Toughness and the existence of fractional k-factors of graphs ${ }^{\boldsymbol{T}}$

Guizhen Liu ${ }^{\text {a }, *}$, Lanju Zhang ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics and System Science, Shandong University, Jinan 250100, PR China
${ }^{\mathrm{b}}$ Biostatistics and Data Management, Medimmune Inc., Gaithersburg, MD 20878, USA

Received 8 January 2003; received in revised form 6 August 2006; accepted 27 September 2006
Available online 25 April 2007

Abstract

The toughness of a graph $G, t(G)$, is defined as $t(G)=\min \{|S| / \omega(G-S) \mid S \subseteq V(G), \omega(G-S)>1\}$ where $\omega(G-S)$ denotes the number of components of $G-S$ or $t(G)=+\infty$ if G is a complete graph. Much work has been contributed to the relations between toughness and the existence of factors of a graph. In this paper, we consider the relationship between the toughness and the existence of fractional k-factors. It is proved that a graph G has a fractional 1 -factor if $t(G) \geqslant 1$ and has a fractional k-factor if $t(G) \geqslant k-1 / k$ where $k \geqslant 2$. Furthermore, we show that both results are best possible in some sense. © 2007 Published by Elsevier B.V.

MSC: 05C70
Keywords: Toughness; Fractional k-factor; Fractional matching

1. Introduction

The graphs considered here will be finite undirected graphs which may have multiple edges but no loops. We refer the readers to [2] for the terminologies not defined here. Let G be a graph. We use $V(G)$ and $E(G)$ to denote its vertex set and edge set, respectively. We use $G[S]$ and $G-S$ to denote the subgraph of G induced by S and $V(G)-S$, respectively, for $S \subseteq V(G)$ and $N_{G}(x)$ to denote the set of vertices adjacent to x in G. A subset S of $V(G)$ is called a covering set (an independent set) of G if every edge of G is incident with at least (at most) one vertex of S. Let S and T be two disjoint subsets of $V(G)$, we use $E(S, T)$ to denote the set of edges with one end in S and the other end in T and set $S-S^{\prime}=S \backslash S^{\prime}$.

Let g and f be two integer-valued functions defined on $V(G)$ with $g(x) \leqslant f(x)$ for any $x \in V(G)$. A subgraph F of G is called a (g, f)-factor if $g(x) \leqslant d_{F}(x) \leqslant f(x)$ holds for any vertex $x \in V(G)$. A (g, f)-factor is called an [$a, b]$-factor if $g(x) \equiv a$ and $f(x) \equiv b$. An [$a, b]$-factor is called a k-factor if $a=b=k$. Let $h: E(G) \rightarrow[0,1]$ be a function. Let $k \geqslant 1$ be an integer. If $\sum_{e \ni x} h(e)=k$ holds for any vertex $x \in V(G)$, we call $G\left[F_{h}\right]$ a fractional k-factor of G with indicator function h where $F_{h}=\{e \in E(G) \mid h(e)>0\}$. A fractional 1-factor is also called a fractional perfect matching [7].

[^0]A graph is t-tough if for any $S \subseteq V(G)$ and $\omega(G-S)>1$, we have

$$
|S| \geqslant t \omega(G-S)
$$

holds where $\omega(G-S)$ denotes the number of components of $(G-S)$. A complete graph is t-tough for any positive real number t. If G is not complete, there exists the largest t such that G is t-tough. This number is denoted by $t(G)$ and is called the toughness of G. We define $t\left(K_{n}\right)=+\infty$. If G is not complete,

$$
t(G)=\min \left\{\left.\frac{|S|}{\omega(G-S)} \right\rvert\, S \subseteq V(G) \text { and } \omega(G-S) \geqslant 2\right\}
$$

The toughness of a graph was first introduced by Chvátal in [3]. Since then, much work has been contributed to the relations between toughness and the existence of factors of a graph. The most famous result is that of [4] which confirms a conjecture stated by Chvátal. Its main result is the following Lemma.

