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Abstract

In this paper, we give an analogue of the Arzela–Ascoli theorem on time scales. Then, we estab-
lish the existence of nonoscillatory solutions to the neutral dynamic equation [x(t) + p(t)x(g(t))]� +
f (t, x(h(t))) = 0 on a time scale. To dwell upon the importance of our results, three interesting examples
are also included.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Consider neutral functional dynamic equations of the form

[
x(t) + p(t)x

(
g(t)

)]� + f
(
t, x

(
h(t)

)) = 0 (1)

on a time scale T. The motivation originates from Mathsen et al. [8], where some open problems
were presented and one of them is under what conditions there will exist positive solutions to
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equation[
x(t) + p(t)x

(
g(t)

)]� + q(t)x
(
h(t)

) = 0 (2)

on a time scale. In this paper, we try to solve this problem and find some conditions for the exis-
tence of nonoscillatory solutions of (1). We remark that there have been a number of literatures to
study the oscillatory behaviors for dynamic equations on time scales, see, e.g., Refs. [1–3,5–10].
However, there are few papers to discuss the existence of nonoscillatory solutions for neutral
functional dynamic equations on time scales.

For convenience, we recall some concepts related to time scales. More details can be found
in [1,2].

Definition 1. A time scale is an arbitrary nonempty closed subset of the set R of real numbers
with the topology and ordering inherited from R. Let T be a time scale, for t ∈ T the forward
jump operator is defined by σ(t) := inf{s ∈ T: s > t}, the backward jump operator by ρ(t) :=
sup{s ∈ T: s < t}, and the graininess function by μ(t) := σ(t) − t , where inf∅ := sup T and
sup∅ := inf T. If σ(t) > t , t is said to be right-scattered; otherwise, it is right-dense. If ρ(t) < t ,
t is said to be left-scattered; otherwise, it is left-dense. The set T

κ is defined as follows: If T has
a left-scattered maximum m, then T

κ = T − {m}; otherwise, T
κ = T.

Definition 2. For a function f : T → R and t ∈ T
κ , we define the delta-derivative f �(t) of f (t)

to be the number (provided it exists) with the property that given any ε > 0, there is a neighbor-
hood U of t (i.e., U = (t − δ, t + δ) ∩ T for some δ) such that∣∣[f (

σ(t)
) − f (s)

] − f �(t)
[
σ(t) − s

]∣∣ � ε
∣∣σ(t) − s

∣∣ for all s ∈ U.

We say that f is delta-differentiable (or in short: differentiable) on T
κ provided f �(t) exists for

all t ∈ T
κ .

It is easily seen that if f is continuous at t ∈ T and t is right-scattered, then f is differentiable
at t with

f �(t) = f (σ (t)) − f (t)

μ(t)
.

Moreover, if t is right-dense then f is differential at t iff the limit

lim
s→t

f (t) − f (s)

t − s

exists as a finite number. In this case

f �(t) = lim
s→t

f (t) − f (s)

t − s
.

In addition, if f � � 0, then f is nondecreasing.

Definition 3. Let f : T → R be a function, f is called right-dense continuous (rd-continuous) if
it is continuous at right-dense points in T and its left-sided limits exist (finite) at left-dense points
in T. A function F : T → R is called an antiderivative of f provided F�(t) = f (t) holds for all
t ∈ T

k . By the antiderivative, the Cauchy integral of f is defined as
∫ b

a
f (s)�s = F(b) − F(a),

and
∫ ∞

f (s)�s = limt→∞
∫ t

f (s)�s.

a a
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Let Crd(T,R) denote the set of all rd-continuous functions mapping T to R. It is shown
in [2] that every rd-continuous function has an antiderivative. Since we are interested in the
nonoscillatory behavior of (1), we assume throughout that the time scale T under consideration
satisfies inf T = t0 and sup T = ∞.

As usual, by a solution of (1) we mean a continuous function x(t) which is defined on T and
satisfies (1) for t � t1 � t0. A solution x of (1) is said to be eventually positive (or eventually neg-
ative) if there exists c ∈ T such that x(t) > 0 (or x(t) < 0) for all t � c in T. A solution x of (1)
is said to be nonoscillatory if it is either eventually positive or eventually negative; otherwise, it
is oscillatory.

