Contents lists available at [SciVerse ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Determinants of box products of paths

Daniel Pragel

Emory and Henry College, P.O. Box 947, Emory, VA 24327, United States

ARTICLE INFO

a b s t r a c t

Article history: Received 2 March 2011 Received in revised form 16 October 2011 Accepted 30 January 2012 Available online 18 February 2012

Keywords: Graph theory Box product Cartesian product Adjacency matrix Path Determinant

1. Introduction

Suppose that *G* is the graph obtained by taking the box product of a path of length *n* and a path of length *m*. Let **M** be the adjacency matrix of *G*. In 1996, Rara showed that, if $n = m$, then $det(M) = 0$. We extend this result to allow *n* and *m* to be any positive integers, and show that

$$
\det(\mathbf{M}) = \begin{cases} 0 & \text{if } \gcd(n+1, m+1) \neq 1, \\ (-1)^{nm/2} & \text{if } \gcd(n+1, m+1) = 1. \end{cases}
$$

© 2012 Elsevier B.V. All rights reserved.

Let $[n]=\{1,2,\ldots,n\}.$ We define a graph G to be an ordered pair of sets (V,E) , where V is any set and $E\subseteq\binom{V}{2};$ we refer to *V* as the *vertices* and *E* as the *edges* of *G*. The *adjacency matrix* of *G* is denoted **A**(*G*), and it is a matrix with rows and columns indexed by *V* such that

 $\mathbf{A}(G)_{i,j} = \begin{cases} 1 & \text{if } \{i,j\} \in E, \\ 0 & \text{if } i, j \neq F. \end{cases}$ 0 if $\{i, j\} \notin E$.

Let I_n be the $n \times n$ identity matrix, and let $\mathbf{0}_n$ be the $n \times n$ matrix of all zeros. If G has *n* vertices, the *characteristic polynomial* of $\mathbf{A}(G)$ is defined to be $q_G(x) = \det(\mathbf{A}(G) - x\mathbf{I}_n)$.

Suppose that *G*¹ and *G*² are graphs with vertex sets *V*¹ and *V*2, and edge sets *E*¹ and *E*2, respectively. The *box product* of G_1 and G_2 , denoted $G_1 \square G_2$, is the graph with vertex set $V = V_1 \times V_2$ and such that, for $i_1, j_1 \in V_1$ and $i_2, j_2 \in V_2$, $\{(i_1, i_2), (j_1, j_2)\}\$ is an edge in $G_1 \square G_2$ if and only if either $i_1 = j_1$ and $\{i_2, j_2\} \in E_2$, or $i_2 = j_2$ and $\{i_1, j_1\} \in E_1$. For an in-depth look at the box product (also referred to as the *Cartesian product*) of graphs, see [\[3\]](#page-3-0).

Let *G* be a graph with vertex set [*n*] and adjacency matrix **A**, and let *H* be a graph with vertex set [*m*] and adjacency matrix **B**. Then, the vertices of *G* $□$ *H* can be labeled with the elements of [*nm*], by relabeling the vertex (*i*, *j*) as (*i* − 1)*m* + *j*. Under this labeling, the adjacency matrix **M** of G \Box H can be written as an $n\times n$ block matrix $\bf{M} = [\bf{M}_{i,j}]$, where each $\bf{M}_{i,j}$ is $m\times m$. Further,

$$
\mathbf{M}_{i,j} = \begin{cases} \mathbf{B} & \text{if } i = j, \\ \mathbf{I}_m & \text{if } i \neq j \text{ and } i \sim j \text{ in } G, \\ \mathbf{0}_m & \text{if } i \neq j \text{ and } i \not\sim j \text{ in } G. \end{cases}
$$

E-mail address: [pragelrock@gmail.com.](mailto:pragelrock@gmail.com)

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter © 2012 Elsevier B.V. All rights reserved. [doi:10.1016/j.disc.2012.01.038](http://dx.doi.org/10.1016/j.disc.2012.01.038)

The $M_{i,j}$ are all elements of the commutative subring S of $\R^{m\times m}$ generated by B and I_m . Thus, if we denote the determinant over the ring *S* by det_{*S*}, it is not hard to see that det_{*S*}(**M**) = $q_G(-\mathbf{B})$, so

 $det(\mathbf{M}) = det(det_S(\mathbf{M})) = det(q_G(-\mathbf{B})).$

We now consider the case when both *G* and *H* are *paths*.

