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Abstract

We study the structure of point processes N with the property that the P(�tN ∈ · |Ft) vary in a
�nite-dimensional space where �t is the shift and Ft the �-�eld generated by the counting process
up to time t. This class of point processes is strictly larger than Neuts’ class of Markovian arrival
processes. On the one hand, it allows for more general features like interarrival distributions
which are matrix-exponential rather than phase type, on the other the probabilistic interpretation
is a priori less clear. Nevertheless, the properties are very similar. In particular, �nite-dimensional
distributions of interarrival times, moments, Laplace transforms, Palm distributions, etc., are
shown to be given by two fundamental matrices C , D just as for the Markovian arrival process.
We also give a probabilistic interpretation in terms of a piecewise deterministic Markov process
on a compact convex subset of Rp, whose jump times are identical to the epochs of N . c© 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

Neuts’ Markovian arrival process (MAP) (Neuts, 1979) is one of the main speci�c
examples in point process theory. It is de�ned by a background Markov process {J (t)}
with p¡∞ states and intensity matrix Q. On time intervals where J (t)=i, the arrivals
are Poisson at rate �i. In addition, there is a probability aij that an arrival occurs at a
jump from i to j 6= i.
Examples of the MAP incorporate, e.g., Markov-modulated Poisson processes, re-

newal processes with phase-type (PHT) (Neuts, 1981; Asmussen, 1987, Chapter III.6)
interarrival times and semi-Markov point processes with PHT interarrival times. In fact
(Asmussen and Koole, 1963), MAPs are dense in a suitable sense in the space of
point processes on [0;∞). Together with the amenability of models using the MAP to
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algorithmic treatment, this has made the MAP a popular tool in queueing theory (a basic
paper is Lucantoni (1991); recent surveys and extensive lists of references are given
in Neuts (1992, 1995); and Ramaswami (1995)) for recent surveys and extensive lists
of references), with a particularly simple analysis being available for the case where
the service times are also PHT.
In older literature (e.g. Cohen, 1982; Smith, 1953; Cox, 1955), the larger class of

distributions B with a rational Laplace transform is used instead of the PHT class.
An equivalent characterization of such a distribution is that it has a matrix-exponential
(ME) density b,

b(x) = �eTxs (1.1)

(here � is a row vector, T a square matrix and s a column vector). See, e.g., Asmussen
and Bladt (1996), Asmussen and O’Cinneide (1998) and Lipsky (1992). The question
we ask in this paper is the following: is there a natural class of point processes
extending the MAP in a similar way as ME distributions generalizes PHT distri-
butions? For example, such point processes should allow for general ME interarrival
times, preferably dependent.
Our starting point is the characterization of O’Cinneide (1989) of ME distributions.

For a given distribution F on [0;∞), let Ft denote the distribution Ft(x):= F(x+ t)−
F(x). In terms of random variables, if X has distribution F , then Ft is the defective
distribution of the residual life X − t, de�ned on {X ¿ t} only. Let span(F) denote
the linear space of measures consisting of all linear combinations of the Ft . Then:

Proposition 1.1. A distribution F is ME if and only if span(F) is �nite-dimensional.

For the extension to point processes, let N be the set of all counting measures on
(0;∞), equipped with the usual vague topology and the corresponding Borel �-algebra
BN, and M(N) the set of all �nite signed measures on (N;BN). A point process is
then a random element of (N;BN), de�ned say on (
;F;P) (see e.g. Franken et al.
(1982), Kallenberg (1983) and K�onig and Schmidt (1992) for general background on
point processes). Let 0¡T1¡T2¡ · · · be the event times (measurable functionals
Ti = Ti(N ) on N), and let Ft= �(N (s) : s6t) where {N (t)} is the (right-continuous)
counting process associated with N . Let �t be the usual shift operator on N, and write
�(t; ·) for a version of P(�tN ∈ · |Ft) and �(t; !) for �(t; ·) evaluated at ! ∈ 
. We
will freely change between the two equivalent notations P(�tN ∈ · |Ft) and �(t; ·). In
the terminology of Knight (1981,1992), {�(t; ·)}t¿0 is the prediction process.

De�nition 1.1. We call a point process N a rational arrival process (RAP) if
P(N (0;∞)=∞)= 1 and there exists a �nite-dimensional subspace V of M(N) such
that for any t; P(�tN ∈ · |Ft) has a version �(t; ·) with �(t; !) ∈ V for all ! ∈ 
.

