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Abstract

The toughness of a graph G, t (G), is defined as t (G) = min{|S|/�(G − S)|S ⊆ V (G), �(G − S) > 1} where �(G − S) denotes
the number of components of G − S or t (G) = +∞ if G is a complete graph. Much work has been contributed to the relations
between toughness and the existence of factors of a graph. In this paper, we consider the relationship between the toughness and
the existence of fractional k-factors. It is proved that a graph G has a fractional 1-factor if t (G)�1 and has a fractional k-factor if
t (G)�k − 1/k where k�2. Furthermore, we show that both results are best possible in some sense.
© 2007 Published by Elsevier B.V.

MSC: 05C70

Keywords: Toughness; Fractional k-factor; Fractional matching

1. Introduction

The graphs considered here will be finite undirected graphs which may have multiple edges but no loops. We refer
the readers to [2] for the terminologies not defined here. Let G be a graph. We use V (G) and E(G) to denote its vertex
set and edge set, respectively. We use G[S] and G − S to denote the subgraph of G induced by S and V (G) − S,
respectively, for S ⊆ V (G) and NG(x) to denote the set of vertices adjacent to x in G. A subset S of V (G) is called a
covering set (an independent set) of G if every edge of G is incident with at least (at most) one vertex of S. Let S and
T be two disjoint subsets of V (G), we use E(S, T ) to denote the set of edges with one end in S and the other end in T
and set S − S′ = S\S′.

Let g and f be two integer-valued functions defined on V (G) with g(x)�f (x) for any x ∈ V (G). A subgraph
F of G is called a (g, f )-factor if g(x)�dF (x)�f (x) holds for any vertex x ∈ V (G). A (g, f )-factor is called an
[a, b]-factor if g(x) ≡ a and f (x) ≡ b. An [a, b]-factor is called a k-factor if a = b = k. Let h : E(G) → [0, 1] be a
function. Let k�1 be an integer. If

∑
e	xh(e) = k holds for any vertex x ∈ V (G), we call G[Fh] a fractional k-factor

of G with indicator function h where Fh ={e ∈ E(G)|h(e) > 0}. A fractional 1-factor is also called a fractional perfect
matching [7].
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A graph is t-tough if for any S ⊆ V (G) and �(G − S) > 1 , we have

|S|� t�(G − S)

holds where �(G − S) denotes the number of components of (G − S). A complete graph is t-tough for any positive
real number t. If G is not complete, there exists the largest t such that G is t-tough. This number is denoted by t (G) and
is called the toughness of G. We define t (Kn) = +∞. If G is not complete,

t (G) = min

{ |S|
�(G − S)

∣∣∣∣ S ⊆ V (G) and �(G − S)�2

}
.

The toughness of a graph was first introduced by Chvátal in [3]. Since then, much work has been contributed to the
relations between toughness and the existence of factors of a graph. The most famous result is that of [4] which confirms
a conjecture stated by Chvátal. Its main result is the following Lemma.

Lemma 1.1. Let G be a graph. If G is k-tough, |V (G)|�k + 1 and k|V (G)| is even, then G has a k-factor.

The result is sharp since for any positive real number �, there exists a graph G that has no k-factor with t (G)�k − �
[4]. Katerinis considered toughness and the existence of [a, b]-factors in [5]. In this paper we discuss the relationship
between toughness and the existence of fractional k-factors. In [1] Anstee gave a necessary and sufficient condition for
a graph to have a fractional (g, f )-factor for which we gave a new proof. The following result can be found in [6].

Lemma 1.2. Let k�1 be an integer. A graph G has a fractional k-factor if and only if for any subset S of V (G),

k|T | − dG−S(T )�k|S|, (1)

where T = {x ∈ V (G) − S|dG−S(x)�k − 1} and dG−S(T ) = ∑
x∈T dG−S(x).

In particular, for k = 1, we have the following result.

