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ABSTRACT

We prove Bertini type theorems for the inverse image, under a proper morphism, of any Schubert variety
in an homogeneous space. Using generalisations of Deligne’s trick, we deduce connectedness results
for the inverse image of the diagonal in X2 where X is any isotropic grassmannian. We also deduce
simple connectedness properties for subvarieties of X. Finally we prove transplanting theorems à la
Barth–Larsen for the Picard group of any isotropic grassmannian of lines and for the Neron–Severi
group of some adjoint and coadjoint homogeneous spaces.

0. INTRODUCTION

In this text we work over an algebraically closed field of characteristic zero.
The topological properties of subvarieties of small codimension in a rational
homogeneous space X have drawn much attention since the work of Barth and
Larsen ([3], [4] and [16]) on the projective space. The literature is very large
on the subject, let us only mention the celebrated paper of Hartshorne [14]
where the so-called Harshorne’s conjecture for small codimension subvarieties
of the projective space was formulated and where he gives a simple proof of
Barth–Larsen’s theorem using the hard Lefschetz Theorem. We refer to Lazarsfeld’s
book [17], Chapter 3, for a more extensive review of the literature on these themes.
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Some of the most achieved results on this subject can be stated using the
following invariant. Recall that for X a rational homogeneous space, the tangent
bundle TX of X is globally generated.

Definition 0.1. Let φ : P(T ∨
X ) → P(H 0T ∨

X ) be the map defined by the global
sections of the tangent bundle TX (note that this is not the usual Grothendieck
notation for projective bundles). The ampleness of X, denoted by a(X) is the
maximum of the dimensions of the fibres of φ. The coampleness of X denoted
by ca(X) is dimX − a(X).

Faltings in [10] proves the following theorem.

Theorem 0.2 (Faltings). Let X be a rational homogeneous space and f :Z →
X × X a proper map with Z irreducible and CodimZ < ca(X), then f −1(�) is
connected where � is the diagonal in X × X.

As a corollary, one obtains that any irreducible subvariety Y in X satisfy-
ing the inequality 2 CodimY � ca(X) − 1 is algebraically simply connected, i.e.
π

alg
1 (Y ) = 1. The invariant ca(X) also appears in the work of Sommese. For

example, the following theorem is a consequence of results he proves with van
de Ven in [21].

Theorem 0.3 (Sommese–van de Ven). Let X be a rational homogeneous space
and Y be a smooth connected subvariety of X, then for any point y in Y we have
the vanishing πj (X,Y, y) = 0 for 2 CodimY � ca(X) − j + 1.

In particular, they recover the above (algebraically) simple connectedness for
smooth subvarieties and furthermore, if 2 CodimY � ca(X)−2, then they obtain the
equality Pic(Y ) = Pic(X). These results are made very useful by the computation
of the invariant ca(X) for any rational homogeneous space by Goldstein [13].

In this paper, we shall only deal with homogeneous spaces with Picard number 1.
We want to study the properties, in rational homogeneous spaces, of small codimen-
sion subvarieties having additional numerical properties but higher codimension.
The fact that numerical properties of Y should be sufficient in this setting was
suggested by Fulton and Lazarsfeld in [12] and verified for product of projective
spaces and grassmannians by Debarre in [9]. In particular, if X is the grassmannian
G(p,n) of p-dimensional subspaces in an n-dimensional vector space and if σ

(resp. σ ′) is the Schubert class of subspaces containing a fixed vector (resp.
contained in a fixed hyperplane), then Debarre proves the following result (for
Y ⊂ X, we denote by [Y ] the cohomology class of Y ).

Theorem 0.4 (Debarre). Let f :Z → X × X be a morphism with Z irreducible
and denote by i :X → X × X the diagonal embedding and by � the diagonal. If
[f (Z)](i∗σ + i∗σ ′) �= 0, then for �g a general translate of �, we have that f −1(�g)

is connected.
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In particular, if Y is an irreducible subvariety of X with [Y ]2(σ + σ ′) �= 0, then
Y is simply connected.

This result is obtained with the same method as the one used in [12] for the
projective space. First Debarre proves a Bertini type Theorem for inverse images
of Schubert varieties in the grassmannian. Then by adapting to the situation a trick
of Deligne, he is able to replace the inverse image of the diagonal in X × X by the
inverse image of a Schubert variety in a larger grassmannian.

In the first section of this paper, we prove Bertini type Theorems for inverse
images of Schubert varieties under proper morphisms. We define for any Schubert
variety XP (w) in X the notion of an admissible Schubert subvariety (see Defini-
tion 1.4) and prove the following theorem.

Theorem 0.5. Let X be an homogeneous space, let f :Y → X be a proper map
with Y irreducible. Assume that for some admissible Schubert subvariety XP (v)

of a Schubert variety XP (w) we have [f (Y )][XP (v)] �= 0, then f −1(XP (w)) is
connected.

In the second section, we apply the above theorem to obtain results on the
connectedness of the inverse image of the diagonal. For this we need to further
generalise Deligne’s trick. We succeeded to generalise it only for classical groups
therefore we only obtain in this section results for homogeneous spaces under
classical groups. More precisely, let GQ(p,n) and Gω(p,2n) be the grassmannians
of isotropic subspaces of dimension p in a vector space (of dimension n resp. 2n)
endowed with a non-degenerate quadratic form Q resp. symplectic form ω. Let σ

be the Schubert class in GQ(p,n) resp. Gω(p,2n) of subspaces contained in the
orthogonal of an isotropic vector, we obtain the following theorem.

Theorem 0.6. Let f :Z → X × X be a morphism with Z irreducible and denote
by i :X → X ×X the diagonal embedding and by � the diagonal. If [f (Z)]i∗σ �= 0,
then f −1(�) is connected.

In particular, if Y is an irreducible subvariety of X with [Y ]2σ �= 0, then Y is
simply connected.

Note that using the first section, we can prove the above result only for proper
morphisms and therefore we only obtain algebraically simple connectedness of Y .
In the last section we explain how to remove the proper hypothesis.

In the third section, we prove, using the first two sections, transplanting theo-
rems for the group of divisors modulo numerical equivalence. This was our first
motivation for studying connectedness properties. Such a transplanting theorem
was proved by Arrondo and Caravantes in [1] for the Picard group of subspaces
in the grassmannian G(2, n) only using numerical properties and the connectedness
results of Debarre [9].
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Definition 0.7. A subvariety Y of a variety X is called cumbersome if for all
subvariety Z of X with dimZ = CodimY , we have [Y ][Z] �= 0.

Theorem 0.8 (Arrondo–Caravantes). Let Y be a smooth cumbersome subvariety
of G(2, n) with 2 CodimY � dimX − 2, then Pic(Y ) = Z.

The proof of this theorem involves a mysterious (as the authors themselves
confess) computation leading to expressing some quadratic form as sum of squares.
In [20], we explained that their method is related to the fact that the intersection
form on the middle cohomology group is positive definite. We also explained how
the method combined with connectedness result would also apply to any other
homogeneous space with the same property. In the third section we revisit this
method and make it work in a more general context. We shall need the definitions.

Definition 0.9. (i) Let X be a rational homogeneous space with Picard number 1
and let h be an ample generator of the Picard group. We define the bilinear form
(·, ·)hk on H dimX−k(X,Z) by (σ, σ ′)hk = σσ ′hk .

(ii) We define the effectiveness of X, by eff(X) = min{k | (·, ·)hk is positive defini-
te}. The coeffectiveness of X is coeff(X) = dimX − eff(X).

Denote by N1(X) the group of divisors modulo numerical equivalence in X. The
main result of the third section is the following theorem.

Theorem 0.10. Let X be a rational homogeneous space with Picard number 1.
Let Y be a smooth cumbersome subvariety in X. If 2 CodimY � coeff(X) − 2 (i.e.
2 dimY − 2 � dimX + eff(X)), then N1(X) = Z.

This theorem should be thought as a numerical version of Theorem 0.3 for
divisors. However, this theorem does not improve Sommese and van de Ven theorem
for all homogeneous spaces. This is the case when coeff(X) > ca(X) and only
occurs for projective spaces over composition algebras: Pn, G(2, n) and OP2, for
adjoint varieties (also called minimal adjoint orbits) and coadjoint varieties, see
Definition 0.12. As a consequence of this result and of the simple connectedness
properties obtained in the second section we have the following corollary.

Corollary 0.11. Let X be GQ(2,2n + 1), Gω(2,2n) or GQ(2,4n) and Y be a
smooth cumbersome subvariety with 2 CodimY � dimX − 3, then Pic(Y ) = Z.