Our aim is to characterize RAPs. For a MAP, the natural choice of V is span(�1; : : : ;
�p) where �i is the distribution of N corresponding to J (0) = i. Indeed,

P(�tN ∈ · |Ft) =
p∑
i=1

Ai(t)�i;
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where Ai(t)= P(J (t) = i |Ft). According to Proposition 1.1, a renewal process with
ME but not PHT interarrival time gives a (trivial) example of a RAP which is not a
MAP. We will exhibit more substantial examples in Section 3.
One complete characterization of a RAP is the following. De�ne dev(C) as the

dominant eigenvalue (the one with maximal real part) of a matrix C and let e =
(1 : : : 1)′. For a given point process N , let fN;n(x1; : : : ; xn) denote the joint density of
T1; T2 − T1; : : : ; Tn − Tn−1 (the �rst n interarrival times) at x1; : : : ; xn.

Theorem 1.1. Let N be a RAP. Then there exist matrices C ;D; a row vector � and
a column vector s; such that dev(C)¡ 0; dev(C +D) = 0; (C +D)e = 0; and

fN;n(x1; : : : ; xn) = �eCx1DeCx2D : : : eCxns: (1.2)

Here s can be taken as De. In particular; the nth interarrival time Tn − Tn−1 is ME
with density �(−C−1D)n−1eCxs. Conversely; if a point process N has the property
(1:2); then it is a RAP.

For a MAP, (1.2) is standard and the matrix Q = C + D is the intensity matrix
of a continuous-time Markov chain with �nitely many states. The matrices C and D
correspond to a decomposition of Q where D gives the “intensities of state change
with arrivals”, and C those of “state changes without arrivals”. That is,

dij =
{
�i; i = j
qijaij i 6= j ; cij =

{−∑k 6=icik −
∑p

k=1dik ; i = j;

qij(1− aij); i 6= j:
The proof of Theorem 1.1 and other general results on the structure of a RAP is

given in Section 2. One main result is that the RAP N can be seen as generated by a
piecewise deterministic Markov process {A(t)}t¿0 on a compact convex subset of Rp,
such that the epochs of N are identical to the jump times of {A(t)}. Note that it is
not surprising that a �nite-state space does not su�ce – it is well known that the MAP
is the most general point process such that the counting process is an additive process
on a �nite Markov chain. Section 3 contains some examples illustrating the general
theory. In Section 4, we show that in a manner similar to (1.2), analytical formulas
for the moments EN (t) of the counting process, its Laplace transform Ee−�N (t), etc.,
carry over from the MAP to the RAP. We also consider Palm theory.
From the point of view of performance evaluation, say for queues, the usefulness of

modeling via MAPs or PHT distributions stems from the fact that algorithmic solutions
are available which require basically only �nite matrix algebra. For �nite matrix algebra
to be applicable, one can conversely argue heuristically that some �nite-dimensionality
property must be available. This provides one possible motivation for De�nition 1.1.
In fact, we believe that queues like RAP=ME=1 can be solved by largely the same
algorithms as MAP=PHT=1, and this topic is currently under investigation. This may
be useful even for MAPs, since a RAP representation may have much smaller dimen-
sion than a MAP representation, as discussed in Asmussen and Bladt (1996) for the
special case of renewal processes. However, we do not want to insist too much on
the performance evaluation aspects of the present paper. Rather, it is the mathematical
problem which is in the center.
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2. Main results and proofs

In this section we will need the following lemma.

Lemma 2.1. Let �1; : : : ; �p be linearly independent probability measures on an arbi-
trary space. Then there exists a constant a such that |ai|6a whenever

∑p
1 ai�i is a

probability measure.

Proof. Assume there exists a sequence {a(n)} such that �(n)= a(n)� is a probability
measure and the largest component of a(n) is unbounded, i.e. ||a(n)|| → ∞ where
||a||= max1;:::;p|ai|. Then �(n)=||a(n)|| → 0. Choosing a subsequence {nk} such that
a(nk )=||a(nk )|| → a for some a with ||a|| = 1, we have a� = 0, contradicting the linear
independence.

