
Theoretical Computer Science 99 (1992) 143-264

Elsevier

243

On space-bounded synchronized
alternating Turing machines*

Commumcated by A. Salomaa

Recelvcd February 1990

Revised September 1990

Iharra. O.H. and N.Q. Tr$n. On space-hounded synchronized alternating Turing machines. Theor-

etical Computer Science 99 (1992) 143-264.

We continue the study of the computational power of synchronized alternating Turing machines

(S.4 T.M) introduced in (Hromkovi? 1986, Slohodob$ 1987. 19883. h) IO allow communication via

synchromzation among processes of alternating Turing machines. We are interested m comparing

the four main clasbcs of space-bounded synchronized alternating Turing-machines obtained by

adding or removing off-line capability and nondeterminism (lSUTM(S(n)). SUTM(S(n)).

lS.47’.%I(S(r1)). and SATM(S(,z))) against one another and against other variants of alter-

nating Turing machines. Denoting the class of languages accepted by machines in C by Y(C). we

show 3s our main results that Y’(IS(/T.~(S(n)))cY(SCTM(S(~~)))c~~(lSATM(S(n)))=

Y’(SA TM(S(r7))) for all space-hounded functions S(II)EO(~I), and Y’(ISUTM(S(~I)))=

Y(S~T~~I(S(n)))c Y’(IS.4TM(S(n)))= Y(SATM(S(II))) for S(rl)>~ Furthermore. we show that

for loglog(n)~S(~~)~n(log(~~)). Y(ISL’TM(S(n))) is incomparable to Y([I] ATM(S(rl))).

J/‘(L’7‘hf(S(r1))). -r/‘(IML’TII~(S(~I))). and Y(MUT.U(S(~I))). where hl.4Th4s are alternating Turing

mxhincs with moditicd acceptance proposed in (Inoue et al. 1989): in contrast. we show that these

relationships become proper inclusions when Io~(,I)~~(II)Eo(II).

For deterministic synchronized alternating finite automata with at mobt k processes (IDSA(L)

and DSA(L)F.4) we establish a tight hierarchy on the number of processes for the one-way case.

namely. Y’(IL)SA(n)~ cY’(IDSA(H+I)FA) for all rl>O. and show that JP(lDFA(2))-

U;_, L”(fX4(k)FA,&, 3 h err Dt‘A(k) denotes deterministic k-head finite automata. Finally WC

investigate closure properties under Boolean operations for some of these classes of languages.

1. Introduction

Alternating Turing machines (ATM) were proposed in [I] to model parallel

computation. Informally, an alternating Turing machine is a generalization of a

_I’ ‘. *Research supported in part hy NSF Grants DCRX9-18409 and DCR90-96221

0304.3975 92 $05.00 ,’ 1992 Elsevier Science Publishcrs B.V. All rights reserved

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81142492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

non-deterministic Turing machine which can. at some point during ;I computation.

split into sew-31 processes working in paraIL and indcpcndently: an input is accepted

iffall parallel processes tinish in accepting ~~)nlipuratioIls. The power of alternation on

various machine models has since been in\cstigated. and many intcrehting results have

been established in [IX. 17. 3. I I. 5. 6. I?. 13. 1-l. 15. 21. Howwr. the alternating

Turing machine is not a realistic model for real-world parallel c~~mputers. because it

dots not allow any communication among its processus. To rcmcdq the situation. two

modilications ha\e been propowd rccentl> to <tudy the clTwt of communication

among processes on the computation~il power of alternating Turing machines.

The lirst modilication. alternating Turing machine5 Lvith modilied acceptance

(,21.-l T,Zl). was proposed in [IO]. In thih model. an input is accepted ill’ the internal

states of the Iea\e5 of it\ computation tree l’orm an accepting state 4~21. It ~v;i’r

sho\vn that although for any space-bounded function S(U) Y(.\!.,l T.\J(.S(rl)))=

Y(.~TA~(S’(~I))) and ~‘(l.~l.-17‘.\I(S(,11))= ‘/‘(I 47’,2f(.S(~))). the modified model bc-

comes more powetful when onI!, universal stata art allo\ved and the space bound is

small.

The second modification. s> nchronkcd alternating Turing machines (S 4 I’!21). wa:,

introduced in [7] and inwstigated in [25. 22 241. A s~nchroniLt‘d alternating ma-

chine is an alternating machine with ;I \pccial subset of internal states called s!n-

chronizing states. Each synchronizing state i’r associated with ;I s~nchroniAng symbol.

If during the course of computation so111c process cntcrs ;I 5) nchroniAng state. then it

has to wait until aII other processes enter either an accepting state or ;I synchroni,Gng

stale ivith the same synchronking sb mbol. When this happens. all proccsscs

2 re :illowcd to continue their computation. It was ~~OMII in [X] that

S.1SP.3C‘E(S(,r))= u, ,,:~SP.~(‘~I(rlc~\‘”) for a11 space-constru~tiblc S (II). and hence

S,3SP.-1CE(S(rr))= U< .,,.s.-I’I‘I!\II:((..‘I’,’ , = i), ,(, ,_1 /‘[!\f/i((,,““’). This result cstah-

lishes the synchronized alternating Turing machine as the lirht model known to use:

space optimally. As another corollar!-. :VSf’.3(‘/: (II) = Y(2.S -IF’ -1). i.c. t\vo-May s!‘n-

chronizcd alternating linitc automata rccogniLe osactl!~ the class of contcxt-wnhiti\c

langll~lfes.

The parallel complexit> of hynchroni/ed alternating tinite automata was also

investigated in [Xl. whcrc several results wcrc sivc‘n for synchronked alternating linitc

automata bounded in the number or procc~scs (S.4 (k)F. 1). I-‘or example. it was

shown that for an! L>O r/‘([l].S-l(k)b’-l)= Y’([l]:Vk -I(X)) and therefore

I/‘([I] S.-l (k)k’4)c !I’([I] S.-l (I< + I) f 4 1. ~hcrc [I] S.-l(/~)k’.~l dcnotos [one-way] syn-

chronixd alternating linite autc~mata with at most I< pr~xxsws. and [I] .Yk’.-l (A)

dcnotcs [one-\\-a~] k-head linitc automata. Ir M;IS asked in [XJ whether the samc

relations hold true u hen these s> nchronwd automata ha\~c cjnl! universal states

(D.S.4 (k) b‘.-1 1. i.C.

(i) r/‘([l]D.S.-l(k)F‘.-l)~ i/‘(~l]D~‘.4(k)) for an\ k>l’!. 2nd

(ii) Y(lDSA(k)F.l)e i(‘(l/~.S:l(~+I)~.-I)for anyX>I’I

The sxond question ~21s solved partially in [Xl. bvherc it bcas stated that

for I, > I. r/‘(I DS-l (A ~ 1)F.d)c r/‘(I D.S.4 [(I)+ I] I-‘.4). and the positive answer

was given without proof as a corollary in [3]. The first question remained open

until now.

In [24] some properties of space-bounded synchronized alternating Turing

machines with only universal states were established. In particular, it was

shown that ~(lSr/TM(S(n)))c~(lSATM(S(n))) for S(n)~o(n). Furthermore, if

log(n)<S(n)Eo(n), then ~~(lSSUTM(S(n)))c~(SUTM(S(n))). As a corollary,

Y(ISr/TM(S(n))) is not closed under complementation for any S(n)~o(n).

In this paper we continue the investigation of properties of space-bounded synchro-

nized alternating Turing machines using the powerful Kolmogorov complexity theory

as our main tool [l9, 201. First we study the relationships among the four classes of

synchronized alternating Turing machines: one-way and with universal states only

(ISUTM). with universal states only (SUTM), one-way (1SATM), and general

(SATM). We also investigate their relationships with the corresponding plain and

modified variants of alternating Turing machines (1 UTM, UTM, IATM, ATM,

I MUTM. MUTM, I MATM. MATM). Our main result shows that

(i) Y(ISUTM(S(n)))c Y(SUTM(S(n)))cY’(ISATM(S(n)))=5?(SATM(S(n)))
for S(H)EO(II).

(ii) ~(ISUTM(S(r~)))=Y(SUTM(S(n)))c~(ISATM(S(n)))=Y(SATM(S(n)))
for S(n)>n.

