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Abstract

Interactive theorem provers require too much effort from their users. We have been developing a system
in which Isabelle users obtain automatic support from automatic theorem provers (ATPs) such as Vampire
and SPASS. An ATP is invoked at suitable points in the interactive session, and any proof found is given to
the user in a window displaying an Isar proof script. There are numerous differences between Isabelle (poly-
morphic higher-order logic with type classes, natural deduction rule format) and classical ATPs (first-order,
untyped, and clause form). Many of these differences have been bridged, and a working prototype that uses
background processes already provides much of the desired functionality.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Automatic theorem provers (ATPs) such as Vampire [19], which work by resolution, are im-
pressive in their power. Interactive proof tools such as Isabelle [14] and PVS [5] provide much
less automation; proofs require substantial user effort. However, interactive tools are better suited
for verification projects. They admit complicated definitions and specifications, including recursive
definitions of types, functions, and relations.

An obvious step is to gain the best of both worlds by integrating resolution provers with in-
teractive ones, but many complications make this task difficult. Most automatic theorem provers
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work in first-order logic, while interactive provers typically use higher-order logic. Most resolution
theorem provers are untyped, while interactive provers often have complicated type systems. Res-
olution theorem provers are designed to handle one-shot problems, while interactive provers are
designed to support lengthy developments. Resolution provers are designed to run for minutes or
hours, while the user of an interactive tool expects to get a response in seconds.

Our approach integrating the two types of system is based on a few simple principles. The guid-
ing idea is that user interaction should be minimal. The system should invoke automatic provers
spontaneously or in response to a trivial gesture such as a mouse click. These proof attempts should
run in the background, not disturbing the user unless a proof is found. Proofs should refer to a
large library of known lemmas: users should not have to select the relevant ones. The automatic
prover should not be trusted; instead, proofs should be translated back into the formalism of the
interactive prover. Proofs should be delivered in source form to the user, who can simply paste them
into her proof script.

Governed by these principles, we have taken a systematic approach to reconciling the differenc-
es between an interactive tool (Isabelle) and automatic theorem provers (Vampire, SPASS). We
have simply enumerated the differences—types, clause form, higher-order concepts, etc.—and dealt
with each one in turn. The implementation is essentially complete, although still in need of many
refinements to make it generally usable.

There is much related work. Many others have attempted to integrate interactive and automatic
provers.

• Coq has been integrated with Bliksem [4].
• HOL has integrated with various first-order provers, including Gandalf [9] and Metis [11], the

latter designed specifically for that integration.
• Isabelle has been integrated with a purpose-built prover, blast [17].
• KIV has been integrated with a tableau prover, 3T AP [1].

Closest to our conception is�mega [21]. It shares with our work the idea that automatic provers
can run in the background without being invoked by the user. However, there are also some impor-
tant differences between the two projects. �mega is a novel architecture, using proof planning to
invoke external reasoners. The objective of the�mega project is to identify techniques that can as-
sist mathematicians. Isabelle is an established verification tool with many users and a huge amount
of already formalized material. Our objective is to strengthen our existing framework rather than
to create a new one. The only external reasoners we consider are resolution provers, and from this
narrow focus we hope to provide the best possible integration.

The rest of the paper is as follows. We begin by describing Isabelle (Section 2) and our target reso-
lution provers, Vampire and SPASS (Section 3). We describe how to formalize Isabelle’s type system
in first-order logic (Section 4) and how to translate lemmas and goals from Isabelle’s higher-order
logic into clauses (Section 5). We describe the overall process management framework (Section 6)
and the two stages of proof reconstruction: how we check that the proof works in Isabelle (Section
7) and how we turn it into a proof script (Section 8). We describe the prototype’s current status
(Section 9) and finally give brief conclusions (Section 10).
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2. Isabelle

Isabelle [14] is an interactive proof tool. Like others based on the LCF architecture, it allows
proofs to be constructed only within a small kernel, which defines the basic inference rules. All
decision procedures and other proof mechanisms must ultimately reduce their deductions to basic
inference rules and axioms. Such an architecture makes proof procedures more difficult to imple-
ment, but it greatly improves their reliability. A difference between Isabelle and other LCF-based
provers is that Isabelle’s built-in logic, the meta-logic, is intended only for the formalization of other
logics, the object-logics.

The LCF approach uses type-checking of the underlying programming language (typically a di-
alect of ML) to enforce soundness. The definition of thm, the abstract type of theorems, constitutes
the inference kernel. A value of type thm can only be constructed by applying inference rules (which
are built-in functions with types such as thm -> thm) ultimately to axioms (typically constants of
type thm). Because ML’s type-checker prevents arbitrary formulae from being assigned type thm,
any expression having this type represents a correct proof.

Isabelle is generic: it supports a wide range of formalisms. The most important object-logic is
higher-order logic (HOL), but several others are available, including Zermelo–Fraenkel set theory
(ZF) [18]. The version of higher-order logic in Isabelle has polymorphic types (here we mean logical
types, not ML types). Unlike other implementations of HOL, Isabelle also provides the concept of
axiomatic type class: a collection of types, each possessing a specified set of operations that satisfy
specified axioms. Typical type classes include partially ordered set and ordered field. A type class is
open-ended: any new type that meets the specification can be admitted to the class. Unlike PVS,
Isabelle does not support predicate subtyping, where the combination of a type and a predicate
yields a new type.

Isabelle’s most basic inference mechanism is a form of Horn clause resolution, which must not
be confused with the resolution performed by the automatic provers we invoke. A typical Isabelle
theorem is a nested implication of the form

�1 �⇒ (· · · (�n �⇒ �) · · ·),
with implicit universal quantification over its free variables. This theorem is abbreviated as

[[�1; · · ·�n]] �⇒ �,

and represents the object-logic inference rule

�1 · · · �n

�.