2. Preliminaries

For T0, T1 ∈ T, let [T0,∞)T := {t ∈ T: t � T0} and [T0, T1]T := {t ∈ T: T0 � t � T1}. Further,
let C([T0,∞)T,R) denote all continuous functions mapping [T0,∞)T into R, and

BC[T0,∞)T :=
{
x: x ∈ C

([T0,∞)T,R
)

and sup
t∈[T0,∞)T

∣∣x(t)
∣∣ < ∞

}
. (3)

Endowed on BC[T0,∞)T with the norm ‖x‖ = supt∈[T0,∞)T
|x(t)|, (BC[T0,∞)T, ‖ · ‖) is a

Banach space. Let X ⊆ BC[T0,∞)T, we say X is uniformly Cauchy if for any given ε > 0, there
exists T1 ∈ [T0,∞)T such that for any x ∈ X,∣∣x(t1) − x(t2)

∣∣ < ε for all t1, t2 ∈ [T1,∞)T.

X is said to be equi-continuous on [a, b]T if for any given ε > 0, there exists δ > 0 such that
for any x ∈ X and t1, t2 ∈ [a, b]T with |t1 − t2| < δ,∣∣x(t1) − x(t2)

∣∣ < ε.

The following is an analogue of the Arzela–Ascoli theorem on time scales.

Lemma 4. Suppose that X ⊆ BC[T0,∞)T is bounded and uniformly Cauchy. Further, suppose
that X is equi-continuous on [T0, T1]T for any T1 ∈ [T0,∞)T. Then X is relatively compact.

Proof. By the assumption of uniformly Cauchy, we see that for any ε > 0, there exists T1 ∈
[T0,∞)T such that for any x ∈ X,∣∣x(t1) − x(t2)

∣∣ <
ε

3
, t1, t2 ∈ [T1,∞)T. (4)

Moreover, there exists α > 0 such that ‖x‖ � α for all x ∈ X. Choose N1 + 1 real numbers
yi (i = 0,1,2, . . . ,N1) so that −α = y0 < y1 < · · · < yN1 = α and

|yi+1 − yi | < ε

3
, 0 � i � N1 − 1. (5)

By the assumption of equi-continuity on [T0, T1]T, we see that for the above ε > 0, there exists
δ > 0 such that for any x ∈ X,∣∣x(s) − x(t)

∣∣ <
ε

3
for |s − t | � δ, s, t ∈ [T0, T1]T. (6)

Note that we can insert N2 numbers into the interval [T0, T1] of R so that T0 = t1 < t2 < · · · <

tN2−1 < tN2 = T1 and

|ti+1 − ti | � δ, 1 � i � N2 − 1. (7)
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Now, we construct a continuous function class U on the interval [T0, T1]. For each i ∈
{1,2, . . . ,N2 − 1} and j ∈ {0,1, . . . ,N1 − 1}, we define a function uij (t) on [ti , ti+1] ⊂ [T0, T1]
to figure one of two diagonals of the rectangle domain: ti � t � ti+1 and yj � y � yj+1 as
follows. That is,

uij (t) = yj + yj+1 − yj

ti+1 − ti
(t − ti ), t ∈ [ti , ti+1],

or

uij (t) = yj+1 + yj − yj+1

ti+1 − ti
(t − ti ), t ∈ [ti , ti+1].

Let U be the set of all possible continuous functions on [T0, T1] = ⋃N2−1
i=1 [ti , ti+1] connecting

such uij (t) as above from [t1, t2] to [tN2−1, tN2]. It is clear that U is finite. For each u(t) ∈ U , we
define a function ū(t) on [T0,∞)T by

ū(t) =
{

u(t), t ∈ [T0, T1]T,

u(T1), t ∈ [T1,∞)T.

Let L be the set of all possible functions ū(t) defined as above, then L is finite. We claim that
L is a finite ε-net for X. In fact, in light of (5), (6) and the definition of ū(t), for any x ∈ X, we
can choose ū(t) ∈ L such that∣∣ū(t) − x(t)

∣∣ <
ε

3
, t ∈ [T0, T1]T. (8)

When t ∈ [T1,∞)T, from (4) and (8) we have

∣∣ū(t) − x(t)
∣∣ = ∣∣u(T1) − x(t)

∣∣ �
∣∣x(T1) − x(t)

∣∣ + ∣∣u(T1) − x(T1)
∣∣ <

2ε

3
. (9)

From (8) and (9), we see that

‖ū − x‖ = sup
t∈[T0,∞)T

∣∣ū(t) − x(t)
∣∣ � 2ε

3
.