Consider a �xed RAP N with distribution P. Assume in the following that V in
De�nition 1.1 is chosen with minimal dimension (it is easy to see that this V is unique).
Choose some basis �1; : : : ; �p for V . Without loss of generality, we can take the �i as
probability measures (say �i = �(ti; !i) for some ti and !i).
Write

�(t; ·) = P(�tN ∈ · |Ft) =
p∑
i=1

Ai(t)�i = A(t)�; (2.1)

where A(t) = (A1(t) : : : Ap(t)), � = (�1 : : : �p)′.
The process {A(t)}t¿0 will play a fundamental role in the following; its state space

is contained in the hyperplane (a�ne space) {a ∈ Rp: ae = 1}. More precisely, we
may take the state space as

A=

{
a ∈ Rp: ae = 1;

p∑
1

ai�i(F)¿0 for all F ∈ BN

}
;

by Lemma 2.1, A is compact and convex. In particular, A(t) ∈ A implies that the
Ai(t) are integrable. For a ∈ A, we de�ne Pa =

∑p
1 ai�i.

Let �i ◦ �s denote the probability measure �i(�sN ∈ ·).

Proposition 2.1. (a) There exists a p× p matrix Q such that � ◦ �s = eQs�.
(b) dev(Q) = 0; Qe = 0.
(c) E[A(t + s)|Ft] = A(t)eQs. Equivalently; {A(t)e−Qt}t¿0 is a vector-valued

martingale.

Proof. (a) By (2.1),

P(�t+sN ∈ · |Ft) =
p∑
i=1

Ai(t)�i ◦ �s:
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On the other hand, by the chain rule for conditional probabilities

P(�t+sN ∈ · |Ft) = E[P(�t+sN ∈ ·|Ft+s)|Ft]

=
p∑
i=1

E[Ai(t + s)|Ft]�i:

Hence we have the following important identity:

A(t; !)(� ◦ �s) = B(t; s; !)�;
where B(t; s; ·) is a version of E(A(t + s; !)|Ft); for a �xed s, this is valid for all t
and for all ! 6∈ S(t) where S(t) ∈ F is a null set. Now we can choose t1; : : : ; tp and
!1 6∈ S(t1); : : : ; !p 6∈ S(tp) such that A(t1; !1); : : : ;A(tp; !p) are linearly independent.
Indeed, if span(A(t; !): t ¿ 0; ! 6∈ S(t)) is a proper subspace L of Rp, we obtain a
new version �̃(t; ·) of P(�tN ∈ · |Ft) by changing A(t; !) to an element of L for any
! ∈ S(t). Then �̃(t; !) ∈ {∑p

1 ai�i: (a1; : : : ; ap) ∈ L} which is a proper subspace of
V , contradicting the minimality of V .
We now get

� ◦ �s =



A(t1; !1)
A(t2; !2)

· · ·
A(tp; !p)




−1

B(t1; s; !1)
B(t2; s; !2)

· · ·
B(tp; s; !p)


 �

which means that � ◦ �s= Q̃(s)� for some matrix Q̃(s) which is unique by linear inde-
pendence of the �i. Furthermore, Q̃(s1 + s2) = Q̃(s1)Q̃(s2) by the semi-group property
of �s, and since � ◦ �s is right-continuous in s, we conclude that Q̃(s)= eQs for some
Q, and (a) is proved. Then (c) follows immediately since

p∑
i=1

E[Ai(t + s)|Ft]�i =
p∑
i=1

Ai(t)�i ◦ �s =
p∑

i; j=1

Ai(t)(eQs)ji�j

so that E[A(t + s)|Ft]� = A(t)eQs� which by linear independence of the �i implies
E[A(t + s)|Ft] = A(t)eQs.
In (b), Qe = 0 follows from

eQse = eQs�(N) = � ◦ �s(N) = e:

Furthermore, if R (dev(Q))¿ 0, then some element of eQs is unbounded in s which
by Lemma 2.1 contradicts eQs� = � ◦ �s.

Corollary 2.1. {A(t)}t¿0 is time-homogeneous Markov on A with paths which are
left-continuous with right limits.

Proof. The Markov property follows from Knight (1981, 1992) and the path property
by general martingale results.