In the last section, we extend the results of the second section for any (non-
necessarily proper) map and deduce results for the topological fundamental group
instead of results for the algebraic fundamental group. This extension is not needed
for the transplanting results of the third section.
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NOTATION AND CONVENTIONS

We will work over an algebraically closed field of characteristic zero. We shall
follow the notation from [12] and [9]. In particular, we shall forget the base point in
the notation π1(Y ) of the fundamental group of Y . We shall also at several occasion
not repeat the proofs of [12] and refer to this text for the arguments instead of
recopying them.

We fix G a semisimple algebraic group, let us also fix T ⊂ B ⊂ P ⊂ G a maximal
torus, a Borel subgroup and a maximal parabolic subgroup in G. We denote by X

the rational homogeneous space G/P . Note that we have Pic(X) = Z. We denote
by W the Weyl group of G and by WP the Weyl group of P . The Schubert varieties
in G/P (i.e. the closures of the B-orbits) are indexed by the set WP of minimal
length representatives of the quotient W/WP . For any element w in WP , we denote
by XP (w) the corresponding Schubert variety of dimension l(w) and by σ(w) ∈
H 2(dimX−l(w))(X,Z) the corresponding cohomology class with l(w) the length of
w. For α a root of G, we denote by U(α) the corresponding unipotent subgroup in
G and by sα the corresponding reflection in the Weyl group W . For Q a parabolic
subgroup containing B , we denote by �(Q) the set of simple roots such that U(−α)

is not contained in Q. We refer to the text of Springer [22] for more details on linear
algebraic groups and to the text of Brion [6] for more details on the geometry of
rational homogeneous spaces.

We shall also use the following less usual notation. We denote by SP (w) the
subgroup of G stabilising the Schubert variety XP (w). The subgroup SP (w) is a
parabolic subgroup of G containing B and we set �P (w) = �(SP (w)).

(Co)adjoint homogeneous spaces. We shall now define the adjoint and coadjoint
varieties of the group G. Let us denote by 	 (resp. θ ) the highest root of G (resp.
the highest short root of G). If G is simply laced then 	 = θ . For � a dominant
weight, we denote by V� highest weight representation of G with highest weight
� and by v� a highest weight vector.

Definition 0.12. The adjoint (resp. coadjoint) variety of G is the (closed) orbit in
P(V� ) of [v� ] under the action of G with � = 	 (resp. � = θ ).

1. BERTINI TYPE THEOREMS

In this section we shall prove Theorem 0.5 on the irreducibility of inverse images
of Schubert varieties under proper maps from irreducible sources.

1.1. Bertini for minimal generating Schubert varieties

Definition 1.1. Let us call minimal generating Schubert variety of X any Schubert
subvariety XP (t) for t ∈ WP such that t has a reduced expression sβ1 · · · sβk

with all
the simple roots βi distinct and {β1, . . . , βk} = �(P ).

561



Remark 1.2. (i) We use the terminology of generating Schubert varieties because
these Schubert varieties are generating subvarieties in the sense of Chow [8] and
therefore are G3 in X (see also [2] for more details on the formal geometry point of
view).

(ii) The minimal generating Schubert varieties are the smallest Schubert varieties
with positive degree with respect to any non-trivial element of the monoid of
pseudo-effective divisors.

Proposition 1.3. Let Y be an irreducible variety, let f :Y → X be a proper
dominant morphism and let XP (t) be a minimal generating Schubert variety in X.

(i) The inverse image f −1(g · XP (t)) is irreducible for g in a dense open subset
of G.

(ii) The inverse image f −1(g · XP (t)) is connected for all g in G.
(iii) If Y is unibranch, then π

alg
1 (f −1(g · XP (t))) → π

alg
1 (Y ) is surjective for g

general in G.

Proof. We use Proposition 1 in [18] proving (i) and (ii) for f a finite map. By Stein
factorisation, we obtain (ii) for any proper map and by Kleiman–Bertini Theorem
[15] we know that for g ∈ G general the inverse image f −1(g · XP (t)) is locally
integral (for Zariski topology) and because it is connected it has to be irreducible.

We get (iii) by applying (i) to f̃ = f ◦ π where π : Ỹ → Y is any connected
étale covering. Note that the étale covering being connected and locally irreducible
(because Y is unibranch), it is irreducible. We get a connected étale covering
f̃ −1(g · XP (w)) → f −1(g · XP (w)) by restriction of the previous one. This proves
the result. �
1.2. Bertini for Schubert varieties

Definition 1.4. Let XP (v) ⊂ XP (w) be an inclusion of Schubert varieties. We
shall say that XP (v) is admissible in XP (w) if we have SP (w) · XP (v) = XP (w)

and �P (w) ∩ �P (v) = ∅.

Theorem 1.5. Let f :Y → X be a proper morphism with Y irreducible and such
that there exists an admissible Schubert subvariety XP (v) of the Schubert variety
XP (w) with [f (Y )] · [XP (v)] �= 0.

(i) Then the inverse image f −1(g · XP (w)) is irreducible for g in an open subset
of G.

(ii) Then the inverse image f −1(g · XP (w)) is connected for all g in G.
(iii) If Y is unibranch, then π

alg
1 (f −1(g · XP (w))) → π

alg
1 (Y ) is surjective for g

general in G.
(iv) If Y is unibranch, for any g ∈ G and any non-trivial neighbourhood U of g ·

XP (w), the map π
alg
1 (f −1(U)) → π

alg
1 (Y ) is surjective.
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Proof. We deduce (ii) and (iii) from (i) as in Proposition 1.3. Let us prove (i).
Let Q = SP (w) be the stabiliser of XP (w) and let us consider the following

subvariety IP
Q(w) = {(ḡ, h̄) ∈ G/P × G/Q | ḡ ∈ h · XP (w)} of the product G/P ×

G/Q. This is well defined since Q stabilises XP (w) and we remark that the two
projection p, resp. q to G/P , resp. G/Q realise IP

Q(w) as a locally trivial fibration
with fiber isomorphic to XQ(u), resp. XP (w) where the Schubert variety XQ(u) is
the closure in G/Q of the P -orbit of the Schubert variety XQ(w−1). In particular,
the fiber product Z = Y ×G/P IP

Q(w) is irreducible as a locally trivial fibration with
fiber XQ(u) over Y . Because of our assumption, the image of f meets general
translates of XP (w) therefore the composition f ′ :Z → IP

Q(w) → G/Q is proper
and dominant. Let us summarise all the above maps in the following diagram

XQ(t)s

Z

f ′

IP
Q(w)

q

p

G/Q

Y
f

X = G/P.

Lemma 1.6. For any minimal generating Schubert variety XQ(t) in G/Q and for
any y ∈ Y with f (y) ∈ XP (v), the map h̄ �→ (y, h̄) defines a section s :XQ(t) → Z

of f ′.

Proof. We only need to prove that for any element h̄ ∈ XQ(t), the element (f (y), h̄)

lies in IP
Q(w). Let us first remark that if t = sβ1 · · · sβk

is a reduced expression
of t (with β a simple root and sβ the corresponding simple reflection), then the
Schubert variety XQ(t) is the closure of U(−β1) · · ·U(−βk) · ē where U(−β)

is the unipotent subgroup associated to the root −β and e is the unit element
in G. Note that for f (y) ∈ XP (v), because of the inclusion XP (v) ⊂ XP (w),
we have (f (y), ē) ∈ IP

Q(w). Now let U(−βk) · · ·U(−β1) act on the inclusions
f (y) ∈ XP (v) ⊂ XP (w). We get, by definition of a minimal generating Schubert
variety and because XP (v) is admissible the inclusions U(−βk) · · ·U(−β1) ·f (y) ⊂
XP (v) ⊂ XP (w). Indeed, XQ(t) being a minimal generating Schubert variety, we
have the equality {β1, . . . , βk} = �(Q) = �P (w). Therefore, because XP (v) is
admissible, we have that βi /∈ �P (v) for all i ∈ [1, k] and thus U(−βi) is contained
in SP (v). This gives the inclusion U(−βi) ·XP (v) ⊂ XP (v) for all i ∈ [1, k] and the
first inclusion follows. The second inclusion is trivial.

The inclusions U(−βk) · · ·U(−β1) · f (y) ⊂ XP (v) ⊂ XP (w) are equivalent to
the inclusion f (y) ∈ U(−β1) · · ·U(−βk) · XP (w) and give the inclusion (f (y),

U(−β1) · · ·U(−βk) · ē) ⊂ IP
Q(w), proving the result. �

We now want to apply the following result (see for example [17], Lemma 3.3.2).
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Lemma 1.7. Let q :V → T be a dominating morphism of irreducible complex
varieties such that q admits a section s :T → V whose image does not lie in the
singular locus of V . Then a general fiber of q is irreducible.