Lemma 1.3 (Scheinerman and Ullman [7]). A graph G has a fractional perfect matching if and only if for any
S ⊆ V (G),

i(G − S)� |S|, (2)

where i(G − S) = |{x ∈ V (G) − S|dG−S(x) = 0}|.

Our main results are the following two theorems.

Theorem 1.1. Let G be a connected graph with |V (G)|�2. Then G has a fractional perfect matching if t (G)�1.

Theorem 1.2. Let k�2 be an integer. A graph G with |V (G)|�(k + 1) has a fractional k-factor if t (G)�k − 1/k.

The result in Theorem 1.1 is sharp. To see this, consider the graph G1 = Km ∨ (m + 1)K1 where ∨ means “join”
and m is an arbitrary positive integer. It is easy to find out that t (G1) = m/(m + 1) < 1 and (1) does not hold if we let
S = V (Km). By Lemma 1.3 G1 has no fractional perfect matching. But t (G1) → 1 when m → +∞.

To see Theorem 1.2 is also sharp, we construct the following graph Gk: V (Gk) = A ∪ B ∪ C where A, B and C are
disjoint with |A|= |B|= (nk + 1)(k − 1), and |C|=n(k − 1). Both A and C are cliques in Gk , while B is isomorphic to
(nk + 1)Kk−1. Other edges in Gk are a perfect matching between A and B and all the pairs between B and C. If k = 2,
let S = (A − {u}) ∪ C where u ∈ A , then |S| = 3n and �(G − S) = 2n + 1; if k�3, let S = (A − {u}) ∪ {v} ∪ C where
u ∈ A and v ∈ B is matched to u in Gk . Then |S| = (nk + n + 1)(k − 1) and �(G − S) = nk + 2. This follows that

t (Gk) =
⎧⎨
⎩

3n

2n + 1
if k = 2,

(nk + n + 1)(k − 1)

nk + 2
if k�3.
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But (1) does not hold if we let S = C. Thus by Lemma 1.2 Gk has no fractional k-factor. It is easy to see that t (Gk) can
be made arbitrarily close to k − 1/k when n is large enough. In this sense, the result in Theorem 1.2 is also sharp.

Remark. A graph G that satisfies the condition of Theorem 1.1 has 1-factors if |V (G)| is even by Lemma 1.1. However,
a graph G that satisfies the conditions of Theorem 1.2 does not necessarily have a k-factor even if k|V (G)| is even [4].

2. Proofs of theorems

At first let us prove Theorem 1.1.

Proof of Theorem 1.1. If G is complete, obviously G has a fractional perfect matching as |V (G)|�2. In the following
we assume that G is not complete. Suppose that G satisfies the conditions in Theorem 1.1, but G has no fractional
perfect matching. From Lemma 1.3, there exists a subset S of V (G) such that

i(G − S) > |S|.
Since G is connected, S �= ∅. Thus i(G − S)�2. Then

t (G)� |S|
�(G − S)

� |S|
i(G − S)

< 1

contradicting to t (G)�1. �

To prove Theorem 1.2, we need the following Lemmas.

Lemma 2.1 (Chvátal [3]). If a graph G is not complete, then t (G)� 1
2�(G).

Lemma 2.2. Let G be a graph and let H = G[T ] such that dG(x) = k − 1 for every x ∈ V (H) and no component
of H is isomorphic to Kk where T ⊆ V (G) and k�2. Then there exists an independent set I and the covering set
C = V (H) − I of H satisfying

|V (H)|�
(

k − 1

k + 1

)
|I | (3)

and

|C|�
(

k − 1 − 1

k + 1

)
|I |. (4)