Isabelle’s resolution combines such rules in the obvious way. For example, the two Isabelle theo-
rems � �⇒ � and � �⇒  can be resolved to obtain � �⇒  ; more generally, either clause may
have multiple negative literals, and the complementary literals may undergo unification. 1 The Isa-
belle proof state has much in common with a Prolog goal clause. When a user performs single-step

1 Isabelle uses higher-order unification [8].
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proof checking, applying some rule to reduce a goal to subgoals, she is actually performing Isabelle
resolution between that rule and the proof state [16].

Isabelle provides a variety of automatic tools—known as tactics—that can be used to construct
proofs. They include

• simp, which simplifies subgoals using rewriting and decision procedures,
• blast, which proves subgoals by classical reasoning (see below),
• auto, which combines simplification and classical reasoning,
• and other classical reasoning tools such as fast and clarify.

The rewriting engine and arithmetic decision procedures are similar to those found in competing
systems such as PVS [5] and HOL [7]. Unique to Isabelle is its generic classical reasoner, which
searches for proofs using tableau methods [17]. Within the realm of first-order logic, the classical
reasoner is much weaker than resolution theorem provers. However, the classical reasoner is not
restricted to first-order logic: it uses any supplied collection of lemmas to perform forward or back-
ward chaining, governed by depth-first iterative deepening. The classical reasoner can prove many
theorems that are difficult for most automatic provers, such as A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
and theorems that cannot easily be expressed in first-order logic at all, such as( ⋃

i∈I∪J
Ai

)
=
(⋃
i∈I
Ai

)
∪
(⋃
i∈J
Ai

)
.

The classical reasoner’s other great advantage is that it can utilize a large set of lemmas without
suffering a combinatorial explosion. Although certain proofs do require the user to name crucial
lemmas, hundreds of other lemmas are available to the classical reasoner at all times. These are
lemmas that were previously designated as being useful for classical reasoning, and they constitute
a knowledge base for the user’s application domain. Typically omitted from this knowledge base
are transitivity laws and similar lemmas that would blow up the search space. While integrating
Isabelle with automatic theorem provers, we have sought to preserve this advantage: the user should
only have to identify a few crucial lemmas, while the resolution search automatically finds other
needed facts from the knowledge base. Separating relevant facts from irrelevant ones is a task that
resolution theorem provers find difficult [13].

Isabelle provides two proof styles, linear and structured. Linear proofs resemble the tactic scripts
of HOL and PVS, and consist of commands that manipulate the proof state. Structured proofs (of
the Isar language [26]) are an attempt at formalizing mathematical style. We have concentrated on
supporting structured proofs, chiefly because they work on different subgoals independently. In the
linear style, an Isabelle tactic can affect all subgoals, so they are likely to change before an automatic
prover manages to prove any of them. Our methods are thus applicable to traditional LCF-style
systems such as HOL, where even linear proof scripts respect the goal-subgoal tree structure.

2.1. Notational remark

This paper follows the usual convention in the logic and theorem proving communities, where
the scope of quantifiers is as small as possible. For example, ∀x A ∧ B abbreviates (∀x A) ∧ B rather
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than ∀x (A ∧ B). This convention differs from that used in interactive tools such as Isabelle, where
the quantifier syntax includes a dot (as in ∀x. A ∧ B) and the scope of quantifiers extends to the right
as far as possible.

3. Automatic theorem provers

Most automatic theorem provers implement some form of resolution. They work in untyped
first-order logic; they use clause form; their main inference rules are resolution, factoring, and para-
modulation; they output a summary of the proof found. The better ones utilize advanced indexing
data structures and subsumption, and they can prove exceptionally complex theorems.

We hope that integration with a resolution prover will equip Isabelle with an effective combi-
nation of equational and classical reasoning, via paramodulation. One of the most popular Isa-
belle tactics, auto, performs a naive combination of rewriting and classical reasoning. It begins by
performing obvious classical reasoning steps (such as reducing the goalA ∧ B to the separate subgo-
alsA andB interleaved with simplification; it attempts to prove the resulting subgoals using classical
reasoning. What it cannot do is interleave equational reasoning with search as paramodulation does.

We performed much experimentation using Vampire [19], which has repeatedly won at CASC
(the CADE ATP System Competition). 2 We have even used a version of Vampire modified (by its
developers) to support forward and backward inference, as Isabelle does. However, we have also
used SPASS [24], largely because its proof output is easier to interpret. We intend that our work
should be applicable to most resolution provers. Standardization of inputs and outputs would
make this objective attainable. For input, the tptp2X utility can translate from TPTP (thousands of
problems for theorem provers [22]) format into the input languages of all major resolution provers.
Output of proofs is more problematical because systems differ in their inference rules, simplification
steps, and problem transformations. We hope that many theorem provers will eventually produce
complete, explicit proofs in TSTP (thousands of solutions from theorem provers [23]) format.

4. Coding Isabelle types in first-order logic

Isabelle/HOL implements classical higher-order logic, whose complex type system is not support-
ed by standard ATPs. Therefore, we need to model Isabelle’s type system within first-order logic.
The purpose of encoding type information is to ensure soundness, but it also turns out to reduce
the ATP’s search space: theorems will take part in proof attempts only if the types are appropriate.

4.1. Type classes

In Isabelle, a type class is a set of types for which certain operations are defined [25]. An axiomatic
type class has a set of axioms that must be satisfied by its instances, namely the types belonging to
that class. If a type � belongs to a class C then it is written as � :: C . A type class C is a subclass

2 See http://www.cs.miami.edu/∼tptp/CASC/.
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of another type class D provided all axioms of D can be proved in C; if a type � is an instance
of C then it is an instance of D as well. Furthermore, a type class may have more than one direct
superclass. If C is a subclass of both D1 and D2, then C is a subset of the intersection of D1 and D2.
The intersection of type classes is called a sort.

We formalize types as first-order terms. For each type class, we introduce a unary predicate. If a
type � is an instance of a classC , thenC(�)will be true. The subclass relation “C is a subclass ofD” is
expressed by the universal implication ∀� [C(�) → D(�)]. Similarly, the sort constraint � :: C1, . . . ,Cn
is expressed by the conjunction C1(�) ∧ · · · ∧ Cn(�).