Let us prove some regularity results. First remark that because the map IP
Q(w)

is a locally trivial fibration with fiber XP (w) over G/Q, then the smooth locus
IP
Q(w)sm of IP

Q(w) is the associated locally trivial fibration over G/Q with fiber
XP (w)sm the smooth locus of XP (w). Let Y sm be the smooth locus of Y , then
the fiber product Y sm ×G/P IP

Q(w)sm is smooth. If Q(t) is the Schubert cell in
XQ(t), by Kleiman–Bertini theorem (see [15]), there exists a dense open subset U

of G such that for g ∈ U , the fiber product (Y sm ×G/P IP
Q(w)sm) ×G/Q g · Q(t) is

smooth. Note that, we have the equality(
Y sm ×G/P IP

Q(w)sm) ×G/Q g · Q(t)

= {
(y, h̄) | h̄ ∈ Q(t), y ∈ Y sm and f (y) ∈ gh · XP (w)sm}

.

As we have [f (Y )] · [XP (v)] �= 0, restricting U and using Kleiman–Bertini again,
we may assume that there exists y ∈ Y sm with f (y) ∈ g · P (v). By assumption
XP (v) is admissible thus P (v) lies in XP (w)sm, we get that (y, ē) lies in
(Y sm ×G/P IP

Q(w)sm) ×G/Q g · Q(t). Therefore, by Lemma 1.6, we have the
inclusion (y, h̄) ∈ (Y sm ×G/P IP

Q(w)sm)×G/Q g ·Q(t) for h̄ in a dense open subset
of Q(t). Now remark that Y sm ×G/P IP

Q(w)sm is a subvariety of Z = Y ×G/P IP
Q(w)

and that (Y sm ×G/P IP
Q(w)sm)×G/Q g ·Q(t) is a subvariety of Z ×G/Q XQ(t). The

map f ′ :Z → G/Q is dominating thus by Proposition 1.3, we know that, restricting
U if necessary, the variety Z ×G/Q g · XQ(t) is irreducible. The same is true for
Z ×G/Q g · Q(t). By the above we have a section in the smooth locus, thus by
Lemma 1.7, the general fiber of f ′ over h̄ ∈ g · Q(t) is irreducible. But this fiber
is exactly

f ′−1
(h̄) = {

y ∈ Y | f (y) ∈ gh · XP (w)
} = f −1(gh · XP (w)

)
and the result follows.

For (iv), any U contains translates g′ · XP (w) for which (iii) apply. �
As an easy corollary of this result, we partially answer a question raised in [20].

Let X be OP2(C) the Cayley plane. It is the homogeneous space G/P with G a
group of type E6 and P a maximal parabolic subgroup with �(P ) = {α1} with α1 a
simple root with notation as in [5].

Corollary 1.8. Let Y be a smooth subvariety of X.

(i) If dimY � 12, then Pic(Y ) = Z.
(ii) If dimY � 11 and Y is cumbersome, then Pic(Y ) = Z.

(iii) If dimY � 9 and Y is cumbersome, then N1(Y ) = Z. If furthermore Y is simply
connected, then Pic(Y ) = Z.
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Proof. For (i), we only apply the result of Sommese and van de Ven, see Theo-
rem 0.3, and the fact proved by Goldstein [13] that in this case ca(X) = 11. For (ii)
and (iii), the results in [20] imply that if Y is cumbersome of dimension at least 9
such that the intersection of Y with a general translate of a dimension 9 Schubert
variety is irreducible, then N1(Y ) = Z. If furthermore Y is simply connected, we get
that Pic(Y ) = Z (to get the simply connectedness in (ii) we again apply the results
of Sommese and Goldstein). Therefore we only need to prove the irreducibility of
the intersection of Y with a general translate of a dimension 9 Schubert variety.
There are only two such Schubert varieties XP (w) whose reduced expressions are
w = s1s3s4s2s6s5s4s3s1 resp. w = s5s3s4s2s6s5s4s3s1 (here the notation are those of
[5]). Then the Schubert variety XP (v) with v given by v = s1s3s4s2s5s4s3s1 resp.
v = s5s4s2s6s5s4s3s1 are admissible in XP (w) and because Y is cumbersome of
dimension at least 9, we have [f (Y )] · [XP (v)] �= 0 and the result follows from the
previous theorem. �
2. CONNECTEDNESS THEOREMS

To prove connectedness theorems for the inverse image of the diagonal, we will use
our results on Schubert varieties together with Deligne’s trick as explained in [12]
and [17] for the projective space or in [9] for the grassmannian variety. However, for
exceptional groups, we were not able to find a suitable generalisation of Deligne’s
trick, so our results here are valid only for classical groups.

2.1. Deligne’s trick

In this section, we generalise, following and generalising Debarre [9], Deligne’s
trick to reduce the connectedness of the inverse image of the diagonal to Bertini
type theorems.

Let V be a vector space endowed with a non-degenerate quadratic form Q (resp.
symplectic form ω). Let us consider W = V1 ⊕ V2 where both V1 and V2 are
isomorphic to V . Define over W a non-degenerate quadratic (resp. symplectic) form
by looking at W as the orthogonal sum of V1 and V2. For i ∈ {1,2} and for vi ∈ Vi ,
we denote by [vi] and [v1, v2] the classes of vi and (v1, v2) in P(Vi) and P(W).

We denote by GQ(p,W) (resp. Gω(p,W)) the grassmannian of isotropic
p-dimensional vector subspaces of W . We shall denote by G0

Q(p,W) (resp.
G0

ω(p,W)), the open subvarieties defined by {Vp | Vp ∩ Vi = 0 for i ∈ {1,2}}.

Lemma 2.1. Let pQ (resp. pω) denote the map G0
Q(p,W) → G(p,V ) × G(p,V )

(resp. the map G0
ω(p,W) → G(p,V ) × G(p,V )) defined by the two projections

from W to Vi for i ∈ {1,2}. Then the restriction of pQ (resp. pω) over GQ(p,V ) ×
GQ(p,V ) (resp. over Gω(p,V ) × Gω(p,V )) is a GLp(C)-bundle.

Proof. The choice of a subspace in the fiber Wp over a pair (Vp,V ′
p) of subspaces

determines a linear isomorphism γ :Vp → V ′
p: the graph of γ is the subspace Wp .

Now if the two subspaces Vp and V ′
p are isotropic, then there is no condition on γ

for Wp to be isotropic and the result follows. �
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2.2. Inverse image of the diagonal

Let v be an isotropic vector in V and define a Schubert variety in GQ(p,V ) (resp.
Gω(p,V )) by � = {Vp | Vp ⊂ v⊥}. We denote by � the diagonal in the product
GQ(p,V ) × GQ(p,V ) (resp. Gω(p,V ) × Gω(p,V )). We embed � in � and then
in the product GQ(p,V ) × GQ(p,V ) (resp. Gω(p,V ) × Gω(p,V )). Finally, we
denote by γ the cohomology class of this embedded variety. This class is of degree
2(dim GQ(p,V ) + dimV − p − 1) (resp. 2(dim Gω(p,V ) + dimV − p)).

Theorem 2.2. Let f :Z → GQ(p,V ) × GQ(p,V ) (resp. f :Z → Gω(p,V ) ×
Gω(p,V )) be a proper morphism with Z irreducible. Assume that [f (Z)] · γ �= 0.

(i) Then f −1(�) is connected.
(ii) If Z is unibranch, then π

alg
1 (f −1(�)) → π

alg
1 (Z) is surjective.

Proof. (i) Before starting the proof we give a diagram to illustrate all the maps that
are involved in the proof (in the case GQ(p,V ), the case Gω(p,V ) will easily be
deduced)

Z′ f ′
GQ(p,W)

pQ

�G

Z
f

GQ(p,V ) × GQ(p,V ) �.

Let us consider the GLp(C)-bundle pQ (resp. pω) over the product GQ(p,V ) ×
GQ(p,V ) (resp. Gω(p,V ) × Gω(p,V )) as described in Lemma 2.1. The fiber
product Z′ constructed from this bundle and f is again irreducible and mapped
to GQ(p,W) (resp. Gω(p,W)).

Let us denote by �W the diagonal embedding of V in W = V ⊕V . Let W1 and W2

be general isotropic subspaces of dimension �dimV/2� in �⊥
W . If dimV is odd, we

also fix a general isotropic line L in �⊥
W (if dimV is even we set L = 0 to simplify

notation). Note that W1, W2 and L are in direct sum and that W1 ⊕ W2 ⊕ L = �⊥
W

thus (W1 ⊕ W2 ⊕ L)⊥ = �W . Therefore, if we define �G = {Vp | Vp ⊂ �W }, we
have the following equality

�G = {
Vp | Vp ⊂ W⊥

1

} ∩ {
Vp | Vp ⊂ W⊥

2

} ∩ {
Vp | Vp ⊂ L⊥}

.

