Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Determinants of box products of paths

Daniel Pragel

Emory and Henry College, P.O. Box 947, Emory, VA 24327, United States

ARTICLE INFO

ABSTRACT

Article history: Received 2 March 2011 Received in revised form 16 October 2011 Accepted 30 January 2012 Available online 18 February 2012

Keywords: Graph theory Box product Cartesian product Adjacency matrix Path Determinant

1. Introduction

Suppose that *G* is the graph obtained by taking the box product of a path of length *n* and a path of length *m*. Let **M** be the adjacency matrix of *G*. In 1996, Rara showed that, if n = m, then det(**M**) = 0. We extend this result to allow *n* and *m* to be any positive integers, and show that

$$\det(\mathbf{M}) = \begin{cases} 0 & \text{if } \gcd(n+1, m+1) \neq 1, \\ (-1)^{nm/2} & \text{if } \gcd(n+1, m+1) = 1. \end{cases}$$

© 2012 Elsevier B.V. All rights reserved.

Let $[n] = \{1, 2, ..., n\}$. We define a graph *G* to be an ordered pair of sets (V, E), where *V* is any set and $E \subseteq {\binom{V}{2}}$; we refer to *V* as the vertices and *E* as the edges of *G*. The adjacency matrix of *G* is denoted **A**(*G*), and it is a matrix with rows and columns indexed by *V* such that

 $\mathbf{A}(G)_{i,j} = \begin{cases} 1 & \text{if } \{i, j\} \in E, \\ 0 & \text{if } \{i, j\} \notin E. \end{cases}$

Let \mathbf{I}_n be the $n \times n$ identity matrix, and let $\mathbf{0}_n$ be the $n \times n$ matrix of all zeros. If *G* has *n* vertices, the *characteristic polynomial* of $\mathbf{A}(G)$ is defined to be $q_G(x) = \det(\mathbf{A}(G) - x\mathbf{I}_n)$.

Suppose that G_1 and G_2 are graphs with vertex sets V_1 and V_2 , and edge sets E_1 and E_2 , respectively. The box product of G_1 and G_2 , denoted $G_1 \square G_2$, is the graph with vertex set $V = V_1 \times V_2$ and such that, for $i_1, j_1 \in V_1$ and $i_2, j_2 \in V_2$, $\{(i_1, i_2), (j_1, j_2)\}$ is an edge in $G_1 \square G_2$ if and only if either $i_1 = j_1$ and $\{i_2, j_2\} \in E_2$, or $i_2 = j_2$ and $\{i_1, j_1\} \in E_1$. For an in-depth look at the box product (also referred to as the *Cartesian product*) of graphs, see [3].

Let *G* be a graph with vertex set [*n*] and adjacency matrix **A**, and let *H* be a graph with vertex set [*m*] and adjacency matrix **B**. Then, the vertices of $G \square H$ can be labeled with the elements of [*nm*], by relabeling the vertex (i, j) as (i - 1)m + j. Under this labeling, the adjacency matrix **M** of $G \square H$ can be written as an $n \times n$ block matrix $\mathbf{M} = [\mathbf{M}_{i,j}]$, where each $\mathbf{M}_{i,j}$ is $m \times m$. Further,

$$\mathbf{M}_{i,j} = \begin{cases} \mathbf{B} & \text{if } i = j, \\ \mathbf{I}_m & \text{if } i \neq j \text{ and } i \sim j \text{ in } G, \\ \mathbf{0}_m & \text{if } i \neq j \text{ and } i \not\sim j \text{ in } G. \end{cases}$$

E-mail address: pragelrock@gmail.com.

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter S 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2012.01.038

The $\mathbf{M}_{i,j}$ are all elements of the commutative subring S of $\mathbb{R}^{m \times m}$ generated by \mathbf{B} and \mathbf{I}_m . Thus, if we denote the determinant over the ring S by det_S, it is not hard to see that det_S(\mathbf{M}) = $q_G(-\mathbf{B})$, so

 $\det(\mathbf{M}) = \det(\det_{S}(\mathbf{M})) = \det(q_{G}(-\mathbf{B})).$

We now consider the case when both *G* and *H* are *paths*.

