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By applying the lightlike Eisenhart lift to several known examples of low-dimensional integrable systems
admitting integrals of motion of higher-order in momenta, we obtain four- and higher-dimensional
Lorentzian spacetimes with irreducible higher-rank Killing tensors. Such metrics, we believe, are first
examples of spacetimes admitting higher-rank Killing tensors. Included in our examples is a four-
dimensional supersymmetric pp-wave spacetime, whose geodesic flow is superintegrable. The Killing
tensors satisfy a non-trivial Poisson–Schouten–Nijenhuis algebra. We discuss the extension to the
quantum regime.
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1. Introduction

Since Carter’s tour de force in separating variables for the
Hamilton–Jacobi and Klein–Gordon equations in the Kerr metric
[1] there has been a great deal of work on spacetimes {M, gab}
admitting a second rank Killing–Stäckel tensor K ab = K ba which
is responsible for the additive separability of the Hamilton–Jacobi
equation. Almost nothing is known about higher rank totally sym-
metric tensors K a1a2...ap satisfying the condition that

∇(a1 K a2a3...ap+1) = 0. (1)

While it is known that any such tensor gives rise to a homo-
geneous function on the cotangent bundle T �M, K p = K a1...ap ×
pa1 · · · pap of degree p in momenta, which Poisson commutes with

the Hamiltonian H = 1
2 gab pa pb generating the geodesic flow, no

non-trivial (i.e. irreducible) examples appear to be known.
Given any two such Killing–Stäckel tensors of rank p and q re-

spectively their Schouten–Nijenhuis bracket [K p, Kq]a1a2...ap+q−1 is
defined in terms of the standard Poisson bracket {K p, Kq} as fol-
lows

{K p, Kq} = ∂K p

∂qi

∂Kq

∂ pi
− ∂Kq

∂qi

∂K p

∂ pi

≡ [K p, Kq]a1a2...ap+q−1 pa1 pa2 · · · pap+q−1 . (2)
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While examples of spacetimes admitting more than one qua-
dratic Killing tensor satisfying a non-trivial Poisson or Schouten–
Nijenhuis bracket algebra exist [2], no such higher rank examples
appear to be known. This may well be because the quickest route
for finding quadratic Killing tensors is to follow Carter’s original
path [1] and seek to separate variables in the Hamilton–Jacobi and
Klein–Gordon equations. This route is not available for higher rank
Killing–Stäckel tensors since there is no obvious connection be-
tween their existence and separability. By theorems in [3,4] only
rank two Killing tensors apply to separability of the Hamilton–
Jacobi equation.

In some cases it is possible to go further and “quantize” the
system. In the case of quadratic Killing–Stäckel tensors it is known
that subject to certain conditions on the K ab and the Ricci tensor
Rab , the second order differential operator −∇a K ab∇b commutes
with the wave operator −∇a gab∇b and this is related to the mul-
tiplicative separability of the Klein–Gordon equation [5]. A recent
survey of quantum integrability of quadratic Killing–Stäckel tensors
may be found in [6]. To our knowledge, there are few if any results
to date on the higher rank case.

The Letter is organized as follows. In Section 2 we give details
of the lightlike Eisenhart lift and in particular how constants of
the motion are lifted. In Section 3 we give examples of spacetimes
generated from the classical examples of Liouville integrable dy-
namical systems describing heavy tops. In Section 4 we discuss
how to obtain a supersymmetric spacetime by lifting dynami-
cal systems in E2 and give a superintegrable example. We con-
clude in Section 5 and include a brief summary of conventions in
Appendix A.
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2. The Eisenhart lift

Our examples are all obtained by taking the Eisenhart lift or
oxidation [2,7–9] of a dynamical system with an n-dimensional
configuration space {Q n, gij, V , Ai} with Lagrangian

L = 1

2
gij

(
qk, t

)
q̇iq̇ j − V

(
qk, t

) + Ai
(
qk, t

)
q̇i, (3)

to give a system of geodesics in an (n + 2)-dimensional Bargmann
spacetime {M, gab, ∂s}, which admits a covariantly constant null
Killing vector field ∂s . The original dynamical trajectories are
obtained by a null reduction along the orbits of ∂s . Since all
Bargmann metrics admit a covariantly constant null vector field,
it follows that the holonomy is contained within E(2) ⊂ SO(3,1),
the two-dimensional Euclidean group which stabilizes a null vec-
tor. Thus the null congruence is geodesic, expansion, shear and
vorticity free. Thus it is also contained within the class of Kundt
spacetimes.