(iii) Y(lSUTM(S(n))) is incomparable to Y(lATM(S(n))), P’(ATM(S(n))).

Y(UTM(S(n))), Y(lMUTM(S(n))), and Y(MUTM(S(n))) for loglog(n)<S(n)c

o(log(n)), and

(iv) Ic’(lSuTM(S(n)))c~(IATM(S(n))), Y’(UTM(S(n))), Jf’(lMUTM(S(n))),

and Y(MUTM(S(n))) for log(rr)<S(n)Eo(n).

Next we prove a more general result to answer positively the first open question

mentioned above. namely. Y’(1 DF.4 (2)) - ukX= i -I(‘(DSA (k) FA) #8. We also give

a different proof for the second open question ([3] suggested a solution which appeals

to results concerning the hierarchy of multihead automata in 126, 161). Finally, we

show various (non-)closure properties under Boolean operations for some of these

classes of languages. For example. we show that U(lDSA(k) FA) is not closed under

complementation, union, or intersection for any k > 1; Y’(DSA (k) FA) is not closed

under complementation for any k> 1; Y’(ISATM(S(n))) is closed under comp-

lementation. intersection, union, concatenation, and Kleene closure for all S(n); and

Y(SUTM(S(n))) is not closed under complementation for S(n)6o(log(n)). We also

give some partial answers for some of the remaining separation problems involving

different variants of alternating Turing machines.

The rest of this paper is organized as follows. Section 2 gives definitions relating to

different variants of alternating Turing machines and to Kolmogorov complexity.

Section 3 establishes our main result and gives our solutions to the two open

problems mentioned above. Section 4 gives various corollaries and related results, and

Section 5 concludes the paper with a discussion of some open problems.

2. Preliminaries

First we give precise definitions of operation and acceptance for synchronized

alternating machines. Our dctinitions use straightforward notions (instantaneous

description. E,,/. configuration tree) and arc based on those given in [X] (see also [I].)

Definition 2.1. A synchronized alternating machine (dcnotcd by S.4 TIZl) is ;L I?-tuple

:\I = (Q. CT. E, S, 2‘. c, S. L7, I‘. ii. q(,. F 1. whcrc

0 2‘ is ;I tinite i/?plrt t7//‘/7dJCf.

l c.S$z‘ arc the /q/i and ~.iqhr 771trr~lic~r~s respectively,

0 I‘ is ;I finite .stc~tr(qc’ ftrpc tr//Jlrtr/Jc)1 containing the special hltrrih .5~wiho/ B.

0 I7 is ;i tinite ~~//J/Ic~/JP~ o~‘.~~~r7c~/7r~orii~ir7~~ s~~ri7hol.s.

0 I” is the set of 7r77i7~wrrl .sttrrc’s.

l E is the set of c~.~i.~fvr~fitr/ .sfrl/~s.

l ~i~(I)x(~u[~.$~)xl~)x(Qx(l‘-IBI)x Ileft. stationary. right;‘) is the /ICI\-/

//IOIC /Y’/tr/io//.

:\I has ;I read-only input tape with the left and right markers c and $. and one

semi-infinite storage tape. initially filled with the blank symbols. ‘21 begins in state q,,.

A .S/C~I of :\I consist\ of reading one symbol from each tape. writing a symbol on the

storage tape. mo\ ing the input and storage tape heads in specified directions. and

entering ;I new state. according to the next move relation ci.

h?finitOn 2.2. An i/l.S/t/rJftr/lc’ol/.~ d(‘.\C~i/J~iO/l (ID) of :\C/ iS a11 ehlent (n‘. /Ji. q. 1, IJ,)EL *

x (,2’u I():) x Q x (I‘~ I13 1)* x .2:. where \\‘ is the content of the input tape (excluding

c and $). 71, is the position of input tape head. q is the internal state. I is the nonblank

content of the storage tape. and 11, is the position of storage tape head of &I.

An ID is 1rr7i7~~v~strl (~~~i.s~~v7titrl. .s~.//c./~/.o/~i-ir/~/. trc’wptir~(g) depending on the type of its

internal state. The irli/itr/ ID of ill on input .\- is (.Y. 0. q,). c. I). \vhere c is the null word.

Definition 2.3. Suppose I, and /? are t\\o IDS of .Zf and II follows from I, in one step

according to the next move relation (5. Then WC write I, I- ,, l2 and say that I2 is

;t .\77~‘~‘~‘,s,sor of I,

Definition 2.4. The /[r/l c,or1ti(/177.tr/iorl rrw of ,$I on an input word \\’ is ;I (possibl)

inlinite) Inbelcd tree r:’ such that

(i) oath node 18 is Iabeled hy some ID c’, of :\I:

(ii) the root is labeled by the initial ID of ,ZI on I\‘:

(iii) I’? i4 a direct desxndant of I’, ill’ c’, , k ,, (‘,
Each branch of T,‘,! is called ;I /J~YMI~,SY.

Definition 2.5. The synchronizing sequence (s-sequence) of a node v in a full configura-

tion tree Twith root v,, is the sequence of synchronizing symbols occurring in labels of

the nodes on the path from r0 to V. Two s-sequences are compatible if one is a prefix of

the other. Ifs, and s2 are two compatible s-sequences, and s2 is longer than s,, then we

use s2 - .sl to denote their difference.

Definition 2.6. A computution tree of M on an input \V is a (possibly infinite) subtree T’

of the full configuration tree Tc;f such that

(i) each node in T’ labeled by a universal ID has the same direct descendants

as in T;

(ii) each node in T’ labeled by an existential ID has at most one direct descendant;

(iii) for arbitrary nodes \,I and 19~ in T’, the s-sequences of \lI and \12 are compatible.

If A4 on input 11’ has no computation trees, then any subtree of TF that satisfies the

first two conditions above must have two processes with incompatible s-sequences. In

this case, we say M deadlocks on ~1. The two processes with incompatible s-sequences

are called deudlock processes and the nonmatching synchronizing states causing the

deadlock are called deudlock states.

Definition 2.7. An uccepting computation tree of M on an input u’ is a finite computa-

tion tree of M on 1%’ such that each leaf node is labeled by an accepting configuration.

Definition 2.8. The set of all internul cor$igurutions of M on inputs of size n with

spar-bound S(n) is given by I b=[(~,i,~): qEQ, O<i, I\i’I<IS(n)l, WE~~~““~). The

following inequality holds for the size of I k : I I& I < I Q I . I S(n) I . I f / s(n) < cS(“) for some

constant c depending only on M.

Next we define alternating Turing machines with modified acceptance. Since there

is no risk of ambiguity, we only give an informal definition; the full definition was

given in detail in [IO].

Definition 2.9. An alternating Turing machine with modified acceptance (MA TM) is

an alternating Turing machine some of whose internal states are called hulfiny states,

and whose set of accepting states F is replaced by a collection of accepting state sets

Cc Iv called ucceptiny stmte sets. An MATM M works in the same way an ATM does,

except that if M enters a halting state then it can make no further moves. Acceptance

of an input \t’ by M is defined by the set of internal states of the leaves LF of its

computation tree: M accepts H’ iff L~EC.

Definition 2.10. Let M be an alternating Turing machine of any kind. We say M is

(weukl?,) spuce-hounded by S(n) if for each input x of length n, if M accepts .Y, then there

is an accepting computation tree of M on s such that the space used by each node is at

most S(n).

Definition 2.11. Let S(U).L(II). and L’(n) be functions of 17. We say s(n)~[L(n), li(,7)1

if S(n)>L(n) and S(H)EO(L:(~I)).

Specifically. we are interested in the following classes of machines.

Definition 2.12. We use [I] DF.3 (k) ([I] A’F,-l(k)) to denote [one-way] k-head detcr-

ministic (nondeterministic) finite automata.

We call an SA T,2f 51 1/~‘rc~rrl7ir7istic, if it has only universal states. In this case. there is

a unique computation tree of :\I on cvcry input I\‘E lo. I j *.

