
Plasmid 68 (2012) 149–158

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

Plasmid

journal homepage: www.elsevier .com/ locate/yplas
Review

Rhizobial extrachromosomal replicon variability, stability and expression
in natural niches

Martha G. López-Guerrero a, Ernesto Ormeño-Orrillo a, José Luis Acosta a,1,
Alfredo Mendoza-Vargas b,1, Marco A. Rogel a, Miguel Angel Ramírez a,
Mónica Rosenblueth a, Julio Martínez-Romero a, Esperanza Martínez-Romero a,⇑
a Centro de Ciencias Genómicas, UNAM, Av. Universidad SN, Cuernavaca, Morelos, Mexico
b Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, Mexico

a r t i c l e i n f o
Article history:
Received 30 March 2012
Accepted 6 July 2012
Available online 16 July 2012
Communicated by Eva Top

Keywords:
Plasmids
Plasmid instability
Symbiotic plasmids
Rhizobium
Sinorhizobium
Ensifer
0147-619X� 2012 Elsevier Inc.
http://dx.doi.org/10.1016/j.plasmid.2012.07.002

⇑ Corresponding author.
E-mail address: emartine@ccg.unam.mx (E. Mart

1 Present address: Instituto Nacional de Medicina

Open access under CC B
a b s t r a c t

In bacteria, niche adaptation may be determined by mobile extrachromosomal elements. A
remarkable characteristic of Rhizobium and Ensifer (Sinorhizobium) but also of Agrobacte-
rium species is that almost half of the genome is contained in several large extrachromo-
somal replicons (ERs). They encode a plethora of functions, some of them required for
bacterial survival, niche adaptation, plasmid transfer or stability. In spite of this, plasmid
loss is common in rhizobia upon subculturing. Rhizobial gene-expression studies in plant
rhizospheres with novel results from transcriptomic analysis of Rhizobium phaseoli in
maize and Phaseolus vulgaris roots highlight the role of ERs in natural niches and allowed
the identification of common extrachromosomal genes expressed in association with plant
rootlets and the replicons involved.
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1. Introduction

Rhizobia is a generic name to refer to several genera of
a and b-Proteobacteria. Rhizobia are successful legume
and non-legume rhizosphere colonizers and form nitrogen
fixing nodules in legumes. Rhizobia inhabit the soil and
other niches such as seeds (López-López et al., 2010;
Pérez-Ramírez et al., 1998) or inside plant tissues as endo-
phytes (Chaintreuil et al., 2000; Gutiérrez-Zamora and
Martínez-Romero, 2001; Reiter et al., 2003; Yanni et al.,
1997). Legumes that establish symbiosis with rhizobia
can colonize nitrogen poor environments, may enrich the
soil or require less chemical nitrogen fertilizers as agricul-
tural crops.

In rhizobial research, an outstanding discovery was that
symbiosis abilities resided in plasmids that could be lost or
transferred among bacteria (Bánfalvi et al., 1981; Hooykaas
et al., 1982; Johnston et al., 1978; Nuti et al., 1977; Nuti
et al., 1979; Rosenberg et al., 1982; Sutton, 1974; Tshitinge
et al., 1975; Zurkowski, 1982; Zurkowski and Lorkiewic,
1976). Symbiotic plasmids are found in Rhizobium,
Ensifer = Sinorhizobium, in few Mesorhizobium species, in
the b-Protobacterium Cupriavidus taiwanensis that forms
nodules in Mimosa species (Amadou et al., 2008) and in
Burkholderia sp. CCGE 1002 isolated from a nodule of Mi-
mosa occidentalis collected in Tepic, Mexico (genome NCBI
ID 640511). However symbiotic plasmids are not found in
Bradyrhizobium (Cytryn et al., 2008; Hahn and Hennecke,
1987; Haugland and Verma, 1981), in Azorhizobium cauli-
nodans (Lee et al., 2008) or in most Mesorhizobium strains
(Wang et al., 1999; Xu and Murooka, 1995; Zou et al.,
1997). Nitrogen fixation occurring in nodules may be con-
sidered as an ecological service. Genes involved in this pro-
cess (nif genes) are plasmid encoded in Rhizobium, Ensifer
(Sinorhizobium), few Mesorhizobium species, Burkholderia
and Cupriavidus strains but located in chromosomes in
many bacteria (reviewed in Ormeño-Orrillo et al., in press).
In rhizobia, symbiosis variants (symbiovars) are recog-
nized on the basis of host specificity and effectiveness
(nitrogen fixation) mainly determined by symbiotic plas-
mids or islands (Rogel et al., 2011). Reviews on symbiotic
plasmids (Romero and Brom, 2004) and on the bacterial
and plant functions required during the symbiotic process
have been published (Oldroyd et al., 2011; Peix et al.,
2010).