It follows that L is a finite ε-net for X. Thus, X is relatively compact. The proof is complete. �
In next section, we will employ Kranoselskii’s fixed point theorem (see [4]) to establish the

existence of nonoscillatory solutions for (1). For the sake of convenience, we state here this
theorem as follows.

Lemma 5. Suppose that Ω is a Banach space and X is a bounded, convex and closed subset
of Ω . Suppose further that there exist two operators U,S :X → Ω such that

(i) Ux + Sy ∈ X for all x, y ∈ X;
(ii) U is a contraction mapping;

(iii) S is completely continuous.

Then U + S has a fixed point in X.

It is obvious that the conclusion of Lemma 5 holds when the operator U = 0. Hence we have
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Corollary 6. Suppose that Ω is a Banach space and X is a bounded, convex and closed subset
of Ω . Suppose further that there exists an operator S :X → Ω such that

(i) Sx ∈ X for all x ∈ X;
(ii) S is completely continuous.

Then S has a fixed point in X.

3. Main results

Throughout this section, we will assume in (1) that

(H1) g,h ∈ Crd(T,T), g(t) � t , limt→∞ g(t) = ∞, limt→∞ h(t) = ∞, and there exists {ck}k�0
such that limk→∞ ck = ∞ and g(ck+1) = ck .

(H2) p ∈ Crd(T,R) and there exists a constant p0 with |p0| < 1 such that limt→∞ p(t) = p0.
(H3) f ∈ C(T × R,R), f (t, x) is nondecreasing in x and xf (t, x) > 0 for t ∈ T and x �= 0.

We note by the assumptions above that if x(t) is an eventually negative solution of (1), then
y(t) = −x(t) satisfies[

y(t) + p(t)y
(
g(t)

)]� − f
(
t,−y

(
h(t)

)) = 0.

We further note that f̄ (t, u) := −f (t,−u) is nondecreasing in the second variable and
uf̄ (t, u) > 0 for t ∈ T and u �= 0. Hence, in the following we will restrict our attentions to
eventually positive solutions of (1).

In the sequel, we use the notation

z(t) = x(t) + p(t)x
(
g(t)

)
. (10)

Theorem 7. If x(t) is an eventually positive solution of (1), then either limt→∞ x(t) = a > 0 or
limt→∞ x(t) = 0.

Proof. Suppose that x(t) is an eventually positive solution of (1). In view of the condi-
tions (H1) and (H2), there exist T1 ∈ T and |p0| � p1 < 1 such that x(h(t)) > 0, x(g(t)) > 0
and |p(t)| � p1 for all t ∈ [T1,∞)T. Then, from (1) we have z�(t) < 0 on [T1,∞)T, which
means that z(t) is decreasing on [T1,∞)T.

We claim that z(t) � 0 eventually. Otherwise, limt→∞ z(t) < 0 or limt→∞ z(t) = −∞, which
implies that there exists T2 � T1 such that

x(t) < −p(t)x
(
g(t)

)
< p1x

(
g(t)

)
for t ∈ [T2,∞)T.

By (H1), we can choose some positive integer k0 such that ck � T2 for all k � k0. Then for any
k � k0 + 1, we have

x(ck) < p1x
(
g(ck)

) = p1x(ck−1) < p2
1x

(
g(ck−1)

) = p2
1x(ck−2)

< · · · < p
k−k0
1 x

(
g(ck0+1)

) = p
k−k0
1 x(ck0).

The inequality above implies that limk→∞ x(ck) = 0. It follows from (10) that limk→∞ z(ck) = 0
and then contradicts limt→∞ z(t) < 0 or limt→∞ z(t) = −∞.
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Now we have that limt→∞ z(t) = b � 0, where b is finite. We assert that x(t) is bounded. If it
is not true, there exists {tk} with tk → ∞ as k → ∞ such that

x(tk) = max
t0�s�tk

x(s) and lim
k→∞x(tk) = ∞.