Moreover, the projection pQ (resp. pω) realises an isomorphism from �G onto �

thus we have an isomorphism between f ′−1
(�G) and f −1(�). We therefore need to

prove the connectedness of f ′−1
(�G). But the three varieties {Vp | Vp ⊂ W⊥

1 }, {Vp |
Vp ⊂ W⊥

2 } and {Vp | Vp ⊂ L⊥} are Schubert varieties and we can apply the results
from Section 1. First remark that if W ′

i and L′ are isotropic subspaces in W such
that Wi is an hyperplane in W ′

i (resp. L is an hyperplane in L′), then the Schubert
varieties {Vp | Vp ⊂ W1

′⊥}, {Vp | Vp ⊂ W ′
2
⊥} and {Vp | Vp ⊂ L′⊥} are admissible

Schubert subvarieties of {Vp | Vp ⊂ W⊥
1 }, {Vp | Vp ⊂ W⊥

2 } and {Vp | Vp ⊂ L⊥}. By
applying Theorem 1.5 three times, the variety f ′−1

(�G) is connected as soon as
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the product of [f ′(Z′)] with [{Vp | Vp ⊂ W ′
1
⊥}], with [{Vp | Vp ⊂ W1

⊥}] · [{Vp |
Vp ⊂ W2

⊥}] and with [{Vp | Vp ⊂ W1
⊥}] · [{Vp | Vp ⊂ W2

⊥}] · [{Vp | Vp ⊂ L′⊥}] are
non-zero. But these classes are described as [{Vp | Vp ⊂ W ′

1
⊥}], [{Vp | Vp ⊂ (W1 ⊕

W ′
2)

⊥}] and [{Vp | Vp ⊂ (W1 ⊕W2 ⊕L′)⊥}], thus it is clear that the non-vanishing of
the product with the last one implies the two others. Therefore it is enough to prove
that the multiplication of [f (Z)] with the class of the image via pQ (resp. pω) of
{Vp | Vp ⊂ (W1 ⊕ W2 ⊕ L′)⊥} is non-trivial. As the class of this last variety is equal
to γ , the result follows.

For (ii), we apply the standard tricks as explained in [12] in Remark 2.2 and
p. 40. �

Let v be an isotropic point in V and let us denote by σ the cohomology class of
the Schubert variety {Vp | Vp ⊂ v⊥}.

Corollary 2.3. Let f :Y → GQ(p,V ) and g :Y ′ → GQ(p,V ) (resp. f :Y →
Gω(p,V ) and g :Y ′ → Gω(p,V )) be proper morphisms such that [f (Y )] · [g(Y ′)] ·
σ �= 0.

(i) Then Y ×GQ(p,V ) Y ′ (resp. Y ×Gω(p,V ) Y ′) is connected.

(ii) If the varieties Y and Y ′ are unibranch, then the map π
alg
1 (Y ×GQ(p,V ) Y ′) →

π
alg
1 (Y × Y ′) (resp. π

alg
1 (Y ×Gω(p,V ) Y ′) → π

alg
1 (Y × Y ′)) is surjective.

Remark 2.4. We will prove in the last section that the above theorem and corollary
hold true without the assumption f proper. We therefore obtain stronger results with
π1 in place of π

alg
1 .

Proof of Corollary 2.3. We apply the former theorem to f × g. We only need
to prove that [f (Y ) × g(Y ′)] · γ �= 0. But if i is the closed immersion of � in
GQ(p,V )×GQ(p,V ) (resp. Gω(p,V )×Gω(p,V )), we have γ = i∗σ thus we have
the equalities [f (Y )×g(Y ′)]·γ = i∗(i∗([f (Y )×g(Y ′)]) ·σ) = i∗([f (Y )]·[g(Y ′)]·σ)

and the result follows. �
Corollary 2.5. Let Y be a closed irreducible subvariety of GQ(p,V ) (resp.
Gω(p,V )) such that [Y ] · [Y ] · σ �= 0, then Y is algebraically simply connected.

Proof. Follow the proofs of Theorem 5.1 and Corollary 5.3 in [12]. �
Let us state the following corollary that we shall need in the next section.

Corollary 2.6. Let Y be a cumbersome irreducible subvariety of GQ(p,V ) (resp.
Gω(p,V )) with dimY − CodimY � p.

(i) Then for g general in G the intersection Y ∩ (g · Y) is irreducible.
(ii) Then Y is algebraically simply connected.
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(iii) Then for XP (w) a Schubert variety of codimension d , the intersection Y ∩ (g ·
XP (w)) is irreducible as soon as d � dimY − p and σ(w) · σ �= 0.

Proof. For (i) and (ii), we only need to remark that we can apply the former two
corollaries because by assumption we have [Y ] · [Y ] · σ �= 0. For (iii), we need the
condition [Y ] · σ(w) · σ �= 0 which will be satisfied as soon as σ(w) · σ �= 0. �
3. TRANSPLANTING THE PICARD GROUP

In this section, we prove transplanting theorems from X to a smooth subvariety Y

in X for the groups N1(X) and N1(Y ) of divisors modulo numerical equivalence.

3.1. First method

Recall the definition of a cumbersome subvariety (Definition 0.7) and remark that
this definition only depends on the cohomology class of the subvariety. We will
therefore also use the word cumbersome for cohomology classes.

Definition 3.1. Let ξ be a cohomology class in H 2k(X,Z), we define the bilinear
form (·, ·)ξ on H dimX−k(X,Z) by (σ, σ ′)ξ = σ ∪ σ ′ ∪ ξ .

Recall that the classes (σP (w))w∈WP of the Schubert varieties (XP (w))w∈WP

form a basis of the cohomology H ∗(X,Z). We define the subset WP
d of WP by

WP
d = {w ∈ WP | σP (w) ∈ H 2d(X,Z)}. We will denote by H a general hyperplane

section in X and by h its cohomology class.

Theorem 3.2. Let Y be a smooth subvariety of X and assume that the following
conditions hold:

(H1) there exists � ⊂ X such that if ξ = [�], then s = dimY − CodimY −
Codim� − 2 is even, non-negative and the bilinear form (·, ·)ξ is positive
definite;

(H2) for g and g′ general in G, the intersection Y ∩ (g ·Y)∩ (g′ ·�) is irreducible;
(H3) there exists an integer d ∈ [0,dimY −CodimY −2] such that the class hd · [Y ]

is cumbersome;
(H4) for all w ∈ WP

d+CodimY
and for g general in G, the intersection Y ∩(g ·XP (w))

is irreducible.

Then N1(Y ) = Z.

Proof. Let H be a general hyperplane section in X and let us denote by HY its
intersection with Y . Let us first remark that, replacing D with D + mHY with m

large enough, we may and will assume that D is smooth. We shall denote by i the
embedding of Y in X and set r = dimY − CodimY − 2 − d .

We want to compare [D] and [HY ] = i∗h with respect to numerical equivalence.
For this, consider in Y the classes of curves c(u) = i∗(σ (u)hr) and γ (v) =
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[D]i∗(σ (v)hr) for u ∈ WP
d+CodimY+1 and v ∈ WP

d+CodimY
. We define the matrix

M with two lines and columns indexed by the disjoint union WP
d+CodimY+1 ∪

WP
d+CodimY

by

M =
(

i∗(h)c(u)
u∈WP

d+CodimY+1
i∗(h)γ (v)

v∈WP
d+CodimY[D]c(u)

u∈WP
d+CodimY+1

[D]γ (v)
v∈WP

d+CodimY

)
.

Let us note that Lefschetz’s hyperplane Theorem is valid for the group of divisors
modulo numerical equivalence (this comes from the fact that, for divisors, being
numerically trivial is the same as being of torsion in the cohomology, see [11],
Section 19.3.1). This remark together with the same proof as in [1] lead to the
following lemma.

Lemma 3.3. The divisors D and HY are colinear in N1(Y ) if and only if M is of
rank one.

Proof. If D is numerically equivalent to a multiple of HY , then the rank of the
matrix M is one. Conversely, if the second line of the matrix is q times the first one,
let D0 = [D] − qi∗(h). The intersections D0c(u) and D0γ (v) for u ∈ WP

d+CodimY+1

and v ∈ WP
d+CodimY

vanish. But hd+CodimY+1 and hd+CodimY are respectively
linear combinations of σ(u) and σ(v) respectively thus hdimY−1 and hdimY−2 are
respectively linear combinations of σ(u)hr and σ(v)hr with u ∈ WP

d+CodimY+1 and
v ∈ WP

d+CodimY
. Hence we have [D0]i∗(h)dimY−1 = 0 and [D0][D]i∗(h)dimY−2 = 0.

If S is a smooth surface obtained from Y by dimY − 2 hyperplane sections and if
j :S → Y is the embedding, we get the equalities j∗(j∗([D0]i∗(h))) = [D0]i∗(h) ∩
j∗[S] = [D0]i∗(h)dimY−1 = 0 and j∗j∗[D0]2 = [D0]([D] − q∗(h)))i∗(h)dimY−2 = 0.
Thus, in the surface S, we have the intersection equalities

j∗[D0]j∗i∗(h) = 0 and j∗[D0]2 = 0.