Methods to visualize rhizobial plasmids (Eckhardt,
1978; Hirsch et al., 1980; Hynes and McGregor, 1990) were
pivotal to the study of their diverse patterns, their stability
and for the determination of the plasmid location of sym-
biosis significant genes. In addition to symbiotic plasmids,
different large plasmids or extrachromosomal replicons
(ER) are found in nodule forming bacteria. However, only
23% of Bradyrhizobium japonicum and B. elkanii strains from
different geographical regions contained plasmids (Cytryn
et al., 2008). The role of plasmids in the Rhizobiaceae
focusing on interbacterial and transkingdom interactions
was recently reviewed (Pappas and Cevallos, 2011). Differ-
ent types of ER have been described, such as chromids
(Harrison et al., 2010) as well as secondary chromosomes
(Slater et al., 2009). Housekeeping and ribosomal genes
that are relocated to plasmids may make them look like
secondary chromosomes. ER that encode housekeeping or
essential functions, stably maintained in bacteria and hav-
ing a GC content similar to that of the chromosome, have
been designated chromids and have been identified from
genomic data in several rhizobial strains (Harrison et al.,
2010). The definition of essential functions encoded in ER
must be reviewed because genes may only be conditionally
essential on some media or conditions. For example, a plas-
mid may be cured in the laboratory and thus be considered
non essential but may be essential in soil or in the rhizo-
sphere. On the other hand, use of the curing plasmid strat-
egy to recognize essential genes may lead to erroneous
conclusions if essential genes move to other replicons dur-
ing the plasmid elimination (curing) process and selection
of survivors. Genome sequence analysis of cured strains
would reveal such events.
2. Extrachromosomal replicons in rhizobia, a substantial
proportion of their genomes

We will focus mainly on Rhizobium with only some ref-
erences on Ensifer and the related Agrobacterium genus that
includes species forming tumors in plants. A remarkable
characteristic of Rhizobium, Ensifer but also of Agrobacte-
rium species is the large amount of genomic DNA con-
tained in ER. From 30% to almost 50% of the genome may
be extrachromosomal in symbiotic or pathogenic strains
(Table 1). Agrobacterial plasmids were reviewed in Suzuki
et al. (2009). Although ER may represent a burden for bac-
terial growth in some cases, this is not the case with rhizo-
bial plasmids. On the contrary, they are important for
bacterial physiology as has been shown for Rhizobium etli
CFN 42 in which strains cured of most of the plasmids
had larger duplication times (Brom et al., 1992). Further-
more, ER may contribute significantly to the phenotype
and to the bacterial pangenome, the whole species
genome.

Most rhizobial ERs are large and in low copy number.
Rhizobial strains have several ERs (Table 1 in Romero and
Brom, 2004), up to 11 in R. leguminosarum. Agrobacteria,
R. galegae, R. phaseoli, R. tropici and R. gallicum seem to have
fewer, 2–4. In rhizobia and in other a-Proteobacteria most
ERs have repABC replication systems (Cervantes-Rivera
et al., 2011; Pappas and Cevallos, 2011). A 7.2 kb plasmid
with rolling circle replication was described in an E. meliloti
strain but small size plasmids are uncommon in rhizobia



Table 1
Size and percent of extrachromosomal genome in rhizobia and related strains with completely sequenced genomes.

