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The fixed point index for weakly inward mappings. which are not cone mappings,
is defined in this paper. Its properties are also investigated. Consequently we study
the derivates of weakly inward mappings and nonzero fixed points of such
mappings. €1 1993 Academic Press, Inc

1. INTRODUCTION

The Leray-Schauder degree theory plays an important role in the study
of fixed points of completely continuous mappings defined on open sets of
some Banach space. Consequently, it has been applied to solve various
equations. However, if a mapping, which might be derived from practice,
is defined only on a relatively open subset of some retract (like a cone of
a Banach space), or the interest is to find fixed points in a special region,
e.g., positive fixed points, one will have to apply the fixed point index
theory instead. Even though the fixed point index theory has been a very
effective method, one has to pay attention to its restrictions. A key condi-
tion in its application is that the mapping must transfer the relatively open
subset of the retract into the retract itself. Otherwise the fixed point index
is not applicable.

Suppose that X is a real Banach space, Pc X is a cone, Q<P is a
relatively open bounded subset of P, and 4: 2 — X is a completely con-
tinuous mapping. Let éQ(P) denote the relative boundary of £ in P such
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that 4 has no fixed point on éQ2(P). We can, in general expect to define a
fixed point index by

i(A, Q, P)=deg(I— Ar, By r (£2),0), (1)

where R is sufficiently large positive number such that Q< B,, B,=
{xe X:||x| < R}. And hopefully this definition is independent of the
positive number R. Indeed, it will be the case if 4: @ — P, since then all the
fixed points of Ar in X are actually in P, and therefore in . However, if
A does not map @Q into P, the number defined in (1) in general depends on
R. Hence, in order for an index to be well defined, it has been necessary
that the following condition be fulfilled

A: Q- P (2)

In some applications, we have to deal with operators that may not
satisfy condition (2), nevertheless, we need to know if they have fixed
points in . Thus the classical index theory is not applicable to this situa-
tion. The aim of this paper is to fill in this gap, namely, to define a
generalized index for mappings satisfying the weakly inward condition
which is weaker than (2). Therefore the applicability of the index theory
will be broadened.

2. PRELIMINARIES

Throughout this paper, X denotes a real Banach space and X * the dual
space of X. For any nonempty convex subset Dc X and xe D, we define
the weakly inward set of D at x by I,(x), where

In(x)={x+1y—x):t=0,yeD}.
A mapping A: D(A)<= D — X is said to be weakly inward with respect to

D if AxeI,(x) for any xe D{A). The following lemma will be necessary in
the sequal, see Deimling [2] for a proof.

LEMMA 2.1. Let A: D{(A)c D — X, D be closed and convex in X. Then
(a) A weakly inward with respect to D if and only if
xeD(AYNED, x*e X*, and x*(x)=sup,x*(y)
imply x*(Ax) < x*(x); (3)
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(b) If D=P is a cone in X, then A is weakly inward with respect to
P if and only if

xeD(A)NdD, x* e P*, and x*(x)=0imply x*(4Ax) =0,

where P*={x*e X*:x*>0 for all xe P}.

Recall the D< X is said to be a retract of X if there is a retraction
r: X — D, ie., ris continuous and |, =i, where i, is the identity mapping
on D. In order to establish a fixed point index for weakly inward mappings,
we may follow the usual procedure. But, as explained earlier, an arbitrary
retraction mapping may not work. Therefore we need to select certain
retractions.

DEerINITION 2.2. D < X is said to be a retract of X with property (P) if
there is a retraction r: X — D such that for any xe X\ D there is an x*e X'*
such that

x*(x) > x*(rx) = sup , x*(»). (4)

Remark. From the definition given above it is clear that if D is a retract
with property (P) and r is the corresponding retraction, then D must be
closed and convex, and rx must be a supporting point of D for each
xe X\ D. In view of V. L. Klee’s results on non-support points of convex
sets {37, it is not likely that every closed and convex subset of an arbitrary
Banach space is a retract with property (P). Thus, it makes sense to see a
few examples of these kinds of retracts first.

LEMMA 23. Let D be a closed and convex subset of X. D is a retract of
X with property (P) if one of the following conditions is satisfied
(a) DO the interior of D, is not empty,
{(b) X is a reflexive Banach space,
(c) There is a metric projection from X onto D.