Proof. Suppose that H has m components. For each component Hn, let In be a maximum independent set of Hn. First we
claim that for each vertex x ∈ In and dHn(x)=k−1, there exists a vertex y ∈ In −{x} such that NHn(x)∩NHn(y) �= ∅.
For this, we show that Hn[NHn(x)] is not complete. Otherwise, H ′

n=Hn[{x}∪NHn(x)] is isomorphic to Kk . Since Hn is
connected and for every vertex x ∈ V (Hn), dHn(x)�k −1, it follows that Hn =H ′

n, which contradicts to that Hn is not
isomorphic to Kk . Now if for any y ∈ In−{x}, NHn(x)∩NHn(y)=∅, then E({x}∪NHn(x), In−{x})=∅. Let x′ and y′ be
two vertices in Hn[NHn(x)] that are not adjacent. Then (In−{x})∪{x′, y′}will be an independent set of Hn, contradicting
to that In is a maximum independent set of Hn. So what we desire follows. Let I ′

n = {x|x ∈ In and dHn(x) = k − 1}
and I ′′

n = In − I ′
n. Then for every x ∈ I ′′

n , dHn(x)�k − 2. Note that both of I ′
n and I ′′

n are independent sets of Hn. Since
for every vertex x ∈ I ′

n, dHn(x) = k − 1, and for every x ∈ I ′′
n , dHn(x)�k − 2, where k�2, by the above claim we

have the following inequality:

|V (Hn)|�k|I ′
n| −

⌈ |I ′
n|
2

⌉
+ (k − 1)|I ′′

n |�k|In| −
⌈ |In|

2

⌉
�

(
k − 1

k + 1

)
|In|

for each n = 1, . . . , m. Let I = ⋃m
n=1In, Then |I | = ∑m

n=1|In| and I is a maximum independent set of H. Thus

|V (H)| =
m∑

n=1

|V (Hn)|�
m∑

n=1

(
k − 1

k + 1

)
|In| =

(
k − 1

k + 1

)
|I |
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which is inequality (3). Let C = V (H) − I . Then |C| = |V (H)| − |I | and the result (4) follows easily from (3). The
proof is completed. �

The following Lemma 2.3 is similar to Lemma 5 of [5]. However, it has been strengthened not only in its conditions
but also in its result.

Lemma 2.3. Let G be a graph and let H =G[T ] such that �(H)�1 and 1�dG(x)�k − 1 for every x ∈ V (H) where
T ⊆ V (G) and k�2. Let T1, . . . , Tk−1 be a partition of the vertices of H satisfying dG(x) = j for each x ∈ Tj where
we allow some Tj to be empty. If each component of H has a vertex of degree at most k − 2 in G, then H has a maximal
independent set I and a covering set C = V (H) − I such that

k−1∑
j=1

(k − j)cj �
k−1∑
j=1

(k − 2)(k − j)ij ,

where cj = |C ∩ Tj | and ij = |I ∩ Tj | for every j = 1, . . . , k − 1.

Proof. Since �(H)�1 and each component of H has a vertex of degree at most k − 2 in G , we have k�3. We prove
the lemma by induction on |V (H)|. If |V (H)|=2, then H is isomorphic to K2. Let V (H)={x, y} and suppose x ∈ Ti0

and y ∈ Tj0 . We may assume i0 �j0. Let I = {x} and C = V (H) − {x} = {y}. Then

k−1∑
j=1

(k − j)cj = k − j0 �k − i0 �(k − 2)(k − i0) =
k−1∑
j=1

(k − 2)(k − j)ij

and the result follows. Now we assume that the result holds when |V (H)| < L. Now we consider |V (H)| = L�3. Let
m = min{j |Tj �= ∅}. Then 1�m�k − 2. Take any y ∈ Tm. Then H − ({y} ∪ NH (y)) may have some isolated vertices
in H. Let I ′′ be the set of y and these isolated vertices. Now let H ′ = H − (I ′′ ∪ NH (y)). If x ∈ I ′′ − {y}, then we can
see that dH (x)�dH (y) and dG(x)�dG(y) by the definition of I ′′ and m.

