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Abstract

Ibarra. O.H. and N.Q. Tran. On space-bounded synchronized alternating Turing machines, Theor-
etical Computer Science 99 (1992) 243-264.

We continue the study of the computational power of synchronized alternating Turing machines
(SATM) introduced in (Hromkovi¢ 1986, Slobodova 1987, 1988a.b) to allow communication via
synchronization among processes of alternating Turing machines. We are interested in comparing
the four main classes of space-bounded synchronized alternating Turing machines obtained by
adding or removing off-linc capability and nondeterminism (1SUTM(S(n)). SUTM(S(n)),
1SATM (Stn)). and SATM(S(n)) against one another and against other variants of alter-
nating Turing machines. Denoting the class of languages accepted by machines in C by #(C). we
show as our main results that L (ISUTM(Sm)c L SUTM(S(n))c L {UISATM(S(n))=
S (SATM(S(n))) for all space-bounded functions S(n)eo(n). and X (ISUTM(S(n)))=
LPSUTMS))c L (USATM (S = L (SATM(S(n))) for S(n)=n. Furthermore, we show that
for loglog(m<S(meodogin)) LISUTM(S(n)) is incomparable to Z([1]JATM(S(n)),
PUTMS))N. L (IMUTM(S(m)). and ¥/ (MU TM(S(n))), where M ATMs are alternating Turing
machines with modified acceptance proposed in (Inoue et al. 1989). in contrast. we show that these
relationships become proper inclusions when log(n) < S{n)eo(n).

For deterministic synchronized alternating finite automata with at most k processes (1DSA(k)F A
and DSA(k)FA) we establish a tight hierarchy on the number of processes for the one-way case.
namely, Y {(I1DSAMFA}c L (1DSA(n+1)FA) for all n>0. and show that (1 DFA(2))—
Uk', L LDSAFA );40 here DF A(k) denotes deterministic k-head finite automata. Finally we
investigate closure properties under Boolean operations for some of these classes of languages.

1. Introduction

Alternating Turing machines (ATM) were proposed in [|] to model parallel
computation. Informally, an alternating Turing machine is a generalization of a
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non-deterministic Turing machine which can. at some point during a computation,
splitinto several processes working in parallel and independently: an input is accepted
iff all parallel processes finish in aceepting configurations. The power of alternation on
various machine models has since been investigated. and many mteresting results have
been established in [I8 17,40 11, 506, 12, 130 140 150 2], However. the alternating
Turing machine is not a realistic model for real-world parallel computers. because it
does not allow any communication among its processes. To remedy the situation. two
modifications have been proposed recently to study the effect of communication
among processes on the computational power of alternating Turing machines.

The first modification. alternating Turing machines with moditied acceptance
(MATAM). was proposed in [ 10]. In this model. an input is accepted iff the internal
states of the leaves of its computation tree form an accepting state set. It was
shown that although for anyv space-bounded function S(nt Y(MATM(S(m))=
LATMS )y and 2 (UMATAM(Snh = (1 ATA(S(m)). the modified model be-
comes more powerful when only universal states are allowed and the space bound is
small.

The second modification, synchronized alternating Turing machines (S47A ). was
introduced in [7] and investigated in [25. 22 24]. A synchronized alternating ma-
chine is an alternating machine with a special subset of internal states called syn-
chronizing states. Each synchronizing state is associated with a synchronizing symbol.
If during the course of computation some process enters a synchronizing state., then it
has to wait untit all other processes enter cither an accepting state or a synchronizing
state with the sume synchronizing svmbol. When this happens, all processes
are allowed to continue their computation. It was shown in [8] that
SASPACE(S(n)) = U o NSPACE (ne™™y for all space-constructible S (i), and hence
SASPACES =), .o SATIMEW>" ) =), .o ATIME(*"). This result cstab-
lishes the synchronized alternating Turing machine as the first model known to usce
space optimally. As another corollary. NSPACE(m = ¥ (25AF ). ic. two-way syn-
chronized alternating finitc automata recognize exactly the class of context-sensitive
languages.

The paralicl complexity of synchronized alternating finite automata was also
investigated in [8]. where several results were given for synchronized alternating finite
automata bounded in the number of processes (SA(kYFA) For example. it was
shown that for anv k>0 Y([1]SAkF )= ([ITINFA(k) and  therefore
CSARE e 2 1]SHtk+ D Foa where [1]SA(k) FA denotes [one-way ] syn-
chronized alternating finite automata with at most & processes. and [TJNFA(L)
denotes [one-way ] k-head finite automata. [t was asked m [8] whether the same
relations hold true when these synchronized automata have only universal states
(DSAKYF AL Le.