Since g(t) � t and

z(tk) = x(tk) + p(tk)x
(
g(tk)

)
�

(
1 − ∣∣p(tk)

∣∣)x(tk),

it follows from (H2) that limk→∞ z(tk)=∞, which contradicts the conclusion that limt→∞ z(t)=
b � 0 and b is finite. Hence, x(t) is bounded.

Next, we assume that

lim sup
t→∞

x(t) = x̄, lim inf
t→∞ x(t) = x.

If 0 � p0 < 1, we have

b � x̄ + p0x and b � x + p0x̄,

which implies that x̄ � x. Thus x̄ = x when 0 � p0 < 1. If −1 < p0 < 0, we have

b � x̄ + p0x̄ and b � x + p0x,

which implies that x̄ � x. Thus x̄ = x when −1 < p0 < 0.
To sum up, we see that limt→∞ x(t) exists and limt→∞ x(t) = b/(1 + p0). The proof is

complete. �
We remark that Theorem 7 gives a classification scheme for the eventually positive solutions

of (1). Next we will give the existence criteria for each type of solutions.

Theorem 8. Equation (1) has an eventually positive solution x(t) with limt→∞ x(t) = a > 0 if
and only if there exits some constant K > 0 such that

∞∫
t0

f (s,K)�s < ∞. (11)

Proof. Suppose that x(t) is an eventually positive solution of (1) satisfying limt→∞ x(t) =
a > 0, then limt→∞ z(t) = (1 + p0)a and there exists T1 ∈ T such that x(h(t)) � a/2 for
t ∈ [T1,∞)T. From (1), we obtain that

z(t) − z(T1) = −
t∫

T1

f
(
s, x

(
h(s)

))
�s, (12)

which implies that
∞∫

T1

f
(
s, x

(
h(s)

))
�s < ∞. (13)

In view of (H3) and (13), we see that
∫ ∞
T1

f (s, a/2)�s < ∞ and then (11) holds.
Conversely, suppose that there exits some constant K > 0 such that (11) holds. There will be

two cases to be considered: 0 � p0 < 1 and −1 < p0 < 0.
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In case 0 � p0 < 1, take p1 so that p0 < p1 < (1 + 4p0)/5 < 1, then

p0 >
5p1 − 1

4
.

Since limt→∞ p(t) = p0 and (11) holds, we can choose T0 ∈ T large enough such that

5p1 − 1

4
� p(t) � p1 < 1, t ∈ [T0,∞)T, (14)

and
∞∫

T0

f (s,K)�s � (1 − p1)K

8
. (15)

Furthermore, from (H1) we see that there exists T1 ∈ T with T1 > T0 such that g(t) � T0 and
h(t) � T0 for t ∈ [T1,∞)T.

Define the Banach space BC[T0,∞)T as in (3) and let

X =
{
x ∈ BC[T0,∞)T:

K

2
� x(t) � K

}
. (16)

It is easy to verify that X is a bounded, convex and closed subset of BC[T0,∞)T. By (H3),
we have that for any x ∈ X,

f
(
t, x

(
h(t)

))
� f (t,K), t ∈ [T1,∞)T. (17)

Now we define two operators U and S :X → BC[T0,∞)T as follows:

(Ux)(t) =
{

3Kp1
4 − p(t)x(g(T1)), t ∈ [T0, T1]T,

3Kp1
4 − p(t)x(g(t)), t ∈ [T1,∞)T,

(18)

and

(Sx)(t) =
{

3K
4 + ∫ ∞

T1
f (s, x(h(s)))�s, t ∈ [T0, T1]T,

3K
4 + ∫ ∞

t
f (s, x(h(s)))�s, t ∈ [T1,∞)T.

(19)

Next, we will show that U and S satisfy the conditions in Lemma 5.
(i) We first prove that Ux+Sy ∈ X for any x, y ∈ X. Note that for any x, y ∈ X, K/2 � x � K

and K/2 � y � K . For any x, y ∈ X and t ∈ [T1,∞)T, in view of (14), we have

(Ux)(t) + (Sy)(t) = 3(1 + p1)K

4
− p(t)x

(
g(t)

) +
∞∫
t

f
(
s, y

(
h(s)

))
�s

� 3(1 + p1)K

4
− p1K

= (3 − p1)K

4
� K

2
.