Lemma 1.1. Let G be a graph. If G is k-tough, $|V(G)| \geqslant k+1$ and $k|V(G)|$ is even, then G has a k-factor.
The result is sharp since for any positive real number ε, there exists a graph G that has no k-factor with $t(G) \geqslant k-\varepsilon$ [4]. Katerinis considered toughness and the existence of [a, b]-factors in [5]. In this paper we discuss the relationship between toughness and the existence of fractional k-factors. In [1] Anstee gave a necessary and sufficient condition for a graph to have a fractional (g, f)-factor for which we gave a new proof. The following result can be found in [6].

Lemma 1.2. Let $k \geqslant 1$ be an integer. A graph G has a fractional k-factor if and only if for any subset S of $V(G)$,

$$
\begin{equation*}
k|T|-d_{G-S}(T) \leqslant k|S|, \tag{1}
\end{equation*}
$$

where $T=\left\{x \in V(G)-S \mid d_{G-S}(x) \leqslant k-1\right\}$ and $d_{G-S}(T)=\sum_{x \in T} d_{G-S}(x)$.
In particular, for $k=1$, we have the following result.
Lemma 1.3 (Scheinerman and Ullman [7]). A graph G has a fractional perfect matching if and only if for any $S \subseteq V(G)$,

$$
\begin{equation*}
i(G-S) \leqslant|S|, \tag{2}
\end{equation*}
$$

where $i(G-S)=\left|\left\{x \in V(G)-S \mid d_{G-S}(x)=0\right\}\right|$.
Our main results are the following two theorems.
Theorem 1.1. Let G be a connected graph with $|V(G)| \geqslant 2$. Then G has a fractional perfect matching if $t(G) \geqslant 1$.
Theorem 1.2. Let $k \geqslant 2$ be an integer. A graph G with $|V(G)| \geqslant(k+1)$ has a fractional k-factor if $t(G) \geqslant k-1 / k$.
The result in Theorem 1.1 is sharp. To see this, consider the graph $G_{1}=K_{m} \vee(m+1) K_{1}$ where \vee means "join" and m is an arbitrary positive integer. It is easy to find out that $t\left(G_{1}\right)=m /(m+1)<1$ and (1) does not hold if we let $S=V\left(K_{m}\right)$. By Lemma $1.3 G_{1}$ has no fractional perfect matching. But $t\left(G_{1}\right) \rightarrow 1$ when $m \rightarrow+\infty$.

To see Theorem 1.2 is also sharp, we construct the following graph $G_{k}: V\left(G_{k}\right)=A \cup B \cup C$ where A, B and C are disjoint with $|A|=|B|=(n k+1)(k-1)$, and $|C|=n(k-1)$. Both A and C are cliques in G_{k}, while B is isomorphic to $(n k+1) K_{k-1}$. Other edges in G_{k} are a perfect matching between A and B and all the pairs between B and C. If $k=2$, let $S=(A-\{u\}) \cup C$ where $u \in A$, then $|S|=3 n$ and $\omega(G-S)=2 n+1$; if $k \geqslant 3$, let $S=(A-\{u\}) \cup\{v\} \cup C$ where $u \in A$ and $v \in B$ is matched to u in G_{k}. Then $|S|=(n k+n+1)(k-1)$ and $\omega(G-S)=n k+2$. This follows that

$$
t\left(G_{k}\right)= \begin{cases}\frac{3 n}{2 n+1} & \text { if } k=2 \\ \frac{(n k+n+1)(k-1)}{n k+2} & \text { if } k \geqslant 3\end{cases}
$$

But (1) does not hold if we let $S=C$. Thus by Lemma $1.2 G_{k}$ has no fractional k-factor. It is easy to see that $t\left(G_{k}\right)$ can be made arbitrarily close to $k-1 / k$ when n is large enough. In this sense, the result in Theorem 1.2 is also sharp.

Remark. A graph G that satisfies the condition of Theorem 1.1 has 1 -factors if $|V(G)|$ is even by Lemma 1.1. However, a graph G that satisfies the conditions of Theorem 1.2 does not necessarily have a k-factor even if $k|V(G)|$ is even [4].

