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Abstract

Let G be a graph of order n and S be a vertex set of q vertices. We call G, S-pancyclable, if for every integer i with 3 ≤ i ≤ q
there exists a cycle C in G such that |V (C) ∩ S| = i . For any two nonadjacent vertices u, v of S, we say that u, v are of distance
two in S, denoted by dS(u, v) = 2, if there is a path P in G connecting u and v such that |V (P) ∩ S| ≤ 3. In this paper, we will
prove that if G is 2-connected and for all pairs of vertices u, v of S with dS(u, v) = 2, max{d(u), d(v)} ≥ n

2 , then there is a cycle

in G containing all the vertices of S. Furthermore, if for all pairs of vertices u, v of S with dS(u, v) = 2, max{d(u), d(v)} ≥ n+1
2 ,

then G is S-pancyclable unless the subgraph induced by S is in a class of special graphs. This generalizes a result of Fan [G. Fan,
New sufficient conditions for cycles in graphs, J. Combin. Theory B 37 (1984) 221–227] for the case when S = V (G).
c© 2008 Elsevier B.V. All rights reserved.
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1. Preliminaries and main results

We consider only finite undirected graphs without loops or multiple edges. The set of vertices of a graph G is
denoted by V (G) or just by V ; the set of edges by E(G) or just by E . We use |G| (the order of G) as a symbol for
the cardinality of V (G). If H and S are subsets of V (G) or subgraphs of G, we denote by NH (S) the set of vertices
in H which are adjacent to some vertex in S, and set dH (S) = |NH (S)|. In particular, when H = G, S = {u}, then let
N (u) = NG(u) and set d(u) = dG(u). Paths and cycles in a graph G are considered as subgraphs of G. We use G[S]
to denote the subgraph induced by S.

Let S be a vertex set of G; v is called an S-vertex if v ∈ S. Following [3,5], the set S is called cyclable in G if all
vertices of S belong to a common cycle in G. Following [4], the S-length of a cycle in G is defined as the number of
the S-vertices that it contains and the graph G is said to be S-pancyclable, if it contains cycles of all S-lengths from 3
to |S|. Other notations not defined in this paper can be found in [1].

From the definitions, we see that cyclability and S-pancyclability are generalizations of hamiltonicity and
pancyclability of the whole graph (set S = V (G)), respectively. In recent years, people have given different definitions
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and results on cycles containing certain subsets of vertices, and some related papers can be found in [3–7]. In 1984,
Fan [2] proved the following result:

Theorem 0. Let G be a 2-connected graph of order n. If max{d(u), d(v)} ≥ n
2 holds for all pairs u, v of distance

two in G, then G is hamiltonian.

Motivated by the above result, we will give sufficient conditions to generalize the hamiltonicity of Theorem 0 to
cyclability and S-pancyclability. To this end, we first give the following definitions:

For any two nonadjacent vertices x, y of S, we say that x, y are of distance two in S, denoted by dS(x, y) = 2, if
there is a path P in G connecting x and y such that |V (P) ∩ S| ≤ 3.

Given an integer r ≥ 1, F4r is the graph with 4r vertices containing a complete graph K2r , a set of r independent
edges, denoted by Er and a matching between the sets of vertices of K2r and Er (cf. [2]).

The main results of the paper are as follows:

Theorem 1. Let G be a 2-connected graph of order n and S be a vertex set of G with |S| ≥ 3. If max{d(u), d(v)} ≥ n
2

holds for all pairs u, v of S with dS(u, v) = 2, then S is cyclable in G.

Theorem 2. Let G be a 2-connected graph of order n and S be a vertex set of G with |S| ≥ 3. If max{d(u), d(v)} ≥
n+1

2 holds for all pairs u, v of S with dS(u, v) = 2, then G is S-pancyclable unless |S| = 4r and G[S] is a spanning
subgraph of F4r .

Theorem 1 generalizes Theorem 0 if we set S = V (G). Notice that max{d(v) : v ∈ V (F4r )} = 2r in F4r . By
Theorem 2, we have

Corollary 3. Let G be a 2-connected graph of order n. If max{d(u), d(v)} ≥ n+1
2 holds for all pairs u, v of distance

two in G, then G is pancyclic.

The proof of Theorem 1 will be given in Section 2 and the proof of Theorem 2 will be given in Section 3. From the
proofs provided in Section 3, we believe that the following conjecture might be true.

Conjecture. Let G be a 2-connected graph of order n and S be a vertex set of G with |S| = q ≥ 3. If
max{d(u), d(v)} ≥ n

2 holds for all pairs u, v of S with dS(u, v) = 2, then G is S-pancyclable unless G belongs
to some exceptional classes of graphs.