It is simplest to work with the Hamiltonian formulation in or-
der to see how the lift affects constants of the motion. We consider
dynamics on the cotangent bundle, T ∗M , of some manifold M
which is equipped with a natural symplectic form given in local
coordinates by ω = dqi ∧ dpi , with associated Poisson bracket { , }.
We assume that the Hamiltonian is a polynomial of degree two in
momenta:

H = H (2) + H (1) + H (0), (4)

where H(i) has degree i in momenta. We do not need to assume
that H is independent of t . We lift H to a Hamiltonian on T ∗(M ×
R

2) by promoting t to a configuration space coordinate and intro-
ducing a new coordinate s. The conjugate momenta are denoted
pt , ps and the new symplectic form is ω′ = ω + dt ∧ dpt + ds ∧ dps ,
with associated Poisson bracket {, }′ . The Hamiltonian on this en-
larged phase space is

H = H (2) + ps H (1) + p2
s H (0) + ps pt . (5)

Projecting the integral curves of this system onto the T ∗M × Rt

factor of the phase space gives integral curves of the original
Hamiltonian.

Suppose now that the system (H, T ∗M) has a constant of the
motion which is a polynomial in momenta:

K =
k∑

i=0

K (i). (6)

We calculate the variation of K along an integral curve of
(H, T ∗M) and find after collecting terms according to their de-
gree in momenta that

0 = dK

dt
= {K , H} + ∂ K

∂t
=

k∑
i=0

[{
K (i−1), H (2)

} + {
K (i), H (1)

}

+ {
K (i+1), H (0)

} + ∂ K (i)

∂t

]
, (7)

Since K should be constant along any integral curve, the terms in
the sum should vanish independently for each i. We lift K to the
extended phase space as

K =
k∑

i=0

pk−i
s K (i). (8)

Now, along an integral curve of (H, T ∗(M × R
2)) we have
dK
dλ

= {K, H}′ =
k∑

i=0

pk−i+1
s

[{
K (i−1), H (2)

} + {
K (i), H (1)

}

+ {
K (i+1), H (0)

} + ∂ K (i)

∂t

]
. (9)

Clearly this vanishes iff K is a constant of the motion for the orig-
inal system. Furthermore, since H is a homogeneous polynomial
of degree two in momenta we may interpret it as generating the
geodesic flow of a (pseudo-)Riemannian metric. K is a constant
along geodesics which is a homogeneous polynomial in momenta
and so corresponds to a Killing tensor of this metric. A similar cal-
culation shows that for constants of the motion for the original
system K1, K2, K3 which lift to K1, K2, K3 we have

{K1, K2} = K3 ⇔ {K1, K2}′ = K3. (10)

As a result, the Shouten–Nijenhuis algebra of the Killing tensors
in the lifted spacetime will be the same as the Poisson algebra of
the constants of the motion for the original dynamical system. We
also note that whilst we have increased the dimension of the con-
figuration space by two, we have also gained1 two new constants
of the motion: ps and pt . Thus the degree of integrability of the
system is unchanged by the lift—if the original system is Liouville
integrable (i.e. admits n functionally independent constants of the
motion in involution) or super-integrable (admits further constants
of the motion) then so will the lifted system be.

Applying this method to the system {Q n, gij, V , Ai} defined
above, we find that the lifted system is equivalent to geodesic mo-
tion on the spacetime with metric

ds2 = gij
(
qk, t

)
dqi dq j − 2V

(
qk, t

)
dt2

+ 2Ai
(
qk, t

)
dqi dt + 2 dt ds. (11)

3. Eisenhart lift of Goryachev–Chaplygin and Kovalevskaya’s tops

3.1. Eisenhart lift of the Goryachev–Chaplygin top

In this section we shall illustrate our general procedure by
starting with the well-known Liouville integrable system known
as the Goryachev–Chaplygin top [10,11]. After introducing the
Goryachev–Chaplygin Hamiltonian and the corresponding constant
of motion, we proceed to their Eisenhart lift. We demonstrate that
the obtained four-dimensional Lorentzian spacetime, which we call
the Goryachev–Chaplygin spacetime, admits a rank-3 irreducible
Killing tensor. We conclude by making several comments on the
quantization of the Goryachev–Chaplygin top and the correspond-
ing results in the Goryachev–Chaplygin spacetime.