2. Proofs of theorems

At first let us prove Theorem 1.1.
Proof of Theorem 1.1. If G is complete, obviously G has a fractional perfect matching as $|V(G)| \geqslant 2$. In the following we assume that G is not complete. Suppose that G satisfies the conditions in Theorem 1.1, but G has no fractional perfect matching. From Lemma 1.3, there exists a subset S of $V(G)$ such that

$$
i(G-S)>|S|
$$

Since G is connected, $S \neq \emptyset$. Thus $i(G-S) \geqslant 2$. Then

$$
t(G) \leqslant \frac{|S|}{\omega(G-S)} \leqslant \frac{|S|}{i(G-S)}<1
$$

contradicting to $t(G) \geqslant 1$.
To prove Theorem 1.2, we need the following Lemmas.
Lemma 2.1 (Chvátal [3]). If a graph G is not complete, then $t(G) \leqslant \frac{1}{2} \delta(G)$.
Lemma 2.2. Let G be a graph and let $H=G[T]$ such that $d_{G}(x)=k-1$ for every $x \in V(H)$ and no component of H is isomorphic to K_{k} where $T \subseteq V(G)$ and $k \geqslant 2$. Then there exists an independent set I and the covering set $C=V(H)-I$ of H satisfying

$$
\begin{equation*}
|V(H)| \leqslant\left(k-\frac{1}{k+1}\right)|I| \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
|C| \leqslant\left(k-1-\frac{1}{k+1}\right)|I| . \tag{4}
\end{equation*}
$$

Proof. Suppose that H has m components. For each component H_{n}, let I_{n} be a maximum independent set of H_{n}. First we claim that for each vertex $x \in I_{n}$ and $d_{H_{n}}(x)=k-1$, there exists a vertex $y \in I_{n}-\{x\}$ such that $N_{H_{n}}(x) \cap N_{H_{n}}(y) \neq \emptyset$. For this, we show that $H_{n}\left[N_{H_{n}}(x)\right]$ is not complete. Otherwise, $H_{n}^{\prime}=H_{n}\left[\{x\} \cup N_{H_{n}}(x)\right]$ is isomorphic to K_{k}. Since H_{n} is connected and for every vertex $x \in V\left(H_{n}\right), d_{H_{n}}(x) \leqslant k-1$, it follows that $H_{n}=H_{n}^{\prime}$, which contradicts to that H_{n} is not isomorphic to K_{k}. Now if for any $y \in I_{n}-\{x\}, N_{H_{n}}(x) \cap N_{H_{n}}(y)=\emptyset$, then $E\left(\{x\} \cup N_{H_{n}}(x), I_{n}-\{x\}\right)=\emptyset$. Let x^{\prime} and y^{\prime} be two vertices in $H_{n}\left[N_{H_{n}}(x)\right]$ that are not adjacent. Then $\left(I_{n}-\{x\}\right) \cup\left\{x^{\prime}, y^{\prime}\right\}$ will be an independent set of H_{n}, contradicting to that I_{n} is a maximum independent set of H_{n}. So what we desire follows. Let $I_{n}^{\prime}=\left\{x \mid x \in I_{n}\right.$ and $\left.d_{H_{n}}(x)=k-1\right\}$ and $I_{n}^{\prime \prime}=I_{n}-I_{n}^{\prime}$. Then for every $x \in I_{n}^{\prime \prime}, d_{H_{n}}(x) \leqslant k-2$. Note that both of I_{n}^{\prime} and $I_{n}^{\prime \prime}$ are independent sets of H_{n}. Since for every vertex $x \in I_{n}^{\prime}, d_{H_{n}}(x)=k-1$, and for every $x \in I_{n}^{\prime \prime}, d_{H_{n}}(x) \leqslant k-2$, where $k \geqslant 2$, by the above claim we have the following inequality:

$$
\left|V\left(H_{n}\right)\right| \leqslant k\left|I_{n}^{\prime}\right|-\left\lceil\frac{\left|I_{n}^{\prime}\right|}{2}\right\rceil+(k-1)\left|I_{n}^{\prime \prime}\right| \leqslant k\left|I_{n}\right|-\left\lceil\frac{\left|I_{n}\right|}{2}\right\rceil \leqslant\left(k-\frac{1}{k+1}\right)\left|I_{n}\right|
$$

for each $n=1, \ldots, m$. Let $I=\bigcup_{n=1}^{m} I_{n}$, Then $|I|=\sum_{n=1}^{m}\left|I_{n}\right|$ and I is a maximum independent set of H. Thus

$$
|V(H)|=\sum_{n=1}^{m}\left|V\left(H_{n}\right)\right| \leqslant \sum_{n=1}^{m}\left(k-\frac{1}{k+1}\right)\left|I_{n}\right|=\left(k-\frac{1}{k+1}\right)|I|
$$

which is inequality (3). Let $C=V(H)-I$. Then $|C|=|V(H)|-|I|$ and the result (4) follows easily from (3). The proof is completed.

