

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 1741-1748

www.elsevier.com/locate/disc

Toughness and the existence of fractional *k*-factors of graphs $\stackrel{\text{transform}}{\to}$

Guizhen Liu^{a, *}, Lanju Zhang^b

^aSchool of Mathematics and System Science, Shandong University, Jinan 250100, PR China ^bBiostatistics and Data Management, Medimmune Inc., Gaithersburg, MD 20878, USA

Received 8 January 2003; received in revised form 6 August 2006; accepted 27 September 2006 Available online 25 April 2007

Abstract

The toughness of a graph G, t(G), is defined as $t(G) = \min\{|S|/\omega(G-S)|S \subseteq V(G), \omega(G-S) > 1\}$ where $\omega(G-S)$ denotes the number of components of G - S or $t(G) = +\infty$ if G is a complete graph. Much work has been contributed to the relations between toughness and the existence of factors of a graph. In this paper, we consider the relationship between the toughness and the existence of fractional k-factors. It is proved that a graph G has a fractional 1-factor if $t(G) \ge 1$ and has a fractional k-factor if $t(G) \ge k - 1/k$ where $k \ge 2$. Furthermore, we show that both results are best possible in some sense. © 2007 Published by Elsevier B.V.

MSC: 05C70

Keywords: Toughness; Fractional k-factor; Fractional matching

1. Introduction

The graphs considered here will be finite undirected graphs which may have multiple edges but no loops. We refer the readers to [2] for the terminologies not defined here. Let G be a graph. We use V(G) and E(G) to denote its vertex set and edge set, respectively. We use G[S] and G - S to denote the subgraph of G induced by S and V(G) - S, respectively, for $S \subseteq V(G)$ and $N_G(x)$ to denote the set of vertices adjacent to x in G. A subset S of V(G) is called a covering set (an independent set) of G if every edge of G is incident with at least (at most) one vertex of S. Let S and T be two disjoint subsets of V(G), we use E(S, T) to denote the set of edges with one end in S and the other end in T and set $S - S' = S \setminus S'$.

Let g and f be two integer-valued functions defined on V(G) with $g(x) \leq f(x)$ for any $x \in V(G)$. A subgraph F of G is called a (g, f)-factor if $g(x) \leq d_F(x) \leq f(x)$ holds for any vertex $x \in V(G)$. A (g, f)-factor is called an [a, b]-factor if $g(x) \equiv a$ and $f(x) \equiv b$. An [a, b]-factor is called a k-factor if a = b = k. Let $h : E(G) \to [0, 1]$ be a function. Let $k \geq 1$ be an integer. If $\sum_{e \geq x} h(e) = k$ holds for any vertex $x \in V(G)$, we call $G[F_h]$ a fractional k-factor of G with indicator function h where $F_h = \{e \in E(G) | h(e) > 0\}$. A fractional 1-factor is also called a fractional perfect matching [7].

* Corresponding author. Tel.: +86 531 88363949; fax: +86 531 88364650.

E-mail address: gzliu@sdu.edu.cn (G. Liu).

0012-365X/\$ - see front matter @ 2007 Published by Elsevier B.V. doi:10.1016/j.disc.2006.09.048

 $^{^{\}ddagger}$ This research is partially supported by NSFC (60673047) and SRFDP (20040422004) of China.

A graph is *t*-tough if for any $S \subseteq V(G)$ and $\omega(G - S) > 1$, we have

 $|S| \ge t\omega(G-S)$

holds where $\omega(G - S)$ denotes the number of components of (G - S). A complete graph is *t*-tough for any positive real number *t*. If *G* is not complete, there exists the largest *t* such that *G* is *t*-tough. This number is denoted by t(G) and is called the toughness of *G*. We define $t(K_n) = +\infty$. If *G* is not complete,

$$t(G) = \min\left\{\frac{|S|}{\omega(G-S)} \middle| S \subseteq V(G) \text{ and } \omega(G-S) \ge 2\right\}$$

The toughness of a graph was first introduced by Chvátal in [3]. Since then, much work has been contributed to the relations between toughness and the existence of factors of a graph. The most famous result is that of [4] which confirms a conjecture stated by Chvátal. Its main result is the following Lemma.