Also, by (14) and (15), we have

(Ux)(t) + (Sy)(t) � 3(1 + p1)K

4
− p(t)K

2
+ (1 − p1)K

8

� 3(1 + p1)K

4
− 5p1 − 1

4
× K

2
+ (1 − p1)K

8
= K.
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Similarly, we can prove that K/2 � (Ux)(t) + (Sy)(t) � K for any x, y ∈ X and t ∈ [T0, T1]T.
Hence, Ux + Sy ∈ X for any x, y ∈ X.

(ii) We prove that U is a contraction mapping. Indeed, for x, y ∈ X, we have∣∣(Ux)(t) − (Uy)(t)
∣∣ = ∣∣p(t)

[
x
(
g(T1)

) − y
(
g(T1)

)]∣∣ � p1 sup
t∈[T0,∞)T

∣∣x(t) − y(t)
∣∣

for t ∈ [T0, T1]T and∣∣(Ux)(t) − (Uy)(t)
∣∣ = ∣∣p(t)

[
x
(
g(t)

) − y
(
g(t)

)]∣∣ � p1 sup
t∈[T0,∞)T

∣∣x(t) − y(t)
∣∣

for t ∈ [T1,∞)T. Therefore, we have

‖Ux − Uy‖ � p1‖x − y‖
for any x, y ∈ X. Hence, U is a contraction mapping.

(iii) We will prove that S is a completely continuous mapping. First, by (15), (17) and (19),
we see that (Sx)(t) � K/2 and (Sx)(t) � 3K/4+ (1 − p1)K/8 � K for t ∈ [T0,∞)T. That is,
S maps X into X.

Second, we consider the continuity of S. Let xn ∈ X and ‖xn −x‖ → 0 as n → ∞, then x ∈ X

and |xn(t) − x(t)| → 0 as n → ∞ for any t ∈ [T0,∞)T. Consequently, for any t ∈ [T1, ∞)T we
have ∣∣f (

t, xn

(
h(t)

)) − f
(
t, x

(
h(t)

))∣∣ → 0 as n → ∞. (20)

From (17), we obtain that∣∣f (
t, xn

(
h(t)

)) − f
(
t, x

(
h(t)

))∣∣ � 2f (t,K). (21)

On the other hand, from (19) we have

∣∣(Sxn)(t) − (Sx)(t)
∣∣ �

∞∫
T1

∣∣f (
s, xn

(
h(s)

)) − f
(
s, x

(
h(s)

))∣∣�s (22)

for t ∈ [T0, T1]T and

∣∣(Sxn)(t) − (Sx)(t)
∣∣ �

∞∫
t

∣∣f (
s, xn

(
h(s)

)) − f
(
s, x

(
h(s)

))∣∣�s (23)

for t ∈ [T1,∞)T. Therefore, from (22) and (23), we have

‖Sxn − Sx‖ �
∞∫

T1

∣∣f (
s, xn

(
h(s)

)) − f
(
s, x

(
h(s)

))∣∣�s. (24)

Referring to Chapter 5 in [3], we see that the Lebesgue dominated convergence theorem holds
for the integral on time scales. Then, from (20) and (21), (24) yields∥∥(Sxn)(t) − (Sx)(t)

∥∥ → 0 (n → ∞),

which proves that S is continuous on X.



Z.-Q. Zhu, Q.-R. Wang / J. Math. Anal. Appl. 335 (2007) 751–762 759
Finally, we prove that SX is relatively compact. It is sufficient to verify that SX satisfies all
conditions in Lemma 4. By the definition of X, we see that SX is bounded. For any ε > 0, take
T2 ∈ [T1,∞)T so that

∞∫
T2

f (s,K)�s < ε.

For any x ∈ X and t1, t2 ∈ [T2,∞)T, we have∣∣(Sx)(t1) − (Sx)(t2)
∣∣ < 2ε.

Thus, SX is uniformly Cauchy.
The remainder is to consider the equi-continuity on [T0, T2]T for any T2 ∈ [T0,∞)T. Without

loss of generality, we set T1 < T2. For any x ∈ X, we have |(Sx)(t1) − (Sx)(t2)| ≡ 0 for t1, t2 ∈
[T0, T1]T and

∣∣(Sx)(t1) − (Sx)(t2)
∣∣ =

∣∣∣∣∣
∞∫

t1

f
(
s, x

(
h(s)

))
�s −

∞∫
t2

f
(
s, x

(
h(t)

))
�s

∣∣∣∣∣
�

∣∣∣∣∣
t2∫

t1

f (s,K)�s

∣∣∣∣∣
for t1, t2 ∈ [T1, T2]T.