Isabelle provides compound types through the use of type constructors. Each type constructor
has one or more arities, which describes the type class information of the arguments and the result
of this type constructor. For instance, the list type constructor list may have an arity written as

list :: (type) order

This means, if the argument of list is an instance of class type, then the resulting type (of lists)
belongs to class order. (It can be realized by the prefix ordering on lists, which does not require an
ordering to be defined on list elements.) We formalize this arity by the first-order formula

∀� [type(�) → order(list(�))].
In general, for a type constructor op , each arity of the form

op :: (C1, . . . ,Cn)C

is translated into a Horn clause

∀�1, . . . , �n [C1(�1) ∧ · · · ∧ Cn(�n) → C(op(�1, . . . , �n))].

4.2. Embedding type information in clauses

Isabelle’s predicates and functions are typed—many of them are polymorphic—and this infor-
mation must be conveyed to the ATP. We embed the types of predicates and functions, formalized
as shown above, in clauses:

• A function or predicate (other than equality) takes its type as an additional argument.
• Equality is discussed below. However, equalities between boolean values—which are legal in

HOL—are simply replaced by two implications.
• Any type class constraints on type variables occurring in a clause are included as preconditions,

in the form of additional negative literals.

The equality predicate requires special treatment because it is built into most ATPs to support in-
ference rules such as paramodulation. It takes two arguments only, so adding a third argument is out
of the question. We briefly experimented with embedding type information into the two-argument
equality relation by pairing each operand with its type. Thus A = B became

equal(typeinfo(A, �), typeinfo(B, �)),
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where � is the type of A and B and typeinfo effectively behaves as a pairing function. To make
equality reasoning work, we included an axiom for stripping away type information:

equal(typeinfo(A, �), typeinfo(B, �)) → equal(A,B).

This approach is useful in certain situations, such as proving the set equality A = B by separate
consideration of the cases A ⊆ B and B ⊆ A, or proving the integer equality i = j by separate con-
sideration of the cases i � j and j � i. It prevents the (untyped) ATP from attempting to prove
absurdities like A � B or x ⊆ y . However, this representation harms performance, probably be-
cause it complicates equality reasoning. We now simply regard equality as untyped.

Isabelle’s type information exists in various places and needs to be extracted and converted to
first-order format. The type information in Isabelle goals and lemmas are translated into additional
clauses. Type information such as subclass relationships are global facts, and hence are converted
to axiom clauses. The type information from Isabelle rules are translated into extra literals of the
rule clause. Unfortunately, these extra clauses and literals complicate proof reconstruction: they
represent Isabelle’s type system rather than actual Isabelle inferences. When reconstructing a proof,
we have to identify and remove subproofs that perform type checking.

4.3. Examples

Here are two examples taken from Isabelle-generated TPTP files in order to illustrate the for-
malization of types. To improve readability, we have reformatted the output, simplifying the com-
puter-generated names. The first example expresses the theorem A ⊆ B ∧ B ⊆ A → A = B. Isabelle
identifies the subset relation with the overloaded constant �, whose third argument below restricts
it to sets.

input_clause(cls_0_Set_subset_antisym, axiom,
[++equal(V_A, V_B),

--lessequals(V_B, V_A, fun(set(T), fun(set(T), bool))),
--lessequals(V_A, V_B, fun(set(T), fun(set(T), bool)))]).

The second example expresses the theorem ¬(x < x). It refers to the overloaded constant <. Its
type argument, together with the clause’s first literal, restricts it to elements whose type belongs to
the type class of partial orderings, order.

input_clause(cls_0_Orderings_order_less_irrefl, axiom,
[--class_order(T),

--less(V_x, V_x, fun(T, fun(T, bool)))]).

5. Preparing Isabelle goals for ATPs

Recall that invocation of the ATP should be invisible to the user. She works normally, refining
goals to subgoals; proof attempts on open subgoals take place in the background, and any successes
are reported. The automatic prover must receive

• existing lemmas,
• assumptions local to the current proof, and
• the subgoals to be proved.
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The automatic theorem prover must be given clause form, with Isabelle’s conventions for natu-
ral deduction removed. Isabelle types must also be removed, as described above. Finally, these
translations must be integrated with Isabelle’s interactive proof language.

5.1. Translating existing lemmas to clause form

Lemmas that were previously proved in Isabelle need to be converted to clause normal form
(CNF). This transformation must be performed using Isabelle inferences in order to allow proof
reconstruction. As a result, our CNF transformation is a function of type thm -> thm, which in
LCF-based provers is the type of derived inference rules. This CNF transformation is performed
by two functions.

• skolem_axiom converts an Isabelle theorem into negation normal form (NNF), Skolemizes it
and finally removes all existential variables.

• cnf_axiom performs the same steps, then converts the result into conjunction normal form
(CNF), represented by a list of clauses. Each clause has type thm, and is therefore an Isabelle
theorem.

Skolemization takes several steps and treats lemmas differently from negated conjectures. It be-
gins with a formula whose outermost universal quantifiers have been discarded. It then moves every
existential quantifier to the front of the theorem by applying the rewrite rule

(∀x ∃y P(x, y)) ⇐⇒ (∃f ∀x P(x, f(x))).

This equivalence expresses the axiom of choice, which appears to be necessary when performing
Skolemization by inference. 3 A single application of this equivalence yields a function of one vari-
able. Repeated application—to move an existential variable past several universal variables—results
in a function of all of those variables. Rewriting with this equivalence, along with others to extract
existential quantifiers from conjunctions, disjunctions, etc., yields a formula in which all existential
quantifiers are lined up at the front. If we were to reinstate the outermost universal quantifiers, we
would obtain a ∀∃-prefix.