WC LISL’ [I]~~‘T,Zl..2fC~‘T!~f.SI~T.~t~(,S(r7)) and [I] ~.4T.Zl.:21AT.~l..SATlLl)(S(r7))

to denote [one-way] i plain. with moditicd acccptancc. synchronized) alternating

Turing machines with universal states only and [one-way] (plain, with modified

acceptance. synchronkcdl alternating Turing machines space-bounded by function

S(r7), respectively.

We use [I] DS,-l (k) F.4 ([I] S.4 (k) F.4) to denote [one-way] deterministic (general)

synchronized alternating tinite automata such that any computation tree of ,ZI on an)

input 11. has at most I, Icaves.

We use the symbol c to denote proper inclusion for classes of languages.

We now define some important concepts in Kolmogorov (descriptional) complexity

theory. Informsllq. the Kolmogorov complexity of ;I binary string I\. measures how

succinctly \t’ can be described or coded (using a common coding method for all binary

strings.) We follow the approach in [?I].

Because there ia a universal computable partial function. there is some F’,, for which

since F,, can simulate any computable function F given the code of a Turing

machine ,$I) for E‘. We detine the w/trtirxl rlw~ripfior7tr/ cor~7p/c~.~it~~ k? : (0. 1. # I *

x 10. I. # i*+,Y by h’(.\-Ij,) g k,,,(.\-I!,). We define IY(.Y) g ii(.\-1~). where t: is the

null string.

Definition 2.14. A string \\‘E 10. I) * is ir7c~or77~~~c~.s.sihIc or IColrr~o~goror rtr/~tlor?~ (or just

rtrr7tlorr7) if K(.Y) >, /I/. Since there are 1” binary strings of length II but only 7” ~ I

possible shorter descriptions. there is a random string I’ of each length. Similarly. for

each J‘, ~‘(.\-IJ’)>~.Y holds for some binary string .Y of each length.

The fact that random strings exist in all lengths gives rise to a powerful proof

technique in proving lower bounds. which was popularized by [21]. While combina-

torial proofs of lower bounds must usually deal with aggregates of inputs, typical

Kolmogorov proofs establish lower bounds by showing that sor77e random strings are

not really random if the lower bounds fail. Since the proofs only deal with certain

random strings, they are usually much shorter and more intuitive.

3. Main results

First, we establish the relationships among different variants of space-bounded

synchronized alternating Turing machines. We start out by proving a few lemmas. In

the following proofs we say u p7~7cr.s~ p of’an SATM M measures out the length n with

arz s-scyuwce to mean that p enters an s-sequence of length 77+ I of the form .$sI,

where s0 and s, are special s-symbols reserved for this counting process.

The first lemma shows that synchronization cannot be replaced by nondetermin-

ism, modified acceptance, off-line capability and sublogarithmic space combined.

Lemma3.1. Y’(lDSA(2)FA)-Y(MATM(S(n)))#O,f or an~~,fincrion S(n)~o(log(n)).

Proof. LetL,=(.~#.~:.~~(O,l)+~. There is a 1 DSA(2) FA M to accept L1 as follows:

on input x # _r. M splits universally into two processes p1 and pz. Process pz moves

onto the symbol # and then synchronizes with process p1 to compare .Y and J.

M accepts s # x iff s = J’. Note that M uses only constant space.

On the other hand, it was shown in [lo] that L1$9(MATM(S(n))) for

S(77)Eo(log(n)). n

It was shown in [24] that Y’(lSUTM(S(n)))cY(SUTM(S(n))) for

S(n)e[log(n), o(n)l. The next lemma shows the same relation holds for S(n)Eo(log(n)).

Lemma 3.2. Y(DSA(Z)FA)-Y(lSUTM(S(n)))#B,f Or anyfirnction S(n)Eo(log(n)).

Proof. Let LZ = (SE [O, 1) ’ : x is a palindrome). There is an DSA(2) FA M that accepts

Lz as follows: on input s, M splits universally into two processes p1 and pz. Process pZ

moves onto the right marker S and then synchronizes with process pr to compare

.Y and .yR. M accepts Y iff .Y is a palindrome. M uses only constant space.

Now suppose there is some ISUTM(S(n)) N that accepts Lz where S(n)co(log(n)).

Let s be a random string, t7 = 2.1 .x 1. and consider the computation tree of N on .x@

with its processes labeled in some fixed order. We say that processes p and y are in the

suw c~lm.s i if at the time their input heads move off the prefix .Y they have the same

internal configuration i. Let ki and li be the largest and smallest numbers of s-states

that processes in class i enter while reading .Y. We say that process p in class i is

repwsenttrtiw if it enters ki s-states while reading X. Let K. denote the ordered list of all

s-states a process 11 in class i will enter while reading the right marker $. It is easy to see

that the following assertions hold for any processes p and ~1 of A’ on .Y.Y~:

(i) if /> and (/ are in the same class and both arc representative. then the s-sequences

they generate on .Y.Y~ are the same:

(ii) suppose p and C/ arc in the same class i. and 11 is representative whereas y is not.

Denote the dif-ference of the two s-sequences by the string of s-symbols (1. Then the

s-sequence that process /I will make on reading the remaining input string xR has the

form (1’ C. where P is ;I prefix of rl and /‘is some integer. Let tl, denote the longest such

string for class i. () rl, 1 = k, ~ I,) and c , and ii’ bc the corresponding \,alues.

Nat. WC note that if tMo processes 1~ , and 11~ of :V dcndlock on .x11’ for some string

11’ of length 1.~1. then one deadlock process must have reached the right marker S, else

A’ re.jects the string .\-~tx?\-“. Furthermore. it is easy to see that either both I>, and 11~

are reprcscntative of their classes. or I), and 17 1 are in the same class and one of them is

representati\c.

Let C = ; (i. /ci. li. ‘I;. / tli 1. I ci 1): ill’; I. Then the following program P uses C‘ to

dctcrmine .x:

We show the correctness of P. If \I’=.Y then all representative processes end LIP in

accepting states and thcrc is no deadlock. so I-’ prints .\-. Conlcrsely. if P prints 11,“.

then ail rcprcscntative processes of X on .x\t‘ tinish in accepting states. and there are no

deadlocks. because P makes sure that no two representative processes deadlock with

each other (using I<, and 7;‘s). and that no two processes in the same class deadleck

with each other (using l/,‘s. c,‘s. /;,‘s, and 7j.s to verify the s-scqucncc gcneratcd by each

representative process). Hcncc. ~1 is ;L palindrome. i.e. 11.~ = .A.

WC have If~~=(.+I~~~(~_\.~)+~(‘~. where C’ is some constant. (’ contains at most
I[” / = /p’“l wctors. an d the siLe of each vector is at most (11:. S(u) + /I,~ log(~) +

ill: .S(ri)l 1~:“”). where II, . II,. II,. A,. hi arc all constants, 5~) / (‘1 < II~“‘” for some

constant Ii,,. Since S(r7)~o(Iog(11)). for sulticiently large .Y \ve have lPJ<l i-1. This

contradicts the randomness of .x.

Remark. L2 WI be accepted by a I SAF’.rl :t” as rO~iows: on input \\.. :\:’ splits

universally into lwo proccsscs 17, and 11~ Process /J, makes sure that the first and the

last symbols are the same, and in the process measures out the length of w with an

s-sequence. Using this s-sequence as the yardstick, process pz then compares the

corresponding bits of the rest of the string LV. For example, to compare the ith bit,

pz measures out the length 2. (i- I). reads the ith bit, and guesses the position

of the corresponding bit to verify that they are the same, marking out the length

1 M’ 1~ 2. (i - 1) in the process. At some point pz nondeterministically decides that it has

finished comparing and quits.

This is not surprising, because later on we will show that for SATMs bounded in

space by any function S(n) the one-way and two-way models are equivalent.

The next lemma improves Lemma 3.2 by showing that the off-line capability cannot

be replaced by synchronization for any S(n)E[loglog(n),log(n)I.

Lemma 3.3. d;Y(UTM(S(n)))-Y(lSUTM(S(n)))#Qj,for an~~,func.tion

S(n)E[loglog(n),log(rl)~.

Proof. Let L3= (B(n)b.u# J': B(n)=bin(l)#bin(2)#...# bin(n) & Ixl=log(n)

& .u#_V), where bin(i) is the shortest binary representation of the integer i. That

L3~_Y(UTM(loglog(n))) was shown in [14]. We show that L3 cannot be accepted by

any lSUTM(S(n)) for S(n)Eo(log(n)).