Strain Genome size (Mb) Percent in extrachromosomal
replicons (%)

Rhizobium tropici CIAT 899 6.69 42.6
Rhizobium etli CFN 42 6.53 32.9
Rhizobium phaseoli CIAT 652 6.44 30.1
Rhizobium phaseoli Ch24-10 6.63 32.0
Rhizobium leguminosarum 3841 7.79 34.5
Rhizobium leguminosarum WSM1325 7.45 35.6
Rhizobium leguminosarum WSM2304 6.87 34.0
Rhizobium rhizogenes (Agrobacterium radiobacter) K84 7.31 44.7
Agrobacterium tumefaciens C58 5.65 50.0a

Agrobacterium vitis S4 6.31 41.0a

Ensifer meliloti (Sinorhizobium meliloti)1021 6.80 44.9
Ensifer sp. NGR234 (Sinorhizobium sp.) 6.90 43.0
Ensifer medicae WSM419 (Sinorhizobium medicae) 6.82 44.5

a Including the secondary chromosome that has ribosomal genes but an origin of replication typical of plasmids.
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(Barran et al., 2001). ER sizes in Rhizobium and Ensifer
(Sinorhizobium) are in the range of 45 kb to around 2.5 Mb.
3. Rhizobial hypervariable genome is in
extrachromosomal elements

Chromosomes are more conserved than ER both at the
gene sequence and synteny levels (Guerrero et al., 2005).
Plasmid patterns are different even within a single rhizo-
bial species (Rosenblueth and Martínez Romero, 2004;
Wang et al., 1999). This is particularly evident among R. etli
and R. leguminosarum strains but less variability has been
observed in R. tropici, R. phaseoli or Ensifer plasmid profiles
(not shown). Plasmid pattern differences suggest that rhi-
zobia may thrive in different environments.

Plasmid gene content variation has been revealed from
genomic projects and mosaicism seems to be a common
characteristic of plasmids (Cervantes et al., 2011) and sym-
biotic plasmids (Freiberg et al., 1997; González et al.,
2003). Recombination was evidenced with a PCR approach
in Rhizobium etli plasmids (Flores et al., 2005). Plasmids
seem to be prone to pick up novel genes or to suffer dele-
tions. How are plasmids assembled or disassembled? Once
a successful plasmid is arranged it may be stably main-
tained even in distinct chromosomal backgrounds over
time (Crossman et al., 2008).

Duplicated copies from chromosomal genes have been
allocated to plasmids. In R. tropici and in R. leucaenae a
duplicated citrate synthase gene is found in the symbiotic
plasmid, conditioning nodulation (Pardo et al., 1994) and
differentially regulated from the chromosomal copy (Her-
nández-Lucas et al., 1995). Glucosamine synthase (nodM)
duplicated genes in plasmids (Marie et al., 1992), are
needed to provide additional substrates for Nod factor
production.

ER may integrate into chromosomes (Guo et al., 2003),
rearrange (Brom et al., 1991; Flores et al., 1988, 2000;
Soberón-Chávez et al., 1986; Zhang et al., 2001) or form
cointegrates with other plasmids (Brom et al., 2004; Cer-
vantes et al., 2011; Guo et al., 2003; Mavingui et al.,
2002). Fragments of plasmids may be amplified and in
some cases this leads to enhanced nodulation (Mavingui
et al., 1997, 1998; Romero et al., 1991; Romero et al.,
1995). Extrachromosomal location of genes is not universal
and fixed in strains because some genes may be in chromo-
somes and in other cases in extrachromosomal elements
(Crossman et al., 2008 and Fig. 1). There are clues that indi-
cate that some plasmids may be chimeras resulting from
the fusion of different plasmids (Cervantes et al., 2011; Or-
meño-Orrillo et al., unpublished). Plasmid co-integrates
may excise correctly or incorrectly. Plasmids seem to be
more dynamic than chromosomes and equivalent genes
found among distinct ER in related species are evidence
of extensive plasmid rearrangements (Fig. 1, Fig. 6 in
Crossman et al., 2008).
4. Instability and stability of extrachromosomal
elements

