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Abstract

The toughness of a graph G, ¢ (G), is defined as 1 (G) = min{|S|/®w(G — S)|S € V(G), (G — S) > 1} where (G — §) denotes
the number of components of G — S or 1(G) = +o0 if G is a complete graph. Much work has been contributed to the relations
between toughness and the existence of factors of a graph. In this paper, we consider the relationship between the toughness and
the existence of fractional k-factors. It is proved that a graph G has a fractional 1-factor if 7(G) > 1 and has a fractional k-factor if
t(G) >k — 1/k where k > 2. Furthermore, we show that both results are best possible in some sense.
© 2007 Published by Elsevier B.V.
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1. Introduction

The graphs considered here will be finite undirected graphs which may have multiple edges but no loops. We refer
the readers to [2] for the terminologies not defined here. Let G be a graph. We use V (G) and E(G) to denote its vertex
set and edge set, respectively. We use G[S] and G — S to denote the subgraph of G induced by S and V(G) — S,
respectively, for § € V(G) and Ng(x) to denote the set of vertices adjacent to x in G. A subset S of V(G) is called a
covering set (an independent set) of G if every edge of G is incident with at least (at most) one vertex of S. Let S and
T be two disjoint subsets of V(G), we use E(S, T) to denote the set of edges with one end in § and the other end in T’
and set § — ' = S\S'.

Let g and f be two integer-valued functions defined on V (G) with g(x) < f(x) for any x € V(G). A subgraph
F of G is called a (g, f)-factor if g(x) <dr(x)< f(x) holds for any vertex x € V(G). A (g, f)-factor is called an
[a, b]-factor if g(x) = a and f(x) = b. An [a, b]-factor is called a k-factorifa =b =k.Leth : E(G) — [0, 1] be a
function. Let k> 1 be an integer. If ) e /1(€) = k holds for any vertex x € V(G), we call G[F},] a fractional k-factor
of G with indicator function 2 where Fj, = {e € E(G)|h(e) > 0}. A fractional 1-factor is also called a fractional perfect
matching [7].
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A graph is t-tough if for any S C V(G) and (G — §) > 1, we have
IS|Zt(G - S)

holds where (G — S) denotes the number of components of (G — S). A complete graph is #-tough for any positive
real number ¢. If G is not complete, there exists the largest ¢ such that G is t-tough. This number is denoted by #(G) and
is called the toughness of G. We define 7 (K, ) = 4o00. If G is not complete,

||

S CV(G) and o(G — 5)22}.

The toughness of a graph was first introduced by Chvétal in [3]. Since then, much work has been contributed to the
relations between toughness and the existence of factors of a graph. The most famous result is that of [4] which confirms
a conjecture stated by Chvatal. Its main result is the following Lemma.

Lemma 1.1. Let G be a graph. If G is k-tough, |V(G)| >k 4+ 1 and k|V (G)| is even, then G has a k-factor.

The result is sharp since for any positive real number ¢, there exists a graph G that has no k-factor with 1 (G) >k — ¢
[4]. Katerinis considered toughness and the existence of [a, b]-factors in [5]. In this paper we discuss the relationship
between toughness and the existence of fractional k-factors. In [1] Anstee gave a necessary and sufficient condition for
a graph to have a fractional (g, f)-factor for which we gave a new proof. The following result can be found in [6].

Lemma 1.2. Let k> 1 be an integer. A graph G has a fractional k-factor if and only if for any subset S of V (G),
kIT| = dg-s(T) <klS], ey
where T ={x € V(G) — Sldg-s(x)<k — 1} and dG_s(T) =) . cydG—s(x).
In particular, for k = 1, we have the following result.
Lemma 1.3 (Scheinerman and Ullman [7]). A graph G has a fractional perfect matching if and only if for any
S < V(G),
(G —9)<IS, @)
where i(G — S) = |{x € V(G) — S|dg_s(x) = 0}].

Our main results are the following two theorems.
Theorem 1.1. Let G be a connected graph with |V (G)| > 2. Then G has a fractional perfect matching if t (G) > 1.
Theorem 1.2. Let k >2 be an integer. A graph G with |V (G)| = (k + 1) has a fractional k-factor if t (G) >k — 1/k.

The result in Theorem 1.1 is sharp. To see this, consider the graph G| = K,,, V (m + 1)K where vV means “join”
and m is an arbitrary positive integer. It is easy to find out that #(G1) =m/(m + 1) < 1 and (1) does not hold if we let
S = V(K;). By Lemma 1.3 G has no fractional perfect matching. But #(G1) — | when m — 4-o00.