The Markov property will follow also directly from the analysis of {A(t)} to be
given below where we shall show more precisely that jumps occur exactly at the event
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times of N . First we need to introduce a decomposition Q =C +D. For � ∈ M(N),
de�ne

Rt�(A) = �{N ∈ N: �tN ∈ A; T1¿t}:
That is: if N is a point process (a random element of N) with distribution P, then RtP
is the defective distribution of �tN , de�ned on {T1¿t} only. Thus if �(·)=P(N ∈ ·)
is the distribution of N then

Rt�(·) = RtP(N ∈ ·) = P(�tN ∈ ·; T1¿t):

Proposition 2.2. (a) {Rt}t¿0 is a semi-group: Rt+s = Rt ◦ Rs.
(b) � ∈ V ⇒ Rt� ∈ V .
(c) There exists a matrix C such that Rt(a�) = aeC t� for all a ∈ Rp. Furthermore

dev(C)¡ 0.

Proof. First we prove (b). To this end notice that {T1¿t}={T16t}c isFt-measurable,
and hence

I{T1¿t}P(�tN ∈ · |Ft) = P(�tN ∈ ·; T1¿t |Ft):

If � is the distribution of N then

Rt�(·) = RtP(N ∈ ·) = P(�tN ∈ ·; T1¿t)

= E[P(�tN ∈ ·; T1¿t|Ft)] = E[I{T1¿t}P(�tN ∈ · |Ft)]

= E
[ p∑
i=1

I{T1¿t}Ai(t)�i(·)
]

=
p∑
i=1

E[I{T1¿t}Ai(t)]�i(·) ∈ V:

The semi-group property (a) follows from the following consideration. Let G =
{N ∈ N: �tN ∈ A; T1¿t}. Then by de�nition of Rt we get that

RsRt�(A) = Rs�(G)

= �{N ∈ N: �sN ∈ G; T1¿s}:
But if �sN ∈ G this implies that �s�tN ∈ A and T1(�sN )¿t, where T1(·) is the operator
that for a given point process input returns the �rst arrival time. The latter property
together with T1¿s further implies that T1(N )¿s + t. The opposite consideration
also holds, so we conclude that RsRt�=Rs+t� and consequently also equal to Rt+s�=
RtRs�. This proves the semi-group property. The existence of C in (b) is a standard
consequence of (a) as in O’Cinneide (1989). That dev(C)¡ 0 follows since otherwise
Rt� would not converge to 0 as follows from P(T1¡∞) = 1.

Lemma 2.2.

P(�t+hN ∈ ·; N (t; t + h) = 0 |Ft) = A(t)eCh�:
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Proof. Simply notice that

P(�t+hN ∈ ·; N (t; t + h) = 0 |Ft) = RhP(�tN ∈ · |Ft):

Now let D=Q − C . The following result shows that we can think of A(t−)De as
the predictable intensity of the counting process N .

Proposition 2.3. P(�t+hN ∈ ·; N (t; t + h]¿ 0 |Ft) = A(t)D�h + o(h). In particular;
P(N (t; t + h]¿ 0 |Ft) = A(t)Deh+ o(h).

Proof.

P(�t+hN ∈ ·; N (t; t + h]¿ 0 |Ft)

=P(�t+hN ∈ · |Ft)− P(�t+hN ∈ ·; N [t; t + h] = 0 |Ft)

=A(t)eQh� − A(t)eCh�

=A(t)(I + hQ + o(h)− I − hC − o(h))�:

Proposition 2.4.

A(t) = A(0) +
∫ t

0
{A(s)C − A(s)Ce · A(s)} ds+

∑
i:Ti6t

{
A(Ti−)D
A(Ti−)De − A(Ti−)

}
:

Proof. We �rst show that

A(t + h) =
A(t)eCh

A(t)eChe
on {N (t; t + h] = 0}: (2.2)

This means that

I(N (t; t + h] = 0)A(t + h) = I(N (t; t + h] = 0)
A(t)eCh

A(t)eChe
;

i.e. (multiply by �) that the r.v.’s

Z1 = P(�t+hN ∈ ·; N (t; t + h] = 0|Ft+h); Z2 = I(N (t; t + h] = 0)
A(t)eCh�
A(t)eChe

are equal. Since Z1; Z2 are Ft+h-measurable, it su�ces that E[Z1Z3] = E[Z2Z3] for all
bounded Ft+h-measurable Z3, which in turn holds if E[Z1Z4Z5] = E[Z2Z4Z5] for all
bounded Ft-measurable Z4 and all bounded Z5 which are measurable w.r.t. �(N (t; t +
v]: 0¡v6h). Since such a Z5 is constant a.s., say Z5 = b, on {N (t; t + h] = 0} and
Z1 =Z2 =0 on {N (t; t+ h]¿ 0}, it su�ces that E[Z1Z4]=E[Z2Z4]. But by Lemma 2.2,