Lemma 1.1. Let G be a graph. If G is k-tough, $|V(G)| \ge k + 1$ and k|V(G)| is even, then G has a k-factor.

The result is sharp since for any positive real number ε , there exists a graph G that has no k-factor with $t(G) \ge k - \varepsilon$ [4]. Katerinis considered toughness and the existence of [a, b]-factors in [5]. In this paper we discuss the relationship between toughness and the existence of fractional k-factors. In [1] Anstee gave a necessary and sufficient condition for a graph to have a fractional (g, f)-factor for which we gave a new proof. The following result can be found in [6].

Lemma 1.2. Let $k \ge 1$ be an integer. A graph G has a fractional k-factor if and only if for any subset S of V(G),

$$k|T| - d_{G-S}(T) \leqslant k|S|, \tag{1}$$

where $T = \{x \in V(G) - S | d_{G-S}(x) \leq k-1\}$ and $d_{G-S}(T) = \sum_{x \in T} d_{G-S}(x)$.

In particular, for k = 1, we have the following result.

Lemma 1.3 (Scheinerman and Ullman [7]). A graph G has a fractional perfect matching if and only if for any $S \subseteq V(G)$,

$$i(G-S) \leqslant |S|,\tag{2}$$

where $i(G - S) = |\{x \in V(G) - S | d_{G-S}(x) = 0\}|.$

Our main results are the following two theorems.

Theorem 1.1. Let G be a connected graph with $|V(G)| \ge 2$. Then G has a fractional perfect matching if $t(G) \ge 1$.

Theorem 1.2. Let $k \ge 2$ be an integer. A graph G with $|V(G)| \ge (k+1)$ has a fractional k-factor if $t(G) \ge k - 1/k$.

The result in Theorem 1.1 is sharp. To see this, consider the graph $G_1 = K_m \vee (m+1)K_1$ where \vee means "join" and *m* is an arbitrary positive integer. It is easy to find out that $t(G_1) = m/(m+1) < 1$ and (1) does not hold if we let $S = V(K_m)$. By Lemma 1.3 G_1 has no fractional perfect matching. But $t(G_1) \to 1$ when $m \to +\infty$.

To see Theorem 1.2 is also sharp, we construct the following graph G_k : $V(G_k) = A \cup B \cup C$ where A, B and C are disjoint with |A| = |B| = (nk + 1)(k - 1), and |C| = n(k - 1). Both A and C are cliques in G_k , while B is isomorphic to $(nk + 1)K_{k-1}$. Other edges in G_k are a perfect matching between A and B and all the pairs between B and C. If k = 2, let $S = (A - \{u\}) \cup C$ where $u \in A$, then |S| = 3n and $\omega(G - S) = 2n + 1$; if $k \ge 3$, let $S = (A - \{u\}) \cup \{v\} \cup C$ where $u \in A$ and $v \in B$ is matched to u in G_k . Then |S| = (nk + n + 1)(k - 1) and $\omega(G - S) = nk + 2$. This follows that

$$t(G_k) = \begin{cases} \frac{3n}{2n+1} & \text{if } k = 2, \\ \frac{(nk+n+1)(k-1)}{nk+2} & \text{if } k \ge 3. \end{cases}$$

But (1) does not hold if we let S = C. Thus by Lemma 1.2 G_k has no fractional k-factor. It is easy to see that $t(G_k)$ can be made arbitrarily close to k - 1/k when n is large enough. In this sense, the result in Theorem 1.2 is also sharp.

Remark. A graph *G* that satisfies the condition of Theorem 1.1 has 1-factors if |V(G)| is even by Lemma 1.1. However, a graph *G* that satisfies the conditions of Theorem 1.2 does not necessarily have a *k*-factor even if k|V(G)| is even [4].

2. Proofs of theorems

At first let us prove Theorem 1.1.