Suppose L3 is accepted by some lSUTM(S(n)) M with s(n)E[loglog(n),log(n)l.

Let I be a random string of length log(n) relative to B(n)h. i.e. K(s_IB(n)tl)>[.ul, and

consider the computation tree of M on J’= B(n) h s # s. In general if M deadlocks on

B(n)h s # Y, then one deadlock process must have read the right marker $, else

M rejects B(n)Qs#.ur. Since B(n)Q.u#s$L3, there are three cases: there must be

a process that loops or finishes in a nonaccepting state, or two processes that deadlock

with each other.

In the first two cases, let C=(l, i), where i~lk’ is the internal configuration of

a process p1 of N right after it finishes reading B(n) h x # , and one of whose children

either loops or ends up in a nonaccepting state. In the third case, there are two

processes that deadlock with each other, p1 and pz. One of them must deadlock while

reading the right marker $, say pz, without loss of generality. If p1 deadlocks before it

finishes reading the prefix B(n) Q .Y # with s-state s, then let C = (2, i2, k2, s1), where i2

is the internal configuration of pz right after it finishes reading B(t1)Q.u # , k2 is the

number of s-states pz will enter before it deadlocks with pl. Else if p1 and pz deadlock

after they finish reading B(n)Qs#, let C=(3, il, k,, i2, k,), where i,,iz are the

internal configurations ofp, ,pz right after they finish reading B(n)Q s #, k,, k2 are the

number of s-states p1 ,p2 will, respectively, enter before they deadlock.

Then the following program P uses C to determine X:

P prints I\’ if there is a process \vhich loops. or ends in ;I nonaccepting state. or two

processes that deadlock \vith each other. itT \\‘=.Y. Not counting the string B(rt)tz. WC

have 1 PI SC, + log log(rl)+ ((‘1 for some constant c’. and I(‘1 <r/, ‘S(1 N/)<dz S(n) fo1

some constants II , and rl?. For suticiently largc X. we have 1 P 1 < log(rl) = 1.~1 since

S(IJ)EO(~O~(IJ)). But then K (.\.I U(IJ): I< /.Y I. and this contradicts the randomness

of .Y.

It was shown in [24] that Y(ISC~7‘.\1(S(rfJ))~ Y(I.S.~T:~I(S(II))) for .S(H)EO(~J).

The next lemma improLes this result for .S(IJ)EO(~O~(IJ)).

Proof. Let LJ = I .x # I’: .x. J‘E IO. I I _ bi \-#J.;. There isa lS.4(7)F..4 M that accepts L5

as follows: on input .Y # 1‘. AI first pucsscs whether .Y and J‘ have diKerent lengths or the

lith symbol!, of Y and J’ differ for SOIIK k<min ~I_Y/.~J’~ I_ In the first case where it

decides .Y and J’ ha\e dificrent lengths. ‘21 first splits universally into two processes ,J,

and ~7~. Process 11, detcrministicall~ measures out the Icngth of.\- with an s-scqucncc.

Process 1~~ first gucsscs that J’ i’r shorter (longer) than I and then vcrifics its guess by

measuring out the same s-scqucncc as p, doa and noting that J‘ has less (more)

symbols than the s-scqucnce.

In the second case where it decides .\- and J’ dilrer at the Xth symbols for somt

li<min :I.Y~. 1~‘; I. .I1 again splits universally into two processes /I, and 17~. Proccs, 17~

picks a symbol of.y. and process 11~ picks ;I symbol of j‘. and then both verify that thcl

pick two symbols of the same position by measuring out the s;111lc’ s-sequence. Finally.

11, and 11~ verify that the two symbols are diRerent by guessing each other’s symbol.

Note that ,Zf is one-\~a\- and um onl) constant space.

Suppose L, is accepted by some .SI;T:\I(S(IJ)) A’. where .S(rl)Eo(Iog(IJ)). We assume.

without lash of generalit!. that .2: only halt\ on the right marker S. Let s be 21 random

string. II= ?I.\-1 + I. and consider the computation tree of !V on .\- # .Y. Since .X # _Y$L,.

there are three cases: there is sonic process 11, of IV 011 .\- # Y that halts in ;I nonacccpt-

ing state. that loops. or there arc two prc)ccsscs 11, and 11~ that deadlock with each

other.

In the first GIW. where there is ;I nonaccepting process 11. let c’,, be the internal

conliguration of 17 bvhen it lirst moves right from the prefix .\- #. and let E=(I. c’,,).

During the c~~mputation. 17 \ isits the prefx \- # at most / f’t 1 = c,~““’ times for some

constant 1’. Let (‘ bc the MY of all triples (I,. iA. ok). bvhere ia and oI are the internal

configurations of /J when it cntcrs and csits .\- # in the lith visit.

In the second cast, whcrc thcrc is ;I looping process 17. if 17 never exits from the prefix

.Y # .\- then let E = (2. I): other\% isc let I: = (2. c’,,). where c’,, is delined as in the pre\,iouh

case. During the computation, p visits the prefix .Y # at most j IllI =cS”‘) times, for

some constant c, before looping occurs. Let C be the set of the first (,S’n’ triples

(k, ik, ok), where ik and ok are the internal configurations of p when it enters and exits

.Y # in the kth visit. If p never exits from s# after the kth visit then let ok= - 1.

In the last case there are two processes p, and pr that deadlock with each other. Let

C be the set of all tuples (k.ik.ok. I, k t I , Ok. Tk) where i, and ok are the internal

configurations of p, when it enters and exits I # in the kth visit, and tk is the number

of s-states p, enters during this period. Similarly, lli, 01,, and T, are the corresponding

data for p2. Again, there can be at most c”“) such tuples.

Next, let c1 and cZ be the internal configurations of p, and pz when they first move

right from .Y #. and rl, and d2 be the numbers of s-states they have entered at that

point. Let nz be the number of s-states p1 and pz enter before deadlocking. If p1

deadlocks while it is reading the prefix .u#, then let I, be the number of s-states

p1 enters since the last time it crosses the symbol # (or since the beginning if p1

has not crossed #) before it deadlocks and s, be the deadlock s-state of p, ; else,

let II = - 1 and .sl = - 1. Let I2 be defined in a similar fashion, and let

E=(3,rll,I,.s,,l2,S2,(‘,,(1, .(.2,d2).
Then the following program P uses C and E to determine X:

We show the correctness of P. If M’= .Y then N rejects s # 1~ and so P prints M’, because

P is able to detect a looping process, a nonaccepting process, or two processes that

deadlock with each other. Conversely, if P prints 1t1 then N rejects .Y # M’, so IV=.Y.

We have I PI = c + log(I-Y I) + I C I + I E 1. where c is some constant. There can be at

most r;(n) elements in C, and the size of each element is at most cT(“‘.(e,.S(n)

+log(n)), so /Clde:‘“‘“‘. where e,,ez, and eJ are constants. We also have I E I<

(e,.S(n)+c),. log(n)). where e4 and es are constants. Since S(n)E[loglog(n),log(n)l,

for sufficiently large .Y, we have I PI <I .Y I. This contradicts the randomness of .x. 0

The next lemma shows that when the space bound is at least log(n), synchroniz-

ation does not increase the power of one-way alternating Turing machines with only

universal states. In contrast, modified acceptance dock increase the power of this

class [IO].

Lemma 3.5. Y’(lSUTM(S(n)))=_Y(lUTM(S(n))) ./iv any S(n)>log(n).

Proof. Given an ISL’T,M(S(rl)) :If we construct a I L’T,%l(S(rl)) ,21’ to accept the

same language as follows. First we describe the simulation for the case when the

computation tree of :\I on its input .Y has only two processes. $1’ stores the internal

configurations of both processes /> , and 1): of M in the worktape of ;I process 1~‘. and it

keeps track of the number of s-states each process has entered with ;I counter. Process

p’ must simulate both 17, and /‘? one step at a time. and it will move the input head

only when both 17, and II? are linished with the current input square. Suppose during

the simulation process p, enters an b-state, and the counts of s-states entered so far are

/c, for [J, and li, for 17~. If I,, <I\, then p’ continues the simulation. Else if li, 3k2 then 11’

spawns of‘ ;I child process I.’ to make sure that the l;,th s-state that II? enters has the

same s-symbol. If they are not the same. 1.’ rcjccts. A symmetric procedure is carried

out if /I~ cntcrs an s-state. It is easy to see that M’ accepts the same language ;IS

:\,I does. and that AI’ uses tht: sxnc amount of space. since the counters take at most

S (rl) space.