Plasmid instability has been known for a long time and
it has been recommended to avoid the practice of single
colony isolation when purifying rhizobia especially for
inoculant production as they may lose relevant plasmids
(Weaver and Wright, 1987). Absence of symbiotic plasmids
is remarkable as rhizobial natural populations without
symbiotic plasmids lose their access to legume nodules,
however R. etli strains lacking Sym plasmids seem to be
very successful rhizospheric or endophytic colonizers
(López-López et al., 2010; Segovia et al., 1991). As plasmids
encode carbon assimilation genes, rhizobia may change
phenotype in one step when losing or gaining plasmids.
After R. etli CFN42 was resequenced to test Illumina
sequencing facilities at UNAM, it was evident that plasmid
pReCFN42a was lost in the cultured cells grown to extract
DNA (González and Lozano, personal communication)
while the original stock maintained the whole set of plas-
mids. Some rhizobial strains when subcultured in the lab
were prone to lose their plasmids (Weaver et al., 1990). A
Tn5 had to be inserted in CFN 23 symbiotic plasmid to ex-
ert a selective pressure to maintain the plasmid in this Rhi-
zobium strain (Soberón-Chávez and Nájera, 1989).

Instability has also been observed in Burkholderia strain
CCGE 1001 isolated in our laboratory from a nodule of a Mi-
mosa affinis plant grown in soils from Acayuca, Veracruz.



Fig. 1. Comparison using satsumasinteny of R. phaseoli Ch24-10 extrachromosomal replicons (ERs) to (A) R. etli CFN42, (B) R. phaseoli CIAT 652 and
(C) R. leguminosarum 3841 (RLEG) chromosomes and ERs.
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Upon subculturing this strain lost its symbiotic plasmid as
evidenced from the whole genome analysis (NCBI ID
640510). The original strain is still capable of nodulating
Phaseolus vulgaris and mimosa plants (unpublished). In an-
other case, when we analyzed the transcripts from R. phase-
oli strain Ch24-10 (see below) there were none
corresponding to a 370 kb plasmid (the smallest, non-sym-
biotic plasmid) that was revealed in the whole genome
analysis of the same strain (López-Guerrero et al., in press).
We supposed that the plasmid was lost upon subculturing
as the original stock has all plasmids. Our analysis of the
published genome of R. phaseoli CNPAF512 (Fauvart et al.,
2011) revealed sequences corresponding to the 370 kb
plasmid from Ch24-10, however these were not found
(Fig. 1B) in the published genome of another R. phaseoli
strain, CIAT 652 (González et al., 2010). This shows that this
plasmid is not homogenously conserved among R. phaseoli
strains. It is worth mentioning that R. phaseoli CIAT652 is a
very efficient P. vulgaris symbiont in spite of lacking this
plasmid.

ER maintenance seems to be forced when carrying genes
required for growth or survival. This is illustrated in R. etli
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CFN 42 with pReCFN42e carrying genes needed for growth
or optimal growth in rich medium such as those encoding a
sensor histidine kinase/ response regulator hybrid protein
and a hypothetical protein with a winged helix-turn-helix
motif (Landeta et al., 2011) in addition to containing some
of the genes for cobalamin biosynthesis. Both genes encod-
ing the sensor histidine kinase/ response regulator hybrid
and the hypothetical protein with a winged helix-turn-he-
lix motif are found in R. leguminosarum sv. viciae 3841 (in
chromid PRL11) and in sv. trifolii strains 1325 and 2304
plasmids as well as in an R. phaseoli CIAT 652 plasmid
(pRp652a) that corresponds to pReCFN42e.