() LAVIDSAKYF Ay L] DFA(k) ) for any k> 17 and

() (I DSAKFAYc (I DSAtk+ D FA) for any k> 17

The second question was solved partially in [8]. where it was stated that
for k>1. (IDSAk—1FA)ye (I DSA[(A)+1]FA) and the positive answer
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was given without proof as a corollary in [3]. The first question remained open
until now.

In [24] some properties of space-bounded synchronized alternating Turing
machines with only universal states were established. In particular, it was
shown that L (1SUTM(S(n)))= X (1SATM(S(n))) for S(n)eo(n). Furthermore, if
log(n)<S(n)eo(n), then L (ISUTM(Sin)))c ¥ (SUTM(S(n))). As a corollary,
L (1SUTM(S(n))) is not closed under complementation for any S(n)eo(n).

In this paper we continue the investigation of properties of space-bounded synchro-
nized alternating Turing machines using the powerful Kolmogorov complexity theory
as our main tool [19, 20]. First we study the relationships among the four classes of
synchronized alternating Turing machines: one-way and with universal states only
(ISUTM). with universal states only (SUTM), one-way (ISATM), and general
(SATM). We also investigate their relationships with the corresponding plain and
modified variants of alternating Turing machines (IUTM,UTM, IATM, ATM,
IMUTM, MUTM, IMATM.MATM ). Our main result shows that

(1) LUSUTM(S(n))= L(SUTM (S(n))c L(1SATM (S(n)))=2L(SATM (S(n)))
for S(myeo(n).

(i) LASUTM(S(n))=L(SUTM(S(m))= L (ISATM (S(n)))=L(SATM (S(n)))
for Stn)y=n,

(i) L(1SUTM(S(n))) is incomparable to ¥ (1ATM(S(n))), L(ATM(S(n))).
LWUTM(S(n)), (IIMUTM(S(n))), and L (MUTM (S(n))) for loglog(n)<S(n)e
o(log(n)), and

(v) LUASUTM (S« LTATM(S(m))), L(UTM(S(n))), L(IMUTM(S(n))),
and ¥ (MUTM (S(n))) for log(n) < S(n)eo(n).

Next we prove a more general result to answer positively the first open question
mentioned above. namely. ¥ (IDFA(2)—|J/., L (DSA(k)FA)#0. We also give
a different proof for the second open question ([3] suggested a solution which appeals
to results concerning the hierarchy of multihead automata in [26, 16]). Finally, we
show various {non-)closure properties under Boolean operations for some of these
classes of languages. For example, we show that ¥ (1DSA(k)FA) is not closed under
complementation, union, or intersection for any k> 1; #(DSA(k)FA) is not closed
under complementation for any k>1; ¥ (1SATM(S(n))) is closed under comp-
lementation, intersection, union, concatenation, and Kleene closure for all S(n); and
L (SUTM(S(n))) is not closed under complementation for S(n)eo(log(n)). We also
give some partial answers for some of the remaining separation problems involving
different variants of alternating Turing machines.

The rest of this paper is organized as follows. Section 2 gives definitions relating to
different variants of alternating Turing machines and to Kolmogorov complexity.
Section 3 establishes our main result and gives our solutions to the two open
problems mentioned above. Section 4 gives various corollaries and related results, and
Section 5 concludes the paper with a discussion of some open problems.



246 O.1. Tharra. N.Q. Tran
2. Preliminaries

First we give precise definitions of operation and acceptance for synchronized
alternating machines. Our definitions use straightforward notions (instantancous
description. by, . configuration tree) and are based on those given in [8] (see also [1].)

Definition 2.1. A synchronized alternating machine (denoted by SATAM ) is a 12-tuple
M=(Q.U.E.8,2.¢.,S. 1.1 0.4, F). where

2 is a finite input alphabet,

¢.S¢2 arc the Ieft and right markers respectively,

I is a Ninite storage tape alphabet containing the special blunk symbol B.

1T is a finite alphabet of synchronizing symbols,

U is the set of universal states.

.

°

°

°

.

o I is the set of existential states.