We now generalir.e the simulation given above to the general GISC. where an ID 01

M may have many direct dcsccndants. Again. every process /I’ of M’ is used to

simulate two processa of !!I. To do that. each 11’ stores in its worktape the internal

configurations of the two proccsscs 11~ and 1p2 of ‘21 that it is to simulate. along with

two counters to keep track of the numbers of s-states these processes ha\,c cntcrcd so

far. During the simulation /I’ will mo\e its input head only if both /J, and /I? arc

linished with the current input square. and 11’ follows the procedure described abo\,e

to make sure that I), and 11: \\ill not deadlock with each other. For the sake 01

uniformity. LVL’ assume that initially &I’ simulates two copies of the initial proccah

of .21.

Suppose during the simulation. proax 11, enters ;I uniLers:tl state and splits into

tl dcsccndant proccsscs. M here tl is bounded b> a constant depending onI> on AJ. Then

11’ will split into (” 5 ’) dcsccndant proceacs. each simulating ;i pair of proccsscs chosen

from p2 and the descendants of 11, Finally. suppose ;I process I.’ of .%I’ is used to \crifq

the kth s-symbol of some process I’ of 31, and during the process it finds that proctx

I’ enters ;I uni\cr5al state and \plita into tl dexxndants. Then I.’ al5o splits into

tl descendant\ to verify the kth s-symbol of each descendant of I‘.

It i5 easy to see that .\I’ accept5 it4 input .\ 0 e\cry process of .\I finishes

in an accepting state. atid thcrc xc no deadlocks o .ZI accepts Y. Also. !\I’

uses the same amount of space ;IS ,I1 dots bccau\c the counter\ take up at most S(U)

5p:lcc.

When ofl-line capability is present. the situation is slightly dif‘erent. In the next

three lemmas we show that when the space bound is at least log(~). ncithcr synchron-

kation nor modilicd acceptance add to the computational power of two-way alternat-

ing Turing machines with only universal states.

Lemma 3.6. I/‘(.SL’rM(S(r7)))= i/‘(C;7‘:1f(S(r7))) fog 011~’ .S(~)>log(r~).

Proof. We modify the simulation technique given in [24] to prove the lemma. Given

an SUTM(S(n)) A4 where S(n)>log(n), we construct a uTM(S(n)) M’to accept the

same language as follows. On input N’, M’ simulates each process of M’ with a process

of its own. When the current internal state of some process p of M is an s-state, the

corresponding process p’ of M’ spawns off a process c whose worktape contains the

s-symbol associated with the s-state and the number of s-states p has entered so far.

Since each process makes at most d’(‘*) moves, d is a constant, and S(n) 2 log(n), there

is enough space to store them. Process c restarts the computation of M on M’ and

verifies that the corresponding s-symbols in other processes match with the one stored

on its worktape. If a discrepancy occurs, M’ rejects. It is easy to see that M and M’

accept the same language. 0

To obtain the same result for MUTMs, we first show that MUTM(S(n)) is closed

under complementation for S(11) > log(n).

Lemma 3.7. Y’(MUTM(S(n))) is closed under complementation,for any S(n)>log(n).

Proof. Given a MUTM(S(n)) M where S(n)>log(n), we construct a MUTM(S(n))

M’ to accept the complement language using the technique used in [9] to show

nondeterministic space is closed under complementation.

The idea is to cycle through all configurations to find the set of internal states of the

leaves of the computation tree of M on some input 1~. Since there are at most dS(“)

configurations. d is a constant, and S(n)>log(n), there is enough space to do this. Let

R(n) denote the number of configurations reachable from the initial configuration in

at most II steps. We use two counters and R(1) to identify all leaf configurations in the

computation tree of M on \t’ as follows:

irt LEA VES = 8

lrt R(1) = the number of corljgurutions reachable in one step ,from

the initial cor$~~wution

repeat until R(n)=R(n+ I)

,fhr rach cor$yurution c, in counter 1 do

,fi)r each cur$i(-luration cz in counter 2 do

hrrrnch

u) do Wt/?iH<J

h) wr-$v that cz is reachahle,~knn the initial conjyuration in

at most n steps (with more branching). For rach brunch:

If it is not halt in state yR

else $c 1 is reachuhle ,from cz in at most one step then

increment R (II + 1)

$‘cI is u halting conjiyurution then

add its state to LEAVES

Corollary 3.8. ~‘(.ZfI’T:~1(S(rr)))= r/‘(l’7..tI(.S(rr))) ,/ov ~/JIJ’ .S(r~)~log(,~l.

Proof. Given ;I AlI /‘!\I (S(H)) :\I whcrc S(u)> log(~). \+t: 5how how to construct

;I L’T,V(.S(H)) AI’ \vhich accepts L(.21). Bv the proof of Lemma 3.7 there is some

:\1C:7‘.If (S(u)) ,‘I’ that XCC~~S L(.\I) with onl 2 halting states q , and qK, and M how

accepting state set5 are I q, : and i q , . q,< i Now Ict .Y ’ be ;I I. 7‘.lf (S(II) J obtained from

the A1 L’T,tI(S(/I)) :Y by defining the \et of accepting states to be : qK I. It is clear that

N’ uses only S(rl) \p;tce. and that .x~LtAl) o Y is acccptcd b! .\I c> .\- is rejected bq

3’ * the internal states of all Ica\cs of the computation trw of .Y on .\- are qK 0 .A”

acccpta .\.

In the next two lemmas we sharpen ;I main result in [X] \vhich statcs that

UC. , 0 i/‘(,1’7‘,21(II c,“‘“‘))= I/‘(S.-l I.!\! (S(u))) for any space-constructible function

S(H). WC \vill modif! the proofs leading to thi5 result to remo\e the requirement of

space-constructibitit~ for S(H) and the cjll-line capabilit! of the S -lT:\fs.

Lemma 3.9. (,J< ,, I/‘(.‘L’ T:\l(I/ c”“’))= (/ (IS. 1 T,Zf(S’(H))) \rw t//i!‘ /,r/lc’tic,/~ S(H).

Proof. We M ill ShO\l tht i/‘(.S-l/‘,\f(.S(//)))~~), ,, ~‘I!~f~.Zf(//~~~~““‘))~

I/‘(lS,4T,2f(S(,I))) for any function S(u). The lir5t (c) relation was >hoMn in [X.

Lemma 3.11 for spank-constructible .S(~I). WC rcproducc the proof below and sho~z

how to remow the sp~l~e-construutibilit! requirement. <;i\cn ~111 I S -1 7‘,21 (S(n) I AI. WC

can construct m .\;T,If AI’ to simulate :\I b!, doing ;I breadth-lirst-like traversal of the

computation tree of A1 on its input \\’ of si/e II. Each prows4 of .\I i4 simulated until it

enters an a-state: Al’ Mill compare the corrcaponding s-statcs to tllahc surt: that no

deadloch occurs before continuing the simulation. Since there are at most II. cl,““’

distinct configurations of A1 on an input 11‘ of aia II. ,%I’ needs at 11lc>st II cS6”’ space. fol

some constants rl and c. at an! time to maintain the currcnt IDS of all proccsscs ol

A1 on n‘. It is easy to see that the space-constructibilit! rcquircmt‘nt is not neccssar!:

,!I’ keeps track of the length I of the longest worktape used during the simulatic~n. and

at the end of the simulation uses up II .c’ squares of tape. Then on any input u’ of

length n, M uses at most S(n) space iff M’ uses at most II. r”‘“’ space.