These existential quantifiers must now be removed altogether. The procedure depends upon
whether the clauses have been produced from the negated conjecture or from existing theorems.
Skolemization of the negated conjecture is easy: we transform an Isabelle goal (the conjecture) into
one that is headed by existential quantifiers. These can be removed using the standard treatment
of existentially quantified assumptions, namely application of the rule of ∃-elimination. Skolemiza-
tion of theorems is harder: we transform an Isabelle theorem into one that is headed by existential
quantifiers. Removing those quantifiers requires a further use of the axiom of choice, in the form
of Hilbert’s �-operator. The term �x P(x) denotes some value x such that P(x) is true, if such exists;

3 In simple cases, we can avoid the use of the axiom of choice by instead pulling out and discarding the quantifier ∀x
whenever we encounter a formula of the form ∀x ∃y P(x, y), at the cost of substantially increased proof complexity [3].
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otherwise, it denotes any value of the appropriate type. If we have transformed a lemma into the
form ∃x P(x), then we may conclude P(�x P(x)); this inference is trivial in Isabelle, using the basic
properties of Hilbert’s �-operator. This step can be repeated for each existential quantifier.

For instance, the Isabelle lemma subsetI expresses the natural deduction rule for introducing
the subset relation: to show A ⊆ B, it suffices to show that for arbitrary x, if x ∈ A then x ∈ B. This
lemma is equivalent to the first-order formula

∀x (x ∈ A → x ∈ B) → A ⊆ B.

The variables A and B are implicitly universal, but since the outermost universal quantifiers are
discarded, there is no prefix ∀AB. Transforming this formula into NNF and Skolemizing yields

∃x [(x ∈ A ∧ x /∈ B) ∨ A ⊆ B].

The replacement of existential variables by �-terms yields a large formula.

�x [(x ∈ A ∧ x /∈ B) ∨ A ⊆ B]︸ ︷︷ ︸
��term

∈ A ∧ �x [(x ∈ A ∧ x /∈ B) ∨ A ⊆ B]︸ ︷︷ ︸
��term

/∈ B ∨ A ⊆ B

The two �-terms are identical, representing the eliminated ∃x. It would obviously be preferable
to define a Skolem function by

f(A,B) def= �x [(x ∈ A ∧ x /∈ B) ∨ A ⊆ B].

because the result would be more compact:

(f(A,B) ∈ A ∧ f(A,B) /∈ B) ∨ A ⊆ B

Causing such function declarations to be generated presents some practical problems: Isabelle’s
concept of “theory” makes it difficult to declare constants on the fly. For the present, proof recon-
struction in Isabelle uses the versions containing �-terms. Efficiency concerns will probably force
us to replace these by automatically-defined Skolem functions.

Obviously, the �-terms must be replaced by proper Skolem terms such as f(A,B) before the claus-
es are delivered to an ATP. For each �-term, we generate a unique Skolem term. The universally
quantified variables that cover the scope of a Skolem term are exactly those variables that appear
inside the �-term. Therefore it is enough to inspect each �-term separately in generating a Skolem
term. This step (which is not performed by Isabelle inferences) yields clauses that are ready to be
delivered to ATPs.
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5.2. Preprocessing of elimination rules

The code that converts formulas into clauses raises an exception if it detects that the formula is
higher-order, since these clauses will be used by first-order ATPs. However, one class of apparently
higher-order theorems can be converted. Many Isabelle lemmas are expressed to resemble the in-
troduction and elimination rules of natural deduction [16]. The format of Isabelle elimination rules
can be expressed directly in higher-order logic:

∀P [A → (∀x1 B1 → P) → · · · → (∀xn Bn → P) → P ]
Here, A is a formula that contains an operator to be eliminated. Each xi is a list of universally

quantified variables, while B1, . . . , Bn are lists of formulae, regarded as conjunctions. (Any of the
lists may be empty.) Finally, P is a predicate variable.

Clearly any theorem of this form should be transformed into an equivalent first-order formula,
removing the predicate variable, before we transform it into CNF. For an elimination rule like this,
we transform it to

A → (∃x1 B1 ∨ · · · ∨ ∃xn Bn).

If n = 0, the elimination rule is simply ¬A.
The transformation described above is difficult to perform simply by applying Isabelle inference

rules. An alternative approach was adopted that still ensures correctness. This approach can be
divided into two major steps.

(1) From the elimination rule, we construct an Isabelle term that represents the first-order formula
equivalent to the rule. This is straightforward programming.

(2) We then invoke an Isabelle function that takes a term and a tactic, yielding an Isabelle the-
orem. The tactic applies the elimination rule under consideration, then delivers the resulting
subgoals to Isabelle’s classical reasoner.

As an example, consider the elimination rule UnionE. Intuitively, it says that if A ∈ ⋃C , then
there is some x such that A ∈ x and x ∈ C . It can be expressed in higher-order logic as follows:

∀P AC [A ∈
⋃
C → ∀x (A ∈ x ∧ x ∈ C → P) → P ].

The result of our transformation is a first-order theorem:

∀AC [A ∈
⋃
C → ∃x (A ∈ x ∧ x ∈ C)].

This formula is finally converted to CNF as two clauses

A /∈
⋃
C ∨ [�x [A /∈

⋃
C ∨ (x ∈ C ∧ A ∈ x)]] ∈ C ,

and

A /∈
⋃
C ∨ A ∈ �x [A /∈

⋃
C ∨ (x ∈ C ∧ A ∈ x)],
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where A and C are implicitly universally quantified. Since the procedure above is carried out by
Isabelle inferences, each clause has the type thm, which means it is an Isabelle theorem. The versions
of these clauses given to the ATP will replace �x (A /∈ ⋃C ∨ x ∈ C ∧ A ∈ x) by a Skolem term of
the form f(A,C).

5.3. A generic clause datatype

Although ATPs accept clauses in a textual format, it is useful to have an internal representation
of clauses that captures all of the essential information. We define type clause to represent clauses
derived from Isabelle lemmas and goals. A clause contains several fields.

• A unique identifier. If the clause is derived from an Isabelle rule, then the rule’s name is recorded
as well.