In order to prove the conjecture, more precise discussions are needed and many additional cases must be considered.
If the conjecture is true, it will generalize the following result proved independently by Favaron et al. in [4] and Stacho
in [6]:

Theorem 4. Let G be a graph of order n and let S ⊆ V (G). If d(u)+ d(v) ≥ n holds for all nonadjacent pairs u, v

of S, then G is S-pancyclable or S = V (G) and G = K n
2 , n

2
or |S| = 4 and G[S] = K2,2.

2. Proof of Theorem 1

We first introduce some more notations. For a cycle (or a path) C in G with a given orientation and a vertex a
in C , a+ and a− denote the successor and the predecessor of a in C , respectively. For two vertices a and b in C ,
we define C[a, b] (C[a, b), C(a, b), respectively) to be the subpath of C from a to b (from a to b−, from a+ to b−,
respectively). We use C[b, a] for the path from b to a in the reversed direction of C .

Theorem 1 will be proved by using the following lemmas:

Lemma 1. Let P be a path connecting u and v in G. If dP (u)+ dP (v) ≥ |P|, then there exists a cycle C in G such
that V (C) = V (P).

Proof. If uv ∈ E , then Lemma 1 holds. If uv 6∈ E , then there exist two consecutive vertices a, a+ in P such that
av ∈ E and a+u ∈ E . Hence there exists a cycle C = P[u, a]vP(v, a+]u in G such that V (P) = V (C). �
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Lemma 2. Let u, v be nonadjacent vertices with d(u) + d(v) ≥ n and G ′ be a graph obtained by adding uv to G.
Then for any cycle C ′ in G ′, there exists a cycle C in G such that V (C ′) ⊆ V (C).

Proof. Let C ′ be the cycle in G ′. Then uv ∈ E(G ′[C ′]), otherwise C ′ = C is the required cycle in G. Thus
there exists a path P starting from u and ending at v in G. If NG−P (u) ∩ NG−P (v) 6= ∅, then Lemma 2 holds.
If NG−P (u) ∩ NG−P (v) = ∅, then dP (u) + dP (v) ≥ |P| as d(u) + d(v) ≥ n. Hence Lemma 2 holds by Lemma 1.

�

Now, we turn to prove Theorem 1. Let T1 = {v ∈ S : d(v) ≥ n
2 }. By repeatedly applying Lemma 2, we can

get that G[T1] is a clique of G. Let C be a cycle containing T1 such that |V (C) ∩ S| is as large as possible. If
S ⊆ V (C), then Theorem 1 holds. If S 6⊆ V (C), let u ∈ S ∩ V (G − C). Since G is 2-connected, there are two paths
P1 = P1[u, w1] and P2 = P2[u, w2] for two distinct vertices w1 and w2 of C with all internal vertices (if any) in
G − C and V (P1) ∩ V (P2) = {u}. Thus V (C(w1, w2)) ∩ S 6= ∅ and V (C(w2, w1)) ∩ S 6= ∅, since otherwise we
can get a cycle containing all vertices of V (C) ∩ S and u, contrary to the choice of C . Let x1 be the first vertex of
V (C(w1, w2)) ∩ S from w1 to w2 and x2 be the first vertex of V (C(w2, w1)) ∩ S from w2 to w1. As T1 ⊆ V (C), we
have u ∈ S − T1. If xi 6∈ T1 for some 1 ≤ i ≤ 2, then uxi ∈ E and by replacing C[wi , xi ]Pi [wi , u]xi we can get a
cycle containing all vertices of V (C) ∩ S and u, contrary to the choice of C . Therefore xi ∈ T1 for both 1 ≤ i ≤ 2.
Since G[T1] is a clique, x1x2 ∈ E and we can get a cycle C ′ = C[x2, w1]P1(w1, u]P2(u, w2]C(w2, x1]x2 in G such
that |V (C ′) ∩ S| > |V (C) ∩ S|, contrary to the choice of C . Hence Theorem 1 is true.

3. Proof of Theorem 2

By Theorem 1, there exists a cycle in G containing all the vertices of S. Choose such a cycle C with |C | as small
as possible and give C an arbitrary orientation. If |S| = 3, then Theorem 2 holds. Thus we may assume that |S| ≥ 4.
Put R = G − C and |S| = q . Let x1, x2, . . . , xq be the vertices of V (C) ∩ S, the order 1, 2, . . . , q following the
orientation of C , and consider the subscripts modulo q (we use q for 0 when the remainder is 0). Two S-vertices xi
and xi+1 are said to be S-consecutive. We use Cl for a cycle of S-length l in G.