The second (G) relation was shown in [S, Lemma 3.23 for space-constructible S(n)

and for off-line SATMs. We reproduce the proof here and show how to remove both

conditions. First assume that S(n) is space-constructible. Given an N TM (n . ?““) M,

we construct a 1SATM (S(n)) M’ to simulate M as follows. On some input M’ of length

n. M’ first splits into II + 4 processes A, B, D,, , D, , , D,, + 1 in such a way that the head

of Di is on the ith position of the input tape and both A and B have their input heads at

the first position. Since S(n) is space-constructible, we assume that each of these n+4

processes has the word 0”‘“’ m its worktape. Each process Di then splits into cS””

copies D! 0:“‘“‘. The significance of these processes are as follows: M’ uses

A to represent the position of the input head and its state, each D{ to represent the

((, sc”l.(i- I)+j)th square of the worktape. and B to represent the position of the

worktape head (suppose the input head of process B is on hth square and its work-

tape contains the number O<H~<C .““. then the worktape head of M is at position .

(h - 1) P”, + rn).

To simulate a step of M, M’ performs the following steps: first M’ synchronizes all

of its processes with a special s-symbol S,,. Then some process D{ has to decide that

the worktape head is on the square it represents. To do that, B spawns a copy B’ to

measure out deterministically the lengths h and VI with two s-sequences. Each process

Di decides either to verify that (h. nr)=(i,,j) or to verify that (h. m)#(i,,j) by spawning

a copy (D’): and the technique described in Lemma 3.4. All other processes guess

along with process B. M’ concludes this phase with a special s-symbol S, At the end

of this phase. exactly one unique process 0: satisfies the relations (h, m)=(k, I).

In the next phase, processes B, A, and 0: synchronize among themselves (by

guessing each other’s symbol) to determine the next move of M. All other processes

guess along with them. Next A updates its state and the position of its input head to

reflect the change of the input head position and state of M: process B updates its

input head position and worktape content to reflect the change in the position of the

worktape head of M; process 0; updates the symbol at the square it represents. M’

ends this phase with a special s-symbol S,.

In the last phase. if process A is in a final state of M, A deterministically produces

the special s-symbol S3 and stops: else it deterministically produces the s-symbol So to

restart the process. Other processes guess along with A. This concludes the description

of the simulation of M by M’.

Now we show how to make M’ an on-line SATM. We note that only processes

A and B need the off-line capability: all processes Di stay stationary throughout the

simulation, and their copies (D’)! move only to the right. First we show that B is not

necessary. and then we show how to replace A with II on-line processes El,. , E,.

The position of the worktape head can be maintained by marking the state of the

process D! representing the square the head is currently on. Initially, the state of

process 0:’ is marked. To move the head. process 0:’ needs only to identify its

successor D{: by entering two s-sequences of lengths i’ andj’. Only one unique process

11:: can match this sequence. so the position of the worktape head will be correctly

maintained at all times. Hence. process R can be removed. Note also that processes

0: are still on-line processes. Similarly. the position of the input tape head of :M can be

maintained with /I on-line processes E,. . E,,. so process A can be removed also.

Now we show how to remove the requirement of space-constructibility. Before

spawning &the processes 0:‘s. AI’ guesses the amount of worktape of M needed by

input 11. and marks the amount on the worktapcs of all of its children processes. If

during the computation, .I1 attempts to use more space than allowed then ‘$2’ rejects.

Clearly. Al’ accepts I\‘ within space S(/I) itl’ AI accepts 11’ within space (r7.c.““‘). This

removes the requirement of spuce-constructibility for S(r7). i I

We are now ready to establish the relationships among difrcrcnt variants of

synchronized alternating Turing machines.

Theorem 3.10. Y(IS.-ITlZf(S(/7)))= Y(S.~T.~I(S(/I))) f;/r t/l/ fi//~c~tio/~s S(n).

Proof. Follows immediately from Lcmmu 3.9 and [Xl. 1

Corollary 3.11. Y(SLT,2f(S(/7)))c I/‘(IS.-lT,Zf(S(/7))) Ii//. rr/i~~S(/7)3log(/7)

Proof. Follows from the fact that I/‘(I’T2if(S(/7)))= Y(.YTiZf(S(/7))) for

S(U) 3 log(~). Lemmas 3.6 and 3.9.

Theorem 3.12. (i) ~‘(lSC,‘T:2f(S(/7)))c [/‘(SI,~TA%f(S(/7)))c Y(lS.4T:1f(S(/7)))=

Y(S.4Thf (S(r7))) /iw ~777)’ /ir77c,rior7 S(rrlro(r7).

(ii) ~/‘(l.SC’T:~f(S(/l)))= !!‘(SC’T.Zf(S(/7)))c Y(IS.4T.l1(S(/7)))= i/‘(S,4T:Z1(S(J7)))

for t//l)’ S(/7)a/7.

Proof. The relations between I/‘(ISC,‘T.\I(S(/I))) and r/‘(SI’ir,21(S(/I))) follow from

Lemma 3.2 and ;I result in 1241. The relation between i/‘(.SL:Thf (S(r7))) and

Y(I S.-l T:\l (S(r7))) follows from Lemma 3.4 and Corollary 3. I I. and the relation

between r/‘(ISA T:\f(S(r7))) and i/‘(S 4 Tnf (S(r7))) follows from Theorem 3. IO.

C‘onsidering the results of the lemmas above, \vc expect no surprise from the nest

theorem.

Theorem 3.13. (i) r/‘(ISLrT.Lf (S(r7))) is i/rc~f///l/~trrtrl/l~~ IO Y’ (1,4 TAI (S (17))).

i/‘(.47,Vf(S(/7))). Y’(L:T:Zf(S(/7))). Y(1,2fL’71\1(.S(/7))). t//d Y’(,291’T,2rl(.S(/7))) ,fiw

S(/7)E[loglog(/7),log(/?)~.

(ii) Y’(ISL’TAf(S(r7)))c i/‘([l].47,2f(S(/7))). Y’(C:TAf(S(/7))).

ii’(I.\fC;T:1f(.S(r7))). t7/7rl Y(:\IL:TAf(S(/7))) 1;//. S(/l)E[Iog(/7). /Il.

Proof. The first part follows from Lemmas 3.1, 3.3, and the fact that

L,EY(~MUTM(S(II))) for S(n)>loglog(n). The second part follows from Lemma

3.5, [IO] and Corollary 3.8. n

Below we give our solutions to the open problems posed in [8]. The first result

shows that for all li>O iY([l]DSA(k)FA)c~([l]DFA(k)). We begin by stating

a corollary to Lemma 3.4.

Corollary 3.14. Y’(IDFA(2))-lJ;=, Y(DSA(k)FA)f@

Proof. Follows from Lemma 3.4 and the fact that there is a IDFA(2) A4 that accepts

Lb: on input s # ~3. one head of M moves onto the # symbol and then works in

tandem with the other head to compare .Y and y. M accepts 8 .Y and J differ in one

position or their lengths are different. M rejects its input if no # is found. n

Theorem 3.15. Y’([l]DSA(k)FA)cY’([l]DFA(k)),fbr dl k> 1.

Proof. Follows immediately from Corollary 3.14. n

The second result establishes a tight hierarchy on the number of processes for

1 DSA(k)FAs. We need a few terminologies for our proofs.

Definition 3.16. For 111 >O, II 30, let

L m. ,I =(,~,#\\‘z#...#~~,#\~,#“‘#\~,#\~,#”:\~I.s~(O,lj*).

Definition 3.17. Suppose M is a 1 DSA (k) FA which accepts L,,,, for some HI> I, II > 0,

k >O. Let 1~ be in L,,,,, and 13 be a prefix of M*. and p be a process in the computation tree

of M on IV. We use

(i) SS,,,. to denote the s-sequence of process p after reading the prefix I‘,

(ii) SS,. to denote the longest s-sequence among all processes of M after reading I’,

(iii) ss,. to denote the shortest s-sequence among all processes of M after reading 1’.

Also, we call SS,.- SS,,,. the esprctrd s-seyurnce o~‘procc~ss p L!fiev reudiny 1’. In other

words. to avoid deadlocks, process p must enter these s-states after reading I’.

Lemma 3.18. L,,,,cY(lDSA(I)FA)-2’(lDSA(l)FA),fbr trll ~20.