® Sci(y.s): geUwE. sell} is the set of syachronizing states (s-states),

e O=UUEuS isa finite set of states,

® (.0 is the initial stute.

e F<=Q is the set of accepting states.

® SO X(2Ué S x I x(Qx(1' =" B)yx {left. stationary. right!?) is the next
move relation.

A has a read-only input tape with the left and right markers ¢ and $. and onc
semi-infinite storage tape. initially filled with the blank symbols. M begins in state ¢ .
A step of Al consists of reading one symbol from cach tape. writing a symbol on the
storage tape. moving the input and storage tape heads in specified directions. and
entering a new state. according to the next move relation o.

Definiton 2.2. An instantancous description (ID) of M is an element (w. p;. g,z p,JeX*
(NI )yx O x(I"— [B))* x N. where w is the content of the input tape (excluding
¢ and $). p; is the position of input tape head. ¢ is the internal state. = is the nonblank
content of the storage tape, and p, is the position of storage tape head of M.

An 1D is universal (existential, synchronizing. accepting) depending on the type of its
internal state. The initial 1D of M on input x is (x. 0. ¢, . e, 1). where € is the null word.

Definition 2.3. Supposc I, and I, are two IDs of M and I, follows from [, in one step
according to the next move relation o. Then we write Iy by, [, and say that I, is

a successor of 1y

Definition 2.4. The full configuration tree of M on an input word w is a (possibly
infinite) labeled tree 7Y such that
(1) cach node v is labeled by some 1D ¢, of M
(it} the root is labeled by the mitial 1D of M on w:
{iii) v, 1s a direct descendant of vy il ¢, Fy ey,
Each branch of T} is called a process.
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Definition 2.5. The synchronizing sequence (s-sequence) of a node v in a full configura-
tion tree 7 with root vy is the sequence of synchronizing symbols occurring in labels of
the nodes on the path from vq to v. Two s-sequences are compatible if one is a prefix of
the other. If s, and s, are two compatible s-sequences, and s, is longer than s, , then we
use s, —s; to denote their difference.

Definition 2.6. A computation tree of M on an input w is a (possibly infinite) subtree T*
of the full configuration tree T such that
{i) each node in 7" labeled by a universal ID has the same direct descendants
asin 7T;
(i1} each node in 7" labeled by an existential ID has at most one direct descendant;
(i) for arbitrary nodes v, and v, in 77, the s-sequences of v, and v, are compatible.
If M on input w has no computation trees, then any subtree of T¥ that satisfies the
first two conditions above must have two processes with incompatible s-sequences. In
this case, we say M deadlocks on w. The two processes with incompatible s-sequences
are called deadlock processes and the nonmatching synchronizing states causing the
deadlock are called deadlock states.

Definition 2.7. An accepting computation tree of M on an input w is a finite computa-
tion tree of M on w such that each leaf node is labeled by an accepting configuration.

Definition 2.8. The set of all internal configurations of M on inputs of size n with
space-bound S(n) is given by I'yy={(q,i,w): geQ, 0<i, |w|<|S(n)|, wel''5"!} The
following inequality holds for the size of I': | 1% | <[ Q| |S(n)|- | T3 < 5™ for some
constant ¢ depending only on M.

Next we define alternating Turing machines with modified acceptance. Since there
is no risk of ambiguity, we only give an informal definition; the full definition was
given in detail in [10].

Definition 2.9. An alternating Turing machine with modified acceptance (MATM) is
an alternating Turing machine some of whose internal states are called halting states,
and whose set of accepting states F is replaced by a collection of accepting state sets
C < 29 called accepting state sets. An MATM M works in the same way an ATM does,
except that if M enters a halting state then it can make no further moves. Acceptance
of an input w by M is defined by the set of internal states of the leaves LY of its
computation tree: M accepts w iff LMeC.

Definition 2.10. Let M be an alternating Turing machine of any kind. We say M is
(weakly) space-bounded by S (n) if for each input x of length n, if M accepts x, then there
is an accepting computation tree of M on x such that the space used by each node is at
most S(n).
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Definition 2.11. Let S(n). L{n), and U (n) be functions of n. We say S(n)e[ L(n), U(n)]
if Sim)=Lin) and S(meo (U (n)).

Specifically, we are interested in the following classes of machines.