• An indication of whether the clause should be labelled as an axiom or negated conjecture clause.
This distinction is important for heuristics such as SOS, which attempt to focus the proof search
on the conjecture. (Recall discussion in Section 3.)

• A list of literals in this clause. Since, our inputs to ATPs are typed, predicates’ and functions’
types are included.

• Additional type information. This includes type classes of type variables that occur in the clause.

During the conversion of an Isabelle lemma or negated subgoal into the clause datatype, type
information is gathered and stored in the form of additional literals, as described in Section 4.2
above. A first-order Horn clause represents the arity of each type constructor. Every such clause is
represented by a type arityClause, which is analogous to clause but simpler. Fields included
in arityClause are

• a unique identifier,
• a positive literal (the type class of the type constructor’s result), and
• a list of negative literals (the type classes of the type constructor’s arguments).

A similar datatype, classrelClause, stores information about the subclass relationship be-
tween type classes. Each such relationship is formalized as a Horn clause.

The clause datatypes defined above can easily be translated to any ATP-specific clause
syntax. We have implemented the conversion to the widely-used TPTP format. By default,
the clauses include type information, as described in the previous section. Users can modify
this behaviour (for instance, on including type information for equalities) by setting boolean
flags.

5.4. Summary of preliminary experiments

Before undertaking any implementation, we carried out a series of experiments in order to ex-
amine whether our approach would be practical [12,13]. The experiments consisted of taking basic
tactic invocations (the tactics were blast, fast, clarify, auto, and simp) from existing proofs.
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We attempted to reproduce them using Vampire and SPASS, with a time limit of 60 s per proof. In
each case, clauses from the negated conjecture were combined with axiom clauses obtained from
the default classical and simplifier rules: the rules that Isabelle tactics such as auto would use. In
some of the examples, we used formula renaming [15] before the CNF transformation in order to
minimize the number of clauses.

Overall, our experiments showed that our methods of translating ZF and HOL into first-or-
der clauses were effective. Most of the goals that were proved by Isabelle’s blast and auto were
proved by Vampire and SPASS. In addition, the inclusion of type information in HOL was shown
to be important: rules involving polymorphic operators did not increase the search space, probably
because the type information constrained the search.

Since, the aim of this integration is to improve automation, it is important to know whether
Vampire and SPASS can prove goals that were not proved by Isabelle’s automatic tools. For this,
we took 15 lemmas that were proved in Isabelle by a short sequence of proof steps and gave them
to Vampire. Vampire proved ten of these.

However, our experiments also showed that having a large number of axioms—which is inevita-
ble if we include the default classical and simplifier rules—often overwhelms ATPs. Many of those
failed proof goals could be proved if we removed some of the irrelevant axioms. Thus, we have had
advance warning of the need to implement heuristics for coping with redundant information.

6. Architecture overview

Fig. 1 presents a block diagram of the system. Isabelle interacts with the user through a generic
interface, Proof General. In order to send subgoals to resolution provers while the user continues
with what she is doing, a watcher process is created. This is another Isabelle process, running con-
currently with the Isabelle process the user interacts with, and which can communicate with that
process by two Unix pipes, one for input, the other for output.

Fig. 1. System architecture.
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POSIX is an international standard that defines how an application obtains the basic services of
an operating system. 4 The watcher calls the POSIX functions specified in the Standard ML Basis
Library [6]. Both Poly/ML and Standard ML of New Jersey implement these functions.

6.1. Watcher process

From the main Isabelle process, a watcher process can be created with the command

val (watcherIn, watcherOut, watcherPid) = createWatcher();

This uses the POSIX fork() command to create an identical copy of the original Isabelle process,
and then sets up communication pipes between the two. The process runs concurrently with the
original process, and the user should be unaware of its existence unless it finds a proof.

Once the watcher has been created, it polls its input pipe every 100 ms for commands from the
main Isabelle process. If it sees a command to prove a subgoal, it calls an automatic prover using a
modified version of the execute function from the Unix structure. This creates a process running
the resolution prover on the desired subgoal.

Each time a prover is called, a data structure containing information on that process is added to
a list in the watcher. This data structure contains

• the process ID of the new process,
• the name of the prover,
• the file containing the subgoal to be proved, and
• the file descriptors of the input and output pipes connecting the watcher to the resolution proof

process.

All processes in the watcher’s list are polled for output, each poll timing out after 100 ms. If the
watcher sees that a child has responded, it checks to see whether a proof has been found and, if so,
reads in the proof and carries out a reconstruction. It then signals the Isabelle process that a proof
has been found and transferring the commands necessary for reconstruction via the output pipe.
Once a proof has been found, reconstructed, and transmitted to Isabelle, the information for that
proof process is removed from the watcher’s list.

Resolution provers can run either on the same machine as the main Isabelle process and watcher,
or remotely using ssh, the secure shell. Once an ssh key has been set up on the calling machine,
ssh connections can be authenticated automatically.

6.2. Interaction with the user

The standard user interface for Isabelle is Proof General [2]. Based on the Emacs text editor,
Proof General connects the evaluation of a proof to the editing of a proof script containing a series
of commands. Once a command has been executed by Isabelle, the corresponding line in the script
is locked, preventing any modification.

4 See http://www.pasc.org/.
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Communication with Proof General takes place in three buffers.

• The script buffer contains the text of the proof script; unlocked portions can be edited.
• The goals buffer displays the current list of subgoals to be proved.
• The response buffer displays output from the proof tool.

Users tell the system to execute parts of the proof script by clicking an icon at the top of
the Proof General window. In order to provide for output from an ATP via the watcher pro-
cess, we have added a resolution-response buffer to Proof General. This works like the trace
buffer, which displays any tracing output. Both of these buffers, along with procedures to
print warning messages in the response buffer, rely on the output from the proof tool being
enclosed in urgent response characters. These are non-printing characters that direct Proof General
to do something special with this output, instead of displaying it in the response buffer.