The following Lemma 2.3 is similar to Lemma 5 of [5]. However, it has been strengthened not only in its conditions but also in its result.

Lemma 2.3. Let G be a graph and let $H=G[T]$ such that $\delta(H) \geqslant 1$ and $1 \leqslant d_{G}(x) \leqslant k-1$ for every $x \in V(H)$ where $T \subseteq V(G)$ and $k \geqslant 2$. Let T_{1}, \ldots, T_{k-1} be a partition of the vertices of H satisfying $d_{G}(x)=j$ for each $x \in T_{j}$ where we allow some T_{j} to be empty. If each component of H has a vertex of degree at most $k-2$ in G, then H has a maximal independent set I and a covering set $C=V(H)-I$ such that

$$
\sum_{j=1}^{k-1}(k-j) c_{j} \leqslant \sum_{j=1}^{k-1}(k-2)(k-j) i_{j}
$$

where $c_{j}=\left|C \cap T_{j}\right|$ and $i_{j}=\left|I \cap T_{j}\right|$ for every $j=1, \ldots, k-1$.
Proof. Since $\delta(H) \geqslant 1$ and each component of H has a vertex of degree at most $k-2$ in G, we have $k \geqslant 3$. We prove the lemma by induction on $|V(H)|$. If $|V(H)|=2$, then H is isomorphic to K_{2}. Let $V(H)=\{x, y\}$ and suppose $x \in T_{i_{0}}$ and $y \in T_{j_{0}}$. We may assume $i_{0} \leqslant j_{0}$. Let $I=\{x\}$ and $C=V(H)-\{x\}=\{y\}$. Then

$$
\sum_{j=1}^{k-1}(k-j) c_{j}=k-j_{0} \leqslant k-i_{0} \leqslant(k-2)\left(k-i_{0}\right)=\sum_{j=1}^{k-1}(k-2)(k-j) i_{j}
$$

and the result follows. Now we assume that the result holds when $|V(H)|<L$. Now we consider $|V(H)|=L \geqslant 3$. Let $m=\min \left\{j \mid T_{j} \neq \emptyset\right\}$. Then $1 \leqslant m \leqslant k-2$. Take any $y \in T_{m}$. Then $H-\left(\{y\} \cup N_{H}(y)\right)$ may have some isolated vertices in H. Let $I^{\prime \prime}$ be the set of y and these isolated vertices. Now let $H^{\prime}=H-\left(I^{\prime \prime} \cup N_{H}(y)\right)$. If $x \in I^{\prime \prime}-\{y\}$, then we can see that $d_{H}(x) \leqslant d_{H}(y)$ and $d_{G}(x) \geqslant d_{G}(y)$ by the definition of $I^{\prime \prime}$ and m.

If $\left|V\left(H^{\prime}\right)\right|=0$, put $I=I^{\prime \prime}$ and $C=V(H)-I=N_{H}(y)$. Note that $T_{j}=\emptyset$ and $i_{j}=0$ for $j<m$. Since $\left|V\left(H^{\prime}\right)\right|=0$, we have

$$
\sum_{j=m}^{k-1} c_{j} \leqslant m
$$

Thus

$$
\begin{aligned}
\sum_{j=1}^{k-1}(k-j) c_{j} & \leqslant \sum_{j=m}^{k-1}(k-m) c_{j} \\
& =(k-m) \sum_{j=m}^{k-1} c_{j} \leqslant(k-m) m \\
& \leqslant(k-2)(k-m) \leqslant \sum_{j=1}^{k-1}(k-2)(k-j) i_{j}
\end{aligned}
$$