In [4], it was proved:

Theorem 5. Let G be a graph, S be a subset of V (G) such that S is cyclable in G, and let C be a shortest cycle
through all the vertices of S. If dC (x)+ dC (y) ≥ |C | + 1 for some pair of S-consecutive vertices x and y in C, then
G is S-pancyclable.

By using the same method as that used in the proof of Theorem 5 in [4], we can get

Lemma 3. Let G be a graph, S be a subset of V (G) such that S is cyclable in G and let C be a shortest cycle
through all the vertices of S. If there exists some 1 ≤ i ≤ q such that xi−1xi+1 ∈ E and dC (xi ) ≥

|C |+1
2 , then G is

S-pancyclable.

Now, let T2 = {v ∈ S : d(v) ≥ n+1
2 }. Notice that for any 1 ≤ i ≤ q, xi xi+2 ∈ E when {xi , xi+2} ⊆ (S − T2) and

xi x j ∈ E for any j 6= i when N (xi ) ∩ N (x j ) 6= ∅ and {xi , x j } ⊆ (S − T2). It is easy to see the following:

Remark 1. If there is no pair of S-consecutive vertices x, y in C[xi , x j ] (i 6= j) such that {x, y} ⊆ T2, then
G[V (C[xi , x j ]) ∩ (S − T2)] is a clique of G.

Lemma 4. If there exists at most one pair of S-consecutive vertices which are both in T2, then Theorem 2 holds.

Proof. If |S| = 4, since G is not S-pancyclable, G[S] must be a spanning subgraph of F4. Thus Lemma 4
is true. Thus, |S| ≥ 5. When there is one pair of S-consecutive vertices, say xq , x1 in T2, then by Remark 1,
G[V (C[x2, xq−1])∩ (S− T2)] is a clique, especially, x2xq−1 ∈ E . Thus we can easily check that G is S-pancyclable.
Hence, {xi , xi+1}∩(S−T2) 6= ∅ for any 1 ≤ i ≤ q and it is easy to check that G is S-pancyclable as G[V (C)∩(S−T2)]

is a clique by Remark 1. �

Next, we will show three structural lemmas for some special paths containing vertices of S. These three lemmas
will play very important roles in the proof of Theorem 2.
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Lemma 5. If there is a path P = u1 · · · u2 · · · u p−1 · · · u p in G[V (C)] such that |V (P) ∩ S| = l + 1 ≥ 4,
{u1, u2, u p−1, u p} ⊆ T2, {u1, u2}, {u p−1, u p} are two pairs of S-consecutive vertices on C and (V (P(u1, u2)) ∪

V (P(u p−1, u p))) ∩ S = ∅, then there exists a Cl in G.

Proof. Recall that R = G − C . If NR(u1) ∩ NR(u p−1) 6= ∅ or NR(u2) ∩ NR(u p) 6= ∅, then Lemma 5 holds. If
NR(u1) ∩ NR(u p−1) = ∅ and NR(u2) ∩ NR(u p) = ∅, noting that {u1, u2, u p−1, u p} ⊆ T2, we have

dC (u1)+ dC (u2)+ dC (u p−1)+ dC (u p) ≥ 2(|C | + 1).

Thus either dC (u1) + dC (u2) ≥ |C | + 1 or dC (u p−1) + dC (u p) ≥ |C | + 1. By Theorem 5, G is S-pancyclable.
Hence Lemma 5 holds. �

Lemma 6. Let P = u1 · · · u p in G such that |V (P) ∩ S| = l ≥ 3. If {u1, u p} ⊆ T2 and there is no Cl in G, then we
have

(i) |(N (u1) ∩ N (u p)− V (P)) ∩ (V (G)− S)| = ∅;
(ii) |N (u1) ∩ N (u p) ∩ S ∩ (V (G)− V (P))| ≥ 2; and there exist a C4 and a Cl+1 which contains P as its subpath;

(iii) when P = C[xi , x j ] for some j = l + i − 1 (3 ≤ l ≤ q − 2) with {xi , x j } ⊆ T2, then there exists a pair of S-
consecutive vertices y and z in V (C(x j , xi )) such that y ∈ N (xi ) (or y ∈ N (x j ) and z ∈ N (x j ) (or z ∈ N (xi )),
and there exists a Cl+2 which contains C[xi , x j ] as its subpath.

Proof. Since there is no Cl in G, (i) is obvious and |N (u1) ∩ V (P)| + |N (u p) ∩ V (P)| ≤ |V (P)| − 1 by Lemma 1.
As d(u1)+ d(u p) ≥ n + 1, by (i), it is easy to check that (ii) holds.