Toxin–antitoxin genes were discovered as plasmid stabi-
lizers (Jensen and Gerdes, 1995; Ogura and Hiraga, 1983) and
have been identified in many bacteria (Pandey and Gerdes,
2005; Van Melderen et al., 2009). Toxin–antitoxin genes have
been found in the symbiotic plasmid of Ensifer sp. NGR234
(Falla and Chopra, 1999). Antitoxins are more unstable than
toxins so when the antitoxin is missing due to plasmid loss,
the toxin inhibits cell growth and leads to death (Jensen
and Gerdes, 1995). Bacterial genetic mechanisms to ensure
plasmid maintenance both in symbionts and pathogens have
been reviewed (Sengupta and Austin, 2011).
5. Extrachromosomal replicons involved in plant–
rhizobium interactions

ERs in addition to the symbiotic plasmids have roles in
symbiosis with legumes (Hynes and McGregor, 1990). Cur-
ing of a cryptic plasmid in Ensifer (Sinorhizobium) meliloti
led to a more efficient symbiosis in alfalfa (Velázquez
et al., 1995). In R. leguminosarum an exogenous RP4 plas-
mid decreased symbiotic effectiveness (O’Connell et al.,
1998). Enhanced nodulation competitiveness was recorded
in R. etli strains that gained an R. leucaenae (185 kb) plas-
mid (Martínez-Romero and Rosenblueth, 1990). A. tum-
efaciens transconjugants that in addition to carrying the
nod-nif plasmid had a 200 kb plasmid from R. leucaenae
fixed more nitrogen than that with only the symbiotic
plasmid (Martínez et al., 1987).

Non symbiotic plasmids participate in rhizobial interac-
tions with plants (Brom et al., 2000; Chen et al., 2000;
Hynes and McGregor, 1990; Pappas and Cevallos, 2011).
Some R. leguminosarum strains capable of associating with
rice promoted its growth and alleviated N deficiencies
(Yanni et al., 1997), but others from clover inhibited rice
root growth. Rice inhibition or promotion is plasmid
dependent in R. leguminosarum (Perrine et al., 2001) and
in E. meliloti (Perrine et al., 2005). Derivatives of R. legumin-
osarum sv. trifolii W14–12 lacking two plasmids were un-
able to grow in soil (Moënne-Loccoz and Weaver, 1995a)
and different plasmids were found to contribute to growth
in the clover rhizosphere (Moënne-Loccoz and Weaver,
1995b) or in saprophytic life (Moënne-Loccoz et al.,
1995). The most competitive maize colonizing R. phaseoli
strains had the most common plasmid pattern observed
among many rhizospheric strains analyzed (Rosenblueth
and Martínez Romero, 2004). In R. leguminosarum sv. vi-
ciae, a plasmid contains several genes needed and ex-
pressed by bacterial cells when colonizing the pea
rhizosphere (Ramachandran et al., 2011). Similarly we
found that extrachromosomal genes were expressed in R.
phaseoli strain Ch24-10 (Rosenblueth and Martínez Romer-
o, 2004) associated with maize and P. vulgaris (common
bean) roots (see Section 7).
6. Extrachromosomal genes associated with rhizobial
environmental adaptation

There is a functional bias in extrachromosomal genes,
the ERs tend to contain genes implicated in processes like
chemotaxis (Yost et al., 1998) and transport, and they are
enriched in elements of external origin (Crossman et al.,
2008). Some plasmids, megaplasmids or chromids encode
many carbon assimilation genes (Baldani et al., 1992; Ores-
nik et al., 1998); vitamins like biotin, thiamine or panto-
thenate (Finan et al., 1986; Miranda-Ríos et al., 1997;
Streit et al., 1996; Villaseñor et al., 2011), bacteriocin
(Oresnik et al., 1999; Venter et al., 2001), melanin (Hynes
et al., 1988) or autoinducer (Schripsema et al., 1996) bio-
synthetic pathways; and may encode chaperons and mod-
ification-restriction systems (Rochepeau et al., 1997).
Quorum sensing systems that regulate plasmid transfer
or expression of genes in plants may be plasmid encoded
in rhizobia (Cubo et al., 1992; Edwards et al., 2009; Lith-
gow et al., 2000). Reviews on gene functions of plasmids
(García-de los Santos and Brom, 1996; Mercado-Blanco
and Toro, 1996; Pappas and Cevallos, 2011) and of mega-
plasmids from Ensifer sp. NGR234 (Mavingui, 2009) and
E. meliloti (Barloy-Hubler and Jebbar, 2009) have been pub-
lished. Only some functions that we considered important
for plant niche colonization will be reviewed here.
6.1. Transporters in ERs