Obviously I is a maximal independent set of H.
So we suppose that $\left|V\left(H^{\prime}\right)\right| \neq 0$ or $V(H) \neq I^{\prime \prime} \cup N_{H}(y)$. Note that if a vertex v is only adjacent to $N_{H}(y)$, then v is in $\left(I^{\prime \prime}-\{y\}\right)$. If vertex v is adjacent to a vertex $u \in\left(I^{\prime \prime}-\{y\}\right)$, then u is not an isolated vertex of $H-\left(\{y\} \cup N_{H}(y)\right)$ in H. This contradicts to that $u \in\left(I^{\prime \prime}-\{y\}\right)$. Thus it follows that $\delta\left(H^{\prime}\right) \geqslant 1$. Clearly $\Delta\left(H^{\prime}\right) \leqslant k-1$. It is obvious that $\left|V\left(H^{\prime}\right)\right| \geqslant 2$. From the definition of H^{\prime} and $\Delta(H) \leqslant k-1$ we can also see that each component of H^{\prime} has a vertex of degree at most $k-2$ in G as follows. If a component H_{0} of H^{\prime} is also a component of H, clearly, H_{0} has a vertex of degree at most $k-2$ by the hypothesis. Otherwise, a component H_{0} of H^{\prime} is not a component of H. Then H_{0} is a component of $H_{1}-\left(I^{\prime \prime} \cup N_{H}(y)\right)$ where H_{1} is a component of H. Note that there are at least one edge $e=u v$
joining H_{0} and $I^{\prime \prime} \cup N_{H}(y)$ in H_{1}. We may assume that vertex v is in H_{0}. Since $d_{G}(x) \leqslant k-1$ for every vertex x of H_{0}, $d_{G}(v) \leqslant k-1$. Thus vertex v is adjacent to at most $k-2$ vertices in H_{0}. It is easy to see that H_{0} must have a vertex of degree at most $k-2$. Let $T_{j}^{\prime}=T_{j} \cap V\left(H^{\prime}\right)$. Since $\left|V\left(H^{\prime}\right)\right|<L$, by induction hypothesis, there exists a maximal independent set I^{\prime} and a covering set $C^{\prime}=V\left(H^{\prime}\right)-I^{\prime}$ of H^{\prime} such that

$$
\sum_{j=1}^{k-1}(k-j) c_{j}^{\prime} \leqslant \sum_{j=1}^{k-1}(k-2)(k-j) i_{j}^{\prime}
$$

where $i_{j}^{\prime}=\left|I^{\prime} \cap T_{j}^{\prime}\right|$ and $c_{j}^{\prime}=\left|C^{\prime} \cap T_{j}^{\prime}\right|$. Now let $I=I^{\prime} \cup I^{\prime \prime}$ and $C=V(H)-I=C^{\prime} \cup N_{H}(y)$. Obviously, I is a maximal independent set of H. Then

$$
\begin{aligned}
\sum_{j=1}^{k-1}(k-2)(k-j) i_{j} & \geqslant \sum_{j=1}^{k-1}(k-2)(k-j) i_{j}^{\prime}+m(k-m) \\
& \geqslant \sum_{j=1}^{k-1}(k-j) c_{j}^{\prime}+m(k-m)
\end{aligned}
$$

Since $d_{G}(y) \leqslant m$ and $m=\min \left\{j \mid T_{j} \neq \phi\right\}$, we have

$$
\sum_{j=1}^{k-1}(k-j) c_{j} \leqslant \sum_{j=1}^{k-1}(k-j) c_{j}^{\prime}+m(k-m)
$$

Thus

$$
\sum_{j=1}^{k-1}(k-j) c_{j} \leqslant \sum_{j=1}^{k-1}(k-2)(k-j) i_{j}
$$

completing the proof.
Proof of Theorem 1.2. If G is complete, since $|V(G)| \geqslant k+1$, obviously, G has a fractional k-factor. In the following we assume that G is not complete. Suppose that G satisfies the conditions of Theorem 1.2, but has no fractional k-factors. From Lemma 1.2 there exists a subset S of $V(G)$ such that