By Hogde index Theorem, the class j∗[D0] has to be numerically trivial. By
Lefschetz’s hyperplane Theorem, this has to be true for [D0]. �

We are therefore left to prove that the matrix M has rank one. We first prove
that the “left part” of M , i.e. the submatrix formed by the columns of M indexed
by WP

d+CodimY+1, is of rank one. For this, remark that it is enough to prove that
i∗[D] and i∗i∗(h) = [Y ]h are colinear in HCodimY+1(X,Z). Indeed, the values of
the “left part” of M can be computed using intersection in X. Namely, we have
the equalities i∗(i∗(h)c(u)) = i∗i∗(σ (u)hr+1) = [Y ]σ(u)hr+1 and i∗([D]c(u)) =
i∗([D]i∗(σ (u)hr)) = i∗[D]σ(u)hr .

Lemma 3.4. The classes i∗[D] and h[Y ] are colinear in HCodimY+1(X,Z).
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Proof. Because the subvarieties Y and D are smooth, we have an exact sequence of
normal bundles 0 → ND/Y → ND/X → NX/Y |D → 0. Taking the top Chern classes
and denoting by j :D → Y the inclusion, we get the equality

j∗i∗i∗[D] = j∗[D] · j∗(i∗[Y ]).(1)

Let SY be the surface obtained from Y ∩ (g ·Y)∩ (g′ ·�) with g and g′ general in G

by dimY − CodimY − Codim� − 2 general hyperplane sections. This surface SY

is irreducible by condition (H2). Denote by jY :SY → Y the embedding. Pushing
forward the equality (1) by i∗j∗ we have

i∗[D]2 = i∗
((

i∗i∗[D])[D]) = i∗j∗j∗i∗i∗[D] = i∗j∗j∗([D]i∗[Y ])
= i∗

([D]i∗[Y ][D]) = i∗
([D][D]i∗[Y ]).

Let s = dimY − CodimY − Codim� − 2, multiplying by ξhs we obtain the equal-
ities

(i∗[D], i∗[D])ξhs = i∗[D]i∗[D]ξhs = i∗
([D][D]i∗[Y ])ξhs

= i∗
([D][D]i∗([Y ]ξhs

)) = i∗([D][D]jY ∗[SY ]),
(i∗[D], i∗[D])ξhs = i∗jY ∗

(
j∗
Y [D]j∗

Y [D]) = i∗jY ∗
(
j∗
Y [D]2).

On the one hand, the surface SY being irreducible, we may apply Hodge index
theorem on SY to get the inequality j∗

Y [D]2 · (j∗
Y i∗h)2 � (j∗

Y [D]j∗
Y i∗h)2. On the

other hand, we may compute the equalities

i∗jY ∗
((

j∗
Y i∗h

)2) = i∗
((

i∗h
)2[SY ]) = i∗

((
i∗h

)2
i∗

([Y ]ξhs
))

= h2[Y ]ξ [Y ]hs = (h[Y ], h[Y ])ξhs

and

i∗jY ∗
(
j∗
Y [D]j∗

Y i∗h
) = i∗

([D]i∗h[SY ]) = i∗
(
i∗h[D]i∗([Y ]ξhs

))
= i∗[D]h[Y ]ξhs = (i∗[D], h[Y ])ξhs .

All together we get the inequality (i∗[D], i∗[D])ξhs (h[Y ], h[Y ])ξhs � (i∗[D],
h[Y ])ξhs . But (·, ·)ξ being positive definite by condition (H1), the same is true for
(·, ·)ξhs and by Cauchy–Schwartz we must have equality and the fact that i∗[D] and
h[Y ] are colinear. �

We are left to prove that the “right part” of the matrix M , i.e. the submatrix
formed by the columns of M indexed by WP

d+CodimY
is spanned by the “left part”.

For this, let us write [Y ]hd = ∑
w∈WP

d+CodimY
awσ(w). By condition (H3), the class

[Y ]hd is cumbersome thus we have aw > 0 for all w. Pushing forward equation (1)
by j∗ and multiplying by i∗hd+r , we get

[D]i∗(i∗[D]hd+r
) = [D]2i∗

([Y ]hd+r
) = [D]2

∑
w∈WP

d+CodimY

awi∗
(
σ(w)hr

)
.(2)
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Let us denote by Sw the surface obtained by r hyperplane intersections of Y ∩
(g · XP (w)) for a general g in G and w ∈ WP

d+CodimY
. By condition (H4), the

surface Sw is irreducible. We denote by jw :Sw → Y the inclusion. We have the
equality jw∗j∗

w([D]2) = [D]2i∗(σ (w)hr) and by Hodge index Theorem on Sw , we
get j∗

w([D]2) · j∗
wi∗(h2) � (j∗

w[D]j∗
wi∗h)2. Pushing forward (2) with i∗, we get

(i∗[D])2hd+r �
∑

w∈WP
d+CodimY

aw

i∗jw∗((j∗
w[D]j∗

wi∗h)2)

i∗jw∗(j∗
wi∗(h2))

.

But, applying projection formula, we have the two equalities i∗jw∗(j∗
wi∗(h2)) =

[Y ]σ(w)hr+2 and i∗jw∗((j∗
w[D]j∗

wi∗h)2) = (i∗[D]σ(w)hr+1)2. Furthermore, by
Lemma 3.4, there exists a λ such that i∗[D] = λh[Y ]. We thus have inequality:

λ2[Y ]2hd+r+2 �
∑
w

aw

(λ[Y ]σ(w)hr+2)2

[Y ]σ(w)hr+2

=
∑
w

awλ2[Y ]σ(w)hr+2 = λ2[Y ]2hd+r+2.

We thus have equality in all the above inequalities. In particular, we have
equality in the Hodge index inequality for the surface Sw: j∗

w([D]2) · j∗
wi∗(h2) =

(j∗
w[D]j∗

wi∗h)2. Pushing forward with jw∗, we get ([D]2i∗(σ (w)hr)) ·
(i∗(σ (w)hr+2)) = ([D]i∗(σ (w)hr+1))2. Let us write hσ(w) = ∑

u cu
w,hσ (u) where

the sum runs over u ∈ WP
d+CodimY+1. We get the equality

([D]γ (w)
) ·

(∑
u

cu
w,hi

∗(h)c(u)

)
= (

i∗(h)γ (w)
) ·

(∑
u

cu
w,h[D]c(u)

)
.

This can be rewritten as

∑
u

cu
w,h

∣∣∣∣ i∗(h)c(u) i∗(h)γ (w)

[D]c(u) [D]γ (w)

∣∣∣∣ = 0.

Therefore the vector (i∗(h)γ (w), [D]γ (w)) is colinear to the vector∑
u cu

w,h(i
∗(h)c(u), [D]c(u)). The later is non-trivial because, i∗(h) being ample, all

the numbers i∗(h)c(u) are positive while all the Littlewood–Richardson coefficients
cu
w,h are non-negative and at least one of them is positive. This completes the proof

of the theorem. �
Remark 3.5. A very natural choice for the subvariety � and the class ξ is to take
a complete intersection in X. In that case ξ is a multiple of hk for some integer k.

Fact 3.6. The value of eff(X) is dimX − 4 for all rational homogeneous spaces
with Picard rank one except for the one given in the following list.
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X eff(X) X eff(X) X eff(X) X eff(X)

P2n 0 G(2, n) 0 E6/P1 0 E8/P7 dimX − 8
P2n−1 1 Gω(2,2n) 1 E7/P1 1 E8/P8 1
Q2n−1 1 GQ(2,4n) 1 E7/P6 dimX − 8 F4/P1 1
Q4n 0 GQ(2,4n + 2) 4n + 1 E7/P7 dimX − 8 F4/P4 1
Q4n+2 2 E8/P1 dimX − 12

Proof. By Hodge index type arguments (see for example Théorème 6.32 in [23]),
we can compute eff(X) as follows. Let 2d be the smallest degree with d odd such
that there exists a primitive class of degree 2d . If such a class exists, then we have
eff(X) = dimX + 2 − 2d . If such a class does not exist, then we have eff(X) = 0
or 1 if dimX is even or odd.

This together with an easy combinatorial check in the Weyl groups give the
result. Note that among the varieties X with small value of eff(X), we have the
projective spaces over composition algebras (Pn, G(2, n) and E6/P1) and also
adjoint and coadjoint varieties (for example the varieties of isotropic line GQ(2, n)

and Gω(2,2n), see Remark 3.11 for a complete list). For adjoint and coadjoint
varieties, the description of the cohomology classes in terms of roots given in [7]
easily implies that if the Weyl involution of the Dynkin diagram is trivial, then
eff(X) = 1. This occurs in all types except type An, type D2n+1 and type E6. �

Remark that we will be interested in the homogeneous spaces X with small values
of eff(X) because the other cases follow from Sommese and van de Ven result:
Theorem 0.3. In particular, to prove Theorem 0.10, we only need to deal with the
varieties X with eff(X) = 0 or eff(X) = 1.