Definition 2.12. We use [1]DFA(k) ([1]NFA(k)) to denote [one-way] k-head deter-
ministic (nondeterministic) finite automata.

We call an SATM M deterministic if it has only universal states. In this case. there is
a unique computation trec of M on cvery input we [0, 1}*.

Weuse [1TIUTM. MUTM. SUTM [ (Stn))yand [1] ATM . MATM, SATM | (S(n))
to denote [one-way] {plain, with modified acceptance, synchronized} alternating
Turing machines with universal states only and [one-way] |plain, with modified
acceptance, synchronized| alternating Turing machines space-bounded by function
S(n), respectively.

We use [1]DSAKYFA ([1]1SA(K)FA) to denote [one-way] deterministic {general)
synchronized alternating finite automata such that any computation tree of M on any
input w has at most k leaves.

We use the symbol < to denote proper inclusion for classes of languages.

We now define some important concepts in Kolmogorov (descriptional) complexity
theory. Informally. the Kolmogorov complexity of a binary string w measures how
succinctly w can be described or coded {using 1 common coding method for all binary
strings.) We follow the approach in [21].

Definition 2.13. A relative coding scheme is any computable partial function
FoiOol#¥>0 100 We  detine  relative  descriptional — complexity
KpilO010# ¥ % (0L # ¥ ->Nu, « | by

Kpixiy)=min {|d]: de (0. 1/*& F(d # v)=x]|.
Because there is a universal computable partial function. there is some F, for which
VFI3epVx v [Kp (X[ )SKp(x [y +ep]

since F, can simulate any computable function F given the code of a Turing

machine M, for F. We define the relative descriptional complexity K001 # *
def N . def .

x 10,1, # 1*>N by K(x|y)= Kg (x]1y). We define K(x} = K(x]|¢). where & is the

null string.

Definition 2.14. A string we [0, 1}* is incompressible or Kolmogyorov random (or just
random) if K(x)=]|x|. Since there are 2" binary strings of length n but only 2" —t
possible shorter descriptions. there is a random string r of each length. Similarly. for
cach v, K(x|v)=|x| holds for some binary string v of each length.
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The fact that random strings exist in all lengths gives rise to a powerful proof
technique in proving lower bounds, which was popularized by [21]. While combina-
torial proofs of lower bounds must usually deal with aggregates of inputs, typical
Kolmogorov proofs establish lower bounds by showing that some random strings are
not really random if the lower bounds fail. Since the proofs only deal with certain
random strings, they are usually much shorter and more intuitive.

3. Main results

First, we establish the relationships among different variants of space-bounded
synchronized alternating Turing machines. We start out by proving a few lemmas. In
the following proofs we say a process p of an SATM M measures out the length n with
an s-sequence to mean that p enters an s-sequence of length n+ 1 of the form sjs,,
where s, and s, are special s-symbols reserved for this counting process.

The first lemma shows that synchronization cannot be replaced by nondetermin-
ism, modified acceptance, off-line capability and sublogarithmic space combined.

Lemma 3.1. L (IDSAQQ)FA)— L (MATM(S(n)))#® for any function S(n)eo(log(n)).

Proof. Let L;={x# x:xe!0, 1} |. Thereisa 1DSA(2) FA M to accept L, as follows:
on input x # y, M splits universally into two processes p, and p,. Process p, moves
onto the symbol # and then synchronizes with process p; to compare x and y.
M accepts x # v iff x=y. Note that M uses only constant space.

On the other hand, it was shown in [10] that L, ¢ ¥(MATM(S(n))) for
S(n)eo(log(n)). [1

It was shown in [24] that L(ISUTM(Sm))c L (SUTM(S(n))) for
S(n)e[log(n), o(n)|. The next lemma shows the same relation holds for S(n)eo(log(n)).

Lemma 3.2. Z(DSAQR)FA)— L (1SUTM(S(n)})#0 for any function S(n)eo(log(n)).

Proof. Let L,={xe}0, 1} ":xisa palindrome}. There isan DSA(2) FA M that accepts
L, as follows: on input x, M splits universally into two processes p, and p,. Process p,
moves onto the right marker $ and then synchronizes with process p; to compare
x and xR M accepts x iff x is a palindrome. M uses only constant space.