Now, we see that for any ε > 0, there exists δ > 0 such that when t1, t2 ∈ [T0, T2]T with
|t1 − t2| < δ,∣∣(Sx)(t1) − (Sx)(t2)

∣∣ < ε for all x ∈ X.

This means that SX is equi-continuous on [T0, T2]T for any T2 ∈ [T0,∞)T.

By means of Lemma 4, SX is relatively compact. From the above, we have proved that S is a
completely continuous mapping.

By Lemma 5, there exists x ∈ X such that (U + S)x = x. Therefore, we have

x(t) = 3(1 + p1)K

4
− p(t)x

(
g(t)

) +
∞∫
t

f
(
s, x

(
h(s)

))
�s, t ∈ [T1,∞)T. (25)

This equation means that x(t) is a solution of (1) and limt→∞ z(t) = 3(1 + p1)K/4. Further,
by the limit of z(t), we have limt→∞ x(t) = 3(1 + p1)K/(4 + 4p0). Note that x ∈ X, x(t) is
eventually positive, the sufficiency holds when 0 � p0 < 1.

In case −1 < p0 < 0, take p1 so that −p0 < p1 < (1 − 4p0)/5 < 1, then p0 < (1 − 5p1)/4.
Since limt→∞ p(t) = p0 and (11) holds, we can choose T0 ∈ T large enough such that (15) holds
and

5p1 − 1

4
� −p(t) � p1 < 1, t ∈ [T0,∞)T. (26)

Take T1 ∈ T with T1 > T0 so that g(t) � T0 and h(t) � T0 for t ∈ [T1,∞)T. Similarly, we
introduce the Banach space BC[T0,∞)T and its subset X as above. Define operator S as in (19)
and operator U on X as follows:

(Ux)(t) =
{− 3Kp1

4 − p(t)x(g(T1)), t ∈ [T0, T1]T,

− 3Kp1 − p(t)x(g(t)), t ∈ [T ,∞) .
4 1 T
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Next, we show that Ux +Sy ∈ X for any x, y ∈ X. Indeed, for any x, y ∈ X and t ∈ [T1,∞)T,
by means of (26) and (15), we have

(Ux)(t) + (Sy)(t) = 3(1 − p1)K

4
− p(t)x

(
g(t)

) +
∞∫
t

f
(
s, y

(
h(s)

))
�s

� 3(1 − p1)K

4
+ 5p1 − 1

4
× K

2
= (5 − p1)K

8
� K

2

and

(Ux)(t) + (Sy)(t) � 3(1 − p1)K

4
− p(t)K + (1 − p1)K

8
� K.

That is, Ux + Sy ∈ X for any x, y ∈ X.
The following proof is similar to that of case 0 � p0 < 1 and omitted. By Lemma 5, there

exists x ∈ X such that

x(t) = 3(1 − p1)K

4
− p(t)x

(
g(t)

) +
∞∫
t

f
(
s, x

(
h(s)

))
�s, t ∈ [T1,∞)T,

which means that x(t) is a solution of (1) and eventually positive. Moreover, from limt→∞ z(t) =
3(1 − p1)K/4, we have limt→∞ x(t) = 3(1 − p1)K/(4 + 4p0).

The proof is complete. �
Theorem 9. If there exists T0 ∈ T with T0 > 0 such that

p(t)e−g(t) � −e−t , t ∈ [T0,∞)T, (27)

and
∞∫
t

f

(
s,

1

h(s)

)
�s � 1

t
+ p(t)

g(t)
, t ∈ [T0,∞)T, (28)

then Eq. (1) has an eventually positive solution x(t) with limt→∞ x(t) = 0.