In megaplasmid pSymA but especially in pSymB of Ensif-
er meliloti 1021 there are large numbers of transporters
(Mauchline et al., 2006) that may allow the bacteria to use
different soil nutrients or root exudates. They are inducible
by a large number of substrates (Mauchline et al., 2006).
Plasmids in R. etli, R. tropici, R. leucaenae and R. gallicum sv.
phaseoli carry teu genes that code for putative sugar ABC
transporters involved in the uptake of molecules found in
P. vulgaris and siratro exudates (Rosenblueth et al., 1998).
Four of six quaternary amine transporters that were charac-
terized are located in chromids pRL10 and pRL12 in R. legu-
minosarum 3841 (Fox et al., 2008).
6.2. Catabolism

In E. meliloti putA genes (for proline catabolism) are in-
volved in rhizobial competitiveness (Van Dillewijn et al.,
2002), putA is in the chromosome in E. meliloti and in Ens-
ifer sp. NGR234. putA genes are in ER in R. etli, R. phaseoli
and R. leguminosarum.

Rhamnose catabolic genes are plasmid borne and
inducible (Oresnik et al., 1998). Transport and catabolism
of erythriol is plasmid dependent (Geddes et al., 2010; Yost
et al., 2006). R. leguminosarum mutants in glycerol catabo-
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lism have diminished competitiveness. Glycerol uptake
and catabolism is plasmid encoded (Ding et al., 2012).

Calystegine catabolism genes are plasmid borne in E.
meliloti (Guntli et al., 1999; Tepfer et al., 1988). These
genes participate in bacterial competitive colonization of
non legume rhizozpheres such as those from morning
glory plants. Mimosine catabolism genes are also plasmid
borne (Borthakur et al., 2003). Opine uptake and catabo-
lism genes reside in the symbiotic megaplasmid a in E.
meliloti (Murphy et al., 1987). There are also opine catabo-
lizing plasmids in agrobacteria (Bruce et al., 1990).
6.3. Surface polysaccharides

Different surface polysaccharides are needed in rhizo-
bial attachment to roots (Downie, 2010) and genes for their
biosynthesis are located in different bacterial replicons.
Some lipopolysaccharide (LPS) biosynthetic genes have
been found in R. etli plasmids (García-de los Santos and
Brom, 1997). Biosynthetic genes for exopolysaccharides re-
side in megaplasmid b in E. meliloti (Finan et al., 1986) and
also in megaplasmids of other rhizobia (Skorupska et al.,
2006). Megaplasmid a of Ensifer sp. NGR234 encodes flavo-
noid-inducible genes required for the biosynthesis of a
rhamnose-rich LPS produced only inside nodules and that
is required for symbiosis (Broughton et al., 2006).
6.4. Hormone biosynthesis and protein secretion

Upon inspection of reported genomes we found genes
that seem to be involved in gibberellin biosynthesis located
in the symbiotic plasmids of E. fredii HH103 and Ensifer sp.
NGR234, R. etli CFN42, R. phaseoli CIAT 652, R. tropici CIAT
899 and in the symbiosis islands of B. japonicum USDA 6,
Mesorhizobium loti R7A, and M. huakuii MAFF303099. These
genes were originally described in Bradyrhizobium japoni-
cum USDA 110 (Morrone et al., 2009) and are not present
in the reported genomes of E. meliloti and R. leguminosarum
strains. Gibberellins have diverse effects on plants and its
balance in relation to auxins affects plant growth (Brian,
2008). Rhizobial mutants in these genes have not been
tested in their hosts. ACC deaminases that modulate ethyl-
ene levels are encoded in symbiosis islands in mesorhizobi-
al strains R7A and MAFF303099 (Conforte et al., 2010) and
in the symbiotic plasmid of R. tropici (Ormeño-Orrillo et al.,
unpublished). Genes for different auxin biosynthetic
pathways are plasmidic in NGR234 (Theunis et al., 2004)
and in R. tropici CIAT 899 and they are flavonoid inducible
(Theunis et al., 2004; Ormeño-Orrillo et al., unpublished).