If |V (H ′)| = 0, put I = I ′′ and C = V (H) − I = NH (y). Note that Tj = ∅ and ij = 0 for j < m. Since |V (H ′)| = 0,
we have

k−1∑
j=m

cj �m.

Thus

k−1∑
j=1

(k − j)cj �
k−1∑
j=m

(k − m)cj

= (k − m)

k−1∑
j=m

cj �(k − m)m

�(k − 2)(k − m)�
k−1∑
j=1

(k − 2)(k − j)ij .

Obviously I is a maximal independent set of H.
So we suppose that |V (H ′)| �= 0 or V (H) �= I ′′ ∪ NH (y). Note that if a vertex v is only adjacent to NH (y), then v

is in (I ′′ − {y}). If vertex v is adjacent to a vertex u ∈ (I ′′ − {y}), then u is not an isolated vertex of H − ({y}∪NH (y))

in H . This contradicts to that u ∈ (I ′′ − {y}). Thus it follows that �(H ′)�1. Clearly �(H ′)�k − 1. It is obvious that
|V (H ′)|�2. From the definition of H ′ and �(H)�k − 1 we can also see that each component of H ′ has a vertex of
degree at most k − 2 in G as follows. If a component H0 of H ′ is also a component of H , clearly, H0 has a vertex
of degree at most k − 2 by the hypothesis. Otherwise, a component H0 of H ′ is not a component of H . Then H0 is
a component of H1 − (I ′′ ∪ NH (y)) where H1 is a component of H . Note that there are at least one edge e = uv
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joiningH0 and I ′′ ∪ NH (y) in H1. We may assume that vertex v is in H0. Since dG(x)�k − 1 for every vertex x of H0,
dG(v)�k − 1. Thus vertex v is adjacent to at most k − 2 vertices in H0. It is easy to see that H0 must have a vertex
of degree at most k − 2. Let T ′

j = Tj ∩ V (H ′). Since |V (H ′)| < L, by induction hypothesis, there exists a maximal
independent set I ′ and a covering set C′ = V (H ′) − I ′ of H ′ such that

k−1∑
j=1

(k − j)c′
j �

k−1∑
j=1

(k − 2)(k − j)i′j ,

where i′j = |I ′ ∩ T ′
j | and c′

j = |C′ ∩ T ′
j |. Now let I = I ′ ∪ I ′′ and C = V (H) − I = C′ ∪ NH (y). Obviously, I is a

maximal independent set of H. Then

k−1∑
j=1

(k − 2)(k − j)ij �
k−1∑
j=1

(k − 2)(k − j)i′j + m(k − m)

�
k−1∑
j=1

(k − j)c′
j + m(k − m).

Since dG(y)�m and m = min{j |Tj �= �}, we have

k−1∑
j=1

(k − j)cj �
k−1∑
j=1

(k − j)c′
j + m(k − m).

Thus

k−1∑
j=1

(k − j)cj �
k−1∑
j=1

(k − 2)(k − j)ij

completing the proof. �

Proof of Theorem 1.2. If G is complete, since |V (G)|�k + 1, obviously, G has a fractional k-factor. In the following
we assume that G is not complete. Suppose that G satisfies the conditions of Theorem 1.2 , but has no fractional
k-factors. From Lemma 1.2 there exists a subset S of V (G) such that

k|T | − dG−S(T ) > k|S|, (5)

where T = {x ∈ V (G) − S|dG−S(x)�k − 1}. By Lemma 2.1, we have �(G)�2t (G)�2k − 2/k�k + 1. Therefore
S �= ∅ by (5). Let l be the number of the components of H ′ = G[T ] which are isomorphic to Kk and let T0 = {x ∈
V (H ′)|dG−S(x)= 0}. Let H be the subgraph obtained from H ′ −T0 by deleting those l components isomorphic to Kk .

If |V (H)| = 0, then from (5) we obtain

k|T0| + lk > k|S|
or

1� |S| < |T0| + l.