Now suppose there is some 1SUTM (S(n)) N that accepts L, where S(n)eo(log(n)).
Let x be a random string, n=2-|x|. and consider the computation tree of N on xx®
with its processes labeled in some fixed order. We say that processes p and ¢ are in the
same class i if at the time their input heads move off the prefix x they have the same
internal configuration i. Let k; and /; be the largest and smallest numbers of s-states
that processes in class i enter while reading x. We say that process p in class i is
representative if it enters k; s-states while reading x. Let T; denote the ordered list of all
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s-states a process p in class i will enter while reading the right marker $. It is easy to see
that the following assertions hold for any processes p and ¢ of N on xx®:

(i) if p and ¢ are in the same class and both are representative, then the s-sequences
they generate on vx* are the same;

(it} suppose p and ¢ are in the same class i. and p is representative whercas ¢ is not.
Denote the difference of the two s-sequences by the string of s-symbols d. Then the
s-sequence that process p will make on reading the remaining input string x® has the
form d” ¢, where ¢ is a prefix of d and fis some integer. Let d; denote the longest such
string for class i, (|d;|=k;—1I;) and ¢; and f be the corresponding values.

Next. we note that if two processes p, and p, of N deadlock on xw for some string
w ol length | x|, then one deadlock process must have reached the right marker S, else
N rejects the string xww®x® Furthermore. it is casy to see that either both p, and p.,
are represcntative of their classes, or py and p, are in the same class and one of them is
representative.

Let C=ti ki T 0d . e
determine x:

) i€l }. Then the following program P uses C to

let C he defined as abore
Jor all we 0. 11F of length | x| do
for cach iel’ do
use C to continue the computation of N on xw starting ai w for o
representative process in class i also update its counter of s-states
il i <ki generate d; and e; (and from those the correct s-sequence
of the representative process of cluss i of N on reading x®)
endfor
print w® il all representative processes end up in accepting states and
no deadlock oceurs (this can be checked using ks, T7s. ds and ¢/'s)
endfor

We show the correctness of P. 1f w® = x then all representative processes end up in
aceepting states and there is no deadlock. so P prints x. Conversely. if P prints w¥,
then all representative processes of N on xw finish in accepting states, and there are no
deadlocks. because P makes sure that no two representative processes deadlock with
cach other (using &; and 77's). and that no two processes in the same class deadlsck
with cach other (using d;s, ¢/'s. ks, and T7's to verify the s-sequence generated by cach
representative process). Hence. v is a palindrome, ie. wf=x.

We have [ Pl=c+log(|x[)+|C|, where ¢ is some constant. ¢ contains at most
1% =h§" vectors, and the size of cach vector is at most (h2-S(n) + hy - log(n) +
hy S+ 3™ where hy s hy iy hs are all constants, so jC]<hS™ for some
Pl <|x|. This

constant fi,. Since S(n)eotlog(n)). for suthiciently large v we have
contradicts the randomness of x.

Remark. L, can be accepted by a 1S4FA N’ as [ollows: on input w. N’ splits
universally into two processes py and p.. Process p; makes sure that the first and the
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last symbols are the same, and in the process measures out the length of w with an
s-sequence. Using this s-sequence as the yardstick, process p, then compares the
corresponding bits of the rest of the string w. For example, to compare the ith bit,
p, measures out the length 2-(i—1), reads the ith bit, and guesses the position
of the corresponding bit to verify that they are the same, marking out the length
|w|—2-(i— 1) in the process. At some point p, nondeterministically decides that it has
finished comparing and quits.

This is not surprising, because later on we will show that for SATMs bounded in
space by any function S(n) the one-way and two-way models are equivalent.

The next lemma improves Lemma 3.2 by showing that the off-line capability cannot
be replaced by synchronization for any S(n)e[loglog(n),log(n)|.

Lemma 3.3. Z(UTM(S(n)))— L (1SUTM(S(n)))#0 for any function
S(n)e[ loglog(n),log(n}|.

Proof. Let Ly=!B(nbx#): B(n)=bin(l)#bin(2)# --- # bin(n) & |x|=log(n)
& x#y !, where bin(i} is the shortest binary representation of the integer i. That
Lie?(UTM (loglog(n))) was shown in [ 14]. We show that L; cannot be accepted by
any ISUTM (S(n)) for S(n)eo(log(n)).