(iii) As d(xi ) + d(x j ) ≥ n + 1 and S ∩ R = ∅, Lemma 1 and Lemma 6(i) imply |N (xi ) ∩ V (C(x j , xi )) ∩ S| +
|N (x j ) ∩ V (C(x j , xi )) ∩ S| ≥ |V (C(x j , xi )) ∩ S| + 2. Thus (iii) holds. �

Lemma 7. Let P = u1u2 · · · u p be a path in G[V (C)] such that V (P) ∩ S = {v1, v2, . . . , vl}, where v1 = u1,
vl = u p and the order 1, 2, . . . , l follows the orientation of P from u1 to u p. Suppose that l ≥ 5 and there is
no Cl in G. If there exist a Cl+m and a Cl+m+1 in G (m ∈ {1, 2}), both of which contain P as their subpath and
|V (Cl+m) ∩ S − V (Cl+m+1) ∩ S| ≤ 1, then for any 1 ≤ i ≤ l − m − 2, we have

(i) vivi+m+1 6∈ E and vivi+m+2 6∈ E;
(ii) {vi , vi+m+2} ∩ (S − T2) 6= ∅.

Proof. Let C ′ = Cl+m+1 and C∗ = Cl+m . Since P is a subgraph of both C ′ and C∗, we have C ′[vi , vi+m+2] =

C∗[vi , vi+m+2] = P[vi , vi+m+2].
(i) If vivi+m+1 ∈ E or vivi+m+2 ∈ E for some 1 ≤ i ≤ l − m − 2, then replace C∗[vi , vi+m+1] or C ′[vi , vi+m+2]

with the edge vivi+m+1 or vivi+m+2, we can get a Cl in G, a contradiction.
(ii) Since there is no Cl in G and i ≤ l − m − 2, we obtain NR(vi ) ∩ NR(vi+m+2) ∩ (V − V (C ′)) = ∅

and (N (vi ) ∩ V (C[vi+2, vi+m+2))) ∪ (N (vi+m+2) ∩ V (C(vi , vi+2))) = ∅ and vi+2 6∈ N (vi ) ∩ N (vi+m+2),
which imply |N (vi ) ∩ V (C(vi , vi+m+2))| + |N (vi+m+2) ∩ V (C(vi , vi+m+2))| ≤ |V (C(vi , vi+m+2))|. Notice that
P ′ = C ′[vi+m+2, vi ] is a path with |V (P ′)∩ S| = l. We have vivi+m+1 6∈ E by (i) and dC ′(vi )+ dC ′(vi+m+2) < |C ′|
by Lemma 1.

If {vi , vi+m+2} ⊆ T2, then there exist at least two vertices, say x and y in N (vi ) ∩ N (vi+m+2) ∩ (V (G)− V (C ′)).
When x 6∈ S or y 6∈ S, then there is a Cl which contains V (C ′[vi+m+2, vi ]) and x (or y), a contradiction. When
{x, y} ⊆ S, then |{x, y} ∩ V (C∗)| ≤ 1, as {x, y} ⊆ V (G) − V (C ′) and |V (C∗) ∩ S − V (C ′) ∩ S| ≤ 1.
Assume that x 6∈ V (C∗). Then we can get a Cl containing V (C∗[vi+m+2, vi ]) and x in G, a contradiction. Hence
{vi , vi+m+2} ∩ (S − T2) 6= ∅ and (ii) holds. �

From Lemma 4, we may assume that |T2| ≥ 3 and there exist at least two pairs of S-consecutive vertices which are
all in T2. Without loss of generality, let {xq , x1} ⊆ T2 such that
|NR(x1) ∩ NR(xq)| = min{|NR(x) ∩ NR(y)| : x, y ∈ T2 and x, y are S-consecutive}.
If dC (x1)+ dC (xq) ≥ |C | + 1, then Theorem 2 holds by Theorem 5. Thus in the rest of the proof, we assume that

dC (x1)+ dC (xq) ≤ |C | and let M1 = NR(x1) ∩ NR(xq).

Lemma 8. If there exists some 1 < i ≤ q − 2 such that {xi , xi+1} ⊆ T2 and dC (xi )+ dC (xi+1) ≤ |C |, then
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(i) |(NR(x1) ∪ NR(xq)) ∩ NR(xi ) ∩ NR(xi+1)| ≥ 1;
(ii) there exist a cycle C3 and a cycle C4 in G.