What Proof General does next with the output depends on the character following the urgent
response character. In the case of an ATP-based proof, this is another non-printing character telling
Proof General to put the output in the resolution-response buffer, highlight it, and bring the buffer
to the front. Fig. 2 shows an example. The upper window holds an interaction buffer where the
user has entered a conjecture followed by the command proof -. A proof found by SPASS is
displayed, for the user to insert into her proof script. Note that the reconstructed proof emulates
resolution rather than attempting to be intuitive.

6.3. Interaction between proof general and ATPs

Since, the aim of our integration is to reduce interaction, the invocation of ATPs should be as
easy as possible. In our current prototype, invocation is automatic when Isabelle enters a mode in
which subgoals are available to be proved. 5 Experience suggests that we should adopt a new mode
of interaction, ATPs are invoked by a single mouse gesture. Explicit invocation prevents the waste
of unnecessary ATP processes being spawned, and it keeps the user in control. However invocation
takes place, the following steps are taken:

• First, a file containing clauses derived from each subgoal is produced.
• Next, a watcher process is created and a request to call an ATP passed to it, consisting of
◦ the ATP to be called, with any necessary settings
◦ the path and filename of the input file, and
◦ a textual representation of the negated, Skolemized goal (including types).
This initiates a call to the ATP and translation of any proof that is found, and will be discussed
in Section 7.

• Finally, the Isabelle process responds to a POSIX signal from the watcher process by reading
the proof found, transforming it into an Isar script, and sending it to Proof General for display
in the resolution-response buffer. This will be described in Section 8.

5 Precisely, this occurs at the entry to State mode, which signals the start of a structured proof.
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Fig. 2. Proof General returning a proof script (shaded) to the user.

7. Finding and translating an ATP proof

To illustrate the process of finding and translating an ATP proof, we follow the progress of the
proof of the following formula using the SPASS prover.

∃x ∀y (P(x) = P(y)) −→ (∃x P(x) = ∀y P(y)).

We begin by transforming this subgoal into negation normal form, followed by Skolemization
and conversion to clauses. This allows us to generate ATP-specific problem files for each subgoal.
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The pathnames of these files, along with settings for the ATP to be called, are then sent to the watch-
er process, which in turn calls an automatic prover. At present, the choice of prover is determined
by flag settings. If necessary, Isabelle uses tptp2X [22] to convert the problem file from TPTP format
into the format required by the chosen prover.

Once a proof has been found by the resolution prover (Fig. 3), the watcher reads it in. Resolution
proof steps are represented in the watcher by the following datatype:

datatype Proofstep = Axiom
| Binary of (int * int) * (int * int)
| MRR of (int * int) * (int * int)
| Factor of (int * int * int)
| Para of (int * int) * (int * int)
| Rewrite of (int * int * int)
| Unusedstep of unit

Inference rules currently emulated in Isabelle include binary resolution, matching resource resolu-
tion, factoring, paramodulation, and rewriting. The SPASS proof is now parsed, yielding a list:

val proof_steps =
[(1, Axiom, ["P x", "˜ P U"]), (3, Axiom, ["P U", "˜ P x"]),

(5, Axiom, ["˜ P U", "˜ P xa"]), (7, Axiom, ["P U", "P xb"]),
(9, Factor (5, 0, 1), ["˜ P xa"]),
(10, Binary ((9, 0), (3, 0)), ["˜ P x"]),
(11, Binary ((10, 0), (1, 0)), ["˜ P U"]),
(12, Factor (7, 0, 1), ["P xb"]),
(14, Binary ((11, 0), (12, 0)), [])]

Each element of the list contains

• the line number of the SPASS proof step,
• a proof step as an element of type Proofstep, and
• a list of strings representing the clause ordering in the SPASS proof.

The last element is necessary because SPASS reorders the literals in each clause; we must reorder
the literals in the Isabelle clauses to match this. Additionally, all literals that were inserted to model

Fig. 3. A proof returned by SPASS.
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the Isabelle type system (recall the discussion in Section 4.2) are removed, leaving only the literals
that appear in the Isabelle representation of the clause.

As the watcher starts off as an identical copy of the main Isabelle process, it is able to create
clauses for each subgoal by the same methods as the calling program when it created the ATP
problem files. A contradiction can be derived from this set of clauses by emulating the steps of the
resolution proof. Hurd [10] describes a similar reconstruction procedure for HOL, which he applies
to his first-order prover, Metis.

In addition to producing the desired theorem, the translation procedure returns a list of recon-
struction steps. These consist of

• the line number,
• a proof step,
• an ordered list of the literals in the clause, and
• a list of the variables in the clause.

The watcher process transforms this list of reconstruction steps into a string:

val reconstr =
"[P%x%xa%xb%]1OrigAxiom()[P x% P U%][U%]3OrigAxiom()[P U% P x%][U%]

5OrigAxiom()[ P xa% P U%][U%]7OrigAxiom()[P U%P xb%][U%]
1Axiom()[P x% P U%][U%]3Axiom()[P U% P x%][U%]
5Axiom()[ P U% P xa%][U%]
7Axiom()[P U%P xb%][U%]9Factor(5,0,1)[ P xa%][]
10Binary((9,0),(3,0))[ P x%][]
11Binary((10,0),(1,0))[ P U%][U%]12Factor(7,0,1)[P xb%][]
14Binary((11,0),(12,0))[][]"

: string

This is sent, along with the string representation of the goal, to the Isabelle process. At the
same time a POSIX signal is sent, causing the Isabelle process to interrupt what it is currently
doing to deal with the information from the watcher. The need to interrupt the main Isabelle
process is unfortunate, but this process is the only one that can communicate with Proof
General.

8. Transforming the ATP proof to an Isar proof

In order to allow Isar scripts to express resolution proofs, we had to extend the Isar language
with the inference rules used in resolution provers. In Isar, operations that transform theorems
are called attributes. These new attributes could then be used to produce an Isar script from the
reconstruction string obtained from the watcher process.

8.1. Resolution proof attributes for Isar

We extended the Isar proof language with the following attributes:
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Fig. 4. Generated Isar proof script.