2. Paths and products of paths

The *path with n vertices*, denoted P_n , is the graph with vertex set $V = [n]$ and edge set $E = \{(i, i+1) : i \in [n-1]\}$. Let $q_n(x)$ be the characteristic polynomial of P_n . In [\[4\]](#page-3-1), it was shown that det $(A(P_n \Box P_n)) = 0$. We extend this result, and compute the value of det ($\mathbf{A}(P_n \square P_m)$) for all positive integers *n* and *m*. We do this first by looking at $q_n(x)$. Note that, since $\mathbf{A}(P_n)$ is a tridiagonal matrix and has a very simple structure, many of the properties, including the roots, of $q_n(x)$ are explicitly known; for example, see [\[2](#page-3-2)[,1\]](#page-3-3). We will take advantage of a few particularly nice properties of $q_n(x)$. First, we will use the following theorem from [\[5\]](#page-3-4). We add our own corollary below.

Theorem 2.1. *For n* ≥ 2*, q_n*(*x*) = −*xq_{n−1}(<i>x*) − *q_{n−2}(<i>x*)*.* □

Corollary 2.2. *Let* $n \ge 0$ *.* If n is even, $q_n(x)$ is an even polynomial. If n is odd, $q_n(x)$ is an odd polynomial.

Proof. By inspection, [Corollary 2.2](#page-1-0) is true for $n \le 2$. Assume that it is true for all $n' < n$ for some $n > 2$. This implies that $q_{n-1}(x)$ and $q_{n-2}(x)$ have opposite parities as polynomials, so $xq_{n-1}(x)$ and $q_{n-2}(x)$ have the same parity; hence, using [Theorem 2.1,](#page-1-1) we see that $q_n(x)$ and $q_{n-2}(x)$ have the same parity. The result follows. $□$

We will also use the following lemma; for a proof, see [\[6\]](#page-3-5).

Lemma 2.3. *For any* $k \geq 1$ *, if* $i \in [k-1]$ *, then*

$$
q_k(x) = q_i(x)q_{k-i}(x) - q_{i-1}(x)q_{k-i-1}(x).
$$

Further, if $q_k(\lambda) = 0$ *, then the following statements are true as well.*

- (a) *If* $0 \le s \le k$, then $q_{k+s}(\lambda) = -q_{k-s}(\lambda)$.
- (b) *If* $t \ge 1$ *, then* $q_{t(k+1)-1}(\lambda) = 0$.

We are now ready to prove the following theorem.

Theorem 2.4. Suppose that $q_k(\lambda) = 0$. Then, for all $a \ge 1$ and $0 \le b \le k$, $q_{a(k+1)+b}(\lambda) = (q_{k+1}(\lambda))^a q_b(\lambda)$.

Proof. Note that [Theorem 2.4](#page-1-2) trivially holds when $a = 1$ and $b = 0$. Suppose that $1 \le b \le k$. Applying [Lemma 2.3](#page-1-3) shows that

$$
q_{k+1+b} = q_{k+1}(\lambda)q_b(\lambda) - q_k(\lambda)q_{b-1}(\lambda) = q_{k+1}(\lambda)q_b(\lambda),
$$

and thus [Theorem 2.4](#page-1-2) holds when $a = 1$ and $0 \le b \le k$. Suppose it holds when $1 \le a < a'$ and $0 \le b \le k$, for some $a' > 1$. Suppose that $0 \le b \le k$. Then, by [Lemma 2.3,](#page-1-3)

$$
q_{a'(k+1)+b}(\lambda) = q_{(a'-1)(k+1)+b+k+1}(\lambda)
$$

= $q_{(a'-1)(k+1)+b}(\lambda)q_{k+1}(\lambda) + q_{(a'-1)(k+1)+b-1}(\lambda)q_k(\lambda)$
= $q_{(a'-1)(k+1)+b}(\lambda)q_{k+1}(\lambda) = (q_{k+1}(\lambda))^{a'-1}q_b(\lambda)q_{k+1}(\lambda)$
= $(q_{k+1}(\lambda))^{a'}q_b(\lambda)$. \square

Label the roots of $q_n(x)$ as $\lambda_{n,1}, \lambda_{n,2}, \ldots, \lambda_{n,n}$. Using our result from the previous section, det($\mathbf{A}(P_n \square P_m)$) = det($q_n(-A_m)$). [Corollary 2.2](#page-1-0) implies that $q_n(-A_m) = (-1)^n q_n(A_m)$. Further, we can factor $q_n(x)$ as

$$
q_n(x) = \prod_{i=1}^n (\lambda_{n,i} - x) = (-1)^n \prod_{i=1}^n (x - \lambda_{n,i}).
$$