Hence �(G − S)� l + |T0| > 1 and

t (G)� |S|
�(G − S)

= |S|
l + |T0| < 1.

This contradicts that t (G)�k − 1/k� 3
2 .
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Now we consider that |V (H)| > 0 and �(H)�1. Let H =H1 ∪H2 where H1 is the union of components of H which
satisfies that dG−S(x) = k − 1 for every vertex x ∈ V (H1) and H2 = H − H1. By Lemma 2.2, H1 has a maximum
independent set I1 and the covering set C1 = V (H1) − I1 such that

|V (H1)|�
(

k − 1

k + 1

)
|I1| (6)

and

|C1|�
(

k − 1 − 1

k + 1

)
|I1|. (7)

On the other hand, it is obvious that �(H2)�1 and �(H2)�k−1. Let Tj ={x ∈ V (H2)|dG−S(x)=j} for 1�j �k−1.
By the definition of H and H2 we can also see that each component of H2 has a vertex of degree at most k −2 in G−S.
According to Lemma 2.3, H2 has a maximal independent set I2 and the covering set C2 = V (H2) − I2 such that

k−1∑
j=1

(k − j)cj �
k−1∑
j=1

(k − 2)(k − j)ij , (8)

where cj =|C2∩Tj | and ij =|I2∩Tj | for every j=1, . . . , k−1. Set W=V (G)−S−T and U=S∪C1∪C2∪(NG(I2)∩W).
Then since |C2| + |(NG(I2) ∩ W)�

∑k−1
j=1jij we obtain

|U |� |S| + |C1| +
k−1∑
j=1

jij (9)

and

�(G − U)� t0 + l + |I1| +
k−1∑
j=1

ij , (10)

where t0 = |T0|. Let t (G) = t . Then when �(G − U) > 1, we have

|U |� t�(G − U). (11)

In addition, (11) also holds when �(G − U) = 1 as by Lemma 2.1 for any x ∈ T ,

|U |�dG−S(x) + |S|�d(x)�2t .

By (9)–(11),

|S| + |C1| +
k−1∑
j=1

jij � t (t0 + l) + t |I1| + t

k−1∑
j=1

ij

or

|S| + |C1|�
k−1∑
j=1

(t − j)ij + t (t0 + l) + t |I1|. (12)

From (5) we have

kt0 + kl + |V (H1)| +
k−1∑
j=1

(k − j)ij +
k−1∑
j=1

(k − j)cj > k|S|.

Combining with (12) we have

kt0 + kl + |V (H1)| +
k−1∑
j=1

(k − j)ij +
k−1∑
j=1

(k − j)cj + k|C1| >
k−1∑
j=1

(kt − kj)ij + kt(t0 + l) + kt |I1|.
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Thus

k−1∑
j=1

(k − j)cj + |V (H1)| + k|C1| >
k−1∑
j=1

(kt − kj − k + j)ij + k(t − 1)(t0 + l) + kt |I1|

�
k−1∑
j=1

(kt − kj − k + j)ij + kt |I1|. (13)

By (6) and (7),

|V (H1)| + k|C1|�
[
k − 1

k + 1
+ k

(
k − 1 − 1

k + 1

)]
|I1|

= (k2 − 1)|I1|. (14)

Using (8), (13) and (14), we have

k−1∑
j=1

(k − 2)(k − j)ij + (k2 − 1)|I1| >
k−1∑
j=1

(kt − kj − k + j)ij + kt |I1|.

Thus at least one of the following two cases must hold.
Case 1: There is at least one j such that

(k − 2)(k − j) > kt − kj − k + j .

It follows that

t <
k2 − k + j

k
.

But j �(k − 1), we have

t < k − 1

k
,

contradicting to the toughness condition of Theorem 1.2.
Case 2: k2 − 1 > kt . In this case we have

t < k − 1

k
.

This also contradicts to the toughness condition of Theorem 1, completing the proof of the theorem. �
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