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a b s t r a c t

Suppose that G is the graph obtained by taking the box product of a path of length n and a
path of length m. Let M be the adjacency matrix of G. In 1996, Rara showed that, if n = m,
then det(M) = 0. We extend this result to allow n and m to be any positive integers, and
show that

det(M) =


0 if gcd(n + 1,m + 1) ≠ 1,
(−1)nm/2 if gcd(n + 1,m + 1) = 1.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let [n] = {1, 2, . . . , n}. We define a graph G to be an ordered pair of sets (V , E), where V is any set and E ⊆


V
2


; we

refer to V as the vertices and E as the edges of G. The adjacency matrix of G is denoted A(G), and it is a matrix with rows and
columns indexed by V such that

A(G)i,j =


1 if {i, j} ∈ E,
0 if {i, j} ∉ E.

Let In be the n× n identity matrix, and let 0n be the n× nmatrix of all zeros. If G has n vertices, the characteristic polynomial
of A(G) is defined to be qG(x) = det(A(G) − xIn).

Suppose that G1 and G2 are graphs with vertex sets V1 and V2, and edge sets E1 and E2, respectively. The box product
of G1 and G2, denoted G1 � G2, is the graph with vertex set V = V1 × V2 and such that, for i1, j1 ∈ V1 and i2, j2 ∈ V2,
{(i1, i2), (j1, j2)} is an edge in G1 � G2 if and only if either i1 = j1 and {i2, j2} ∈ E2, or i2 = j2 and {i1, j1} ∈ E1. For an in-depth
look at the box product (also referred to as the Cartesian product) of graphs, see [3].

Let G be a graphwith vertex set [n] and adjacencymatrixA, and letH be a graphwith vertex set [m] and adjacencymatrix
B. Then, the vertices of G � H can be labeled with the elements of [nm], by relabeling the vertex (i, j) as (i − 1)m + j. Under
this labeling, the adjacency matrixM of G � H can be written as an n× n block matrixM = [Mi,j], where eachMi,j ism×m.
Further,

Mi,j =

B if i = j,
Im if i ≠ j and i ∼ j in G,
0m if i ≠ j and i ≁ j in G.
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The Mi,j are all elements of the commutative subring S of Rm×m generated by B and Im. Thus, if we denote the determinant
over the ring S by detS , it is not hard to see that detS(M) = qG(−B), so

det(M) = det (detS(M)) = det(qG(−B)).

We now consider the case when both G and H are paths.

2. Paths and products of paths

The pathwith n vertices, denoted Pn, is the graphwith vertex set V = [n] and edge set E = {(i, i+1) : i ∈ [n−1]}. Let qn(x)
be the characteristic polynomial of Pn. In [4], it was shown that det (A (Pn � Pn)) = 0. We extend this result, and compute
the value of det (A (Pn � Pm)) for all positive integers n and m. We do this first by looking at qn(x). Note that, since A(Pn)
is a tridiagonal matrix and has a very simple structure, many of the properties, including the roots, of qn(x) are explicitly
known; for example, see [2,1]. We will take advantage of a few particularly nice properties of qn(x). First, we will use the
following theorem from [5]. We add our own corollary below.

Theorem 2.1. For n ≥ 2, qn(x) = −xqn−1(x) − qn−2(x). �

Corollary 2.2. Let n ≥ 0. If n is even, qn(x) is an even polynomial. If n is odd, qn(x) is an odd polynomial.
Proof. By inspection, Corollary 2.2 is true for n ≤ 2. Assume that it is true for all n′ < n for some n > 2. This implies
that qn−1(x) and qn−2(x) have opposite parities as polynomials, so xqn−1(x) and qn−2(x) have the same parity; hence, using
Theorem 2.1, we see that qn(x) and qn−2(x) have the same parity. The result follows. �

We will also use the following lemma; for a proof, see [6].

Lemma 2.3. For any k ≥ 1, if i ∈ [k − 1], then

qk(x) = qi(x)qk−i(x) − qi−1(x)qk−i−1(x).

Further, if qk(λ) = 0, then the following statements are true as well.
(a) If 0 ≤ s ≤ k, then qk+s(λ) = −qk−s(λ).
(b) If t ≥ 1, then qt(k+1)−1(λ) = 0. �

We are now ready to prove the following theorem.

Theorem 2.4. Suppose that qk(λ) = 0. Then, for all a ≥ 1 and 0 ≤ b ≤ k, qa(k+1)+b(λ) = (qk+1(λ))a qb(λ).
Proof. Note that Theorem 2.4 trivially holds when a = 1 and b = 0. Suppose that 1 ≤ b ≤ k. Applying Lemma 2.3 shows
that

qk+1+b = qk+1(λ)qb(λ) − qk(λ)qb−1(λ) = qk+1(λ)qb(λ),

and thus Theorem 2.4 holds when a = 1 and 0 ≤ b ≤ k. Suppose it holds when 1 ≤ a < a′ and 0 ≤ b ≤ k, for some a′ > 1.
Suppose that 0 ≤ b ≤ k. Then, by Lemma 2.3,

qa′(k+1)+b(λ) = q(a′−1)(k+1)+b+k+1(λ)

= q(a′−1)(k+1)+b(λ)qk+1(λ) + q(a′−1)(k+1)+b−1(λ)qk(λ)

= q(a′−1)(k+1)+b(λ)qk+1(λ) = (qk+1(λ))a
′
−1 qb(λ)qk+1(λ)

= (qk+1(λ))a
′

qb(λ). �

Label the roots of qn(x) as λn,1, λn,2, . . . , λn,n. Using our result from the previous section, det(A(Pn � Pm)) =

det(qn(−Am)). Corollary 2.2 implies that qn(−Am) = (−1)nqn(Am). Further, we can factor qn(x) as

qn(x) =

n
i=1


λn,i − x


= (−1)n

n
i=1


x − λn,i


.