Proof. (i) By the choice of x1 and xq , we have |M1| ≤ |NR(xi ) ∩ NR(xi+1)|. Thus |R| + 1 ≤ |NR(x1) ∪ NR(xq)| +

|M1| ≤ |NR(x1) ∪ NR(xq)| + |NR(xi ) ∩ NR(xi+1)| = |(NR(x1) ∪ NR(xq)) ∪ (NR(xi ) ∩ NR(xi+1))| + |(NR(x1) ∪

NR(xq)) ∩ NR(xi ) ∩ NR(xi+1)| ≤ |R| + |(NR(x1) ∪ NR(xq)) ∩ NR(xi ) ∩ NR(xi+1)|.

From the inequalities above, we can easily check that (i) holds.
(ii) Since (NR(x1) ∪ NR(xq)) ∩ NR(xi ) ∩ NR(xi+1) 6= ∅, without loss of generality, we may choose a vertex, say

v, in NR(xq) ∩ NR(xi ) ∩ NR(xi+1). Notice that {xq , x1, xi , xi+1} ⊆ T2. Assume that there is no C3 in G. Applying
Lemma 6(ii) to the path P = C[xi , xi+1]vxq , we can get N (xi )∩ N (xq)∩ S− V (P) 6= ∅ which implies there is a C3
as v 6∈ S, a contradiction. Thus there is a C3 in G. Now assume that there is no C4 in G. Applying Lemma 6(ii) to the
path P ′ = C[xi , xi+1]vC[xq , x1], we can get a C4 in G, a contradiction. Hence (ii) holds. �

Lemma 9. If there is no Cl in G for some integer l ≥ 3, then l = q − 1.

Proof. By contradiction, assume that 3 ≤ l ≤ q− 2. Then by Theorem 5, for any pair of S-consecutive vertices x and
y in C , we have dC (x)+ dC (y) ≤ |C |.

Thus by the assumption, M1 6= ∅ as dC (x1) + dC (xq) ≤ |C | and |{xl−1, xl} ∩ T2| ≤ 1 by applying Lemma 5 to
C[xq , xl ].

Case 1. xl ∈ T2.
Then xl−1 6∈ T2. If xl+1 6∈ T2, then xl−1xl+1 ∈ E and there exists a C3 in G. By Lemma 3, dC (xl) ≤

|C |
2 implying

dR(xl) ≥
|R|+1

2 . Since NR(xl)∩NR(x1) = ∅ by Lemma 6(i) and dR(x1)+dR(xq) ≥ |R|+1, we have 2|R|+|NR(xq)∩

NR(xl)| ≥ |NR(x1)∪NR(xl)|+|NR(xq)∪NR(xl)|+|NR(xq)∩NR(xl)| ≥ dR(x1)+dR(xq)+2dR(xl) ≥ 2|R|+2, which
implies |NR(xq) ∩ NR(xl)| ≥ 2 and there exist a Cl+1 = vC[xq , xl ]v and a Cl+2 = vC[xq , xl−1]xl+1C(xl+1, xl ]v

for some v ∈ NR(xq) ∩ NR(xl), both of which contain C[xq , xl−1] as their subpath and V (Cl+1) ∩ S ⊆ V (Cl+2).
As {x1, xl} ⊆ T2, by Lemma 6(ii), we have l ≥ 5. Since {xq , x1} ⊆ T2, by applying Lemma 7 with m = 1, we
have x2x4 6∈ E and {x3, x4} ⊆ S − T2 which implies x2 ∈ T2. When l ≥ 6, then x5 ∈ S − T2 by Lemma 7(ii)
which implies x3x5 ∈ E contrary to Lemma 7(i). When l = 5, that is, x5 ∈ T2, since there is no C5 in G, we obtain
N (x2) ∩ V (C(x3, x5]) = ∅ and x3x5 6∈ E . Also by the minimality of |C |, we have |N (x2) ∩ V (C(x2, x3])| = 1 and
|N (x5) ∩ V (C(x5, x6])| = 1. As d(x2) + d(x5) ≥ n + 1 and x2x5 6∈ E by x4x6 ∈ E , we have |N (x2) ∩ N (x5)| ≥ 3
and hence there exists some vertex, say v in N (x2)∩ N (x5)− V (C[x2, x6]). Noticing that x4x6 ∈ E , we can get a C5
which contains V (C[x2, x6]−C(x4, x5))∪{v}whenever v 6∈ S or V (C[x2, x5])∪{v}whenever v ∈ S, a contradiction.
Hence we have xl+1 ∈ T2.

Since there is no Cl in G, we have NR(x1) ∩ NR(xl) = ∅ by Lemma 6(i) and dC (xl) + dC (xl+1) ≤ |C | by
Theorem 5. Thus there is a vertex, say w, in NR(xq) ∩ NR(xl) ∩ NR(xl+1) and l ≥ 5 by Lemma 8. Hence there exist
a Cl+1 and a Cl+2, which contain w and C[xq , xl ] as their subpath.