2. Paths and products of paths

The *path with n vertices*, denoted P_n , is the graph with vertex set V = [n] and edge set $E = \{(i, i+1) : i \in [n-1]\}$. Let $q_n(x)$ be the characteristic polynomial of P_n . In [4], it was shown that det $(\mathbf{A} (P_n \Box P_n)) = 0$. We extend this result, and compute the value of det $(\mathbf{A} (P_n \Box P_m))$ for all positive integers n and m. We do this first by looking at $q_n(x)$. Note that, since $\mathbf{A}(P_n)$ is a tridiagonal matrix and has a very simple structure, many of the properties, including the roots, of $q_n(x)$ are explicitly known; for example, see [2,1]. We will take advantage of a few particularly nice properties of $q_n(x)$. First, we will use the following theorem from [5]. We add our own corollary below.

Theorem 2.1. For $n \ge 2$, $q_n(x) = -xq_{n-1}(x) - q_{n-2}(x)$. \Box

Corollary 2.2. Let $n \ge 0$. If *n* is even, $q_n(x)$ is an even polynomial. If *n* is odd, $q_n(x)$ is an odd polynomial.

Proof. By inspection, Corollary 2.2 is true for $n \le 2$. Assume that it is true for all n' < n for some n > 2. This implies that $q_{n-1}(x)$ and $q_{n-2}(x)$ have opposite parities as polynomials, so $xq_{n-1}(x)$ and $q_{n-2}(x)$ have the same parity; hence, using Theorem 2.1, we see that $q_n(x)$ and $q_{n-2}(x)$ have the same parity. The result follows. \Box

We will also use the following lemma; for a proof, see [6].

Lemma 2.3. *For any* $k \ge 1$ *, if* $i \in [k - 1]$ *, then*

$$q_k(x) = q_i(x)q_{k-i}(x) - q_{i-1}(x)q_{k-i-1}(x)$$

Further, if $q_k(\lambda) = 0$, then the following statements are true as well.

- (a) If $0 \le s \le k$, then $q_{k+s}(\lambda) = -q_{k-s}(\lambda)$.
- (b) If $t \ge 1$, then $q_{t(k+1)-1}(\lambda) = 0$. \Box

We are now ready to prove the following theorem.

Theorem 2.4. Suppose that $q_k(\lambda) = 0$. Then, for all $a \ge 1$ and $0 \le b \le k$, $q_{a(k+1)+b}(\lambda) = (q_{k+1}(\lambda))^a q_b(\lambda)$.

Proof. Note that Theorem 2.4 trivially holds when a = 1 and b = 0. Suppose that $1 \le b \le k$. Applying Lemma 2.3 shows that

$$q_{k+1+b} = q_{k+1}(\lambda)q_b(\lambda) - q_k(\lambda)q_{b-1}(\lambda) = q_{k+1}(\lambda)q_b(\lambda),$$

and thus Theorem 2.4 holds when a = 1 and $0 \le b \le k$. Suppose it holds when $1 \le a < a'$ and $0 \le b \le k$, for some a' > 1. Suppose that $0 \le b \le k$. Then, by Lemma 2.3,

$$\begin{aligned} q_{a'(k+1)+b}(\lambda) &= q_{(a'-1)(k+1)+b+k+1}(\lambda) \\ &= q_{(a'-1)(k+1)+b}(\lambda)q_{k+1}(\lambda) + q_{(a'-1)(k+1)+b-1}(\lambda)q_k(\lambda) \\ &= q_{(a'-1)(k+1)+b}(\lambda)q_{k+1}(\lambda) = (q_{k+1}(\lambda))^{a'-1}q_b(\lambda)q_{k+1}(\lambda) \\ &= (q_{k+1}(\lambda))^{a'}q_b(\lambda). \quad \Box \end{aligned}$$

Label the roots of $q_n(x)$ as $\lambda_{n,1}, \lambda_{n,2}, \ldots, \lambda_{n,n}$. Using our result from the previous section, det($\mathbf{A}(P_n \Box P_m)$) = det($q_n(-\mathbf{A}_m)$). Corollary 2.2 implies that $q_n(-\mathbf{A}_m) = (-1)^n q_n(\mathbf{A}_m)$. Further, we can factor $q_n(x)$ as

$$q_n(x) = \prod_{i=1}^n \left(\lambda_{n,i} - x \right) = (-1)^n \prod_{i=1}^n \left(x - \lambda_{n,i} \right).$$