Proof. In case (a), take any x,€ D° and define ¢,(x)=Aix+ (1 —4) xq
for all xe X and 0 <A< 1. It is clear that for any x € X\ D, there is only one
point in the line segment ¢,(x): 0< A< 1 that lies on 0D, say ¢, (x). We
now define a retraction of D by

X, xeD,

o= {¢;,\(.r), x¢D.

It can be easily checked that r(x) is indeed continuous. If x¢ D, then

(5)
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r(x)e éD, hence Mazur’s theorem of separation implies the existence of
0 # x* e X * such that

x*(r(x))>x*(y) forall yeD°
Therefore,
X¥(x)> x*(r(x))=suppx*(y)

In case (b), since X can be renormed to become strictly convex and the
relation (4) is topological rather than metric, we can without loss of
generality assume that X is strictly convex. Thus there is a unique metric
projection r of X onto D, i.e.,

r(x)e D, x —r(x)| =min, |x— y| forall xeX,

where r(x) is even continuous., We need to verify the relation (4) for this
r.

For any x¢ D, making a translation if necessary, we may assume
x=0¢ D and just verify the relation (4) for x=0. Let  =min,, |[0— y| >0
and observe B, n D =¢. An application again of Mazur’s theorem implies
the existence of 0 # x* € X such that

infg x*(3) 2 sup,x*( ).
Since infz x*(y) <0 and r(0)€ B,, we have
x*(0)=0> x*(r(0)) =sup,x*(y).

The approach used to show case (b) works when there is a metric
projection from X onto D, namely case (c). And we omit the proof.
The proof of the lemma is therefore complete.

3. Fixep POINT INDEX

We first recall a well known result that if D < X is bounded, closed, and
convex, A: C — X is completely continuous and weakly inward with respect
to D, then A4 has a fixed point in D. This result may give some indication
that the condition (2) can be replaced by the weakly inward condition with
respect to P for the purpose of defining an index i(A, 2, P). We show that
this is indeed true.

DEerFINITION 3.1.  Assume that D is a retract of X with property (P). We
choose a retraction r(x) satisfying condition (4). Let Q = D be a bounded
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and relatively open subset of D, 4: Q2 — X a completely continuous map-
ping that is weakly inward with respect to D. If Ax # x for all xe dQ(D),
then we define the fixed point index (A4, 2, D) by

i(4, Q, DY=deg(I— Ar, By r '(2),0) (6)
where R>0 is such that Q< B,.

THEOREM 3.2. The index in the above defintion is well defined and
independent of R> 0.

Proof. The key is that for any xe X, Arx=x implies xe Q, hence
Ax=x. To prove this, assume there is an xe X\ D such that Arx=x. By
Definition 2.2, there is an x*e X' * such that x*(x)> x*(rx)=sup,x*(y).
On the other hand, Lemma 2.1(a) implies that x*{x)=x*(Arx) < x*(rx), a
contradiction. Now the excision property of the Leray-Schauder degree
completes the proof.

Evidently, this index coincides with the well-known fixed point index in
case mapping 4 maps £ into D. Hence, it is a generalization. The following
theorem shows that this generalized index possesses most of the properties
that the reguler index does.

THEOREM 3.3. The fixed point index has the following properties:

(1) (Normality) i(A,Q,D)=11if Ay= y,eQ for all ye Q.

(2) (Additivity) (A, 2, D)=i(A4, 2,, D)+ i(A, 2,, D) provided that
Q,, Q, are disjoint relatively open subsets of D such that A has no fixed
points in Q\(82,u £2,).

(3) (Solvability) A has a fixed point in 2 if i(A, 2, D)#0.

(4) (Excision) (A, 2, D)=i(A, ,, D) if Q,<Q is relatively open in
D and A has no fixed point in \Q,.

(5) (Homotopy Invariance) Assume that H(,): [0, 1] xQ — X is con-
tinuous and the range R(H) is precompact in X, H(t, x)# x Vte [0, 1] and
xedQ(D), H(t,.) is weakly inward with respect to D for every te[0,1].
Then, i(H(t, ), 2, D) is independent of 1. In particular,

i(H(0,.), 2, D)=Ii(H(1,.), 2, D).

The proof of Theorem 3.3 is merely an imitation of that of the corre-
sponding results for the known fixed point index, hence it is omitted. As a
consequence of Homotopy Invariance, we have

COROLLARY 34. Assume that A,B:Q< DX are completely con-
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tinuous and weakly inward with respect to D, Ax = Bx # x for all xe ¢Q(D).
Then

i(4, Q, D)=i(B, Q, D).