Rhizobia use different types of secretion systems (excel-
lently reviewed in Downie, 2010). Type III secretion systems
(T3SS) are found in several Rhizobium and Ensifer strains
(Marie et al., 2001), these genes are in the symbiotic plas-
mid in Ensifer sp. strain NGR234 and mutants in this system
have altered plant specificity. NGR234 T3SS genes are
inducible and expressed in the presence of flavonoids (Vi-
prey et al., 1998). A T3SS cluster is also present in the phase-
oli symbiotic plasmid (González et al. 2006). Genes coding
for Type 1 and 5 secretion systems are found in megaplas-
mids in R. tropici (Ormeño-Orrillo et al., unpublished).
6.5. Other functions

In R. etli, genes to tolerate polyphenols are plasmid
borne (García-de los Santos et al., 2008). The only R. etli
CFN42 catalase is located in a large ER (pReCFN42f) and
is required for bacterial survival in polyphenol rich med-
ium (García-de los Santos et al., 2008). The same replicon
carries nirK and norCB genes for nitrite reduction involved
in nitrite detoxification but not in nitrite respiration
(Gómez-Hernández et al., 2011). Genes that encode efflux
pumps (inducible with bean exudates) that eliminate plant
toxic molecules or antibiotics are located in pReCFN42b
(184 kb) (González-Pasayo and Martínez-Romero, 2000).
The same replicon carries genes for thiamine biosynthesis
(Miranda-Ríos et al., 1997).

7. Transcriptional profiling of rhizobial ER in natural
niches such as the root environment

Are there rhizobial genomic islands or plasmids that are
preferentially expressed in the environment? Many stress
induced genes that could play a role in the environment
are extrachromosomal in R. etli CFN42 (Ramírez, unpub-
lished). Expression of symbiosis genes dependent on plant
hosts and the molecules and conditions required for gene
expression have been well studied and have been exten-
sively reviewed (Cooper, 2004; Le Strange et al., 1990;
Maj et al., 2010; Masson-Boivin et al., 2009). Rhizobial
genes expressed under stress (Vercruysse et al., 2011), in
presence of flavonoids (Perret et al., 1999; Zhang and
Cheng, 2006) or in nodules have been reported (Barnett
et al., 2004; Chang et al., 2007; Karunakaran et al., 2009;
Tsukada et al., 2009) but less is known on genes expressed
in soil or in the rhizosphere. Mutations in the cin and rhi
quorum sensing systems affect rhizospheric growth (Cubo
et al., 1992; Edwards et al., 2009).

7.1. Rhizobium leguminosarum ER rhizospheric expression

A microarray based approach to study R. leguminosarum
gene expression in pea, alfalfa or sugar beet rhizospheres
showed that many of the genes preferentially expressed
in R. leguminosarum 3841 when inhabiting the pea rhizo-
sphere are encoded in the conjugative 147 kb plasmid
pRL8 (Ramachandran et al., 2011). From pRL8, 11 or 21
genes (depending on the threshold considered) were up
regulated in pea and only 3 or 2 in alfalfa or sugar beet rhi-
zospheres. Pea induced genes represented around 15% of
all genes on pRL8. In total 138 genes were specifically up
regulated in 7 day old pea plants and 106 genes were up
regulated in all rhizospheres, 70 of those were hypotheti-
cal. Among genes expressed were those encoding phenyla-
nine and tyrosine catabolism, dicarboxylate transport,
rhiABC, rhiI, cinI, protocatechuate and shikimate uptake,
xanthine, formate and other dehydrogenases, as well as
some nod genes (Ramachandran et al., 2011).