E[Z1Z4] = E[Z4E[Z1|Ft]] = E[Z4A(t)eCh�];

E[Z2Z4] = E
[
Z4
A(t)eCh�
A(t)eChe

P[N (t; t + h] = 0 |Ft]
]

= E[Z4A(t)eCh�]:
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It follows from (2.2) that the right derivative of A(t) exists for all t and is given by

A′(t) = A(t)C − A(t)Ce · A(t): (2.3)

Furthermore, (2.3) is also a left derivative unless t is one of the epochs Ti for N .
Combining with Proposition 2.3, a similar argument now gives

P(�t+hN ∈ · |Ft+h) =
A(t)eC�−tDeC (t+h−�)�
A(t)eC�−tDeC (t+h−�)e

on {N (t; t+h]=1} where � ∈ (t; t+h] is the epoch. Here the r.h.s. is A(t)D�=A(t)De+
O(h) where the O(h) term is uniform in t. Taking t; h rational (to avoid trouble with
null sets) and considering a sequence {tn; hn} such that (tn; tn + hn] ↓ {Ti} shows that
A(Ti) = A(Ti−)D�=A(Ti−)De. Combining with (2.3), this completes the proof.

The above results show that we can think of {A(t)} as a piecewise deterministic
Markov process (Davis, 1993). In between jumps, {A(t)} moves according to the
deterministic di�erential equation

ȧ(t) = a(t)C − a(t)Ce · a(t): (2.4)

Jumps occur at intensity aDe in state a, and the new state after the jump is aD=aDe
(deterministic).
This description also immediately yields the following explicit representation of A(t):

Corollary 2.2.

A(t) =
�
(∏N (t)

i=1 e
C (Ti−Ti−1)D

)
eC (t−TN (t))

�
(∏N (t)

i=1 e
C (Ti−Ti−1)D

)
eC (t−TN (t))e

:

Proof of Theorem 1.1. Let �rst N be a RAP and de�ne � = A(0). Using the strong
Markov property of {A(t)} (see Davis, 1993), we get

P(T1¿x1; T2 − T1¿x2) = E�[Pa(T1)(T1¿x2);T1¿x1]

= E�[A(T1)eCx2e;T1¿x1]

= E�[EA(x1)[A(T1)eCx2e];T1¿x1]

= E�
[
A(x1)

∫ ∞

0
eC tD dteCx2e;T1¿x

]
= E�[A(x1)(−C)−1DeCx2e;T1¿x]

= �eCx1 (−C)−1DeCx2e:
Di�erentiating, (1.2) follows for n=2 with s=−Ce=De. The case of n¿ 2 is similar.
Assume conversely that (1.2) holds. Then it is clear that f�tN |Ft ; n again has the form

(1.2), but with � replaced by a vector �(t) proportional to

�eCT1DeC (T2−T1) : : :DeC (Tk−Tk−1)DeC (t−Tk )

on {N (t)= k}. Since the �(t) vary in a �nite-dimensional space, N is thus a RAP.
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3. Example

Simple examples of RAPs which are not necessarily MAPs are ME renewal processes
and semi-Markov point processes with ME interarrival times.
The analysis of Section 2 suggests the following constructive way to exhibit RAPs:
(1) Consider a �nite set f1; : : : ; fq of ME densities.
(2) Extend f1; : : : ; fq to a set f1; : : : ; fp of ME densities such that any excess life

density of a fi (i = 1; : : : ; p) is a linear combination of the f1; : : : ; fp, and p¿q is
minimal.
(3) For each fi, write fi(x+y)=

∑p
1 c̃ij(y)fj(x) (note that then C̃ (y)=(c̃ij(y))=e

Cy

for some real matrix C with dev(C)¡ 0, and any fi(x) is ME with density e′ie
Cxe).

(4) Compute C = (cij) by cij = c̃
′
ij(0).