3.1.1. Goryachev–Chaplygin top
Following Whittaker [10] we consider the motion of Goryachev–

Chaplygin top as a constrained motion of a heavy top with prin-
ciple moments of inertia A = B = 4C and whose centre of gravity
lies in the plane determined by the two equal moments of inertia,
so we start with:

Ltop = 1

2

(
θ̇2 + sin2 θ φ̇2) + 1

8
(ψ̇ + cos θ φ̇)2

− α2 sin θ sinψ. (12)

Proceeding to the Hamiltonian formulation, we find

1 The equations of motion derived from H imply that pt = const− E(t)/ps , where
E(t) is the energy of the original system, thus when E is constant, we do not lose
this constant of the motion by lifting.
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pφ = sin2 θ φ̇ + 1

4
cos θ(ψ̇ + cos θ φ̇),

pθ = θ̇ , pψ = 1

4
(ψ̇ + cos θ φ̇), (13)

and hence the Hamiltonian is

Htop = 1

2
p2

θ + 2p2
ψ + 1

2

(
pφ

sin θ
− cot θ pψ

)2

+ α2 sin θ sinψ

= 1

2

(
M2

1 + M2
2 + 4M2

3

) + α2x2, (14)

which, in notations of Appendix A, is the Hamiltonian (1) consid-
ered by Komarov [11]. It is obvious that coordinate φ is cyclic
and hence pφ equals constant. The Hamiltonian of Goryachev–
Chaplygin top is obtained if one sets pφ = 0,

HGC = 1

2

(
cot2 θ + 4

)
p2

ψ + 1

2
p2

θ + α2 sin θ sinψ. (15)

The Hamiltonian (14) has a remarkable property such that the
function

Ktop = M3
(
M2

1 + M2
2

) − α2M2x3 (16)

obeys

{Htop, Ktop} = α2 pφ M1. (17)

Hence, for pφ = 0, i.e. for Goryachev–Chaplygin top, (16) is a con-
stant of motion and reads

KGC = pψ p2
θ + cot2 θ p3

ψ

+ α2 cos θ(sinψ cot θ pψ − cosψ pθ ). (18)

Introducing the following functions (projections of standard func-
tions Mi ):

m1 = − sin ψ pθ − cosψ cot θ pψ,

m2 = cosψ pθ − sinψ cot θ pψ, m3 = pψ, (19)

we may write the Goryachev–Chaplygin top Hamiltonian and the
corresponding constant of motion as

HGC = 1

2

(
m2

1 + m2
2 + 4m2

3

) + α2x2,

KGC = m3
(
m2

1 + m2
2

) − α2m2x3. (20)

3.1.2. Eisenhart lift: Goryachev–Chaplygin spacetime
Using the results of Section 2 the Hamiltonian (20) lifts to the

four-dimensional Hamiltonian

H = m2
1 + m2

2 + 4m2
3 + 2α2 p2

s x2 + 2ps pt . (21)

This generates the geodesic flow of the four-dimensional Lorentzian
4-metric with Killing vector fields k = ∂t and l = ∂s , the latter of
which is lightlike and covariantly constant,

g = −2α2 sin θ sinψ dt2 + 2 dt ds + dθ2 + dψ2

cot2 θ + 4
. (22)

The constant of motion (20) now reads

K = m3
(
m2

1 + m2
2

) − α2 p2
s m2x3 (23)

and defines a rank-3 Killing tensor K , K = K abc pa pb pc , with non-
zero contravariant components
K θθψ = 1

3
, K θ ss = −α2

3
cosψ cos θ,

K ψψψ = cot2 θ, K ψss = α2

3

cos2 θ sinψ

sin θ
, (24)

together with the other components related by symmetry. One
may verify directly that K satisfies the Killing equation,
∇(a K bcd) = 0, however, it is not covariantly constant.

We can see in an elementary way that K is not decomposable
into lower rank Killing tensors. This follows from the fact that k
and l are the only Killing vectors of the spacetime (22). Suppose
K were decomposable, then it would be the sum of terms of the
form

K (a
(1)K bc)

(2) , or K (a
(3)K b

(4)K c)
(5), (25)

where the K(i) are Killing tensors. Since a rank 1 Killing tensor is
a Killing vector, by our assumption at least one of the factors in
each term must be either k or l. Such terms will only have non-
zero components when at least one of a,b, c is either t or s. Since
K has a non-zero ψψψ-component, K cannot be decomposed into
a sum of lower rank Killing tensors.