Proof. Take T1 ∈ T with T1 > T0 so that g(t) � T0 and h(t) � T0 for t ∈ [T1,∞)T. Define the
Banach space BC[T0,∞)T as in (3). Let

X =
{
x ∈ BC[T0,∞)T: e−t � x(t) � 1

t
for t ∈ [T1,∞)T and

e−T1 � x(t) � 1

t
for t ∈ [T0, T1]T

}
,

then X is a bounded, convex and closed subset of BC[T0,∞)T. Define an operator S on X as
follows:

(Sx)(t) =
{−p(T1)x(g(T1)) + ∫ ∞

T1
f (s, x(h(s)))�s, t ∈ [T0, T1]T,

−p(t)x(g(t)) + ∫ ∞
t

f (s, x(h(s)))�s, t ∈ [T1,∞)T.

First, we show that Sx ∈ X for all x ∈ X. Indeed, from (27) and (28), we have for t ∈
[T1,∞)T,
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(Sx)(t) = −p(t)x
(
g(t)

) +
∞∫
t

f
(
s, x

(
h(s)

))
�s

� −p(t)

g(t)
+ 1

t
+ p(t)

g(t)
� 1

t

and

(Sx)(t) � −p(t)e−g(t) � e−t .

It follows that e−T1 � (Sx)(t) � 1/t for t ∈ [T0, T1]T. Thus, we have proved that Sx ∈ X for all
x ∈ X. The rest of the proof is similar to that of Theorem 8 and hence omitted.

By Corollary 6, we see that there exists x ∈ X such that

x(t) = −p(t)x
(
g(t)

) +
∞∫
t

f
(
s, x

(
h(s)

))
�s, t ∈ [T1,∞)T, (29)

which means that x(t) is an eventually positive solution of (1). Note from the definition of X, we
have limt→∞ x(t) = 0. The proof is complete. �

The following result can be proved similar to the proof of Theorem 9 and hence omitted.

Theorem 10. If there exist a constant K > 0 and T0 ∈ T with T0 > 0 such that

0 � p(t) � Kg(t)e−t , t ∈ [T0,∞)T, (30)
∞∫
t

f
(
s, e−h(s)

)
�s � (K + 1)e−t , t ∈ [T0,∞)T, (31)

and
∞∫
t

f

(
s,

1

h(s)

)
�s � 1

t
, t ∈ [T0,∞)T, (32)

then Eq. (1) has an eventually positive solution x(t) with limt→∞ x(t) = 0.

Example 11. Let q > 1 and T = {qn: n ∈ N0}, where N0 is the set of nonnegative integers.
Consider the following equation:[

x(t) + t + 1

2t
x
(
ρ(t)

)]�

+ x(σ (t))

tσ (t)
= 0, t ∈ T. (33)

Then p(t) = t+1
2t

, g(t) = ρ(t), h(t) = σ(t) and f (t, x) = x
tσ (t)

. It is easy to see that all the

conditions (H1)–(H3) are satisfied. Also,
∫ ∞

1 f (s,K)�s = K for any K > 0. By Theorem 8,
Eq. (33) has an eventually positive solution x(t) with limt→∞ x(t) = a > 0.

Example 12. Let τ > 0 and T = {nτ : n ∈ N0}. Consider the following equation:

[
x(t) − e−τ x(t − τ)

]� + (2t + τ)x((t + τ)2)

2
= 0, t ∈ T, (34)
t
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where p(t) = −e−τ , g(t) = t − τ , h(t) = (t + τ)2 and f (t, x) = (2t + τ)x/t2. We can read-
ily verify that p,g and h satisfy all the conditions (H1)–(H3). Also, p(t)e−g(t) = −e−t and∫ ∞
t

f (s,1/h(s))�s = 1/t2. Then, we see that (28) holds eventually. By Theorem 9, Eq. (34)
has an eventually positive solution x(t) with limt→∞ x(t) = 0.

Example 13. Let T = {t � 0: t ∈ R}. Consider the following equation:

[
x(t) + (t − 1)e−t x(t − 1)

]� + e−t/4x

(
t

4

)
= 0, t ∈ T, (35)

where p(t) = (t − 1)e−t , g(t) = t − 1, h(t) = t/4 and f (t, x) = e−t/4x. Then,
∫ ∞
t

f (s,

1/h(s))�s � 4e−t/4 for t � 4. Further,
∫ ∞
t

f (s, e−h(s))�s = 2e−t/2. Taking K = 1, we see
that (30)–(32) hold eventually. By Theorem 10, Eq. (35) has an eventually positive solution x(t)

with limt→∞ x(t) = 0.
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