Since l ≥ 5 and {xq , x1} ⊆ T2, by Lemma 7 with m = 1, we obtain {x3, x4} ⊆ S − T2. By applying Lemma 5 to
C[x1, xl+1], we have x2 ∈ S − T2 which implies x2x4 ∈ E , contrary to Lemma 7(i).

Case 2. xl 6∈ T2, xl−1 ∈ T2.
If xl−2 6∈ T2, then xl−2xl ∈ E and (NR(x1) ∪ NR(xq)) ∩ NR(xl−1) = ∅ as there is no Cl in G. Since

2|NR(x1) ∪ NR(xq)| ≥ dR(xq) + dR(x1) ≥ |R| + 1, we have dC (xl−1) ≥
|C |+1

2 and by Lemma 3 G is S-
pancyclable. Hence we may assume that xl−2 ∈ T2. When l 6= 3, noting that NR(xq)∩ NR(xl−1) = ∅ by Lemma 6(i),
|NR(x1) ∩ NR(xl−1) ∩ NR(xl−2)| ≥ 1 and l ≥ 5 by Lemma 8. As {xq , xl−1} ⊆ T2, by Lemma 6(ii) and (iii), there
exist a Cl+1 and a Cl+2 which contain C[xq , xl−1] as their subpath and |V (Cl+1) ∩ S − V (Cl+2) ∩ S| ≤ 1. Thus
by Lemma 7(ii) with m = 1, we can get {x3, x4} ⊆ S − T2 and hence l ≥ 7, {x2, x5} ∩ (S − T2) 6= ∅ which
imply x2x4 ∈ E or x3x5 ∈ E , contrary to Lemma 7(i). When l = 3, we have {xq , x1, x2} ⊆ T2 and xq x2 6∈ E ,
NR(xq) ∩ NR(x2) = ∅, since otherwise there exists a C3. By the minimality of |C |, |N (xq) ∩ V (C(xq , x1])| = 1 and
|N (x2) ∩ V (C[x1, x2))| = 1. Thus |N (xq) ∩ V (C[x2, xq ])| + |N (x2) ∩ V (C[x2, xq ])| ≥ |V (C[x2, xq ])| + 1. When
there is some i with 2 ≤ i ≤ q − 1 such that either {xi , xi+1} ⊆ N (xq) or {xi , xi+1} ⊆ N (x2), then we can easily get
a C3 containing V (C[xi , xi+1]) and xq or x2, a contradiction. Hence there exists some i with 2 ≤ i ≤ q − 1 such that
N (xq) ∩ N (x2) ∩ V (C(xi , xi+1)) 6= ∅ and we can find a C3 containing xq , x1, x2, a contradiction.

Case 3. xl 6∈ T2 and xl−1 6∈ T2, that is, {xl , xl−1} ∩ T2 = ∅.
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Case 3.1. There is no pair of S-consecutive vertices x and y in V (C[xl+1, xq−1]) such that {x, y} ⊆ T2.
Then G[V (C[xl−1, xq−1]) ∩ (S − T2)] is a clique by Remark 1. Since l ≤ q − 2, |V (C[xl−1, xq−1]) ∩ S| ≥ 3.
If xq−1 6∈ T2, then xl−1xq−1 ∈ E and xl xq−1 ∈ E . Thus there exist a C3, and two cycles Cl+1, Cl+2 in G[V (C)],

which contain C[xq−1, xl−1] as their subpath. Thus l ≥ 4 and by Lemma 7(i) {xl−2, xl−3} ⊆ T2. By applying
Lemma 7 to C[xq , xl−1] with m = 1, we have {x3, x4} ⊆ S − T2 which implies x2 ∈ T2 and l − 1 ≥ 7 or
l − 1 = 3 as {xl−2, xl−3} ⊆ T2. When l ≥ 8, by Lemma 7(ii) again, x5 ∈ S − T2 as x2 ∈ T2. Thus x3x5 ∈ E ,
contrary to Lemma 7(i). Hence l = 4. Since there is no C4 in G and {x3, x4} ⊆ N (xq−1), we have N (xq) ∩

V (C(x1, x3]) = ∅ and N (x2) ∩ V (C[xq−1, x1)) = ∅. Thus by applying Lemma 1 to C[x2, x3]xq−1C(xq−1, xq ],
we have |N (xq) ∩ V (C[xq−1, x3])| + |N (x2) ∩ V (C[xq−1, x3])| ≤ |V (C[xq−1, x3])|. Since d(xq)+ d(x2) ≥ n + 1,
we obtain N (x2) ∩ N (xq) − V (C[xq−1, x3]) 6= ∅. Let w in N (x2) ∩ N (xq) − V (C[xq−1, x3]) and we can get a C4
in G, which contains V (C[xq , x2]) ∪ {w} when w ∈ S or V (C[xq−1, xq ]) ∪ V (C[x2, x3]) ∪ {w} when w 6∈ S, a
contradiction.