Thus,
det(A(Pn � Pm)) = det(qn(−Am)) = det


(−1)nqn(Am)


= det


(−1)n(−1)n

n
i=1


Am − λn,iIm



= det


n

i=1

(Am − λn,iIm)



=

n
i=1

det(Am − λn,iIm) =

n
i=1

qm(λn,i).
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Since, by definition, it is immediately evident that Pn � Pm and Pm � Pn are isomorphic as graphs, it follows that
det(A(Pn � Pm)) = det(A(Pm � Pn)). Thus,

n
i=1

qm(λn,i) =

m
i=1

qn(λm,i).

This leads to the following results.

Theorem 2.5. Suppose that n ≥ 1. Then,
n

i=1 qn+1(λn,i) = (−1)n(n+1)/2.

Proof. By inspection, Theorem 2.5 is true for n = 1. Suppose that it is true for some n ≥ 1. Then, by Lemma 2.3,
qn+2(λn+1,i) = −qn(λn+1,i) for any i ∈ [n + 1], so

n+1
i=1

qn+2(λn+1,i) =

n+1
i=1

−qn(λn+1,i) = (−1)n+1
n+1
i=1

qn(λn+1,i)

= (−1)n+1
n

i=1

qn+1(λn,i) = (−1)n+1(−1)n(n+1)/2

= (−1)n+1+n(n+1)/2
= (−1)(n+1)(1+n/2)

= (−1)(n+1)(n+2)/2. �

Theorem 2.6. Suppose that n,m ≥ 1. Then,
n

i=1

qm(λn,i) =


0 if gcd(n + 1,m + 1) ≠ 1,
(−1)nm/2 if gcd(n + 1,m + 1) = 1.

Proof. Note that the product in the statement of Theorem 2.6 is the determinant of A(Pn � Pm), which, as discussed above,
is equal to the determinant of A(Pm � Pn). Thus, without loss of generality, we may assume that n ≤ m. We will induct
on the remainder when m + 1 is divided by n + 1. Suppose that this remainder is 0. Then, gcd(n + 1,m + 1) ≠ 1, and
m+ 1 = k(n+ 1) for some k ≥ 1, som = k(n+ 1) − 1. Thus, by Lemma 2.3, qm(λn,i) = 0 for i ∈ [n], and it follows that the
product of these terms is zero. This verifies Theorem 2.6 for this case.

Suppose that the remainder when m + 1 is divided by n + 1 is 1; we then have m + 1 = k(n + 1) + 1 for some k ≥ 1.
Note that this implies that gcd(n + 1,m + 1) = 1 andm = k(n + 1), so, by Theorem 2.4, for i ∈ [n],

qm(λn,i) = qk(n+1)(λn,i) = (qn+1(λn,i))
kq0(λn,i) = (qn+1(λn,i))

k.

Thus,

n
i=1

qm(λn,i) =

n
i=1

(qn+1(λn,i))
k
=


n

i=1

qn+1(λn,i)

k

=

(−1)n(n+1)/2k ,

by Theorem 2.5. Further,
(−1)n(n+1)/2k

= (−1)nk(n+1)/2
= (−1)nm/2.

Thus, Theorem 2.6 is true in this case.
Finally, suppose that Theorem 2.6 is true whenever the remainder when (m + 1) is divided by (n + 1) is less than r , for

some r > 1. Then, consider any (m + 1) and (n + 1) with (m + 1) having remainder r when divided by (n + 1). It follows
that there exists k ≥ 1 such that m + 1 = k(n + 1) + r , implying that m = k(n + 1) + r − 1. Then, once again applying
Theorem 2.4,

n
i=1

qm(λn,i) =

n
i=1

(qn+1(λn,i))
kqr−1(λn,i) =

n
i=1

(qn+1(λn,i))
k

n
i=1

qr−1(λn,i)

=


n

i=1

qn+1(λn,i)

k n
i=1

qr−1(λn,i) = (−1)nk(n+1)/2
n

i=1

qr−1(λn,i)

Note that gcd(n + 1,m + 1) = gcd(r, n + 1), by construction. Further, the remainder when (n + 1) is divided by r is less
than r . Thus, by our induction hypothesis, if gcd(n + 1,m + 1) ≠ 1, then gcd(r, n + 1) ≠ 1, so,

n
i=1

qm(λn,i) = (−1)nk(n+1)/2
n

i=1

qr−1(λn,i) = 0.
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Otherwise, gcd(n + 1,m + 1) = 1, so gcd(r, n + 1) = 1, implying that
n

i=1

qm(λn,i) = (−1)nk(n+1)/2
n

i=1

qr−1(λn,i) = (−1)nk(n+1)/2(−1)n(r−1)/2

= (−1)n(k(n+1)+r−1)/2
= (−1)nm/2. �

The following corollary to Theorem 2.6 follows immediately.

Corollary 2.7. Suppose that n and m are positive integers. Then,

det (A(Pn � Pm)) =


0 if gcd(n + 1,m + 1) ≠ 1,
(−1)nm/2 if gcd(n + 1,m + 1) = 1. �
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