7.2. Rhizobium phaseoli ER rhizoplane expression

R. phaseoli Ch24-10 was chosen to study gene expression
in plant roots because it represents a group of dominant
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bacteria in maize rhizosphere (Rosenblueth and Martínez
Romero, 2004), is highly competitive to colonize maize and
rice and is a very efficient bean symbiont. Bean and maize
plants have been grown in association in traditional agricul-
ture for some thousand years and rhizobial gene expression
was analyzed in both hosts independently. Upper value tails
of bacterial gene transcript distribution in a reported tran-
scriptomic analysis were found to correlate to RNA polymer-
ase occupancy meaning that transcription was occurring in
those genes (Vijayan et al., 2011) and, on that basis, highly
expressed genes in the Ch24-10 transcriptomic profiling
were selected. The 324 extrachromosomal genes highly ex-
pressed in maize and/or bean rootlets represented 22% of
pRpCh24-10b and 16% of pRpCh24-10d. pSym genes were
also expressed in the rhizosphere of maize and bean (repre-
senting 13% of the plasmid). Examples of ER genes that were
highly expressed in both maize and bean root samples (Sup-
plementary Table S1) are those responsible for proline catab-
olism, iron uptake, thiamine and gibberellin biosynthesis, a
type VI secretion system, oligopeptide or sugar transporters
and extrusion pumps as well as polygalacturonase, alpha
amylase and Deg protease genes. teu genes were not ex-
pressed in maize roots in agreement to previous results
showing that they are not induced by maize exudates
(Rosenblueth et al., 1998). A promoter-less gusA gene repor-
ter fused to the polygalacturonase gene was found to be ex-
pressed in maize and bean exudates (unpublished) and
antibiotic resistance promoter-less genes were found to be
expressed in plants when fused to the extrusion pump genes
rmrAB (González-Pasayo and Martínez-Romero, 2000) or to
Deg protease genes (unpublished); this additional evidence
is in agreement to the transcriptomic results presented. Fur-
thermore, a radioactive polygalacturonase probe was found
to hybridize to the 1 Mb Ch24-10 ER (not shown). Ortho-
logues to previously reported R. leguminosarum genes ex-
pressed in plant rhizospheres (Ramachandran et al., 2011)
were found to be highly expressed in R. phaseoli in maize
and bean roots (Supplementary Table S1). As in R. legumin-
osarum (Ramachandran et al., 2011), many R. phaseoli
Ch24-10 highly expressed genes were hypothetical, one of
them in common to R. leguminosarum.

A comparison of the Ch24-10 transcripts from maize and
from bean roots suggested that replicons were differen-
tially expressed depending on the plant host colonized. ER
transcripts highly expressed in bean and not in maize roots
were found in the Ch24-10 symbiotic plasmid (11 out of 26
bean specific genes) and in a 400 kb ER (pRpCh24-10b with
equivalent genes to pReCFN42e), with 9 out of 26 specific
genes, while most of the transcripts highly expressed in
maize but not in bean (11 out of 14 maize specific genes)
were found in pRpCh24-10d, a 1 Mb replicon sharing genes
with R. etli pReCFN42f. No transcripts could be assigned to a
370 kb plasmid (pRpCh24-10a) as the strain used for the
transcriptomic analysis unfortunately lost this plasmid that
shares genes with pRL10 and pReCFN42c.
8. Concluding remarks

There is still scarce knowledge of rhizobial genes that
are functional in nature, in soil, rhizospheric niches or com-
plex microbial communities. Future studies may provide
more data to support that ERs, highly dynamic and variable,
determine or condition fitness or survival of rhizobia in the
environment. Our data extend the knowledge of root-ex-
pressed genes in Rhizobium and allowed the identification
of some extrachromosomal genes commonly expressed in
association with plants such as those for thiamine biosyn-
thesis, oligopeptide, proline betaine, a-galactosidase and
other ABC transporters, a-N-arabinofuranosidase, rmrA
(González-Pasayo and Martínez-Romero, 2000) and nod
genes.
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