We can now state the following corollary of Theorem 3.2.

Corollary 3.7. Let X be GQ(2,2n+1), Gω(2,2n) or GQ(2,4n) and Y be a smooth
cumbersome subvariety with 2 dimY � dimX + 2, then Pic(Y ) = Z.

Proof. We have eff(X) = 1 thus we can choose for � an hyperplane section and
take d = 0 (note that the dimension of X is odd thus we have 2 dimY � dimX + 3).
Using the results in [7], any Schubert class corresponds to a root of the group G.
Recall that the class σ , defined before Corollary 2.3, is the class of the variety
{Vp | Vp ⊂ v⊥} for some isotropic vector v. It corresponds to the root 	 − α1 − α2

where 	 is the highest root (resp. highest short root) if the form is a symmetric
form Q (resp. a symplectic form ω) and α1 and α2 are simple roots with notation
as in [5]. The Schubert class σ ′ of minimal degree with σ · σ ′ = 0 corresponds
to the root −α1 and its degree satisfies degσ ′ > dimX. Thus we have σ · σ(w) �=
0 for degσ(w) � dimX. Therefore we have [Y ]σ �= 0 and for w ∈ WP

CodimY
we

have σ(w)σ �= 0. Because Y is cumbersome we get [Y ]2σ �= 0 and [Y ]σ(w)σ �= 0.
Corollary 2.6 implies that Y ∩ (g · Y) and Y ∩ (g · XP (w)) are irreducible for g

general in G and for w ∈ WP
CodimY

and that Y is algebraically simply connected. By
Theorem 3.2, any divisor in Y is numerically equivalent to the hyperplane section
and because Y is algebraically simply connected, the result follows. �
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Remark 3.8. The same method also proves that for Y smooth cumbersome
subvariety of X with 2 dimY � dimX+2 (resp. 2 dimY � 2 dimX+4) where X is a
projective space, a smooth quadric with dimX �≡ 2 (mod 4) (resp. a smooth quadric
with dimX ≡ 2 (mod 4)) or a grassmannian G(2, n), then Pic(Y ) = Z. Remark also
that the assumption cumbersome can be dropped when X is a projective space or a
quadric because in these dimensions all subvarieties in X are cumbersome.

These result are already known. For the projective space this is part of Barth
and Larsen [4] results. The results for quadrics follow from Barth–Larsen’s results
(except for 2 dimY = dimX + 2). The last case for quadrics and the case of the
grassmannian G(2, n) are proved in [1].

Remark 3.9. (i) The result of Corollary 3.7 for X = Gω(2,2n) can be deduced
from the corresponding result for X = G(2,2n) proved by Arrondo and Caravantes
in [1]. Indeed, the variety Gω(2,2n) is an hyperplane section of G(2,2n) therefore if
Y is a cumbersome subvariety in Gω(2,2n), then it is also cumbersome in G(2,2n).

(ii) For X = GQ(2, n) however, the result of Arrondo and Caravantes do not
give any information. Indeed, let Zv = {V2 ∈ G(2, n) | V2 contains a fixed vector v}.
Then if v is non-isotropic, the intersection Zv ∩ GQ(2, n) is empty, i.e. [Zv] ·
[GQ(2, n)] = 0. In particular, for any subvariety Y of GQ(2, n), we have [Y ] · [Zv] =
0 thus if 2 dimY � dim G(2, n) + 2, then dimY � CodimZv = 1

2 dim G(2, n) and Y

is not cumbersome in G(2, n).

3.2. Arrondo–Caravantes technique

In this section we will use a more direct generalisation of Arrondo and Caravantes
technique to prove the same type of results on the Picard group of smooth subva-
rieties of small codimension in homogeneous spaces but without the assumption
(H2) in Theorem 3.2. This will be useful for exceptional groups for which the
results of Section 2 do not apply. Next theorem in particular completes the proof
of Theorem 0.10. However, the technique here is more ad-hoc than in the previous
section. In particular it does not clearly explain why the fact that the form (·, ·)hk

for some k is positive definite should be important.

Theorem 3.10. Let X be an adjoint or coadjoint variety with eff(X) = 1. If Y is a
smooth cumbersome subvariety in X with 2 dimY � dimX + 2, then N1(Y ) = Z.

Remark 3.11. The adjoint or coadjoint varieties with eff(X) = 1 are Q2n−1,
GQ(2,2n + 1), GQ(2,4n), P2n−1, Gω(2,2n), E7/P1, E8/P8, F4/P1, F4/P4, G2/P1

and G2/P2.

Proof of Theorem 3.10. We shall present the proof in general but we shall only
prove the computational Lemma 3.13 for exceptional types. For classical groups,
the result of the theorem was proved in Corollary 3.7. We start as in the proof of
Theorem 3.2 and use the same notation as in that proof. We set d = 1. By taking
general hyperplane sections, we may assume that dimY is minimal in the range
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that is (because dimX is odd) we have the equality 2 dimY = dimX + 3. We want
to prove that the rank of the matrix M is one. Keeping notation as in the proof of
Theorem 3.2, we have r = 0 and for w ∈ WP

CodimY+1, we define the surface Sw to be
the intersection Y ∩ (g · XP (w)) for g general in G.

Lemma 3.12. The surfaces Sw for w ∈ WP
CodimY+1 are irreducible.

Proof. Using the results in [7], if X is adjoint (resp. coadjoint), then any Schubert
class σ(w) is represented by a long (resp. short) root αw and any long (resp.
short) root is associated to a Schubert class. It is easy to check that �P (w) =
{β simple root | 〈β∨, αw〉 > 0}. For w ∈ WP

CodimY+1, the root αw is a simple root.
By the results in [7], there exists a unique v ∈ WP

CodimY+2 such that αv = −αw . We
then have �P (v) ∩ �P (w) = ∅. Furthermore, the unipotent subgroup U(−αw) is
contained in SP (w) thus SP (w) · XP (v) contains XP (sαw(v)) and by the results of
[7] the associated root is αsαw (v) = sαw(αv) = αw . Thus SP (w) · XP (v) = XP (w).
Because XP (v) is of codimension CodimY + 2 and Y is cumbersome, we have
[Y ] · σ(v) �= 0 and we may apply Theorem 1.5 to finish the proof. �

The same computation as in the proof of Theorem 3.2 gives us the inequality

q(i∗[D]) := (i∗[D])2h −
∑
w

aw

(i∗[D]σ(w)h)2

[Y ]σ(w)h2
� 0.

The above expression q(i∗[D]) is a quadratic form in i∗[D]. We shall compute
it explicitly. For this we first remark that the elements u ∈ WP

CodimY+2 are in
correspondence (using the results in [7] once again) with the opposite of simple
roots i.e., if X is adjoint (resp. coadjoint), the root −αu is a simple long (resp.
short) root. For a pair of opposite of simple roots (αu,αu′) with 〈α∨

u ,αu′ 〉 < 0, we
define the coordinate

L
(
u,u′) = 1√

i∗(h)c(u) · i∗(h)c(u′)

∣∣∣∣ i∗(h)c(u) i∗(h)c(u′)
[D]c(u) [D]c(u′)

∣∣∣∣ .
We shall prove in Lemma 3.13 that q(i∗[D]) can be written as a quadratic form
Q(L(u,u′)u,u′) in the variables L(u,u′) and that Q(L(u,u′)u,u′) is positive definite.
As we have Q(L(u,u′)u,u′) � 0, this implies that we have equality and that
L(u,u′) = 0 for all (u,u′) with 〈α∨

u ,αu′ 〉 < 0. In particular, this implies that the
“left part” of the matrix M is of rank one and by the same argument as in the proof
of Theorem 3.2, that the “right part” of M is colinear to its “left part”. Thus M is
of rank one and the result follows by Lemma 3.3. �

To finish the proof of Theorem 3.10 we need to compute more explicitly the
quadratic form q(i∗[D]) defined above. For this we shall use extensively the
correspondence between roots and cohomology classes in an adjoint or coadjoint
variety X. First of all we note that for Y with 2 dimY = dimX + 3 and for
w ∈ WP

CodimY+1, the associated root αw is simple while for u ∈ WP
CodimY+2, the
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associated root αu is the opposite of a simple root. Furthermore, if eff(X) = 1, then
the Poincaré duality maps σ(w) with w ∈ WP

CodimY+1 to σ(u) with u ∈ WP
CodimY+2

and αu = −αw . To simplify notation, we shall identify w ∈ WP
CodimY+1 with the

simple root αw and u ∈ WP
CodimY+2 with the opposite simple root αu. Therefore it

will make sense to write −w or −u, for example σ(−w) = σ(u) for αu = −αw . We
also set xu = i∗(h)c(u), yu = [D]c(u) and du = [Y ]σ(−u)h2 for u ∈ WP

CodimY+2.
With these notation, we have xu = i∗(hσ(u)) = h[Y ]σ(u) = a−u.