Proof of Theorem 1.1. If *G* is complete, obviously *G* has a fractional perfect matching as $|V(G)| \ge 2$. In the following we assume that *G* is not complete. Suppose that *G* satisfies the conditions in Theorem 1.1, but *G* has no fractional perfect matching. From Lemma 1.3, there exists a subset *S* of V(G) such that

$$i(G-S) > |S|.$$

Since G is connected, $S \neq \emptyset$. Thus $i(G - S) \ge 2$. Then

$$t(G) \leqslant \frac{|S|}{\omega(G-S)} \leqslant \frac{|S|}{i(G-S)} < 1$$

contradicting to $t(G) \ge 1$. \Box

To prove Theorem 1.2, we need the following Lemmas.

Lemma 2.1 (*Chvátal* [3]). If a graph G is not complete, then $t(G) \leq \frac{1}{2}\delta(G)$.

Lemma 2.2. Let G be a graph and let H = G[T] such that $d_G(x) = k - 1$ for every $x \in V(H)$ and no component of H is isomorphic to K_k where $T \subseteq V(G)$ and $k \ge 2$. Then there exists an independent set I and the covering set C = V(H) - I of H satisfying

$$|V(H)| \leq \left(k - \frac{1}{k+1}\right)|I| \tag{3}$$

and

$$|C| \leqslant \left(k - 1 - \frac{1}{k+1}\right)|I|. \tag{4}$$

Proof. Suppose that *H* has *m* components. For each component H_n , let I_n be a maximum independent set of H_n . First we claim that for each vertex $x \in I_n$ and $d_{H_n}(x) = k - 1$, there exists a vertex $y \in I_n - \{x\}$ such that $N_{H_n}(x) \cap N_{H_n}(y) \neq \emptyset$. For this, we show that $H_n[N_{H_n}(x)]$ is not complete. Otherwise, $H'_n = H_n[\{x\} \cup N_{H_n}(x)]$ is isomorphic to K_k . Since H_n is connected and for every vertex $x \in V(H_n)$, $d_{H_n}(x) \leqslant k - 1$, it follows that $H_n = H'_n$, which contradicts to that H_n is not isomorphic to K_k . Now if for any $y \in I_n - \{x\}$, $N_{H_n}(x) \cap N_{H_n}(y) = \emptyset$, then $E(\{x\} \cup N_{H_n}(x), I_n - \{x\}) = \emptyset$. Let x' and y' be two vertices in $H_n[N_{H_n}(x)]$ that are not adjacent. Then $(I_n - \{x\}) \cup \{x', y'\}$ will be an independent set of H_n , contradicting to that I_n is a maximum independent set of H_n . So what we desire follows. Let $I'_n = \{x | x \in I_n \text{ and } d_{H_n}(x) = k - 1\}$ and $I''_n = I_n - I'_n$. Then for every $x \in I''_n$, $d_{H_n}(x) \leqslant k - 2$. Note that both of I'_n and I''_n are independent sets of H_n . Since for every vertex $x \in I'_n$, $d_{H_n}(x) = k - 1$, and for every $x \in I''_n$, $d_{H_n}(x) \leqslant k - 2$, where $k \ge 2$, by the above claim we have the following inequality:

$$|V(H_n)| \leq k|I'_n| - \left\lceil \frac{|I'_n|}{2} \right\rceil + (k-1)|I''_n| \leq k|I_n| - \left\lceil \frac{|I_n|}{2} \right\rceil \leq \left(k - \frac{1}{k+1}\right)|I_n|$$

for each n = 1, ..., m. Let $I = \bigcup_{n=1}^{m} I_n$, Then $|I| = \sum_{n=1}^{m} |I_n|$ and I is a maximum independent set of H. Thus

$$|V(H)| = \sum_{n=1}^{m} |V(H_n)| \leq \sum_{n=1}^{m} \left(k - \frac{1}{k+1}\right) |I_n| = \left(k - \frac{1}{k+1}\right) |I|$$

which is inequality (3). Let C = V(H) - I. Then |C| = |V(H)| - |I| and the result (4) follows easily from (3). The proof is completed. \Box

The following Lemma 2.3 is similar to Lemma 5 of [5]. However, it has been strengthened not only in its conditions but also in its result.