(5) Determine the region

A=

{
a ∈ Rp: ae = 1;

p∑
i=1

aifi(x)¿0 for all x¿0

}

(by Lemma 2.1, A is a convex compact subset of Rp).
(6) Let di: =−∑p

1 cij. As a candidate for D, consider

D =D(a1; : : : ; ap) =



d1:a1
...

dp:ap


 ; (3.1)

where a1; : : : ; ap ∈ A′, where ∈ A′ is de�ned under the next item.
(7) Choose A′ ⊆A such that

(a) A′ is invariant under orbit movements, that is for any point a ∈ A′ the
orbit starting from this point remains within A′. Technically the condition amounts to

∀a ∈ A′ ∀s¿0: a(s) = aeCs

aeCse
∈ A′:

(b) For the selected a1; : : : ; ap,

∀a ∈ A′:
aD(a1; : : : ; ap)
aD(a1; : : : ; ap)e

∈ A′:

(8) Choose � = A(0) ∈ A′.

Example 3.1. In step 1, start with {f3(x)} and extend as in 2 by taking
f1(x) = e−x; f2(x) = 2

3 (1 + sin x)e
−x; f3(x) = 2

3 (1 + cos x)e
−x:

Then

C̃ (y) = (c̃ij(y)) =




e−y 0 0
2
3 (1− cosy − siny)e−y cosye−y sinye−y

2
3 (1− cosy + siny)e−y −sinye−y cosye−y


 ;

C =




−1 0 0

− 2
3 −1 1
2
3 −1 −1


 ;
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Fig. 1. Three orbits through respectively (−1;−1); (−0:8;−0:8) and (−0:75;−0:75).

A=
{
(a1; a2; a3): a1 + a2 + a3 = 1; a1¿− 3−

√
a22 + a

2
3

}
: (3.2)

Since a1 = 1− a2 − a3 is uniquely determined by a2; a3, we can represent A by

A0 =
{
(a2; a3): 1− a2 − a3¿− 3−

√
a22 + a

2
3

}
; (3.3)

which is the region enclosed by an ellipse obtained by translating the ellipse with
centre at (0:0) and radia 5

7

√
2 and

√
42=7 along the abscissa, −2=7√2 units to the left

(i.e. in the negative direction), and followed by a rotation of +45◦(=�=4). One may
visualize the Markov process {A(t)} by the (a1; a2) component moving on these orbits
(which in this case are ellipses), with a change of orbit taking place with intensity aDe
in state a. The orbits through (−1;−1); (−0:8;−0:8) and (−0:75;−0:75) are shown in
Fig. 1.
Take any point (a1; a2; a3) such that (a2; a3) ∈ A0. Then the orbit through (1− a2−

a3; a2; a3) moves in the second and third coordinate according to

a(s) =

[
a1cos(s)− a2 sin(s)

5
3 − 2

3 cos(s)
;
a1 sin(s) + a2 cos(s)

5
3 − 2

3 cos(s)

]
:

The row sums of C are −1;−2=3;−4=3. Let us �rst consider the renewal process with
interarrival density beCxe where b=(3;−1;−1). Here a1=a2=a3=b. The corresponding
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D-matrix is

D =


 b
2=3b
4=3b


=


 3 −1 −1
2 −2=3 −2=3
4 −4=3 −4=3


 :

When there are jumps, then no matter where in the orbit the jump takes place, the
process will return to the original point (3;−1;−1).
It is a non-trivial matter to construct non-trivial RAPs but a safe way is to start with

a renewal process and perturb the chosen renewal point b in a close neighborhood.
Take as our candidate for a non-renewal RAP the following D-matrix:

D =




14
5 − 9

10 − 9
10

26
15 − 8

15 − 8
15

58
15 − 19

15 − 19
15


 ;

which is obtained by replacing b with the points

(2:8;−0:9;−0:9);
(2:6;−0:8;−0:8);
(2:9;−0:95;−0:95):

When a jump occurs from some point (1− x − y; x; y), it goes to(
14
5 − 16

15x +
16
15y

1− 1
3x +

1
3y

;
− 9
10 +

11
30x − 11

30y

1− 1
3x +

1
3y

;
− 9
10 +

11
30x − 11

30y

1− 1
3x +

1
3y

)
:

Thus the second and third coordinates always coincide, and all possible jumps from an
orbit will hence form a straight line with slope +1 in the plane of the second and third
coordinates. The initial point for any orbit will hence be of the form (1− 2a; a; a). If
a is the initial point after a jump, then the next jump, after time s, say, will go to

aeCsD
aeCsDe

= (1− 2y(s); y(s); y(s));

where

y(s) =−27− 18a+ 18a cos(s) + 22a sin(s)
30− 20a+ 20a cos(s) + 20a sin(s) :

In Fig. 2 all possible jump points are plotted for all possible orbits and we see that they
are contained in the area surrounded by the original orbit through (−1;−1) (second
and third coordinates), which we henceforth de�ne as A′ and which coincides with
A. Indeed, from the orbit through (−1;−1) (a = −1 in Fig. 2) the second and third
coordinates of the possible jump points, which are equal, are between about −0:74 and
−0:95. Now taking any point (1− 2a; a; a) as starting value for a new orbit with a in
the interval [−0:95;−0:74]; we see that new possible jump points will all be contained
in this same interval again. Hence property (b) in 7 holds.
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Fig. 2. Point reached by jumps when a process that started in (a; a) jumps at time s.

4. Further properties of RAPs

We consider a RAP N with �;C ;D as constructed in Section 2 and will show some
further analytic similarities with the MAP which do not directly follow from the results
presented so far.

Proposition 4.1. Ee�N (t) exists for all �¿ 0 and is given by Ee�N (t) =�et(C+e�D)e.

Proof. Clearly, {N (t)} is stochastically bounded by a Poisson process with intensity
maxa∈A aDe so Ee�N (t) exists for all �¿ 0. Now up to o(h) terms,

E[A(t + h)e�N (t+h)|Ft]

= e�N (t)
{
A(t)eCh

A(t)eChe
(1− A(t)De h) + A(t)De

�

A(t)De
A(t)De h

}
=e�N (t){A(t)(I + Ch)(1− (A(t)Ce + A(t)De) h) + A(t)De�h}:

Using Ce+De=Qe= 0 and letting b(t)=E[A(t)e�N (t)], we get b′(t)= b(t)(C +De�)
so that b(t) = A(0)et(C+e

�D). Now just note that Ee�N (t) = b(t)e and � = A(0).

In the rest of this section, we shall for simplicity work in part subject to

Condition 4.1. Any right eigenvector of Q corresponding to an eigenvalue � with
R �= 0 is proportional to e.
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In the MAP setting, this simply means that the background Markov process {J (t)}
is ergodic. Condition 4:1 and Proposition 2.1 implies that there exists a unique left
eigenvector �∗ corresponding to �= 0, which we normalize by �∗e = 1.

Lemma 4.1. Assume that Condition 4:1 holds. Then
(a) the algebraic multiplicity of the eigenvalue 0 is 1;
(b) eQt = e�∗ +O(e−�t) for some �¿ 0;
(c) �∗ ∈ A.

Proof. (a) Assume that the algebraic multiplicity of 0 is at least 2. Then there exists
f such that Q f = e, and hence eQtf = f + te. Then

EA (t)f = �eQtf = �f + t

which is impossible since A(t) f is bounded.
(b) is a standard consequence of (a), Condition 4:1 and Proposition 2.1. For (c),

note that
∫ t
0 �e

Qs ds=t =
∫ t
0 EA(s) ds=t ∈ A since A is convex and compact. Hence we

can �nd a subsequence {tk} with a limit in A. But by (b), such a limit must be �∗.

Proposition 4.2. Assume that Condition 4:1 holds. Then

EN (t) = t · �∗De + (� − �∗)(I − eQt)(e�∗ −Q)−1 (4.1)

= t · �∗De + (� − �∗)(e�∗ −Q)−1 + O(e−�t): (4.2)

Proof. Obviously,

EN (t) = E
∫ t

0
A(s)eQsDe ds= �

∫ t

0
eQs dsDe:

(4.1) follows then by inserting the expression∫ t

0
eQs ds= e�∗t + (I − eQt)(e�∗ −Q)−1

(see Eq. (20) of Narayana and Neuts (1992); Lemma 4.1 ensures that the conditions
of Narayana and Neuts (1992) are satis�ed) and noting that �= �∗ + � where �e= 0.
Using Lemma 4.1(b) then gives (4.2).