To see Theorem 1.2 is also sharp, we construct the following graph G;: V(Gx) = AU B U C where A, B and C are
disjoint with |A| = |B| = (nk+ 1)(k — 1), and |C| =n(k — 1). Both A and C are cliques in G, while B is isomorphic to
(nk + 1)Ky —_1. Other edges in G are a perfect matching between A and B and all the pairs between B and C. If k =2,
let S=(A—{u})UC whereu € A, then |S|=3nand w(G — S)=2n+1;ifk>3,let S = (A — {u}) U {v} U C where
u € A and v € B is matched to u in Gg. Then |S| = (nk +n + 1)(k — 1) and w(G — S) = nk 4 2. This follows that

3n

S it k=2,
_ n
1O =1 (nk +n+ Dk — 1)

nk +2

if k>3.
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But (1) does not hold if we let S = C. Thus by Lemma 1.2 G has no fractional k-factor. It is easy to see that # (G) can
be made arbitrarily close to k — 1/k when n is large enough. In this sense, the result in Theorem 1.2 is also sharp.

Remark. A graph G that satisfies the condition of Theorem 1.1 has 1-factors if |V (G)| is even by Lemma 1.1. However,
a graph G that satisfies the conditions of Theorem 1.2 does not necessarily have a k-factor even if k|V (G)| is even [4].

2. Proofs of theorems
At first let us prove Theorem 1.1.
Proof of Theorem 1.1. If G is complete, obviously G has a fractional perfect matching as |V (G)| > 2. In the following

we assume that G is not complete. Suppose that G satisfies the conditions in Theorem 1.1, but G has no fractional
perfect matching. From Lemma 1.3, there exists a subset S of V (G) such that

i(G—-395)>|S|
Since G is connected, S # (. Thus i (G — S) >2. Then
S S
HG)< [S] - S|

< <
o(G-=S8) i(G-235)
contradicting to #(G)>1. O

To prove Theorem 1.2, we need the following Lemmas.
Lemma 2.1 (Chvdtal [3]). If a graph G is not complete, then t (G) < %5(G).
Lemma 2.2. Let G be a graph and let H = G[T] such that dg(x) =k — 1 for every x € V(H) and no component

of H is isomorphic to Ky where T C V(G) and k >2. Then there exists an independent set I and the covering set
C =V (H) — I of H satisfying

1
|V(H)|<<k—m>|1| 3)
and
1
|C|<<k—1—m) |1]. 4)

Proof. Suppose that H has m components. For each component H,,, let I,, be a maximum independent set of H,, . First we
claim that for each vertex x € I, and dp, (x) =k — 1, there exists a vertex y € I, —{x} such that Ny, (x) NNy, (y) # 9.
For this, we show that H, [ N, (x)] is not complete. Otherwise, H, = H,[{x}U Ny, (x)] is isomorphic to K. Since H,, is
connected and for every vertex x € V(H,), dy, (x) <k — 1, it follows that H,, = H,, which contradicts to that H,, is not
isomorphic to K. Now if forany y € 1, —{x}, Ng, (x)N\Ng, (y) =0, then E({x}UNg, (x), I, —{x})=¥.Letx" and y’ be
two vertices in H, [N g, (x)] that are not adjacent. Then (1, — {x}) U{x’, y"}will be an independent set of H,,, contradicting
to that 7, is a maximum independent set of H,. So what we desire follows. Let I, = {x|x € I, and dp, (x) =k — 1}
and ]/ =1, — 1. Then for every x € I, dg, (x) <k — 2. Note that both of I, and I,/ are independent sets of H,,. Since
for every vertex x € I, dp, (x) =k — 1, and for every x € I/, dp, (x) <k — 2, where k >2, by the above claim we
have the following inequality:

wei<mn— L - nigi<rnn - [ 2 < (k- L) i)
" 2 " 2 k+1
foreachn=1,...,m.Let I =J,_,I,, Then [I| =>,"_,|I,| and I is a maximum independent set of H. Thus

m m 1 1
VH)| =) IVH)I< Y (k— m) nl = (k_ k+ 1) !

n=1 n=1
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which is inequality (3). Let C = V(H) — I. Then |C| = |V (H)| — |I| and the result (4) follows easily from (3). The
proof is completed. [

The following Lemma 2.3 is similar to Lemma 5 of [5]. However, it has been strengthened not only in its conditions
but also in its result.

