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1. Introduction

Let [n] = {1, 2, ..., n}. We define a graph G to be an ordered pair of sets (V, E), where V is any set and E C (‘2/) we

refer to V as the vertices and E as the edges of G. The adjacency matrix of G is denoted A(G), and it is a matrix with rows and
columns indexed by V such that

1 if{i,j} €E,
A(G)j = {0 if {i,j} ¢ E.

Let I, be the n x n identity matrix, and let 0,, be the n x n matrix of all zeros. If G has n vertices, the characteristic polynomial
of A(G) is defined to be q¢(x) = det(A(G) — xI,,).

Suppose that G; and G, are graphs with vertex sets V; and V5, and edge sets E; and E,, respectively. The box product
of Gy and G,, denoted G; O G, is the graph with vertex set V = V; x V;, and such that, for iy, j; € V; and iy, j, € Vs,
{(i1, i2), (j1,j2)} is an edge in G; O G, if and only if either i; = j; and {i,, j,} € E,, ori, = j, and {iy, j1} € E;. For an in-depth
look at the box product (also referred to as the Cartesian product) of graphs, see [3].

Let G be a graph with vertex set [n] and adjacency matrix A, and let H be a graph with vertex set [m] and adjacency matrix
B. Then, the vertices of G O H can be labeled with the elements of [nm], by relabeling the vertex (i, j) as (i — 1)m + j. Under
this labeling, the adjacency matrix M of G O H can be written as an n x n block matrix M = [M; ], where each M; j is m x m.
Further,

B ifi=j,
M;; =4I, ifi#jandi~jinG,
0, ifi#jandi#jinG.
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The M;; are all elements of the commutative subring S of R™*™ generated by B and I,. Thus, if we denote the determinant
over the ring S by dets, it is not hard to see that dets(M) = gs(—B), so

det(M) = det (dets(M)) = det(qc(—B)).
We now consider the case when both G and H are paths.

2. Paths and products of paths

The path with n vertices, denoted Py, is the graph with vertex set V = [n] and edge setE = {(i,i+1) : i € [n—1]}. Let g, (X)
be the characteristic polynomial of P,. In [4], it was shown that det (A (P, O P,;)) = 0. We extend this result, and compute
the value of det (A (P, O Py,)) for all positive integers n and m. We do this first by looking at q,(x). Note that, since A(P,)
is a tridiagonal matrix and has a very simple structure, many of the properties, including the roots, of g,(x) are explicitly
known; for example, see [2,1]. We will take advantage of a few particularly nice properties of q,(x). First, we will use the
following theorem from [5]. We add our own corollary below.

Theorem 2.1. For n > 2, ¢, (x) = —xqn—1(X) — qn—2(x). O

Corollary 2.2. Let n > 0. If nis even, q,(x) is an even polynomial. If n is odd, q,(x) is an odd polynomial.

Proof. By inspection, Corollary 2.2 is true for n < 2. Assume that it is true for all n’ < n for some n > 2. This implies
that g,—1(x) and g,_(x) have opposite parities as polynomials, so xq,_1(x) and g,_»(x) have the same parity; hence, using
Theorem 2.1, we see that g,(x) and g,_;(x) have the same parity. The result follows. O

We will also use the following lemma; for a proof, see [6].
Lemma 2.3. Forany k > 1,if i € [k — 1], then

qk(®) = qi(X)qr—i(x) — qi—1(X)qk—i—1(%).
Further, if q,(X) = 0, then the following statements are true as well.

(@) If 0 <s < k, then qiy5(A) = —qr—s ().
(b) If t > 1, then Gy 1y—1(A) = 0. O

We are now ready to prove the following theorem.

Theorem 2.4. Suppose that q,(1) = 0. Then, foralla > 1and 0 < b < k, qak+1)+6(A) = (Qrr1(A))* @ (1).

Proof. Note that Theorem 2.4 trivially holds when a = 1 and b = 0. Suppose that 1 < b < k. Applying Lemma 2.3 shows
that

Qk+14b = Qi1 (M) Gp(A) — qr(A)gp—1(A) = qrr1 (M) Gp(A),

and thus Theorem 2.4 holds whena = 1and 0 < b < k. Suppose it holds when 1 <a < a’and0 < b < k, forsomeada’ > 1.
Suppose that 0 < b < k. Then, by Lemma 2.3,

Qo' k+1)+b(A) = Q@ 1)t 1)+b+k+1(A)
= Q-1 k+D)+b A Gt 1(A) + G =1y k1) +b—1(A) Gk (1)
= -0 +p M (1) = @ () (Wi (1)
= @) @), O
Label the roots of qn,(x) as An1,An2, ..., Apn. Using our result from the previous section, det(A(P, O Py)) =

det(q,(—An)). Corollary 2.2 implies that q,,(—A) = (—1)"q,(An). Further, we can factor g, (x) as

n n

0@ =[] (i —%) = D" ] (x = ).