Lemma 2.3. Let G be a graph and let H = G[T] such that $\delta(H) \ge 1$ and $1 \le d_G(x) \le k - 1$ for every $x \in V(H)$ where $T \subseteq V(G)$ and $k \ge 2$. Let T_1, \ldots, T_{k-1} be a partition of the vertices of H satisfying $d_G(x) = j$ for each $x \in T_j$ where we allow some T_j to be empty. If each component of H has a vertex of degree at most k - 2 in G, then H has a maximal independent set I and a covering set C = V(H) - I such that

$$\sum_{j=1}^{k-1} (k-j)c_j \leqslant \sum_{j=1}^{k-1} (k-2)(k-j)i_j,$$

where $c_j = |C \cap T_j|$ and $i_j = |I \cap T_j|$ for every $j = 1, \ldots, k-1$.

Proof. Since $\delta(H) \ge 1$ and each component of *H* has a vertex of degree at most k - 2 in *G*, we have $k \ge 3$. We prove the lemma by induction on |V(H)|. If |V(H)| = 2, then *H* is isomorphic to K_2 . Let $V(H) = \{x, y\}$ and suppose $x \in T_{i_0}$ and $y \in T_{i_0}$. We may assume $i_0 \le j_0$. Let $I = \{x\}$ and $C = V(H) - \{x\} = \{y\}$. Then

$$\sum_{j=1}^{k-1} (k-j)c_j = k - j_0 \leqslant k - i_0 \leqslant (k-2)(k-i_0) = \sum_{j=1}^{k-1} (k-2)(k-j)i_j$$

and the result follows. Now we assume that the result holds when |V(H)| < L. Now we consider $|V(H)| = L \ge 3$. Let $m = \min\{j | T_j \neq \emptyset\}$. Then $1 \le m \le k - 2$. Take any $y \in T_m$. Then $H - (\{y\} \cup N_H(y))$ may have some isolated vertices in *H*. Let I'' be the set of *y* and these isolated vertices. Now let $H' = H - (I'' \cup N_H(y))$. If $x \in I'' - \{y\}$, then we can see that $d_H(x) \le d_H(y)$ and $d_G(x) \ge d_G(y)$ by the definition of I'' and *m*.

If |V(H')| = 0, put I = I'' and $C = V(H) - I = N_H(y)$. Note that $T_j = \emptyset$ and $i_j = 0$ for j < m. Since |V(H')| = 0, we have

$$\sum_{j=m}^{k-1} c_j \leqslant m.$$

Thus

$$\sum_{j=1}^{k-1} (k-j)c_j \leq \sum_{j=m}^{k-1} (k-m)c_j$$

= $(k-m) \sum_{j=m}^{k-1} c_j \leq (k-m)m$
 $\leq (k-2)(k-m) \leq \sum_{j=1}^{k-1} (k-2)(k-j)i_j$

Obviously *I* is a maximal independent set of *H*.

So we suppose that $|V(H')| \neq 0$ or $V(H) \neq I'' \cup N_H(y)$. Note that if a vertex v is only adjacent to $N_H(y)$, then v is in $(I'' - \{y\})$. If vertex v is adjacent to a vertex $u \in (I'' - \{y\})$, then u is not an isolated vertex of $H - (\{y\} \cup N_H(y))$ in H. This contradicts to that $u \in (I'' - \{y\})$. Thus it follows that $\delta(H') \ge 1$. Clearly $\Delta(H') \le k - 1$. It is obvious that $|V(H')| \ge 2$. From the definition of H' and $\Delta(H) \le k - 1$ we can also see that each component of H' has a vertex of degree at most k - 2 in G as follows. If a component H_0 of H' is also a component of H, clearly, H_0 has a vertex of degree at most k - 2 by the hypothesis. Otherwise, a component H_0 of H' is not a component of H. Then H_0 is a component of $H_1 - (I'' \cup N_H(y))$ where H_1 is a component of H. Note that there are at least one edge e = uv

joining H_0 and $I'' \cup N_H(y)$ in H_1 . We may assume that vertex v is in H_0 . Since $d_G(x) \leq k - 1$ for every vertex x of H_0 , $d_G(v) \leq k - 1$. Thus vertex v is adjacent to at most k - 2 vertices in H_0 . It is easy to see that H_0 must have a vertex of degree at most k - 2. Let $T'_j = T_j \cap V(H')$. Since |V(H')| < L, by induction hypothesis, there exists a maximal independent set I' and a covering set C' = V(H') - I' of H' such that