Proof. By definition, 9’(IDSA(I) FA) is just the class of regular languages. It is

evident that LI,,, are not regular. 0

Proof. Let \t‘1 be random and let SS ,,,,, , ,, = ss ,,,, n Then for all I.EL, ,, ,). process

17 on input \I’, # I,# can enter no more than SS,,., i* s-states, or else. the following

program P can be used to determine \\‘, :

Clearly. P prints j‘ ifT j‘= \I‘, We have 1 I’! <c’, log(1 w, /)+ (‘: for sonic constants c,

and (‘:. But then for suticiently large random 11’~ . we have / I-” 1 < 1 lt., 1, This contra-

dicts the randomness of \\‘, Hence there is ;I random string \\‘1 . a constant rl dcpend-

ing only on \\‘, and M. and ;I process [J of !\I such that for all I’ in L,, , ,,, .
I ss,.,,., tf ! * I Gd.

Proof. Suppose Ail is ;I I DSA (//I) F.4 that accepts L,,,,,, for some))I> 1. II > 0. Then by

Lemma 3.19. thcrc is ;I random string 113, . ;I constant rl depending only on 1%~~ and M.

and a process p of AI. such that for any I.EL,,,- ,,(,, ISS, ,,,, *I n 1 <r/. Without loss of

generality. Ict \J = I.

We construct ;i 1 DS.3 (//I ~ I)F.3 31’ to accept L,,, , .,, , , ,,., , as follows. Let

(/J~ . [J?. . /J,,,) be states of the /ii processus of :\I after reading it‘, # Some of them

might be null. if the corresponding proccsscs do not exist at the time. &I’ on input

1.E L,,, , ,, + , ,, + , , branches into ~7 ~ 1 processes with initial states ([p, , p2]. /I,{. _. . pm).

Note that the first two processes of 31 are combined into enc.

:\I’ continues to Gmulate :\I on input I. # ” + ’ I” ‘. except for some minor

modifications:

(i) for i> I. process i of AI’ refrain5 from cntcring the next ISS,,., n -SSi,,,., r? 1
s-states. Instead. it checks to see whether they form the expected

s-sequence for process i+ I of :!I and. if so. it enters some equivalent but

nonsynchronizing states. Else. process i rc.jccts the input. Once the cxpccted

s-sequcncc has been confirmed. process i will resume entering s-states.

(ii) The first (combined) process of If’ will simulate process 2 of M in the manner

described above. it will also verify that process I is not involved in ;i deadlock

in the computation of .\I on I\‘, # r# n‘, # ‘I. Becvuse process I of ,Zil on

\v, # r # N, #’ does not enter more than d+e .(1 w1 I+ n) s-states (e is some

constant depending only on M), it suffices to keep track of the first

d+ c’(1 \v, 1-t n) s-states of the other processes of M. This can be done with

constant space.

(iii) M’ treats the first I H’, I #‘s that comes after 11 as wl.

Clearly, I’ #““““‘EL,,_ l,n+I ,,II I iff)\‘I # r# 1~~ #“EL,,,., iff there is an accepting

computation of M on MI, # r # ~1, #’ itf M’ accepts L’ #“+I “‘11. n

Theorem 3.21. L,,.E~(~~SA(~+~)FA)-.~(lDSA(m)FA)for all m>O, n30.

Proof. We use induction on rn. The theorem is true when m= 1 because of Lemma

3.18. Suppose LI_l., E~(~DSA(~)FA)-_Y(~DS.~(~-~)FA) for some 1~1 and all

n>O. We show L,~~E~(IDSA(I+I)FA)-~(I~SA(I)FA)~~~ all n>O.

Suppose for some II, L,,.EY(~DSA(I)FA). Then by Lemma 3.20, L1_l,n+k~

_Y’(1 DSA(l- 1) FA) for some k 30. This contradicts the induction hypothesis. On the

other hand, the following lDSA(m+ 1) FA M accepts L,,,, in a straightforward

manner: a process p1 of M sequentially outputs as its s-sequence the first m segments

of the input delimited by two #‘s, or a # and the left endmarker; at the end of each

segment. p1 spawns off a process which seeks and outputs the corresponding segment

as its s-sequence. Also p, verifies that the input contains exactly (2m - 1 + n) # sym-

bols. It is clear that M accepts .Y iff XEL,,,,. Hence the theorem holds for

all 01 > 0. 0

4. Related results and corollaries

We give a number of corollaries and other results related to our main theorems.

Corollary 4.1. The jdlortYq classes are c~losed under complementution, intersection,

union, concutenution, and Kleene closuw:

(i) Y([l]SATM(S(n)))for unj’ S(n).

(ii) Y(SUTM(S(n)))Jiw S(n)>log(n).

(iii) Y(lSUTM(S(n))),for S(n)>n.

Ah:

(i) .Y’(SUTM(S(n))) is not closrd w&r c,omplemrntation,for S(n)Eo(log(n)).

(ii) Y(1SU TM (S(n))) is not closed w&r complementutionjbr S(n)Eo(n).

(iii) .Y’(lSUTM(S(n))) is not closrd undrr uniorl,for S(n)eo(log(n)).

(iv) Y’(lSUTM(S(n))) ,I d Ii IS c ox un er intersectionfiw S(n)E[log(n),nj.

Proof. The first part follows from Lemmas 3.9 and 3.6 and Theorem 3.12(ii).

The first two items of the second part follow from Lemma 3.4 and [24]. To prove

the third item, consider L8 = (.Y # s # y: Y, YE (0, 1 }* 1 and L9 = {x # y # x:

.Y,JF(O, 1;*;. It is easy to see that L, and L9~P’(1SA(2)FA); however, by using

an argument similar to the one given in Lemma 3.2 \ve can show that

L,uL,,$ i/‘(lSC:T,ZI(S(u))) for any S(rr)~o(log(r~J). The fourth item follows from

Lemma 3.5.

Proof. WC construct ;I I DS.4 (2) F.3 ‘II to accept 1_4. On input .x. :CI splits into

2 processes 11, and 11~. Process /I: mo\‘es to the right until it reaches the symbol # and

then synchronizes with 11, to compare the tirst half and the second half of the input.

.\I accepts .y itf .x = II # I’. II. 1.6 10. I i ’ and II = I’. or y dots not have the form II # I..

II. 1’E ; 0. I ; +. The corollar! then follows from Lemma 3.4.

Proof. For wch I, >O. Ict K, = j II’, # 11‘~ # “. # i\‘i. #.Y # j’ # 11‘~ # ... # \\‘? # \I‘, :

n~;s..\-.vE;o. 1 ;* I. Lllld .SA = j .Y # 1\‘, # \\‘J # ” # \\‘A # \\‘k # ” # 11’2 # 11.1 #)‘I

r\.; s. \-. J‘E ; 0. 1 1 * ;. Roth R, and S,, are in Y/‘(I DS.3 (I, + I) k’.3). but K,nS,, = Lk + , ,, is

not. by Thcorcm 3.Zl. Hence r/‘(I DS.4(/;)F,4) is not closed under intersection for

all I, > I.

Suppose there is \onie lDSl(l, + I)/,‘.-I AI that accept> .Sku7;. Ilsing the saniC

technique shown in Lemma 3.19. ti’e can lind ;I random string \\., and ;i process /I of

.I1 on \\‘, # such that for all I’E L k, ,,. procaT 11 on input I\., # I‘ # enters no more than

I/ s-states. \zhcre i/ i3 ;I con5lant depending onI1 on 11’~ and .\I. Hut then using the

simulation technique in Lemma 3.20. \ve can show that LA,,, can bc accepted by some

I DS.1 (/;)f’-l .\I’. Thih contradicts Thcnrcm 3.21: hcncc r/‘(IDS.1 (/i)F..-l) is not closed

under union for all Ii > I.

Corollary 4.4. i/‘(D.S.-l (2)/+.-l l-u;_, i/‘(I DF.~(/c))#O.

Proof. Let Li = u,:_ , L ,,,, ,,. Li can be xccpted by ;I DS,‘l (3) F.4 :\I as follows. On

input I(‘. :\I splits into 2 processcs 11, and 11~. Process ~7~ move\ onto the right market

S and then synchronizes with /I, to compare the \\.,‘h. Note that /jr mo\es back\vard

aftor each comparison. whereas /J, move\ for\+ard. Also. ‘21 make\ sure that there is an

odd number of #‘s. :\I accepts \I’ iIf \I‘ is in L,. Suppose Li i\ accepted bq some

I Db’.-l (k) II’ for some I\. Then we can construct ;I I DE‘.3 (A) .1; to accept the language

L , ?, + ,,,j by making sure that \\’ has exactly I<. (I< I) + I # ‘s beforc accepting. Thia

contradicts ;I result b> Yao Riiest [X3]. which show I!_,,, , ,,,,$ i/‘(IDI-, (k)). Hence

the corollary follo\vs.