Hence we may assume that xq−1 ∈ T2. Then xq−2 ∈ S − T2 as there is no pair of S-consecutive vertices in
V (C[xl+1, xq−1])∩ T2, and xl−1xq−2 ∈ E , which implies there exists a Cl+2 in G which contains C[xq−2, xl−1] as a
subpath.

If l ≤ q − 3, then xl xq−2 ∈ E and there exists a C3. When xl−2 6∈ T2, then xl−2xq−2 ∈ E and there exist a C4
and a Cl+1 in G which contains C[xq−2, xl−2] as its subpath. When xl−2 ∈ T2, since xq−1 ∈ T2, by Lemma 6(ii),
there exist a C4 and a Cl+1 in G which contains C[xq−1, xl−2] as its subpath. Thus in both subcases, we have l ≥ 5
and |V (Cl+1) ∩ S − V (Cl+2) ∩ S| ≤ 1. By using Lemma 7 with m = 1 and the facts that xl−1 ∈ S − T2 and
{xq−1, xq , x1} ⊆ T2, we can get {x2, x3, x4} ⊆ S − T2 and x2x4 ∈ E which implies there exists a Cl in G, a
contradiction.

If l = q − 2 and xl−2 6∈ T2, then xl−2xl ∈ E which implies there exist a C3 and a Cl+1 in G which contains
C[xq−1, xl−2] as its subpath. When l ≥ 5, by Lemma 7(ii) and {xq−1, xq , x1} ⊆ T2 we can get {x2, x3, x4} ∩ T2 = ∅

and x2x4 ∈ E . Thus Lemma 7(i) implies l ≤ 5. Whenever l = 5, q = 7 as l = q − 2 and x2x5 ∈ E as x5 6∈ T2. So
we can get a C5 = C[x5, x2]x5, a contradiction. Hence l = 4 and q = 6. Since there is no C4 in G and x2x4 ∈ E ,
we can derive that dC (x1) = 2 and symmetrically dC (x5) = 2 by the minimality of |C |. Since {x5, x1} ⊆ T2, we have
NR(x1) ∩ NR(x5) 6= ∅ and consequently we can get a C4 containing V (C[x1, x2]) ∪ V (C[x4, x5]) and w for some w

in NR(x1) ∩ NR(x5), a contradiction.
Hence xl−2 ∈ T2 and {xl−1, xl} ⊆ N (xq−1) ∩ N (xl−2) by applying Lemma 6(ii) to C[xq−1, xl−2], which implies

there exist a C3, a C4 and a Cl+1 in G which contains C[xq−1, xl−2] as its subpath and consequently, we can derive a
contradiction as before by Lemma 7.
Case 3.2. There exists a pair of S-consecutive vertices x and y in V (C[xl+1, xq−1]) such that {x, y} ⊆ T2.

Choose q − 1 > t ≥ l + 1 such that xt and xt+1 are a pair of S-consecutive vertices with {xt , xt+1} ⊆ T2 and t
as small as possible. Then by Remark 1, we have that G[V (C[xl−1, xt )) ∩ (S − T2)] is a clique of G which implies
xt−1xl−1 ∈ E . Let P = C[x1, xl−1]xt−1. By Theorem 5 and Lemma 8, |(NR(x1)∪NR(xq))∩NR(xt )∩NR(xt+1)| ≥ 1
and l ≥ 5. We distinguish the following two subcases.
Case 3.2.1. |NR(x1) ∩ NR(xt ) ∩ NR(xt+1)| ≥ 1.

Then we can get a Cl+1 and a Cl+2 in G, both of which contain P as their subpath. Notice that l ≥ 5. By Lemma 7,
we have x4 ∈ S − T2 which implies x2 ∈ T2. Using Lemma 5 for the path P ′ = C[x2, xl−1]C[xt−1, xt+1], we have
x3 ∈ S − T2 as {x2, xt+1, xt } ⊆ T2. Thus by Lemma 7 and {xq , x1, x2} ⊆ T2, we have x j ∈ S − T2 which implies
x3x j ∈ E , where j = 5 when l ≥ 6 or j = t − 1 when l = 5, contrary to Lemma 7(i).
Case 3.2.2. |NR(x1) ∩ NR(xt ) ∩ NR(xt+1)| = 0.