Proof. Let H(1,x})=tAx+ (1 —1t)Bx, then H(t, x)#xVxedQ(D),
te[0,1]. For xe QnéaD, Axel,(x) and Bxe I,(x), hence H(t, x)e I,(x)
since /,(x) is a convex subset of X. Thus, H{t,.) is weakly inward with
respect to D for each te[0,1]. Now Corollary 3.4 follows from the
Homotopy Invariance.

If in particular D= P is a cone of X and 4: Q2 < P— X is weakly inward
with respect to P, we have the following results.

THEOREM 3.5. (a) If0eQ and Ax £ tx for all xe @Q(P)and t = 1, then
(4,9, P)=1;

(b) If there is an he P, h+#0 such that x — Ax # th for all t 20 and
x € dS2(P), then

(4,82, P)=0.

Proof. (a) Let H(1,x)=1tAx, then H(t, x)#x for all xedQ(P),
te[0,1]. For xeQnaP, since Axely(x) and Oelp(x), we have
H(t, x)e Ip(x). Therefore, H(t,.) is weakly inward with respect to P for
every t€ [0, 1]. Hence i(4, 2, P)=i(0, 2, P)=1.

For part (b), assume i(A4, 2, P) # 0. Choose n >0 such that

n>mlmsup{llx—Ax|]:er} (7
and set H(1, x)= Ax + mh. It is obvious that H(:, ) is weakly inward with
respect to P. Also, H(:, x)#x for all xedQ(P), te[0,1] Hence,
A+ nh Q, P)=1i(A, £, P)#0. Solvability then implies the existence of an
x € 2 such that x = Ax + nh, a contradiction to (7).

Remark. 1Tt is not clear to the authors whether the definition of the
generalized index actually depends on the choice of the retraction r: X — D.

4. FURTHER REMARKS ON WEAKLY INWARD MAPPINGS

Let P be an cone in X, A: P — X a weakly inward mapping with respect
to P. In this section we want to show that if A is differentiable at x =0 and
x =20 along the cone P, then 4'(0) and A4’(2c) are also weakly inward
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with respect to P. Therefore, weak inwardness is a property of inheritance
by the operation of differentiation.

DEerFINITION 4.1. (a) The derivative of A at x =0 along P is denoted by
A'(Q) and is defined to be an operator in L(P — P, X) such that

Ax —A(0)=A"(0) x + o(]|x]]) as X — ¢ (8)

for xe P
(b) The derivative of A at x=x along P is denoted by A'(x) and is
defined to be an operator in L(P— P, X'} such that
Ax— A'(x)x=o(|xI) as X o0 9)

for xe P.

LEMMA 4.2. For every xe P, I(x) is a wedge.

Proof. 1t is easily checked that 7.(x) is convex. Hence #/,(x) < Ip(x)
Yre [0, 1] since Oelp(x). We need to prove that this inclusion remains
valid for t> 1. Forany 4>0, > 1, and ye P,

tHx+AMy—x)]=x+AF—x)eln(x), (10)

where 2=14, y=y+ ((t—1)/tAd) xe P.
This yields that /p(x) is a wedge.

THEOREM 4.3. Assume that A: P — X is weakly inward with respect to P,
and A’(0), A'(0) exist.
(a) If AO=0, then A'(0} is weakly inward with respect to P,
(b) A'(cc) is weakly inward with respect to P.
Proof. (a) Fix an xe P, for >0 we have by (8)
A(tx)=14(0) x + o(1) as t—0.
Since 1/t A(tx)ela(tx)=tl(x)=Io(x) by Lemma42, A4'(0)xelp(x)
follows immediately. Part (b) can be proved similarly.

We now can follow Amann’s thought [1] to study the operator A
via 4’(0) and A'(cc). The proof of the following theorem is trivial and
therefore omitted.

THEOREM 4.4. Let cone P < X have property (P). Assume that A: P - X
is completely continuous, weakly inward with respect to P, differentiable
along P at x=0 and at x=00, A0=0, and A= 1 is not an eigenvailue of a
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positive eigenfunction for A'(0). Then, A has a nontrivial positive fixed point,
provided that one of the following two conditions is satisfied.

(a) A'(0) has a positive eigenvalue larger than 1 with a positive eigen-
Sunction but A'(0) does not,;

(b) A'(x0) has a positive eigenvalue larger than 1 with a positive eigen-
Sfunction, but A'(0) does not.
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