One may verify that the following holds:

[k, l] = 0, Lk K = 0, Ll K = 0, (26)

which implies that the associated constants of the geodesic motion
are in involution; the motion is Liouville integrable.

Let us finally mention some properties of the Goryachev–
Chaplygin spacetime. The spacetime is not Ricci flat, nor does the
Ricci scalar vanish. This means that it does not admit a Killing
spinor, e.g., [12]. We also note that

Rablb = 0, (27)

however Rab clearly has rank 3 (for typical values of the coordi-
nates) and so Rab 	= Amamb for any vector ma . The Einstein tensor
has non-zero components

Gtt = −12α2(3 cos4 θ − 10 cos2 θ + 6) sin θ sinφ

(3 cos2 θ − 4)2
,

Gts = −2(3 cos2 θ + 2)

(3 cos2 θ − 4)2
, (28)

and obeys Gablalb = 0, which is, of course, obvious from the equiv-
alent result for the Ricci tensor, together with the fact that l is
null.

3.1.3. Quantum mechanics of Goryachev–Chaplygin top
The quantum mechanics of the Goryachev–Chaplygin top was

studied by Komarov [11]. Specifically, it was shown that (17) ad-
mits a quantum analogue

[Ĥtop, K̂top] = −α2 J1∂φ, (29)

where operators Ĥtop and K̂top are given by

Ĥtop = 1

2

(
J 2

1 + J 2
2 + 4 J 2

3

) + α2x2,

K̂top = J3
(

J 2
1 + J 2

2

) − 1

4
J3 − 1

2
α2( J2x3 + x3 J2), (30)

and J i are defined in (70). This means that acting on a wave func-
tion independent of φ, the operators (30) commute.

By employing the Eisenhart lift on these operators one finds
that the operators
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Ĥtop = J 2
1 + J 2

2 + 4 J 2
3 + 2α2x2∂

2
s + 2∂s∂t,

K̂top = J3
(

J 2
1 + J 2

2

) − 1

4
J3 − 1

2
α2( J2x3 + x3 J2)∂

2
s , (31)

obey [Ĥtop, K̂top] = −2α2 J1∂
2
s ∂φ , and hence commute on φ-

independent wave function. The former operator is precisely the
standard wave operator on the Lorentzian 5-space with the met-
ric gtop , obtained by the Eisenhart lift of Htop . So we have,
�top ≡ gab

top∇a∇b = Ĥtop , where

gtop = 2 ds dt − 2α2x2 dt2 + (
σ 1)2 + (

σ 2)2 + 1

4

(
σ 3)2

, (32)

and σ i are the left-invariant forms on SU(2) defined in (68). More-
over, the latter operator can be written as

K̂top = K abc
(top)∇a∇b∇c + 3

2

(∇a K abc
(top)

)∇b∇c − 1

2
K(top)a

ab∇b, (33)

where K(top) is a symmetric rank-3 tensor. Introducing the basis

Ls = ∂s, Lt = ∂t, Li = J i, (34)

one finds that non-vanishing contravariant components of K(top)

are

K ss2
(top) = −2α2x3/3, K 113

(top) = K 223
(top) = 2/3, (35)

and that the tensor satisfies ∇(a K(top)
bcd) = −α2L(a

s Lb
s (∂φ)c Ld)

1 .
Hence, if we restrict to geodesic motion on 5-space with metric
gtop such that pφ vanishes, K abc

(top) pa pb pc defines a constant of mo-
tion.

One might wonder whether it is possible to directly carry over
the quantization to the Goryachev–Chaplygin four-dimensional
spacetime discussed in the previous subsection. The ‘naive quanti-
zation’ of (20) gives

ĤGC = 1

2

(
j2
1 + j2

2 + 4 j2
3

) + α2x2,

K̂GC = j3
(

j2
1 + j2

2

) − 1

4
j3 − 1

2
α2( j2x3 + x3 j2), (36)

where we have defined the operators (projections of J i)

j1 = − sin ψ ∂θ − cosψ cot θ ∂ψ,

j2 = cosψ ∂θ − sinψ cot θ ∂ψ, j3 = ∂ψ . (37)

By lifting the operators (36), one finds

Ĥ = j2
1 + j2

2 + 4 j2
3 + 2α2x2∂

2
s + 2∂s∂t,

K̂ = j3
(

j2
1 + j2

2

) − 1

4
j3 − 1

2
α2( j2x3 + x3 j2)∂

2
s . (38)