By Lemma 8(i), there is a vertex w in NR(xq) ∩ NR(xt ) ∩ NR(xt+1). Thus there exist a Cl+2 =

wC[xq , xl−1]C[xt−1, xt ]w and a Cl+3 = wC[xq , xl−1]C[xt−1, xt+1]w which contain P = C[x1, xl−1]xt−1 as their
subpath. Since l ≥ 5 and {xq , x1} ⊆ T2, by applying Lemma 7(ii) with m = 2, we have {x4, x j } ⊆ S − T2 where
j = 5 when l > 5 and j = t − 1 when l = 5. If x2 6∈ T2, then x2x5 ∈ E or x2xt−1 ∈ E contrary to Lemma 7(i). Thus
x2 ∈ T2. For the same reason as above, we have x3 6∈ T2 by Lemma 5 and x3x j ∈ E . Since {x2, xt } ⊆ T2, applying
Lemma 6(ii) to the path P∗ = C[x2, xl−1]C[xt−1, xt ], we can get a Cl+1 containing P∗ as a subpath. Noticing that
x3x j ∈ E , we can get a Cl in G, a contradiction. �

Now, we turn to prove Theorem 2. By Lemma 9, there exists a Cl in G for 3 ≤ l ≤ q−2. If there exists a Cq−1, then
Theorem 2 holds. Thus in the rest of the proof we assume that there is no Cq−1 in G, which implies for any 1 ≤ i ≤ q ,
xi−1xi+1 6∈ E . NR(xi−1) ∩ NR(xi+1) = ∅ and consequently, |{xi−1, xi+1} ∩ T2| ≥ 1 as |V (C[xi−1, xi+1]) ∩ S| = 3.
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If there exists some 1 ≤ i ≤ q such that {xi−1, xi+1} ⊆ T2, then dC (xi−1) + dC (xi+1) ≥ |C | + 1. Since
N (xi−1) ∩ V (C(xi , xi+1]) = ∅ and N (xi+1) ∩ V (C[xi−1, xi )) = ∅, we obtain dP (xi−1) + dP (xi+1) ≥ |P| for
P = C[xi+1, xi−1]. By Lemma 1 we can get a Cq−1 in G, a contradiction. Thus we may assume that for any
1 ≤ i ≤ q, |{xi−1, xi+1} ∩ T2| = 1. Noting that {xq , x1} ⊆ T2, we obtain that q = 4r , {x2, x3} ⊆ S − T2,
{x4p, x4p+1} ⊆ T2 and {x4p+2, x4p+3} ⊆ S − T2 implying that x4p+2x4p+3 ∈ E for any 1 ≤ p ≤ r − 1 as C is a
cycle which contains S with |C | as small as possible.

In order to show that G[S] has the exceptional structure described in the statement of Theorem 2, we need to show
that N (x4p+2) ∩ S ⊆ {x4p+1, x4p+3} and N (x4p+3) ∩ S ⊆ {x4p+2, x4p+4} for any 0 ≤ p ≤ r − 1.

Since there is no Cq−1, x4p+1x4p+3 6∈ E and x4p+2x4p+4 6∈ E . Assume that (N (x4p+2) ∪ N (x4p+3)) ∩

{x4s+1, x4s+2, x4s+3, x4s+4} 6= ∅ for some p and s with 1 ≤ p 6= s ≤ q, then G[{x4p+2, x4p+3, x4s+2, x4s+3}]

is a clique since {x4p+2, x4p+3, x4s+2, x4s+3} ⊆ S − T2.
Let P = C[x4p+4, x4s+2]x4p+2x4s+3C(x4s+3, x4p+1]. Then we have |V (P) ∩ S| = q − 1. When dP (x4p+1) +

dP (x4p+4) ≥ |P|, then we can get a Cq−1 in G by Lemma 1, a contradiction. Thus dP (x4p+1) + dP (x4p+4) < |P|.
Since {x4p+1, x4p+4} ⊆ T2, there is a vertex, say w, in NG−P (x4p+1) ∩ NG−P (x4p+4) − {x4p+3} and we can get a
Cq−1 containing V (P) and w in G, a contradiction.

Hence, we have N (x4p+2) ∩ S ⊆ {x4p+1, x4p+3} and N (x4p+3) ∩ S ⊆ {x4p+2, x4p+4} for any 0 ≤ p ≤ r − 1 and
consequently, we can derive that G[S] is a spanning subgraph of F4r .

Therefore, the proof of Theorem 2 is complete.
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