allows us to de$ne a grid property representing a function that grows faster
than (k + 1)-fold exponential, a fact that was shown in [1, 2] for k =1. Together
with the second contribution this gives a tight asymptotic bound for the formulas
de$nable in the $rst-order closure of the levels of the monadic hierarchy, and this
bound is exponentially higher than the tight bound of [17] for the levels of the monadic
hierarchy.
These three contributions allow for separation results concerning the connection of

the $rst-order closure to monadic second-order logic: Firstly, the $rst-order closure is so
powerful that when applied to �1, it allows us to de$ne properties beyond arbitrarily
high levels of the monadic hierarchy. Secondly, it is so weak that when applied to
�k , it results in expressive power that does not subsume that of �k+2. Thirdly, when
the $rst-order closure is applied to all levels of the monadic hierarchy, the resulting
hierarchy is still strict.

5.2. Connection to polynomial hierarchy

Since part of the interest in the monadic second-order alternation hierarchy stems
from the desire to achieve progress in complexity theoretical questions, we should
review our proofs with regard to whether they provide methods for attacking at least
other fragments of the second-order hierarchy.
As a striking di/erence to most of the other approaches to separations in monadic

second-order logic, our non-de$nability argument (the “lower bound proof”, Section 4)
does not use Ehrenfeucht–FraYZss[e games but automata-theoretic arguments. The ultimate
core is the standard pumping lemma for $nite automata. There is little or no hope
that such techniques will carry over to, say, the binary fragment of second-order logic
because a run of an automaton is a colouring of the input and thus inherently monadic.
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