Lemma 3.13. We assume that the group G is exceptional. Let us choose a
complete order on the set of simple roots (for example the one given in [5]). Let
P be the set of couple of simple roots (α,β) with α < β and 〈α∨, β〉 < 0. We define
the matrix Q = (q(u1,u′

1),(u2,u′
2))((u1,u′

1),(u2,u′
2))∈P 2 with index set P by

q(u1,u′
1),(u2,u′

2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − xu1

du′
1

−
xu′

1

du1

for
(
u1, u

′
1

) = (
u2, u

′
2

)
,√

xu1xu′
2

du′
1

for u′
1 = u2,√

xu′
1
xu2

du′
2

for u′
2 = u1,

0 otherwise.

(i) Then the quadratic form Q is positive definite.
(ii) We have the formula q(i∗[D]) = Q(L(u,u′))(u,u′)∈P .

Proof. (i) The first statement is only computational once we remark that du can
be expressed with the xu: we have du = h[Y ]σ(−u)h = ∑

u′ cu′
−u,hh[Y ]σ(u′) =∑

u′ cu′
−u,hxu′ . We therefore need to check that in all cases, the above quadratic form

is positive definite and we can check this by computing the principal minors. An
easy computation gives the result.

Remark that for classical case, the computation is less easy since we get matrices
indexed by n. For example, in type Bn (resp. Cn) for long (resp. short) roots, an easy
induction gives that the determinant of the matrix defining Q is

nxu1 · · ·xun−1

du1 · · ·dun−1

where (ui)i∈[1,n−1] correspond to the opposite of the simple long (resp. short) roots
(αi)i∈[1,n−1] with notation as in [5]. For type D2n, we do not know such a simple
formula but we expect that the quadratic form Q is also positive definite. By a direct
check we proved this for type D4.

(ii) Let us define the following quadratic form:

q ′ =
∑
u<u′

∑
u′′

xu′′
du′′

cu
−u′′,hc

u′
−u′′,hL

(
u,u′)2 −

∑
u<u′

cu′
−u,hL

(
u,u′)2

.

Fact 3.14. We have the equality q(i∗[D]) = q ′.
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Proof. We compute the coefficient of yuyu′ for u and u′ in WP
CodimY+2. We have

i∗[D] = ∑
u yuσ (−u) therefore we get (i∗[D])2h = ∑

u,u′ cu′
−u,hyuyu′ . We also have

for w = −u′′ the equality i∗[D]σ(w)h = ∑
u cu

−u′′,hyu. We thus get

q(i∗[D]) =
∑
u,u′

cu′
−u,hyuyu′ −

∑
u,u′

(∑
u′′

xu′′
du′′

cu
−u′′,hc

u′
−u′′,h

)
yuyu′ ,

where u, u′ and u′′ run in WP
CodimY+2. Let us set

Au,u′ = cu′
−u,h −

∑
u′′

xu′′
du′′

cu
−u′′,hc

u′
−u′′,h

so

q(i∗[D]) =
∑
u,u′

Au,u′yuyu′

and

q ′ = −
∑

(u,u′)∈P
Au,u′L

(
u,u′)2

.

Let us note that L(u,u′)2 = xu′
xu

y2
u + xu

xu′ y
2
u′ − 2yuyu′ . The coefficient q ′

u,u′ of yuyu′
in q(i∗[D]) is therefore given by

q ′
u,u′ =

⎧⎪⎨
⎪⎩

−
∑
u′′ �=u

xu′′
xu

Au,u′′ if u = u′,

2Au,u′ if u �= u′.

Thus if qu,u′ is the coefficient of yuyu′ in q(i∗[D]), we clearly have qu,u′ = q ′
u,u′

for u �= u′. But we can also compute, using the formulas du′ = ∑
u′′ cu′′

−u′,hxu′′ and

cu
−u′,h = cu′

−u,h, the equalities:

q ′
u,u = −

∑
u′′ �=u

xu′′
xu

cu′′
−u,h +

∑
u′

xu′
du′xu

cu
−u′,h

∑
u′′ �=u

cu′′
−u′,hxu′′

= −
∑
u′′ �=u

xu′′
xu

cu′′
−u,h +

∑
u′

xu′
du′xu

cu
−u′,h

(
du′ − ch

−u′,hxu

)

= −
∑
u′′ �=u

xu′′
xu

cu′′
−u,h +

∑
u′

xu′
xu

cu
−u′,h −

∑
u′

xu′
du′xu

cu
−u′,hc

h
−u′,hxu

= cu
−u,h −

∑
u′

xu′
du′

(
cu
−u′,h

)2 = Au,u.

This completes the proof of the fact. �
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Now we only need to compute the matrix of quadratic form q ′ which is already in
the variable L(u,u′). But note that we only want to deal with pairs of simple roots
(α,β) or associated elements (u,u′) in WP

CodimY+2 with u < u′ and 〈α∨, β〉 < 0 or

with our notation 〈u∨, u′〉 < 0. We first recall the possible values for cu′
−u,h (this uses

the so-called Chevalley formula, see for example [6]):

cu′
−u,h =

⎧⎨
⎩

2 if u = u′,
1 if

〈
u∨, u′〉 < 0,

0 otherwise.

In particular, we see that the only factors L(u,u′) appearing in q ′ with 〈u∨, u′〉 � 0
are such that there exists u′′ with 〈u∨, u′′〉 < 0 and 〈u′′∨, u′〉 < 0. The coefficient of
L(u,u′)2 being in that case xu′′/du′′ . But because of the obvious identity∣∣∣∣∣∣

xu xu′ xu′′
yu yu′ yu′′
xu xu′ xu′′

∣∣∣∣∣∣ = 0

we have the formula
√

xu′′L(u,u′) = √
xu′L(u,u′′) + √

xuL(u′′, u′). Replacing the
factors L(u,u′) with 〈u∨, u′〉 � 0 using this formula, we can write q ′ only with
factors L(u,u′) with (u,u′) ∈ P . We are then left to compute the matrix of this
quadratic form. We get

q ′ =
∑

(u,u′)∈P

(
2xu

du

+ 2xu′
du′

− 1

)
L

(
u,u′)2

+
∑

u′′∈C(u,u′)

1

du′′

(√
xu′L

(
u,u′′) + √

xuL
(
u′′, u′))2

with C(u,u′) = {u′′ | 〈u∨, u′′〉 < 0 and 〈u′′∨, u′〉 < 0}. Note that this set has a
unique element. Now, the coefficient in q ′ of a factor L(u,u′)2 with (u,u′) ∈ P
has contribution 2xu/du + 2xu′/du′ − 1 from the first line and its last contribution
comes from the second line for u′′ ∈ B(u,u′) = {u′′ �= u′ | 〈u′′∨, u〉 < 0} or u′′ ∈
B(u′, u) = {u′′ �= u | 〈u′∨, u′′〉 < 0} and is equal to∑

u′′∈B(u,u′)

xu

du

xu′′
xu

+
∑

u′′∈B(u′,u)

xu′
d ′

u

xu′′
x′

u

.

Summing these contributions, using the values of cu′
−u,h and the equality du =∑

u′ cu′
−u,hxu′ , we get the diagonal terms in the matrix Q. The only non-diagonal

terms come from the first line of q ′ for pairs (u,u′) with 〈u∨, u′〉 � 0 and elements
u′′ with 〈u∨, u′′〉 < 0 and 〈u′′∨, u′〉 < 0. We easily get the non-diagonal terms of Q
this way. �
Corollary 3.15. Let X be an adjoint or a coadjoint varieties with eff(X) = 1, then
if Y is a smooth cumbersome and simply connected subvariety in X with 2 dimY �
dimX + 2, then Pic(Y ) = Z.
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We finish this section with few examples of smooth subvarieties with Picard
number greater than 1 in rational homogeneous spaces with Picard number one.

Example 3.16. Embed P1 × Pn−1 in P2n−1 via the Segre embedding, we get a
smooth subvariety of P2n−1 with dimension n. If furthermore n is even, then as
already noticed in [1], the image of P1 × Pn−1 is contained in a smooth quadric
giving an example of a smooth variety Y with Pic(Y ) = Z2, dimY = n in a smooth
quadric of dimension 2n − 2 for n even.