Thus,

$$det(\mathbf{A}(P_n \Box P_m)) = det(q_n(-\mathbf{A}_m)) = det((-1)^n q_n(\mathbf{A}_m))$$
$$= det\left((-1)^n (-1)^n \prod_{i=1}^n (\mathbf{A}_m - \lambda_{n,i} \mathbf{I}_m)\right)$$
$$= det\left(\prod_{i=1}^n (\mathbf{A}_m - \lambda_{n,i} \mathbf{I}_m)\right)$$
$$= \prod_{i=1}^n det(\mathbf{A}_m - \lambda_{n,i} \mathbf{I}_m) = \prod_{i=1}^n q_m(\lambda_{n,i}).$$

Since, by definition, it is immediately evident that $P_n \square P_m$ and $P_m \square P_n$ are isomorphic as graphs, it follows that $\det(\mathbf{A}(P_n \square P_m)) = \det(\mathbf{A}(P_m \square P_n))$. Thus,

$$\prod_{i=1}^n q_m(\lambda_{n,i}) = \prod_{i=1}^m q_n(\lambda_{m,i}).$$

This leads to the following results.

Theorem 2.5. Suppose that $n \ge 1$. Then, $\prod_{i=1}^{n} q_{n+1}(\lambda_{n,i}) = (-1)^{n(n+1)/2}$.

Proof. By inspection, Theorem 2.5 is true for n = 1. Suppose that it is true for some $n \ge 1$. Then, by Lemma 2.3, $q_{n+2}(\lambda_{n+1,i}) = -q_n(\lambda_{n+1,i})$ for any $i \in [n+1]$, so

$$\prod_{i=1}^{n+1} q_{n+2}(\lambda_{n+1,i}) = \prod_{i=1}^{n+1} -q_n(\lambda_{n+1,i}) = (-1)^{n+1} \prod_{i=1}^{n+1} q_n(\lambda_{n+1,i})$$
$$= (-1)^{n+1} \prod_{i=1}^n q_{n+1}(\lambda_{n,i}) = (-1)^{n+1} (-1)^{n(n+1)/2}$$
$$= (-1)^{n+1+n(n+1)/2} = (-1)^{(n+1)(1+n/2)} = (-1)^{(n+1)(n+2)/2}. \quad \Box$$

Theorem 2.6. Suppose that $n, m \ge 1$. Then,

$$\prod_{i=1}^{n} q_m(\lambda_{n,i}) = \begin{cases} 0 & \text{if } \gcd(n+1,m+1) \neq 1, \\ (-1)^{nm/2} & \text{if } \gcd(n+1,m+1) = 1. \end{cases}$$

Proof. Note that the product in the statement of Theorem 2.6 is the determinant of $\mathbf{A}(P_n \Box P_m)$, which, as discussed above, is equal to the determinant of $\mathbf{A}(P_m \Box P_n)$. Thus, without loss of generality, we may assume that $n \le m$. We will induct on the remainder when m + 1 is divided by n + 1. Suppose that this remainder is 0. Then, $gcd(n + 1, m + 1) \ne 1$, and m + 1 = k(n + 1) for some $k \ge 1$, so m = k(n + 1) - 1. Thus, by Lemma 2.3, $q_m(\lambda_{n,i}) = 0$ for $i \in [n]$, and it follows that the product of these terms is zero. This verifies Theorem 2.6 for this case.

Suppose that the remainder when m + 1 is divided by n + 1 is 1; we then have m + 1 = k(n + 1) + 1 for some $k \ge 1$. Note that this implies that gcd(n + 1, m + 1) = 1 and m = k(n + 1), so, by Theorem 2.4, for $i \in [n]$,

$$q_m(\lambda_{n,i}) = q_{k(n+1)}(\lambda_{n,i}) = (q_{n+1}(\lambda_{n,i}))^{\kappa} q_0(\lambda_{n,i}) = (q_{n+1}(\lambda_{n,i}))^{\kappa}.$$

Thus,

$$\prod_{i=1}^{n} q_m(\lambda_{n,i}) = \prod_{i=1}^{n} (q_{n+1}(\lambda_{n,i}))^k = \left(\prod_{i=1}^{n} q_{n+1}(\lambda_{n,i})\right)^k = \left((-1)^{n(n+1)/2}\right)^k,$$

by Theorem 2.5. Further,

$$((-1)^{n(n+1)/2})^k = (-1)^{nk(n+1)/2} = (-1)^{nm/2}$$

Thus, Theorem 2.6 is true in this case.