Thus,

$$
\det(\mathbf{A}(P_n \square P_m)) = \det(q_n(-\mathbf{A}_m)) = \det((-1)^n q_n(\mathbf{A}_m))
$$

=
$$
\det\left((-1)^n (-1)^n \prod_{i=1}^n (\mathbf{A}_m - \lambda_{n,i}\mathbf{I}_m)\right)
$$

=
$$
\det\left(\prod_{i=1}^n (\mathbf{A}_m - \lambda_{n,i}\mathbf{I}_m)\right)
$$

=
$$
\prod_{i=1}^n \det(\mathbf{A}_m - \lambda_{n,i}\mathbf{I}_m) = \prod_{i=1}^n q_m(\lambda_{n,i}).
$$

Since, by definition, it is immediately evident that $P_n \square P_m$ and $P_m \square P_n$ are isomorphic as graphs, it follows that $det(A(P_n \square P_m)) = det(A(P_m \square P_n)).$ Thus,

$$
\prod_{i=1}^n q_m(\lambda_{n,i}) = \prod_{i=1}^m q_n(\lambda_{m,i}).
$$

This leads to the following results.

Theorem 2.5. Suppose that $n \geq 1$. Then, $\prod_{i=1}^{n} q_{n+1}(\lambda_{n,i}) = (-1)^{n(n+1)/2}$.

Proof. By inspection, [Theorem 2.5](#page-2-0) is true for $n = 1$. Suppose that it is true for some $n \ge 1$. Then, by [Lemma 2.3,](#page-1-3) $q_{n+2}(\lambda_{n+1,i}) = -q_n(\lambda_{n+1,i})$ for any $i \in [n+1]$, so

$$
\prod_{i=1}^{n+1} q_{n+2}(\lambda_{n+1,i}) = \prod_{i=1}^{n+1} -q_n(\lambda_{n+1,i}) = (-1)^{n+1} \prod_{i=1}^{n+1} q_n(\lambda_{n+1,i})
$$

= $(-1)^{n+1} \prod_{i=1}^{n} q_{n+1}(\lambda_{n,i}) = (-1)^{n+1} (-1)^{n(n+1)/2}$
= $(-1)^{n+1+n(n+1)/2} = (-1)^{(n+1)(1+n/2)} = (-1)^{(n+1)(n+2)/2}.$

Theorem 2.6. *Suppose that n, m > 1. Then,*

$$
\prod_{i=1}^{n} q_m(\lambda_{n,i}) = \begin{cases} 0 & \text{if } \gcd(n+1, m+1) \neq 1, \\ (-1)^{nm/2} & \text{if } \gcd(n+1, m+1) = 1. \end{cases}
$$

Proof. Note that the product in the statement of [Theorem 2.6](#page-2-1) is the determinant of $\mathbf{A}(P_n \square P_m)$, which, as discussed above, is equal to the determinant of $A(P_m \square P_n)$. Thus, without loss of generality, we may assume that $n < m$. We will induct on the remainder when $m + 1$ is divided by $n + 1$. Suppose that this remainder is 0. Then, $gcd(n + 1, m + 1) \neq 1$, and $m + 1 = k(n + 1)$ for some $k \ge 1$, so $m = k(n + 1) - 1$. Thus, by [Lemma 2.3,](#page-1-3) $q_m(\lambda_{n,i}) = 0$ for $i \in [n]$, and it follows that the product of these terms is zero. This verifies [Theorem 2.6](#page-2-1) for this case.

Suppose that the remainder when $m + 1$ is divided by $n + 1$ is 1; we then have $m + 1 = k(n + 1) + 1$ for some $k \ge 1$. Note that this implies that $gcd(n + 1, m + 1) = 1$ and $m = k(n + 1)$, so, by [Theorem 2.4,](#page-1-2) for $i \in [n]$,

$$
q_m(\lambda_{n,i}) = q_{k(n+1)}(\lambda_{n,i}) = (q_{n+1}(\lambda_{n,i}))^k q_0(\lambda_{n,i}) = (q_{n+1}(\lambda_{n,i}))^k.
$$

Thus,

$$
\prod_{i=1}^n q_m(\lambda_{n,i}) = \prod_{i=1}^n (q_{n+1}(\lambda_{n,i}))^k = \left(\prod_{i=1}^n q_{n+1}(\lambda_{n,i})\right)^k = \left((-1)^{n(n+1)/2}\right)^k,
$$

by [Theorem 2.5.](#page-2-0) Further,

$$
((-1)^{n(n+1)/2})^k = (-1)^{nk(n+1)/2} = (-1)^{nm/2}.
$$

Thus, [Theorem 2.6](#page-2-1) is true in this case.