Example 3.17. Let V be a vector space of dimension n, eventually endowed with
a non-degenerate symmetric or symplectic form Q or ω. Consider a decomposition
V = U ⊕ W and look at the subvariety Y of the grassmannian G(2,V ) (and its
intersection with GQ(2,V ) or Gω(2,V )) defined by

Y = {V2 ∈ G(2,V ) | dim(V2 ∩ U) = dim(V2 ∩ W) = 1}.
Then Y is a smooth variety isomorphic to PdimU−1 × PdimW−1 and thus of
dimension n− 2 and Picard number 2. Its intersection with GQ(2,V ) and Gω(2,V )

depends on the restriction of the forms Q and ω on U and W . If both restriction are
non-degenerate and U and W are orthogonal, we get that Y ∩GQ(2,V ) is a product
of two quadrics of dimensions dimU − 2 and dimW − 2 thus dim(Y ∩GQ(2,V )) =
n − 4 and Y ∩ Gω(2,V ) = Y . If on the contrary U and W are isotropic subspaces,
then Y is the incidence variety in P[n/2]−1 ×P[n/2]−1 and is of dimension 2[n/2]−3.
We produce in this way examples of smooth subvarieties Y with Picard number 2 in
the grassmannians of lines with maximal dimensions given in the following array.

X dimX dimY

G(2, n) 2n − 4 n − 2
GQ(2,2n + 1) 4n − 5 2n − 3
Gω(2,2n) 4n − 5 2n − 2
GQ(2,2n) 4n − 7 2n − 3

Some of the above examples can be generalised for adjoint (resp. coadjoint)
varieties of the group G. We can embed the adjoint variety corresponding to the
maximal subgroup of type A in G obtained from the subsystem of long (resp.
short) roots. We produce in this way examples of smooth subvarieties Y with Picard
number 2. However, the bounds we obtain this way are far below the bound given
in Theorem 3.10.

Example 3.18. There is one example due to the exceptional isomorphism between
type A3 and type D3 giving a variety above the bounds in Theorems 3.2 and 3.10
showing that the condition cumbersome cannot be removed so easily. Indeed,
consider the inclusions GQ(2,6) ⊂ G(2,6) and GQ(2,6) ⊂ GQ(2,7). The variety
GQ(2,6) is the incidence variety in P3 × P3∨

thus is smooth with Picard number 2
and dimension 5. The dimensions of G(2,6) and GQ(2,7) are 8 and 7 respectively
therefore we are above the bounds in Theorems 3.2 and 3.10. However, GQ(2,6) is
neither cumbersome in G(2,6) nor in GQ(2,7).
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4. RESULTS ON THE TOPOLOGICAL FUNDAMENTAL GROUP

In this section we prove that the results of Section 2 are still valid for non-proper
morphisms and therefore deduce results for the topological fundamental group. Let
us fix some notation: we keep V , Q, ω and as in Section 2. We take X = GQ(p,V )

or X = Gω(p,V ). Let Wq be a fixed isotropic q-dimensional subspace of V and let
Wq+1 be a dimension q +1 isotropic subspace of V . Denote by XP (w) the Schubert
variety {Vp | Vp ⊂ W⊥

q } and by σq+1 the cohomology class of the Schubert variety
{Vp | Vp ⊂ W⊥

q+1} of X.
To extend the results of Section 2 as announced, we only need to prove the

following proposition.

Proposition 4.1. Let Y → X be a morphism with Y irreducible and such that
[f (Y )]σq+1 �= 0.

(i) The inverse image f −1(g · XP (w)) is irreducible for g in a dense open subset
of G.

(ii) If Y is unibranch, then π1(f
−1(g ·XP (w))) → π1(Y ) is surjective for g general

in G.

To prove this proposition, we proceed as for Theorem 2.2 and we therefore only
need the statement corresponding to Proposition 1.3 for non-proper maps. This is
done in the next lemma and finishes the proof of Theorem 0.6.

Lemma 4.2. Let Y → X be a dominant map with Y irreducible and let L be a
general line in X.

(i) The inverse image f −1(L) is irreducible.
(ii) If Y is unibranch, then π1(f

−1(L)) → π1(Y ) is surjective.

Proof. Let r be the maximal dimension of isotropic subspaces in V . We start to
prove that if (i) holds for p = r , then it holds for all p. We then prove (i) for p = r .
Let us give the following diagram which summarises some of the map appearing
in the proof (once again we give the diagram for a quadratic form, the case of a
symplectic form is easily deduced)

Z g

h

F(p, r,V )
p2

p1

GQ(r,V )

Y
f

GQ(p,V ).

Let us consider the flag variety F(p, r,V ) of partial flags Vp ⊂ Vr where Vp

and Vr are isotropic subspaces of dimension p and r respectively in V . We denote
by p1, resp. p2 the map (Vp,Vr) �→ Vp , resp. (Vp,Vr) �→ Vr . Let Z be the fiber
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product obtained from f and p1. We have a dominant map g :Z → F(p, r,V ) and
by composition h := p2 ◦ g is dominant. Applying our assumption that (i) holds for
p = r we get that the inverse image of a general line by h is irreducible. But such a
line has the form {Vr | Vr ⊃ Wr ′ } where Wr ′ is an isotropic subspace of dimension
r ′ in V with r ′ = r − 1 in all cases except for V endowed with a symmetric bilinear
form Q and dimV = 2r where r ′ = r − 2. We thus get that for Wr ′ general in W ,
the subvariety

{(y,Vr) | f (y) ⊂ Vr ⊃ Wr ′ }

is irreducible. We may therefore assume that there exists such a Wr ′ and y0 ∈ Y sm

with f (y0) ⊂ Wr ′ . In that case, the map (y,Vr) �→ Vr has a section given by Vr �→
(y0,Vr) and by Lemma 1.7 we get that the variety {y | f (y) ⊂ Vr} is irreducible for
Vr general. We are then restricted to the case of the grassmannian variety G(p,Vr)

and may apply Debarre’s result (see the proof of [9], Théorème 6.1) to conclude.
We are therefore left to prove (i) for p = r . We proceed by induction on r . For

r = 1 the result is clear because X is itself a line. To prove the induction step, let
us fix an isotropic vector v in V and consider the map pv , defined on an open
subset Uv of X, by Vr �→ πv(Vr ∩ v⊥) where πv is the projection from v. The open
subset Uv has a complementary of codimension at least two therefore a general line
is contained in Uv . The image of pv is the variety Xv of isotropic subspaces of
(maximal) dimension r − 1 in v⊥/v. We proved in [19], Proposition 5, that pv is a
sequence of affine bundles. In particular, the composition pv ◦ f is dominant and
by induction, the inverse image of a general line is irreducible. We therefore have,
by the description of lines in Xv given above, that for a general isotropic subspace
Wr ′ of dimension r ′ containing v (and thus contained in v⊥), the variety

YWr′ = {
y ∈ Y | dim

(
f (y) ∩ Wr ′

)
� r ′ − 1

} = (pv ◦ f )−1(LWr′ )

is irreducible (here LWr′ is the line in Xr associated to Wr ′ and defined by LWr′ =
{Vr−1 ∈ Xr | Vr−1 ⊃ (Wr ′/v)}). Letting v vary, this irreducibility is true for a general
isotropic subspace Wr ′ . We may therefore assume that there is y0 ∈ Y sm and Wr ′
such that YWr′ is irreducible and f (y0) ⊃ Wr ′ . The variety YWr′ is the inverse image
of the Schubert variety XP (w) = {Vr | dim(Vr ∩Wr ′) � r ′−1}. The singular locus of
XP (w) is the Schubert variety XP (u) = {Vr | Vr ⊃ Wr ′ } which is a line in X. Let us
notice that general lines in XP (w) do not meet XP (u). Indeed, let Vr ′ an isotropic
subspace of dimension r ′ in V such that dim(Vr ′ ∩ Wr ′) = r ′ − 1 and Vr ′ �⊂ W⊥

r ′ .
Then the line {Vr | Vr ⊃ Vr ′ } is contained in XP (w) but does not meet XP (u).
We can therefore restrict ourselves to the open subset XP (w) \ XP (u) which is
isomorphic to an open subset of I = {(Vr ,Vr ′−1) | Vr ⊃ Vr ′−1 ⊂ Wr ′ }. We have a
natural map φ on I defined by Vr �→ Vr ∩Wr ′ . Its image is the projective space Pr ′−1

of r ′ − 1 subspaces in Wr ′ and the composition φ ◦ f :YWr′ → Pr ′−1 is dominant.
Furthermore, the map Vr ′−1 �→ (y0,Vr ′−1) is a section of φ ◦ f . By Lemma 1.7,
the fibre F of this map is irreducible. But the image of F under f is either P3

or a smooth quadric of dimension 3. For both of them we already know that the
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inverse image of a line is irreducible (for the quadric, use the first part of the proof
as GQ(2,5) is isomorphic to P3). This finishes the proof of (i).

We obtain (ii) by applying (i) to the composition f ◦ π where π : Ỹ → Y is the
universal covering of Y . �
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