Corollary 4.5. cjk’ .(l Y’(DS.-l(k)FA)c !l(‘(DE‘.4(2))

Proof. Given LEY(DSA(~)FA) for some k>O, we construct a DFA(2) A4 to accept L:

on each input x, M first does a depth-first search with one head to identify the shape of

the computation tree of M on s without paying any attention to synchronizing

symbols. This can be done in constant space because there are only finitely many

different trees with k leaves. M then uses this information to compare all (i) possible

pairs of s-sequences of the processes of M on .Y using two heads. M accepts .Y iff all

k processes finish in accepting states and there are no deadlocks. 0

Corollary 4.6. JY’(SUTM(S(n)))-Y(MUTM(S(n)))#CI ard _Y(SUTM(S(n)))-
Y(ATM(S(n)))#0,ftir trn~’ S(u)E[loglog(rl), log(n)/.

Proof. Follows directly from Lemma 3.1. 0

5. Concluding remarks

Although the relationships between U(lSUTM(S(n))) and other classes of alter-

nating Turing machines are well understood. some corresponding relationships con-

cerning Y’(SU TM (S(n))) remain open or only partially understood. Below we list

some partial results and remaining open questions as directions for further research.

The following relationships are known:

(i) Y’(IATM(S(n)))-Y’(UTM(S(n)))#0 for S(n)E[loglog(n),log(n)I ([H]).

(ii) Y(SUTM(S(n)))- Y’(ATM(S(n)))#0 for S(n)E[loglog(rr),log(n)l (Corollary

4.6).

The following questions are open:

(i) Y(UTM(S(n)))-Y’(lATM(S(n)))#0 for S(~r)E[loglog(rr),log(n)) ([15])?

(ii) Y’(lATM(S(n)))-Y(SUTM(S(n)))#0 for S(n)E[loglog(n),log(n)~?

(iii) Y’(DSA(k)FA)c Y’(DSA(k+ l)FA) for all li>O?

(iv) Characterize I/‘(SU TM (S(n))) for S(H)EO(log n).

(v) Y(lSATM(S(n)))-.Y’(lATM(S(n)))#0 for S(tr)E[log(n),nl‘?

Note that if U(lS.4 TM (log(n))) = Y’(1 A TM (log(n))) then alternating Turing

machines use space optimally, and hence P= NP (see [S]). We conjecture that the

answer to (iii) is positive and offer the class of languages c = (x1 # x2 # ... # xi:

.Y , , .Y ?, . .Y,E 10. I) * are pairwise compatible) as candidate witness languages.

References

[I] A.K. Chandra. D.K. Kozen and J. Stockmeyer. Alternation J. .4CXf 28 (1981) 114-133.

[I] J.H. Chang. O.H. Ibarra and B. Ravikumar, Some observations concernmg alternating Turing
machines using small space. Iufinw. Pm C.Y.S. Lctf. 25 (19X7) l-9.

[3] J. Dassou. J. Hromkovii-, J. Karhumaki, B. Rovan and A. Slobodovli. On the power of synchroniz-

ation in parallel computations, in: f+w. /4//r MFCS ‘XY. Lecture Notes in Computer Science. Vol. 379

(Springer. Berlin. 1989) 196 ~206.

14) E.M. Gurari and O.H. Ibarra. (Semi-)alternating stack automata, ,‘Mark. SJ~srrms 7&orJ, 15 (1982)

2 I I-224.

[S] J. Hromkovii-. Alternating multlcounter machines with constant number of reversals. I$,mr. Process.
Letr. 21 (1985) 7-9.

[b] J. Hromkovii-. On the pouer of alternation m automata theory. J. Cou~pur. S?srem SC;. 31 (1985)
28-39.

[7] J. Hromkovi?, Hoti to orgamze the communication among parallel processes in alternating computa-

tions. Manuscript, 1986.

[X] J. HromkoviT. J. KarhumBki. B. Rovan and A. Slohodovi. On the poucr of synchronization m

parallel computations. Tech. Report, Cornemus L’niverslt), Bratislava. Czechoslovakia, Department

of Theoretical Cybernetics and Institute of Computer Science. 1989.

193 N. Immerman, Nondctermlmstic space is closed under complementation. in: Pro<. 3r(/ IEEE Conf: 0,1

Structure 111 Complc~irj~ 71worj. (19%) I I Z- I 15.

[IO] K. Inoue. A. Ito. and 1. Takanami, Alternating Turmg machlnes with modified accepting structure,

manuscript. 1989.

[1 I] K. Inoue. A. Ito, 1. Takanami and H. Taniguchl Two-dlmen~ronal alternating Turing machines with

only universal states, Itlforru. trwl CmIw/ 55 (19X2) 193-221.

[I?] K. Inoue. A. Ito. 1. Takanomi and H. Tamguchi. A space-hierarchy results on two-dimensional

alternating Turing machines with only universal states. //1/or/tz. SC;. 35 (1985) 79-90.

1131 K. Inoue. H. Matsuno. I. Taknnami and H. Trmiguchl. Alternating slrnple multihead finite automata.
Throrr~. Con~p~ct. SC,;. 36 (I 985) 29 I-308.

[14] K. Inoue. I. Takanami and R. Vollmar. Alternating on-hne Turing machines with only universal states

and small space bounds, T/lrt,rer. Co/,~pur. %I. 41 (I YXS) 33 l-339.

[IS] A. Ito. K. Inoue and I. Takanami. A note on alternating Turmg machines using small space, km.

IECE Jrrpu” E 70 (1987) 990- 996.

[16] K.N. King, Alternating fimte automata, Ph.D. thesis. Unlversit? of California. Berkeley. 1981.

[I 71 K.N. King. Alternating multihead finite automata, 7hrowr. C‘ompur. %i. 61 (2 988) 149-I 74.

[IX] R.E. Ladner. R.J. Llpton and L.J. Stockmeyer. Alternating pushdown automata, in: Proc. lYrh IEEE

FOCS (1978) 92-106.

[I91 M. Li and P.M.B. Vitdnyi. Two decades of applied Kolmogorov complexity in mcmoriam Andrei

Nikolaevich Kolmogorov I903- 1987, in: P/w. 3rd /EEL Cm/. OH Srrucmw 111 Complexir~ Theory

(1988) X0-101.

[20] M. Li and P.M.B. Vitrinyl. A neu approach to formal language theory by Kolmogorov complexity
(prehminary versinn). in: Prw. 14rh ICALP’S’Y. Lecture Notes in Computer Science. Vol. 372

(Springer. Berlin. 19X91 506-520.

121 J W.J. Paul, J.I. Sciferas and J. Simon. An information-theoretic approach to time bounds for on-line

computation, d. Co,np~ir. Sj .\fctn Si. 23 (I 9X I) 10X%1 26.

[22] A. Slohodovi. On the poser of communication in alternating computations. Student Research

Papers Competition. Section Computer Science (in Slovac), Comcnius University. Bratislava.

Czechoslovakia. 1987.

[23J A. Slobodo\i, On the power of communication in alternating machmes. in: Pro<. 13rh MFCS 2%.

Lecture Notes in Computer Science. Vol. 324 (Springer. Berlin. 198X) 518-528.

[24] A. Slohodovi. Some properties of space-hounded synchronized alternating Turing machines with

only umversal states. in: Pro<,. 5rh 1.!4k’CS ‘X8. Lecture Notes in Computer Science, Vol. 381 (Springer,

Berlin, 1988) 102 113.

[25] J. Wiedermann. On the po\brr of synchronrzation. Tech. Report. VUSEI-AR, Brntislava. Czecho-
slovakia, 1987.

[26] A.C.C. Yao and R.L. Rirest. k+ I heads are better than k. .I. rlC‘hl 25 (1978) 337-340.