• binary, binary resolution
• factor, factoring
• paramod, paramodulation
• demod, demodulation (rewriting)

Each of these attributes operate on one or more already established facts in a proof. For example,
the line

by (rule cl9 [binary 0 cl3 0])

resolves the first literal (numbered 0) of the fact labelled cl9 with the first literal of the fact labelled
cl3. The code for these operations is the same as that used to translate these operations inside the
watcher process (Section 6.1).

8.2. Production of an Isar script

After the watcher has checked the correctness of the ATP proof by reconstructing it using Isa-
belle’s inference rules, it generates a structured Isar proof. The user can insert this into her theory
file, so that it can be reprocessed subsequently without the support of an ATP.

When the Isabelle process receives the appropriate POSIX signal, a handler function reads the
proof reconstruction information from the watcher’s output pipe, and parses the reconstruction
steps from the reconstruction string.
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The Isar proof (Fig. 4) begins with the line

proof (rule ccontr, skolemize, make_clauses).

This has the effect of applying the classical contradiction tactic to the goal, Skolemizing it and
transforming it to a list of clauses. The first element of the reconstruction string is a list of variables
that must be fixed, making them effectively constants. Most of them are Skolem functions.

fix P x xa xb

The rest of the reconstruction string is parsed into a list of elements of the form

(clause number, proof step, literals, variables).

We begin by assuming all the clauses produced by make_clauses that are not actually used
in the resolution proof—Isar will complain otherwise—and then we assume the clauses that were
used. The literals in each clause will be in the order given to them by Isabelle, so if SPASS has
re-ordered the literals, we need to derive a new instance of the clause with the literals in the or-
der SPASS expects. We then simply emulate the SPASS proof, each time forcing the literals into
SPASS’s ordering.

9. Current status

The architecture of the system is essentially complete. The implementation is partly complete,
but there are major gaps and numerous details to be fixed.

9.1. Proof reconstruction issues

One source of problems has been the difficulty of interpreting the output of ATPs. (Hurd [9]
has reported the same difficulty, with the Gandalf prover.) When SPASS is given a set of clauses,
it reorders the literals in them and may preprocess and simplify them before attempting a proof,
which may contain various simplification steps in addition to the normal inference rules. Coping
with such details takes time, and reduces our ability to re-target the system to other ATPs.

Our integration makes previously-proved lemmas available for use in the resolution proofs. The
same mechanism should work for facts proved locally within the current scope of the structured
proof. We also have a mechanism for temporarily adding global theorems to the search. A decla-
ration such as

note order_trans [intro]

adds the transitivity of � to the set of lemmas permitted in proofs.
The proofs given to the user are chains of resolution-style inference rules. Much could be done to

make them more concise and more readable. TRAMP [11] generates natural proofs, but integrating
it with our system would be a major project. An alternative approach to proof reconstruction is to
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use the ATP’s output merely to extract the names of the lemmas used in the proof, and perhaps
their instantiations; with these hints, a basic prover that works by Isabelle inference could find the
proofs afresh. A prover that could be adapted for this purpose is Metis [10].

Despite its complications, we see some form of proof reconstruction as essential. Even if we
trust the ATPs, we may not want to trust our translations between typed higher-order logic and
untyped first-order logic. Moreover, having proof reconstruction in source form makes the proof
script self-contained.

9.2. User interface

At present, any proofs found are displayed in one of Proof General’s buffers, in a similar manner
to the current goals and proof state. Preliminary experiments suggest that this is quite distracting.
The user has no control over when these proofs are displayed and may be irritated by these sudden
interruptions to her train of thought.

It is possible that a better model of interaction may be that of the Office Assistant in Microsoft
Word. This occupies a separate window from the document the user is working on, occasionally
alerting them to possible problems that have just arisen, or offering pertinent help. The proof as-
sistant would, ideally, have different settings for helpfulness; the user could tailor the amount and
types of assistance provided, thereby ensuring that it is helpful rather than distracting.

9.3. Prover performance

Isabelle’s full lemma library corresponds to about 1400 first-order clauses. Automatic provers of-
ten fail to prove even trivial results in the presence of so many clauses. The set of support heuristic
(SOS) [27] is a classic means of improving performance by ignoring irrelevant axioms: it requires
all inferences to involve the negated conjecture, preventing aimless forward inferences involving
the axioms alone. Unfortunately, modern theorem provers such as Vampire and SPASS use differ-
ent heuristics, restricting the application of resolution according to an ordering. The combination
of ordered resolution and SOS is incomplete, and in some cases the proof attempt fails quickly.
More research is needed to let us combine the goal-orientation of SOS with the high performance
of ordered resolution. The hierarchical structure of Isabelle theories may support algorithms for
removing irrelevant axioms or generating effective orderings.

10. Conclusions

Our prototype is essentially complete and already demonstrates the key ideas. Automatic provers
run in the background. If a proof is found, it is delivered to the user in source form. The user does not
have to prepare the problem first, for example by identifying the necessary lemmas. Our prototype
still requires much tuning before it will be genuinely useful. We need to boost the performance of
the automatic theorem provers, for example by filtering out some irrelevant axioms.



J. Meng et al. / Information and Computation 204 (2006) 1575–1596 1595

Acknowledgments

We are grateful to the SPASS and Vampire teams for their co-operation and to Gernot Stenz
and Geoff Sutcliffe for running some of our problems on their reasoning systems. The referees
made numerous helpful suggestions. The research was funded by the epsrc grant GR/S57198/01
Automation for Interactive Proof.

References

[1] Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, Wolfram Menzel, Wolfgang Reif, Gerhard Schellhorn, Peter
H. Schmitt, Integrating automated and interactive theorem proving, in: Wolfgang Bibel, Peter H. Schmitt (Eds.),
Automated Deduction—A Basis for Applications, volume II. Systems and Implementation Techniques, Kluwer
Academic Publishers, Dordrecht, 1998, pp. 97–116.