It is easy to verify that [Ĥ, K̂] = 0. However, the operator Ĥ is
not a standard (geometrical) wave operator on the Goryachev–
Chaplygin spacetime. In fact, one finds

� ≡ gab∇a∇b = Ĥ − 3 cot θ

4 + cot2 θ
∂θ . (39)

It is an interesting question whether the operators (36) provide
the ‘correct quantization’ of the Goryachev–Chaplygin top, in which
case the operators (38) are ‘preferred operators’ in the Goryachev–
Chaplygin spacetime, or whether some alternative quantization is
more appropriate. We leave this problem for the future. We also
remark that we were not able to find an operator linear in the
Killing tensor K , (24), which commutes with the wave operator �
associated with the Goryachev–Chaplygin metric (22).
3.2. Kovalevskaya’s spacetime: quartic Killing tensor

In this case one considers a heavy top with principle moments
of inertia A = B = 2C whose centre of gravity lies in the plane
determined by the two equal moments of inertia. The Lagrangian
is

LK = 1

2

(
θ̇2 + sin2 θ φ̇2) + 1

4
(ψ̇ + cos θ φ̇)2

− α2 sin θ cosψ. (40)

Clearly φ is ignorable and the Hamiltonian

H K = 1

2

(
p2

θ +
(

pφ

sin θ
− cot θ pψ

)2

+ 2p2
ψ

)
+ α2 sin θ cosψ

= 1

2

(
M2

1 + M2
2 + 2M2

3

) + α2x1 (41)

is constant. Kovalevskaya found another constant [10,13] which
reads

K K =
(

p2
θ +

(
pφ

sin θ
− cot θ pψ

)2)2

+ 4α4 sin2 θ

− 2α2 sin θ

(
eiψ

(
pφ

sin θ
− cot θ pψ + ipθ

)2

+ c.c.

)

= (
M2

1 + M2
2

)2 + 4α4(x2
1 + x2

2

)
− 4α2[x1

(
M2

1 − M2
2

) + 2x2M1M2
]
. (42)

This will lift to give a quartic Killing tensor.
In order to get a four-dimensional spacetime we perform again

the reduction along the φ-direction. So we consider

H = 1

2

(
m2

1 + m2
2 + 2m2

3

) + α2x1,

K = (
m2

1 + m2
2

)2 + 4α4(x2
1 + x2

2

)
− 4α2[x1

(
m2

1 − m2
2

) + 2x2m1m2
]
. (43)

The Hamiltonian lifts to

H = m2
1 + m2

2 + 2m2
3 + 2α2 p2

s x1 + 2ps pt, (44)

which generates geodesic flow of the Lorenzian 4-metric

g = −2α2 sin θ cosψ dt2 + 2 ds dt + dθ2 + dψ2

cot2 θ + 2
, (45)

admitting the rank-4 irreducible tensor K , given by

K θθθθ = 1, K θθψψ = 1

3
cot2 θ,

K ssθθ = 2

3
α2 sin θ cosψ, K ψψψψ = cot4 θ,

K ssθψ = −2

3
α2 cos θ sinψ, K ssψψ = −2

3
α2 cosψ cos θ cot θ,

K ssss = 4α4 sin θ2. (46)

Properties of the Kovalevskaya spacetime are very similar to prop-
erties of the Goryachev–Chaplygin spacetime. In particular, the
spacetime admits a covariantly constant null Killing vector l = ∂s ,
it is not Ricci flat, and does not admit a Killing spinor. We also
have that � 	= Ĥ, with the latter obtained by a naive quantization
described in previous section.

One can again consider a 5D spacetime instead,
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gK = −2α2 sin θ cosψ dt2 + 2 ds dt + (
σ 1)2

+ (
σ 2)2 + 1

2

(
σ 3)2

, (47)

where one has [14]

�K = gab
K ∇a∇b = Ĥ K = J 2

1 + J 2
2 + 2 J 2

3 + 2α2x1∂
2
s + 2∂s∂t,

K̂ K = 1

2
(K+K− + K−K+) − 2( J+ J− + J− J+), (48)

where J± = J1 ± i J2, K± = J 2± −2α2x±∂2
s and x± = x1 ± ix2. In this

case K̂ K is a real symmetry of the wave operator, [�K , K̂ K ] = 0. It
is related to the five-dimensional rank-4 irreducible Killing tensor
K(K ) as