$$
\begin{equation*}
k|T|-d_{G-S}(T)>k|S| \tag{5}
\end{equation*}
$$

where $T=\left\{x \in V(G)-S \mid d_{G-S}(x) \leqslant k-1\right\}$. By Lemma 2.1, we have $\delta(G) \geqslant 2 t(G) \geqslant 2 k-2 / k \geqslant k+1$. Therefore $S \neq \emptyset$ by (5). Let l be the number of the components of $H^{\prime}=G[T]$ which are isomorphic to K_{k} and let $T_{0}=\{x \in$ $\left.V\left(H^{\prime}\right) \mid d_{G-S}(x)=0\right\}$. Let H be the subgraph obtained from $H^{\prime}-T_{0}$ by deleting those l components isomorphic to K_{k}. If $|V(H)|=0$, then from (5) we obtain

$$
k\left|T_{0}\right|+l k>k|S|
$$

or

$$
1 \leqslant|S|<\left|T_{0}\right|+l .
$$

Hence $\omega(G-S) \geqslant l+\left|T_{0}\right|>1$ and

$$
t(G) \leqslant \frac{|S|}{\omega(G-S)}=\frac{|S|}{l+\left|T_{0}\right|}<1 .
$$

This contradicts that $t(G) \geqslant k-1 / k \geqslant \frac{3}{2}$.

Now we consider that $|V(H)|>0$ and $\delta(H) \geqslant 1$. Let $H=H_{1} \cup H_{2}$ where H_{1} is the union of components of H which satisfies that $d_{G-S}(x)=k-1$ for every vertex $x \in V\left(H_{1}\right)$ and $H_{2}=H-H_{1}$. By Lemma 2.2, H_{1} has a maximum independent set I_{1} and the covering set $C_{1}=V\left(H_{1}\right)-I_{1}$ such that

$$
\begin{equation*}
\left|V\left(H_{1}\right)\right| \leqslant\left(k-\frac{1}{k+1}\right)\left|I_{1}\right| \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|C_{1}\right| \leqslant\left(k-1-\frac{1}{k+1}\right)\left|I_{1}\right| . \tag{7}
\end{equation*}
$$

On the other hand, it is obvious that $\delta\left(H_{2}\right) \geqslant 1$ and $\Delta\left(H_{2}\right) \leqslant k-1$. Let $T_{j}=\left\{x \in V\left(H_{2}\right) \mid d_{G-S}(x)=j\right\}$ for $1 \leqslant j \leqslant k-1$. By the definition of H and H_{2} we can also see that each component of H_{2} has a vertex of degree at most $k-2$ in $G-S$. According to Lemma 2.3, H_{2} has a maximal independent set I_{2} and the covering set $C_{2}=V\left(H_{2}\right)-I_{2}$ such that

$$
\begin{equation*}
\sum_{j=1}^{k-1}(k-j) c_{j} \leqslant \sum_{j=1}^{k-1}(k-2)(k-j) i_{j} \tag{8}
\end{equation*}
$$

where $c_{j}=\left|C_{2} \cap T_{j}\right|$ and $i_{j}=\left|I_{2} \cap T_{j}\right|$ for every $j=1, \ldots, k-1$. Set $W=V(G)-S-T$ and $U=S \cup C_{1} \cup C_{2} \cup\left(N_{G}\left(I_{2}\right) \cap W\right)$. Then since $\left|C_{2}\right|+\mid\left(N_{G}\left(I_{2}\right) \cap W\right) \leqslant \sum_{j=1}^{k-1} j i_{j}$ we obtain

$$
\begin{equation*}
|U| \leqslant|S|+\left|C_{1}\right|+\sum_{j=1}^{k-1} j i_{j} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(G-U) \geqslant t_{0}+l+\left|I_{1}\right|+\sum_{j=1}^{k-1} i_{j} \tag{10}
\end{equation*}
$$

where $t_{0}=\left|T_{0}\right|$. Let $t(G)=t$. Then when $\omega(G-U)>1$, we have

$$
\begin{equation*}
|U| \geqslant t \omega(G-U) \tag{11}
\end{equation*}
$$

In addition, (11) also holds when $\omega(G-U)=1$ as by Lemma 2.1 for any $x \in T$,

$$
|U| \geqslant d_{G-S}(x)+|S| \geqslant d(x) \geqslant 2 t .
$$

By (9)-(11),

$$
|S|+\left|C_{1}\right|+\sum_{j=1}^{k-1} j i_{j} \geqslant t\left(t_{0}+l\right)+t\left|I_{1}\right|+t \sum_{j=1}^{k-1} i_{j}
$$

or

$$
\begin{equation*}
|S|+\left|C_{1}\right| \geqslant \sum_{j=1}^{k-1}(t-j) i_{j}+t\left(t_{0}+l\right)+t\left|I_{1}\right| \tag{12}
\end{equation*}
$$