Finally, suppose that Theorem 2.6 is true whenever the remainder when (m + 1) is divided by (n + 1) is less than r, for some r > 1. Then, consider any (m + 1) and (n + 1) with (m + 1) having remainder r when divided by (n + 1). It follows that there exists $k \ge 1$ such that m + 1 = k(n + 1) + r, implying that m = k(n + 1) + r - 1. Then, once again applying Theorem 2.4,

$$\prod_{i=1}^{n} q_m(\lambda_{n,i}) = \prod_{i=1}^{n} (q_{n+1}(\lambda_{n,i}))^k q_{r-1}(\lambda_{n,i}) = \prod_{i=1}^{n} (q_{n+1}(\lambda_{n,i}))^k \prod_{i=1}^{n} q_{r-1}(\lambda_{n,i})$$
$$= \left(\prod_{i=1}^{n} q_{n+1}(\lambda_{n,i})\right)^k \prod_{i=1}^{n} q_{r-1}(\lambda_{n,i}) = (-1)^{nk(n+1)/2} \prod_{i=1}^{n} q_{r-1}(\lambda_{n,i})$$

Note that gcd(n + 1, m + 1) = gcd(r, n + 1), by construction. Further, the remainder when (n + 1) is divided by r is less than r. Thus, by our induction hypothesis, if $gcd(n + 1, m + 1) \neq 1$, then $gcd(r, n + 1) \neq 1$, so,

$$\prod_{i=1}^{n} q_m(\lambda_{n,i}) = (-1)^{nk(n+1)/2} \prod_{i=1}^{n} q_{r-1}(\lambda_{n,i}) = 0.$$

Otherwise, gcd(n + 1, m + 1) = 1, so gcd(r, n + 1) = 1, implying that

$$\prod_{i=1}^{n} q_m(\lambda_{n,i}) = (-1)^{nk(n+1)/2} \prod_{i=1}^{n} q_{r-1}(\lambda_{n,i}) = (-1)^{nk(n+1)/2} (-1)^{n(r-1)/2}$$
$$= (-1)^{n(k(n+1)+r-1)/2} = (-1)^{nm/2}. \quad \Box$$

The following corollary to Theorem 2.6 follows immediately.

Corollary 2.7. Suppose that *n* and *m* are positive integers. Then,

$$\det \left(\mathbf{A}(P_n \Box P_m)\right) = \begin{cases} 0 & \text{if } \gcd(n+1, m+1) \neq 1, \\ (-1)^{nm/2} & \text{if } \gcd(n+1, m+1) = 1. \end{cases}$$

References

- [1] C.M. da Fonseca, On the location of the eigenvalues of Jacobi matrices, Applied Mathematics Letters 19 (2006) 1168-1174.
- C.M. da Fonseca, J. Petronillo, Path polynomials of a circuit: a constructive approach, Linear and Multilinear Algebra 44 (1998) 313–325.
 W. Imrich, S. Klavzar, D.F. Rall, Topics in Graph Theory: Graphs and their Cartesian Product, A.K. Peters, Ltd., Massachusetts, 2008.
- [3] W. IIITCH, S. Katzal, D.F. Kali, Topics in Graph Theory: Graphs and their Catestan Product, A.K. Peters, Ett., Massachusetts, 2008.
 [4] H.M. Rara, Reduction procedures for calculating the determinant of the adjacency matrix of some graphs and the singularity of square planar grids, Discrete Mathematics 151 (1996) 213–219.
- [5] A.J. Schwenk, Computing the characteristic polynomial of a graph, in: R. Bari, F. Harary (Eds.), Graphs and Combinatorics, in: Lecture Notes in Mathematics, vol. 406, Springer Verlag, 1974, pp. 153–172.
- [6] R. Shi, Path polynomials of a graph, Linear Algebra and its Applications 236 (1996) 181-187.