$$\sum_{j=1}^{k-1} (k-j)c'_j \leqslant \sum_{j=1}^{k-1} (k-2)(k-j)i'_j,$$

where $i'_j = |I' \cap T'_j|$ and $c'_j = |C' \cap T'_j|$. Now let $I = I' \cup I''$ and $C = V(H) - I = C' \cup N_H(y)$. Obviously, *I* is a maximal independent set of *H*. Then

$$\sum_{j=1}^{k-1} (k-2)(k-j)i_j \ge \sum_{j=1}^{k-1} (k-2)(k-j)i'_j + m(k-m)$$
$$\ge \sum_{j=1}^{k-1} (k-j)c'_j + m(k-m).$$

Since $d_G(y) \leq m$ and $m = \min\{j | T_j \neq \phi\}$, we have

$$\sum_{j=1}^{k-1} (k-j)c_j \leqslant \sum_{j=1}^{k-1} (k-j)c'_j + m(k-m)$$

Thus

$$\sum_{j=1}^{k-1} (k-j)c_j \leqslant \sum_{j=1}^{k-1} (k-2)(k-j)i_j$$

completing the proof. \Box

Proof of Theorem 1.2. If *G* is complete, since $|V(G)| \ge k + 1$, obviously, *G* has a fractional *k*-factor. In the following we assume that *G* is not complete. Suppose that *G* satisfies the conditions of Theorem 1.2, but has no fractional *k*-factors. From Lemma 1.2 there exists a subset *S* of V(G) such that

$$k|T| - d_{G-S}(T) > k|S|,$$
(5)

where $T = \{x \in V(G) - S | d_{G-S}(x) \le k - 1\}$. By Lemma 2.1, we have $\delta(G) \ge 2t(G) \ge 2k - 2/k \ge k + 1$. Therefore $S \ne \emptyset$ by (5). Let *l* be the number of the components of H' = G[T] which are isomorphic to K_k and let $T_0 = \{x \in V(H') | d_{G-S}(x) = 0\}$. Let *H* be the subgraph obtained from $H' - T_0$ by deleting those *l* components isomorphic to K_k . If |V(H)| = 0, then from (5) we obtain

$$k|T_0| + lk > k|S|$$

or

$$1 \leq |S| < |T_0| + l.$$

Hence $\omega(G-S) \ge l + |T_0| > 1$ and

$$t(G) \leq \frac{|S|}{\omega(G-S)} = \frac{|S|}{l+|T_0|} < 1.$$

This contradicts that $t(G) \ge k - 1/k \ge \frac{3}{2}$.

Now we consider that |V(H)| > 0 and $\delta(H) \ge 1$. Let $H = H_1 \cup H_2$ where H_1 is the union of components of H which satisfies that $d_{G-S}(x) = k - 1$ for every vertex $x \in V(H_1)$ and $H_2 = H - H_1$. By Lemma 2.2, H_1 has a maximum independent set I_1 and the covering set $C_1 = V(H_1) - I_1$ such that

$$|V(H_1)| \leqslant \left(k - \frac{1}{k+1}\right)|I_1| \tag{6}$$

and

$$|C_1| \leq \left(k - 1 - \frac{1}{k+1}\right) |I_1|.$$
 (7)

On the other hand, it is obvious that $\delta(H_2) \ge 1$ and $\Delta(H_2) \le k-1$. Let $T_j = \{x \in V(H_2) | d_{G-S}(x) = j\}$ for $1 \le j \le k-1$. By the definition of *H* and H_2 we can also see that each component of H_2 has a vertex of degree at most k-2 in G-S. According to Lemma 2.3, H_2 has a maximal independent set I_2 and the covering set $C_2 = V(H_2) - I_2$ such that

$$\sum_{j=1}^{k-1} (k-j)c_j \leqslant \sum_{j=1}^{k-1} (k-2)(k-j)i_j,$$
(8)