Suppose L; is accepted by some 1SUTM (S(n)) M with S(n)e[loglog(n).log(n}|.
Let x be a random string of length log(n) relative to B(n)k, i.e. K(x|B(n)b)>|x|, and
consider the computation tree of M on y=B(n)b x # x. In general if M deadlocks on
B(n)f x # x, then one deadlock process must have read the right marker §, else
M rejects B(n)hx # xx. Since B(n)gx # x¢L;, there are three cases: there must be
a process that loops or finishes in a nonaccepting state, or two processes that deadlock
with each other.

In the first two cases, let C=(1, i), where iel\ is the internal configuration of
a process p; of N right after it finishes reading B(n)hx # ., and one of whose children
either loops or ends up in a nonaccepting state. In the third case, there are two
processes that deadlock with each other, p; and p,. One of them must deadlock while
reading the right marker $, say p,, without loss of generality. If p, deadlocks before it
finishes reading the prefix B(n)fx # with s-state s, then let C=(2,i,, k5. 5,), where i,
is the internal configuration of p, right after it finishes reading B(n)fx #, k, is the
number of s-states p, will enter before it deadlocks with p, . Else if p, and p, deadlock
after they finish reading B(n)gx#,. let C=(3,i,,k,,i;.k;), where i,,i, are the
internal configurations of p,, p, right after they finish reading B(n)tx #, k,, k, are the
number of s-states p,.p, will, respectively, enter before they deadlock.

Then the following program P uses C to determine x:

let C be defined as above
for all wel0, 117 of length |x|=log(n) do
use C to continue simulating faithfully the computation of M
on B(n)bx # w starting at w for processes p, and/or p,
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print w if some configuration rejects. loops or
some deadlock occurs (this can be checked using ki and k)
endfor

P prints w il there is a process which loops. or ends in a nonaccepting state. or two
processes that deadlock with each other. iff w=x. Not counting the string Bin)k . we
have [ P|<c+loglogin)+|C| for some constant ¢, and [C|<d, - S(w))<d>-S(n) for
some constants d; and d,. For sufficiently large x. we have |P|<log(n)=]x]| since
Stmeo(login)). But then Kix|B(n)z)<|x|. and this contradicts the randomness
of x.

It was shown in [24] that Z(ISUTM(S(m)))yc AISATM(S(m)) for Sineon).
The next lemma improves this result for S(n)eolog(n)).

Lemma 3.4. Z(1SACYFA)— Z(SUTM (S #£0 for any function S(meo(log(n)).

Proof. Let Ly= x#yix.yel0. 1)  &x#y,. Thereisa 1S4(2)F 4 M that accepts L,
as follows: on input x # 3. M first guesses whether x and y have diffierent lengths or the
kth symbols of x and v differ for some k<min {jx|.|v|]. In the first case where it
decides x and y have different lengths. M first splits universally into two processes p,
and p,. Process p, deterministically measures out the length of x with an s-sequence.
Process p, first guesses that y s shorter (longer) than x and then verifies its guess by
measuring out the sume s-sequence as py does and noting that v has less (more)
symbols than the s-sequence.

In the second case where it decides v and y differ at the Ath symbols for some
k<min | |x[.|v]]. M again splits universally into two processes p, and p,. Process p,
picks a symbol of x. and process p, picks a symbol of 1. and then both verify that they
pick two symbols of the same position by measuring out the same s-sequence. Finally.
pp and p, verify that the two symbols are different by guessing each other’s symbol.
Note that M is onc-way and uses only constant space.

Suppose L, is accepted by some SUTAM (S(m)) N, where S(nieotlog(n)). We assume,
without loss of generality, that N only halts on the right marker S. Let x be a random
string, n=2[x| + 1. and consider the computation tree of N on v # x. Since x # x¢ L,.
there are three cases: there is some process p; of N on v # x that halts in a nonaccept-
ing state. that loops. or there are two processes p, and p, that deadlock with each
other.

In the first case. where there is 4 nonaccepting process p. let ¢, be the internal
configuration of p when it first moves right from the prefix x #. and let E=(1.¢,).
During the computation, p visits the prefix x # at most [ [%]=¢"" times for some
constant ¢. Let C be the set of all triples (k. iy. o). where i, and o, are the internal
configurations of p when it enters and exits x # in the kth visit.