From (5) we have

$$
k t_{0}+k l+\left|V\left(H_{1}\right)\right|+\sum_{j=1}^{k-1}(k-j) i_{j}+\sum_{j=1}^{k-1}(k-j) c_{j}>k|S| .
$$

Combining with (12) we have

$$
k t_{0}+k l+\left|V\left(H_{1}\right)\right|+\sum_{j=1}^{k-1}(k-j) i_{j}+\sum_{j=1}^{k-1}(k-j) c_{j}+k\left|C_{1}\right|>\sum_{j=1}^{k-1}(k t-k j) i_{j}+k t\left(t_{0}+l\right)+k t\left|I_{1}\right| .
$$

Thus

$$
\begin{align*}
\sum_{j=1}^{k-1}(k-j) c_{j}+\left|V\left(H_{1}\right)\right|+k\left|C_{1}\right| & >\sum_{j=1}^{k-1}(k t-k j-k+j) i_{j}+k(t-1)\left(t_{0}+l\right)+k t\left|I_{1}\right| \\
& \geqslant \sum_{j=1}^{k-1}(k t-k j-k+j) i_{j}+k t\left|I_{1}\right| . \tag{13}
\end{align*}
$$

By (6) and (7),

$$
\begin{align*}
\left|V\left(H_{1}\right)\right|+k\left|C_{1}\right| & \leqslant\left[k-\frac{1}{k+1}+k\left(k-1-\frac{1}{k+1}\right)\right]\left|I_{1}\right| \\
& =\left(k^{2}-1\right)\left|I_{1}\right| . \tag{14}
\end{align*}
$$

Using (8), (13) and (14), we have

$$
\sum_{j=1}^{k-1}(k-2)(k-j) i_{j}+\left(k^{2}-1\right)\left|I_{1}\right|>\sum_{j=1}^{k-1}(k t-k j-k+j) i_{j}+k t\left|I_{1}\right|
$$

Thus at least one of the following two cases must hold.
Case 1: There is at least one j such that

$$
(k-2)(k-j)>k t-k j-k+j .
$$

It follows that

$$
t<\frac{k^{2}-k+j}{k}
$$

But $j \leqslant(k-1)$, we have

$$
t<k-\frac{1}{k},
$$

contradicting to the toughness condition of Theorem 1.2.
Case 2: $k^{2}-1>k t$. In this case we have

$$
t<k-\frac{1}{k} .
$$

This also contradicts to the toughness condition of Theorem 1, completing the proof of the theorem.

Acknowledgement

The authors are indebted to anonymous referees for their comments and suggestions.

References

[1] R.P. Anstee, Simplified existence theorems for (g, f)-factors, Discrete Appl. Math. 27 (1990) 29-38.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
[3] V. Chvátal, Tough graphs and Hamiltonian circuits, Discrete Math. 5 (1973) 215-228.
[4] H. Enomoto, B. Jackson, P. Katerinis, A. Satio, Toughness and the existence of k-factors, J. Graph Theory 9 (1985) $87-95$.
[5] P. Katerinis, Toughness of graphs and the existence of factors, Discrete Math. 80 (1990) 81-92.
[6] G. Liu, L. Zhang, Fractional (g, f)-factors of graphs, Acta Math. Sci. 21 (4) (2001) 541-545.
[7] E.R. Scheinerman, D.H. Ullman, Fractional Graph Theory, Wiley, New York, 1997.

[^0]: This research is partially supported by NSFC (60673047) and SRFDP (20040422004) of China.

 * Corresponding author. Tel.: +86531 88363949; fax: +8653188364650.

 E-mail address: gzliu@sdu.edu.cn (G. Liu).