Finally, suppose that [Theorem 2.6](#page-2-1) is true whenever the remainder when $(m + 1)$ is divided by $(n + 1)$ is less than *r*, for some $r > 1$. Then, consider any $(m + 1)$ and $(n + 1)$ with $(m + 1)$ having remainder *r* when divided by $(n + 1)$. It follows that there exists $k \ge 1$ such that $m + 1 = k(n + 1) + r$, implying that $m = k(n + 1) + r - 1$. Then, once again applying [Theorem 2.4,](#page-1-2)

$$
\prod_{i=1}^{n} q_m(\lambda_{n,i}) = \prod_{i=1}^{n} (q_{n+1}(\lambda_{n,i}))^k q_{r-1}(\lambda_{n,i}) = \prod_{i=1}^{n} (q_{n+1}(\lambda_{n,i}))^k \prod_{i=1}^{n} q_{r-1}(\lambda_{n,i})
$$
\n
$$
= \left(\prod_{i=1}^{n} q_{n+1}(\lambda_{n,i})\right)^k \prod_{i=1}^{n} q_{r-1}(\lambda_{n,i}) = (-1)^{nk(n+1)/2} \prod_{i=1}^{n} q_{r-1}(\lambda_{n,i})
$$

Note that $gcd(n + 1, m + 1) = gcd(r, n + 1)$, by construction. Further, the remainder when $(n + 1)$ is divided by *r* is less than *r*. Thus, by our induction hypothesis, if $gcd(n + 1, m + 1) \neq 1$, then $gcd(r, n + 1) \neq 1$, so,

$$
\prod_{i=1}^n q_m(\lambda_{n,i}) = (-1)^{nk(n+1)/2} \prod_{i=1}^n q_{r-1}(\lambda_{n,i}) = 0.
$$

Otherwise, $gcd(n + 1, m + 1) = 1$, so $gcd(r, n + 1) = 1$, implying that

$$
\prod_{i=1}^{n} q_m(\lambda_{n,i}) = (-1)^{nk(n+1)/2} \prod_{i=1}^{n} q_{r-1}(\lambda_{n,i}) = (-1)^{nk(n+1)/2} (-1)^{n(r-1)/2}
$$

$$
= (-1)^{n(k(n+1)+r-1)/2} = (-1)^{nm/2}. \quad \Box
$$

The following corollary to [Theorem 2.6](#page-2-1) follows immediately.

Corollary 2.7. *Suppose that n and m are positive integers. Then,*

$$
\det (\mathbf{A}(P_n \Box P_m)) = \begin{cases} 0 & \text{if } \gcd(n+1, m+1) \neq 1, \\ (-1)^{nm/2} & \text{if } \gcd(n+1, m+1) = 1. \end{cases}
$$

References

- [1] C.M. da Fonseca, On the location of the eigenvalues of Jacobi matrices, Applied Mathematics Letters 19 (2006) 1168–1174.
- [2] C.M. da Fonseca, J. Petronilho, Path polynomials of a circuit: a constructive approach, Linear and Multilinear Algebra 44 (1998) 313–325.
- [3] W. Imrich, S. Klavzar, D.F. Rall, Topics in Graph Theory: Graphs and their Cartesian Product, A.K. Peters, Ltd., Massachusetts, 2008. [4] H.M. Rara, Reduction procedures for calculating the determinant of the adjacency matrix of some graphs and the singularity of square planar grids, Discrete Mathematics 151 (1996) 213–219.
- [5] A.J. Schwenk, Computing the characteristic polynomial of a graph, in: R. Bari, F. Harary (Eds.), Graphs and Combinatorics, in: Lecture Notes in Mathematics, vol. 406, Springer Verlag, 1974, pp. 153–172.
- [6] R. Shi, Path polynomials of a graph, Linear Algebra and its Applications 236 (1996) 181–187.