Next consider Palm theory, i.e. the question of existence of versions N ∗; N0 of N
which are time- (resp. event) stationary, and of the relation between N ∗ and the Palm
version N0 (see e.g. Franken et al. (1982), Sigman (1994) or Baccelli and Bremaud
(1994) for the general background). For any � ∈ A, we denote by N� the RAP
obtained by starting {A(t)} with A(0) = �, and by P� the corresponding probability
measure. We �rst give a general existence result, and next impose Condition 4:1 to
ensure uniqueness and some limiting properties.

Proposition 4.3. For any �∗∈A; N�∗ is time-stationary if and only if �∗Q= 0. Then
the Palm version is N�0 where �0 = �

∗D=�∗De. Furthermore; such a �∗ always exists.
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Proof. Since P�∗(�tN ∈ ·) = P�∗eQt and P� 6= P� for � 6= �, N�∗ is time-stationary if
and only if �∗eQt = �∗ for all t, i.e. if and only if �∗Q = 0.
By general point process theory, the Palm version is then determined by

P0(N ∈ ·) = 1
E�∗N (h)

E�∗
∑
i:Ti6h

I(�TiN ∈ ·)

=
1

E�∗N (h)
{P�∗(�T1N ∈ ·;T16h) + o(h)}

=
1

�∗De h

∫ h

0
�
∗eCsDeP�∗eCsD=�∗eCsDe ds+ o(1)

=P�∗D=�∗De + o(1) = P�0 + o(1):

Thus P0 = P�0 .
For existence of �∗, note �rst that as above we can �nd �∗∈A as limit of

∫ tk
0 �e

Qs ds=tk .
Then

�∗eQh = lim
k→∞

1
tk

∫ tk

0
�eQ(s+h) ds= lim

k→∞
1
tk

∫ tk+h

h
�eQs ds

= lim
k→∞

1
tk

∫ tk

0
�eQs ds= �∗

for all h which implies �∗Q = 0.

Proposition 4.4. For any �0 ∈ A; N�0 is event-stationary if and only if �0(−C−1D)=
�0. Then the corresponding time-stationary version is N ∗= N�∗ where �∗= �0C−1=�C−1e.
Furthermore; such a �0 always exists.

Proof. The �rst claim follows since A(t)= �0eC tD=�0eC tDe given T1 = t and the
density of T1 is �0eCtDe so that

E�0A(T1) =
∫ ∞

0

�0eC tD
�0eC tDe

�0eCtDe dt

=
∫ ∞

0
�0eC tD dt =−�0C−1D:

The general point process theory then gives that N ∗= N�∗ where

�∗ =
1

E�0T1
E�0
∫ T1

0
A(t) dt =

1
−�0C−1e

∫ ∞

0
E�0 [A(t);T1¿t] dt

=
1

−�0C−1e

∫ ∞

0
�0eC t dt =

�0C−1

�0C−1e
:

Proposition 4.5. Assume that Condition 4:1 holds. Then
(a) the solution of �∗ ∈ A; �∗Q = 0 is unique;
(b) for � ∈ A; N� is time-stationary if and only if � = �∗;

(c) �tN
D→N�∗ ; t → ∞.
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Proof. (a) and (b) are easy. For (c), note that �tN
D=N�(t) where �(t)= �eQt . But

by Lemma 4.1, �(t) =�e�∗ + o(1) = �∗ + o(1). This implies fN�(t) ; n(x1; : : : ; xn) →
fN�∗ ; n(x1; : : : ; xn) which by general point process theory is su�cient for N�(t)

D→N�∗ .

It is reasonable to ask whether also �TkN
D→N�0 , k → ∞. However, even for a MAP

this is not the case: here −C−1D is a transition matrix which may be periodic even
when Q is ergodic. But:

Proposition 4.6. Assume in addition to Condition 4:1 that the only eigenvalue � of
−C−1D with |�|= 1 is �= 1. Then �TkN D→N�0 .

Proof. If h is a right eigenvector of −C−1D corresponding to an eigenvalue � with
|R �|¿ 1, then for � ∈ A

E�A(Tn)h= �(−C−1D)nh= �n�h

is by compactness only possible if �h= 0.
Thus the restriction of −C−1D to A has 1 as a simple eigenvector with correspond-

ing left eigenvector �0 and right eigenvector e, and any other eigenvalue � must have
|R �|¡ 1. Thus

E�A(Tn) = �e�0 + o(1) = �0 + o(1)

which implies the assertion.
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