Lemma 2.3. Let G be a graph and let H = G[T] such that 5(H) > 1 and 1 <dg(x) <k — 1 for every x € V(H) where
T CV(G)andk>2. Let Ty, ..., Tx—1 be a partition of the vertices of H satisfying dg(x) = j for each x € T; where
we allow some T to be empty. If each component of H has a vertex of degree at most k — 2 in G, then H has a maximal
independent set I and a covering set C = V(H) — I such that

k—1 k—1
D k= jre <Yk =2y — i,
j=1 j=1

where c; =|CNTjlandi; = |1 NTj|forevery j=1,...,k—1.

Proof. Since 6(H)>1 and each component of H has a vertex of degree at most k — 2 in G , we have k > 3. We prove
the lemma by induction on |V (H)|. If |V (H)| =2, then H is isomorphic to K. Let V(H) = {x, y} and suppose x € T},
and y € Tj,. We may assume ig < jo. Let / = {x} and C = V(H) — {x} = {y}. Then

k—1 k—1
Y k= jrej=k—jo<k —io<(k—2)(k —io) =Y _ (k—2)(k — j)i
Jj=1 j=I1

and the result follows. Now we assume that the result holds when |V (H)| < L. Now we consider |V (H)| = L >3. Let
m=min{j|T; # @}. Then 1 <m <k —2.Takeany y € T,,. Then H — ({y} U Ny (y)) may have some isolated vertices
in H. Let I” be the set of y and these isolated vertices. Now let H' = H — (I" U Ny (y)). If x € I” — {y}, then we can
see that dy (x) <dpg (y) and dg (x) >dg(y) by the definition of I and m.

If [V(H')|=0,put I =1"and C =V (H) — I = Ny (y). Note that Tj =@ and i } = 0 for j <m. Since |V (H')| =0,
we have

k—1
chgm.
j=m

Thus
k—1 k—1
Yo k= e < Y (k—me
j=1 j=m
k—1
=(k—m) Y c;<(k—m)m
j=m
k—1
Sk =2k =m)< Y~ (k=2 — ij.
j=I1

Obviously 7 is a maximal independent set of H.

So we suppose that |[V(H')| # 0 or V(H) # I" U Ny (y). Note that if a vertex v is only adjacent to Ny (y), then v
isin (I"” — {y}). If vertex v is adjacent to a vertex u € (I” — {y}), then u is not an isolated vertex of H — ({y}U Ny (y))
in H. This contradicts to that u € (I” — {y}). Thus it follows that (H") > 1. Clearly A(H") <k — 1. It is obvious that
|V (H")| >2. From the definition of H' and 4(H) <k — 1 we can also see that each component of H' has a vertex of
degree at most k — 2 in G as follows. If a component Hy of H’ is also a component of H, clearly, Hy has a vertex
of degree at most k — 2 by the hypothesis. Otherwise, a component Hy of H’ is not a component of H. Then Hy is
a component of H; — (I” U Ny (y)) where H; is a component of H. Note that there are at least one edge ¢ = uv
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joiningHy and I” U Ny (y) in Hy. We may assume that vertex v is in Hy. Since dg (x) <k — 1 for every vertex x of H,
dg(v) <k — 1. Thus vertex v is adjacent to at most k — 2 vertices in Hp. It is easy to see that Hy must have a vertex
of degree at most k — 2. Let ij =T; N V(H'). Since |V (H')| < L, by induction hypothesis, there exists a maximal
independent set I’ and a covering set C' = V(H') — I’ of H' such that

k—1 k—1
D k= <Dk =2k — i,
Jj=1 Jj=1

where i} =|I'N T]f| and c} =|C'nN T]f|. Nowlet I =1'"UI"and C =V (H) — I = C' U Ny (y). Obviously, I is a
maximal independent set of H. Then

k—1 k—1
D k== pij= Yk =2k = )i +m(k —m)
j=1 j=1

k—1

> (k= ey +mk —m).
j=1

Since dg (y) <m and m = min{j|T; # ¢}, we have

k—1 k—1
Yo k= ep< Y (k= e +mk —m).