K̂ K = K abcd
(K ) ∇a∇b∇c∇d + 2

(∇a K abcd
(K )

)∇b∇c∇d

+ 3
(∇a∇b K abcd

(K )

)∇c∇d − 2K abc
(K )c∇a∇b

− 3

4
K ab

(K )ab Lc
3Ld

3∇c∇d, (49)

where in the basis (34) the components of the Killing tensor K(K )

are written as

K ssss
(K ) = 4α4(x2

1 + x2
2

)
, K ss11

(K ) = −K ss22
(K ) = −2α2x1/3,

K ss12
(K ) = −2α2x2/3, K 1111

(K ) = 3K 1122
(K ) = K 2222

(K ) = 1. (50)

4. Superintegrable systems in E2: SUSY plane waves

In this section we consider Hamiltonians of the form

H = 1

2

(
p2

x + p2
y

) + V (x, y). (51)

For some choices of the potential V this Hamiltonian is superinte-
grable, e.g., [15] and references therein. The Hamiltonian (51) lifts
to

H = p2
x + p2

y + 2V (x, y)p2
s + 2ps pt, (52)

which generates geodesic flows of Lorentzian 4-metric

g = dx2 + dy2 − 2V (x, y)dt2 + 2 dt ds. (53)

In quantum mechanics, one has the quantized Hamiltonian

Ĥ = ∂2
x + ∂2

y + 2V (x, y)∂2
s + 2∂s∂t (54)

and this coincides with the Laplacian of the metric (53), i.e., one
has � ≡ ∇a gab∇b = Ĥ.

Let us mention some basic properties of the spacetime (53). The
Ricci curvature has only tt-component,

Rtt = (
∂2

x + ∂2
y

)
V , (55)

and the scalar curvature vanishes, R = 0. Hence Gab = Rab and

Rablb = 0, (56)

where l ≡ ∂/∂s is a covariantly constant null Killing vector. Since
the “transverse” x–y space is flat the metric (53) admits a covari-
antly constant spinor field ε such that

ε̄γ aε = la = (∂s)
a (57)

and hence a covariantly constant null 2-form

ab = ε̄γ [ab]ε (58)

such that ablb = 0.
There are many examples of interesting (superintegrable) sys-
tems of the type (51) which give rise to higher-rank Killing tensors
and non-trivial Schouten–Nijenhuis brackets. We refer the reader
to recent paper by Kalnins et al. [15] and references therein as
well as to Chapter 4.4 in [16]. To illustrate the theory we give the
following recent example:

4.1. Post–Winternitz example

In [17], Post and Winternitz give a (Hamilton–Jacobi non-
separable) classical super-integrable example of the form (51) with
the potential

V = αy

x
2
3

, (59)

such that

X = 3p2
x p y + 2p3

y + 9αx
1
3 px + 6αyp y

x
2
3

, (60)

Y = p4
x + 4αyp2

x

x
2
3

− 12αx
1
3 px p y − 2α2(9x2 − 2y2)

x
4
3

, (61)

both Poisson commute with H and satisfy the Heisenberg algebra

{X, Y } = 108α3. (62)

The spacetime reads

g = 2 ds dt − 2y

x
2
3

dt2 + dx2 + dy2. (63)

The constants X, Y are lifted and give

{X , Y} = 108α3 p6
s . (64)

Thus, consistent with previous cases ([2] and references therein),
the central element in the Heisenberg algebra (62) may be inter-
preted as the (sixth power of) a null translation.

The spacetime admits rank-3 and rank-4 Killing tensors. Their
components Xabc and Y abcd can be read of from

X = Xabc pa pb pc

= 3p2
x p y + 2p3

y + 9αx
1
3 px p2

s + 6αyp y p2
s

x
2
3

, (65)

Y = Y abcd pa pb pc pd

= p4
x + 4αyp2

x p2
s

x
2
3

− 12αx
1
3 px p y p2

s

− 2α2(9x2 − 2y2)

x
4
3

p4
s . (66)

Since ladxa = dt , we have

la Xabc = 0 = laY abcd. (67)

Post and Winternitz have provided a quantization of their
model. Thus if [x, px] = ih̄ etc., then all products are replaced by

half their anti-commutator and in addition one must subtract 5h̄2

72x2

from the expression for H and add 25h̄4

4 to the expression for Y .