where $c_j = |C_2 \cap T_j|$ and $i_j = |I_2 \cap T_j|$ for every j = 1, ..., k-1. Set W = V(G) - S - T and $U = S \cup C_1 \cup C_2 \cup (N_G(I_2) \cap W)$. Then since $|C_2| + |(N_G(I_2) \cap W) \leq \sum_{j=1}^{k-1} ji_j$ we obtain

$$|U| \leq |S| + |C_1| + \sum_{j=1}^{k-1} j i_j \tag{9}$$

and

$$\omega(G-U) \ge t_0 + l + |I_1| + \sum_{j=1}^{k-1} i_j, \tag{10}$$

where $t_0 = |T_0|$. Let t(G) = t. Then when $\omega(G - U) > 1$, we have

$$|U| \ge t\omega(G-U). \tag{11}$$

In addition, (11) also holds when $\omega(G - U) = 1$ as by Lemma 2.1 for any $x \in T$,

$$|U| \ge d_{G-S}(x) + |S| \ge d(x) \ge 2t.$$

By (9)–(11),

$$|S| + |C_1| + \sum_{j=1}^{k-1} ji_j \ge t(t_0 + l) + t|I_1| + t\sum_{j=1}^{k-1} i_j$$

or

$$|S| + |C_1| \ge \sum_{j=1}^{k-1} (t-j)i_j + t(t_0+l) + t|I_1|.$$
(12)

From (5) we have

$$kt_0 + kl + |V(H_1)| + \sum_{j=1}^{k-1} (k-j)i_j + \sum_{j=1}^{k-1} (k-j)c_j > k|S|.$$

Combining with (12) we have

$$kt_0 + kl + |V(H_1)| + \sum_{j=1}^{k-1} (k-j)i_j + \sum_{j=1}^{k-1} (k-j)c_j + k|C_1| > \sum_{j=1}^{k-1} (kt-kj)i_j + kt(t_0+l) + kt|I_1|.$$

Thus

$$\sum_{j=1}^{k-1} (k-j)c_j + |V(H_1)| + k|C_1| > \sum_{j=1}^{k-1} (kt - kj - k + j)i_j + k(t-1)(t_0 + l) + kt|I_1|$$

$$\geq \sum_{j=1}^{k-1} (kt - kj - k + j)i_j + kt|I_1|.$$
(13)

By (6) and (7),

$$|V(H_1)| + k|C_1| \leq \left[k - \frac{1}{k+1} + k\left(k - 1 - \frac{1}{k+1}\right)\right] |I_1|$$

= $(k^2 - 1)|I_1|.$ (14)

Using (8), (13) and (14), we have

$$\sum_{j=1}^{k-1} (k-2)(k-j)i_j + (k^2-1)|I_1| > \sum_{j=1}^{k-1} (kt-kj-k+j)i_j + kt|I_1|.$$

Thus at least one of the following two cases must hold. *Case* 1: There is at least one *j* such that

$$(k-2)(k-j) > kt - kj - k + j.$$

It follows that

$$t < \frac{k^2 - k + j}{k}.$$

But $j \leq (k-1)$, we have

$$t < k - \frac{1}{k},$$

contradicting to the toughness condition of Theorem 1.2. Case 2: $k^2 - 1 > kt$. In this case we have

$$t < k - \frac{1}{k}.$$

This also contradicts to the toughness condition of Theorem 1, completing the proof of the theorem. \Box

Acknowledgement

The authors are indebted to anonymous referees for their comments and suggestions.

References

[1] R.P. Anstee, Simplified existence theorems for (g, f)-factors, Discrete Appl. Math. 27 (1990) 29–38.

^[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.

- [3] V. Chvátal, Tough graphs and Hamiltonian circuits, Discrete Math. 5 (1973) 215–228.
- [4] H. Enomoto, B. Jackson, P. Katerinis, A. Satio, Toughness and the existence of k-factors, J. Graph Theory 9 (1985) 87–95.
- [5] P. Katerinis, Toughness of graphs and the existence of factors, Discrete Math. 80 (1990) 81–92.
- [6] G. Liu, L. Zhang, Fractional (g, f)-factors of graphs, Acta Math. Sci. 21 (4) (2001) 541–545.
- [7] E.R. Scheinerman, D.H. Ullman, Fractional Graph Theory, Wiley, New York, 1997.