[2] David Aspinall, Proof general: a generic tool for proof development, in: S. Graf, M. Schwartzbach (Eds.), TACAS
’00: Tools and Algorithms for Construction and Analysis of Systems, 6th International Conference, LNCS, vol.
1785, Springer, Berlin, 2000, pp. 38–42, On the Internet at http://proofgeneral.inf.ed.ac.uk/.

[3] Matthias Baaz, Alexander Leitsch, On Skolemization and proof complexity, Fundamenta Informaticae 20 (4) (1994)
353–379.

[4] Marc Bezem, Dimitri Hendriks, Hans de Nivelle, Automatic proof construction in type theory using resolution,
Journal of Automated Reasoning 29 (3–4) (2002) 253–275.

[5] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, Mandayam Srivas, A tutorial introduction to PVS, Tech-
nical report, Computer Science Laboratory, SRI International, 1995. First published in Workshop on Industrial-
Strength Formal Specification Techniques, Boca Raton, Florida.

[6] in: Emden R. Gansner, John H. Reppy (Eds.), The Standard ML Basis Library, Cambridge University Press,
Cambridge, MA, 2004.

[7] Michael J.C. Gordon, Thomas F. Melham, Introduction to HOL: A Theorem Proving Environment for Higher
Order Logic, Cambridge University Press, Cambridge, MA, 1993.

[8] G.P. Huet, A unification algorithm for typed �-calculus, Theoretical Computer Science 1 (1975) 27–57.
[9] Joe Hurd, Integrating Gandalf and HOL, in: Yves Bertot, Gilles Dowek, André Hirschowitz, Christine Paulin,

Laurent Théry (Eds.), Theorem Proving in Higher Order Logics: TPHOLs ’99, LNCS, vol. 1690, Springer, Berlin,
1999, pp. 311–321.

[10] Joe Hurd, First-order proof tactics in higher-order logic theorem provers, in: Myla Archer, Ben Di Vito, César
Muñoz (Eds.), Design and Application of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-
212448 in NASA Technical Reports, pages 56–68, September 2003.

[11] Andreas Meier, Tramp: transformation of machine-found proofs into natural deduction proofs at the assertion
level (system description), in: David McAllester (Ed.), Automated Deduction—CADE-17 International Conference,
LNAI, vol. 1831, Springer, Berlin, 2000, pp. 460–464.

[12] Jia Meng, Integration of interactive and automatic provers, in: Manuel Carro, Jesus Correas (Eds.), Second
CologNet Workshop on Implementation Technology for Computational Logic Systems, 2003. On the Internet
at http://www.cl.cam.ac.uk/users/jm318/papers/integration.pdf.

[13] Jia Meng, Lawrence C. Paulson, Experiments on supporting interactive proof using resolution, in: David Basin,
Michaël Rusinowitch (Eds.), Automated Reasoning—Second International Joint Conference, IJCAR 2004, LNAI,
vol. 3097, Springer, Berlin, 2004, pp. 372–384.

[14] Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel, in: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, LNCS Tutorial, vol. 2283, Springer, Berlin, 2002.

[15] Andreas Nonnengart, Christoph Weidenbach, Computing small clause normal forms, in: Robinson, Voronkov [20],
chapter 6, pp. 335–367.

[16] Lawrence C. Paulson, The foundation of a generic theorem prover, Journal of Automated Reasoning 5 (3) (1989)
363–397.



1596 J. Meng et al. / Information and Computation 204 (2006) 1575–1596

[17] Lawrence C. Paulson, A generic tableau prover and its integration with Isabelle, Journal of Universal Computer
Science 5 (3) (1999) 73–87.

[18] Lawrence C. Paulson, Isabelle’s logics: FOL and ZF. Technical report, Computer Laboratory, University of Cam-
bridge, 2003. On the Internet at http://isabelle.in.tum.de/dist/Isabelle2003/doc/logics-ZF.pdf.

[19] Alexander Riazanov, Andrei Voronkov, Vampire 1.1 (system description), in: Rajeev Goré, Alexander Leitsch,
Tobias Nipkow (Eds.), Automated Reasoning—First International Joint Conference, IJCAR2001, LNAI, vol. 2083,
Springer, Berlin, 2001, pp. 376–380.

[20] Alan Robinson, Andrei Voronkov (Eds.), Handbook of Automated Reasoning, Elsevier Science, Amsterdam, 2001.
[21] Jörg Siekmann, Christoph Benzmüller, Armin Fiedler, Andreas Meier, Immanuel Normann, Martin Pollet, Proof

development with�mega: the irrationality of
√

2, in: Fairouz Kamareddine (Ed.), Thirty Five Years of Automating
Mathematics, Kluwer Academic Publishers, Dordrecht, 2003, pp. 271–314.

[22] Geoff Sutcliffe, Christian Suttner, The TPTP problem library: CNF Release v1.2.1, Journal of Automated Reasoning
21 (2) (1998) 177–203.

[23] G. Sutcliffe, J. Zimmer, S. Schulz, TSTP data-exchange formats for automated theorem proving tools, in: W. Zhang,
V. Sorge (Eds.), Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems, number 112 in
Frontiers in Artificial Intelligence and Applications, IOS Press, 2004.

[24] Christoph Weidenbach, Combining superposition, sorts and splitting, in: Robinson, Voronkov [20], chapter 27, pp.
1965–2013.

[25] Markus Wenzel, Type classes and overloading in higher-order logic, in: Elsa L. Gunter, Amy Felty (Eds.), Theorem
Proving in Higher Order Logics: TPHOLs ’97, LNCS, vol. 1275, Springer, Berlin, 1997, pp. 307–322.

[26] Markus M. Wenzel, Isabelle/Isar—A Versatile Environment for Human-readable Formal Proof Documents, Ph.D.
thesis, Technische Universität München, 2002.

[27] Lawrence Wos, George A. Robinson, Daniel F. Carson, Efficiency and completeness of the set of support strategy
in theorem proving, Journal of the ACM 12 (4) (1965) 536–541.