1296x
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5. Conclusions

In this Letter we have shown that by applying Eisenhart’s light-
like lift to dynamical systems admitting constants of the motion of
degree greater than two in momenta, one may obtain spacetimes
admitting Killing tensors of higher rank than two. Our examples by
no means exhaust the possibilities. In [13–15,18–22] more compli-
cated examples are given, but our examples illustrate the point we
wish to make.

In some cases we find the Poisson–Schouten–Nijenhuis algebra
to be non-trivial. We have also constructed differential operators
which realize the classical algebra as h̄ → 0. In some, but not all,
cases the Hamiltonian corresponds to the Laplace or wave opera-
tor. In general the wave operator must be augmented by quantum
corrections which are not always expressible in purely geometric
terms. The higher rank conserved quantities also receive quantum
corrections not expressible solely in terms of the Killing tensor. In
some ways this is one of the most interesting of our findings and
is certainly worthy of further study.
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Appendix A. Conventions and Euclidean group notation

To fix the conventions for forms on SU(2), we take the follow-
ing basis for left-invariant forms:

σ 1 = sin θ cosψ dφ − sinψ dθ,

σ 2 = sin θ sinψ dφ + cosψ dθ,

σ 3 = dψ + cos θ dφ, (68)

which obey the relations

dσ i = −1

2
εi jkσ

j ∧ σ k. (69)

The dual vector fields are

J1 = − sinψ ∂θ + cosψ

sin θ
∂φ − cot θ cosψ ∂ψ,

J2 = cosψ ∂θ + sinψ

sin θ
∂φ − cot θ sinψ ∂ψ, J3 = ∂ψ, (70)

and satisfy the algebra:

[ J i, J j] = −εi jk Jk. (71)

Defining the functions

x1 = sin θ cosψ, x2 = sin θ sinψ, x3 = cos θ, (72)

we have the additional relations

[ J i, x j] = −εi jkxk, (73)

where we interpret the functions xi as operators on functions, act-
ing by multiplication.

Both the Goryachev–Chaplygin and the Kovalevskaya tops dis-
cussed in the main text are examples of tops whose centre of
gravity does not coincide with the pivot point. They admit a de-
scription in terms of the Lie algebra of the Euclidean group E(3)

and since this is used in some of the literature, e.g. [11,13,14,18,
19,23], we give it here.

If M is the angular momentum of the top one has, in the rotat-
ing frame

Ṁ + ω × M = −mgx0 × x,

k̇ + ωx = 0, (74)

where x is unit vector which is constant in the inertial frame (the
constancy of |x| is a consequence of these equations of motion)
and points in the opposition direction to the local direction of
gravity and x0 is a constant vector in the rotating from which gives
the centre of gravity. An alternative interpretation, used in analyz-
ing the Stark effect, is that x0 is the electric dipole moment and
mgx is in the direction of the applied electric field. The system of
equations admits three constants of the motion

x · x, x · M,
1

2
ω · M + mgx0 · x. (75)

Choosing coordinates such that the centre of mass relative to the
pivot (normalized to unit length) are given by (72), we find that
the potential energy of the top is given by

V = mg(x0 sin θ cosψ + y0 sin θ sinψ + z0 cos θ), (76)

and one may construct a Lagrangian on TSO(3) and a Hamiltonian
on T �SO(3) which depend on the principle moments of inertia
(A, B, C). For the Goryachev–Chaplygin top we have A = B = 4C ,
and the centre of gravity lies in the plane defined by the two prin-
cipal axes with equal moments of inertia.

The moment maps for left actions of rotations

M1 = − sin ψ pθ + cosψ

sin θ
pφ − cosψ cot θ pψ,

M2 = cosψ pθ + sinψ

sin θ
pφ − sinψ cot θ pψ, M3 = pψ. (77)

The Poisson algebra of M and x then turns out to be that of the
Euclidean group e(3). Thus the system of equations (74) may also
be interpreted as a Hamiltonian system moving on e�(3) the dual
of the Lie algebra e(3). As a consequence one has an isomorphism
with the problem of a rigid body moving in a fluid. However it
should be noted that the latter has phase space T �E(3) which is
12-dimensional while the top has phase space has phase space
T �(SO(3)) which is 6-dimensional. As pointed out in [23] if one
imposes the constraints x · x = 1, M · x = 0, one gets the standard
symplectic structure on T � S2.
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