i=1 i=1
Thus,
det(A(P, O Pp)) = det(qn(—Am)) = det ((_1)HQn(Am))

= det ((—1)“(—1)" []An- ,\n,ilm)>

i=1
n
= det (H(Am - )‘-n,ilm))
i=1

= l_[ dEt(Am - )\n,ilm) = qu(kn,i)-
i=1 i=1
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Since, by definition, it is immediately evident that P, O P, and P, O P, are isomorphic as graphs, it follows that
det(A(P, O Py;)) = det(A(Py, O Py)). Thus,

n m
l_[ dm ()Ln,i) = 1_[ qn (}\m,i)~
i=1 i=1

This leads to the following results.

Theorem 2.5. Suppose that n > 1. Then, [, gni1(kn) = (—1)"+D/2,

Proof. By inspection, Theorem 2.5 is true for n = 1. Suppose that it is true for some n > 1. Then, by Lemma 2.3,
Gnt2(Ans1,i) = —Gqn(Ansr,) forany i € [n+ 1], so
n+1 n+1 n+1

[ Tant20mi10 = []=anOns1) = D™ [ [ daOrnrr)
i=1 i=1 i=1

n
= (D" ] a1 0n) = (=1 (=1)r+D/2
i=1
— (_1)n+1+n(n+1)/2 — (_1)(n+1)(1+n/2) — (_1)(n+1)(n+2)/2. O

Theorem 2.6. Suppose that n, m > 1. Then,

ll[ o 0 if gdln+1,m+1) #1,
L] Anni) =4 Zqym2 i ged(n41,m+1) = 1.

Proof. Note that the product in the statement of Theorem 2.6 is the determinant of A(P,, O P,,), which, as discussed above,
is equal to the determinant of A(P,, O P,). Thus, without loss of generality, we may assume that n < m. We will induct
on the remainder when m + 1 is divided by n + 1. Suppose that this remainder is 0. Then, gcd(n + 1, m 4+ 1) # 1, and
m+1=k(n+ 1) forsome k > 1,som = k(n+ 1) — 1. Thus, by Lemma 2.3, g, (An,;) = 0 fori € [n], and it follows that the
product of these terms is zero. This verifies Theorem 2.6 for this case.

Suppose that the remainder when m + 1 is divided by n + 1is 1; we then have m + 1 = k(n + 1) + 1 for some k > 1.
Note that this implies that gcd(n + 1, m + 1) = 1 and m = k(n + 1), so, by Theorem 2.4, fori € [n],

Qm(}‘-n,i) = Qk(n+l)(}\n.i) = (qn—H ()\n,i))kQO(}\n.i) = (qn—H ()‘-n,i))k-
Thus,

n n n k
[ [amGnd) = [ [@ns1(hni))* = (1"[ qn+1(xn,i>) = (=),
i=1 i=1 i=1

by Theorem 2.5. Further,
((_])n(n+1)/2)k = (= 1)kmED/2 — (_qym/2,

Thus, Theorem 2.6 is true in this case.

Finally, suppose that Theorem 2.6 is true whenever the remainder when (m + 1) is divided by (n + 1) is less than r, for
some r > 1. Then, consider any (m + 1) and (n + 1) with (m 4 1) having remainder r when divided by (n + 1). It follows
that there exists k > 1 such that m + 1 = k(n + 1) 4 r, implying that m = k(n + 1) + r — 1. Then, once again applying
Theorem 2.4,

[ TanGad = [ J@ni1Gnid) @10 = [ J@ns1 i) ] [ @1 Gni)
i=1 i=1 i=1 i=1

n k n n
(]‘[ qn+1(xn,,-)> [Tar-1Gnd = ™2 T g1 (i)
i=1 i=1 i=1

Note that gcd(n + 1, m + 1) = gcd(r, n + 1), by construction. Further, the remainder when (n + 1) is divided by r is less
than r. Thus, by our induction hypothesis, if gcd(n + 1, m 4+ 1) # 1, then gcd(r,n + 1) # 1, so,

n n
[ JanGnd = (D™ ™2 [T g1 (i) = 0.
i=1 i=1
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Otherwise, gcd(n + 1, m+ 1) = 1,so0 gcd(r, n + 1) = 1, implying that

n n
[TanGud = D™ D2 [T g1 Ou) = (=)™HD2 (—pyne=0/2
i=1 i=1

(_-l)n(k(n+l)+r—1)/2 — (_1)11111/2. 0

The following corollary to Theorem 2.6 follows immediately.

Corollary 2.7. Suppose that n and m are positive integers. Then,

_]o if gdln4+1,m+1) #1,
det(A(P”DPm))—{(—U"m/Z if ged(n+1,m+1)=1. "
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