j=1 j=1

Thus
k—1 k-1
D k= j)e; <Y (k= 2)k — jij
j=1 j=1

completing the proof. [J

Proof of Theorem 1.2. If G is complete, since |V (G)| >k + 1, obviously, G has a fractional k-factor. In the following
we assume that G is not complete. Suppose that G satisfies the conditions of Theorem 1.2 , but has no fractional
k-factors. From Lemma 1.2 there exists a subset S of V(G) such that

kIT| —dg-s(T) > k|S|, ®)

where T = {x € V(G) — S|dg—s(x) <k — 1}. By Lemma 2.1, we have (G) >2t(G) >2k — 2/k >k + 1. Therefore

S # @ by (5). Let I be the number of the components of H' = G[T] which are isomorphic to Kj and let Ty = {x €

V(H")|dg_s(x)=0}. Let H be the subgraph obtained from H' — Ty by deleting those / components isomorphic to K.
If |V(H)| =0, then from (5) we obtain

k|To| + 1k > k|S|
or
1<IS| <[Tol + .
Hence (G — S)>1 + |Tp| > 1 and

N

1(G)< = <1
o(G—S)  1+|Tyl

This contradicts that £ (G) >k — 1/k>3.
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Now we consider that |V (H)| >0and 6(H) > 1. Let H = H U H, where H; is the union of components of H which
satisfies that dg_s(x) = k — 1 for every vertex x € V(H;) and Hy = H — Hj. By Lemma 2.2, H; has a maximum
independent set /1 and the covering set C1 = V (Hp) — I; such that

1
[V (HD)|< (k_m)uﬂ (6)
and
1
|C1|<(k—l—k+—1>|11|- (7

On the other hand, itis obvious that 6(H>) > 1 and A(Hp) <k—1.LetTj={x € V(H)|dg_s(x)=j}for 1 <j<k—1.
By the definition of H and H» we can also see that each component of Hj has a vertex of degree at mostk —2in G — S.
According to Lemma 2.3, H> has a maximal independent set /> and the covering set Co = V (H3) — I such that

k—1 k—1
Y k= ;<Y k= 2)k = jij, ®)
j=1 j=1

where cj=|C,NTj|andi;=|I,NTj|forevery j=1,...,k—1.Set W=V (G)—S—T and U=SUCUCLU(Ng (I2)NW).

Then since |Ca| + |(Ng (I) N W) < YZ} ji ; we obtain

k—1
UIISI+ICI+ ) i ©)
j=1
and
k—1
(G —U)=to+1+ 11|+ i), (10)
j=1
where g = |Tp|. Let 1 (G) = t. Then when w(G — U) > 1, we have
|U|>to(G — U). (11

In addition, (11) also holds when w(G — U) =1 as by Lemma 2.1 for any x € T,
[U|Z2dg-s(x) + S| =d(x) =2t

By (9)~(11),
k—1 k—1
ISI+ICH+ Y jij=tto+D +1lh]+1 ) i
j=1 J=1
or
k—1
ISI+1C11= Y (¢ = pij+ 1o+ 1) +111]. (12)
j=1

From (5) we have
k—1 k—1
kto + kI + |V (H) + D (k= j)ij+ Y (k= j)cj > kS|,
j=1 j=1
Combining with (12) we have

k—1 k—1 k—1
kto + kL + |VH) + D (k= j)ij+ > (k= j)cj +k|Ci|> Y (kt —kj)ij +ki(to + 1) + ke |1, .
j=1 j=1 j=1
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Thus
k—1 k—1
2:&—jkaVUﬁN+HCH>E:wﬁ—w—k+jMA%ﬁ—4Xm+D+%ﬂm
j=1 j=1
k—1
> Z(kt —kj —k+ j)ij+ke|].
j=1
By (6) and (7),

1 1
VHD| +kIC|< (k= ——+k|k—1———| |
|V (H1)| + k[C] [ parr ( k-+-1)]| 1

= (k* — D|I4].

Using (8), (13) and (14), we have

k=1 k—1
D k=2 — jij+ K> = DI > (kt —kj —k+ j)ij + k| L1].
j=1 j=1

Thus at least one of the following two cases must hold.
Case 1: There is at least one j such that

k=2)k—j)>kt —kj —k+j.
It follows that

k> —k+j
—

<
But j <(k — 1), we have
1

t<k——,
=T

contradicting to the toughness condition of Theorem 1.2.
Case 2: k> — 1 > kt. In this case we have

1
t<k——.
k

This also contradicts to the toughness condition of Theorem 1, completing the proof of the theorem.
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