In the scecond case, where there is a looping process p. if p never exits from the pretix
x# xthenlet E=(2. - Irotherwise let E=(2.¢,). where ¢, is defined as in the previous
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case. During the computation. p visits the prefix x # at most |I%|=c%" times, for
some constant ¢, before looping occurs. Let C be the set of the first ¢3™ triples
(k. ., 0x), where i, and o, are the internal configurations of p when it enters and exits
x # in the kth visit. If p never exits from x# after the kth visit then let o, = —1.

In the last case there are two processes p, and p, that deadlock with each other. Let
C be the set of all tuples (k. iy.o. b, I Oy . Ty} where i, and o, are the internal
configurations of p; when it enters and exits x # in the kth visit, and ¢, is the number
of s-states p, enters during this period. Similarly, I, O, and T, are the corresponding
data for p,. Again, there can be at most ¢3" such tuples.

Next, let ¢; and ¢, be the internal configurations of p, and p, when they first move
right from x #. and d, and d, be the numbers of s-states they have entered at that
point. Let m be the number of s-states p, and p, enter before deadlocking. If p,
deadlocks while it is reading the prefix x#. then let [, be the number of s-states
p; enters since the last time it crosses the symbol # (or since the beginning if p,
has not crossed # ) before it deadlocks and s, be the deadlock s-state of p,; else,
let I;,=—1 and s;=—1. Let I, be defined in a similar fashion, and let
E=03,m1.5:,15,82,¢,.d, .c5,d5).

Then the following program P uses C and E to determine x:

let C and E be defined us abore
Jor all w of length |x|€{0, 1} " do
use C and E to continue simulating faithfully p (or p, and p,) on x # w,
starting at w, and updating the counters of s-states in the process
print w if some configuration rejects, loops or
some deadlock occurs (this can be checked using E and C)
endfor

We show the correctness of P. If w=x then N rejects x # w and so P prints w, because
P is able to detect a looping process, a nonaccepting process, or two processes that
deadlock with each other. Conversely, if P prints w then N rejects x # w, so w=x.
We have |P|=c¢+log(]|x|)+|C|+]|E|. where ¢ is some constant. There can be at
most ¢5™ elements in C, and the size of each element is at most e$™-(e5- S(n)
+log(n)), so [C|<e3 S™. where ¢,.¢,, and e, are constants. We also have |E|<
(eq-S{n)+e5-log(n)), where e, and ¢5 are constants. Since S(n)e[loglog(n),log(n}|,
for sufficiently large x, we have | P|<|x|. This contradicts the randomness of x. [

The next lemma shows that when the space bound is at least log(n), synchroniz-
ation does not increase the power of one-way alternating Turing machines with only
universal states. In contrast, modified acceptance does increase the power of this
class [10].

Lemma 3.5. Y (1SUTM(S(n)))=L(1UTM(S(n)})) for any S(n)z=log(n).
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Proof. Given an 1SUTM (S(n)) M we construct a 1UTM (S(n)) M’ to accept the
same language as follows. First we describe the simulation for the case when the
computation tree of M on its input x has only two processes. M’ stores the internal
configurations of both processes p; and p, of M in the worktape of a process p', and it
keeps track of the number of s-states each process has entered with a counter. Process
p" must simulate both p, and p, one step at a time, and it will move the input head
only when both p; and p, are linished with the current input square. Supposc during
the simulation process p enters an s-state, and the counts of s-states entered so far are
kyfor pyand k; for p,. If k; <k, then p’ continues the simulation. Else if k; =k, then p’
spawns off a child process ¢ to make sure that the &, th s-state that p, enters has the
same s-symbol. If they are not the same. ¢ rejects. A symmetric procedure is carried
out if p, enters an s-state. It is easy to see that M’ accepts the same language as
M does. and that M’ uses the same amount of space. since the counters take at most
S(n) space.

We now generalize the simulation given above to the general case. where an 1D of
M may have many direct descendants. Again. every process p' of M’ is used to
simulate two processes of M. To do that. cach p’ stores in its worktape the internal
configurations of the two processes py and p, of M that it is to simulate, along with
two counters to keep track of the numbers of s-states these processes have entered so
far. During the simulation p” will move its input head only if both p, and p, arc
finished with the current input square. and p’ follows the procedure described above
to make sure that py and p, will not deadlock with cach other. For the sake of
uniformity. we assume that initially M simulates two copies of the initial process
of M.

Supposc during the simulation. process p, enters a universal state and splits into
d descendant processes. where d is bounded by a constant depending only on M. Then
p/ will split into (3 ') descendant processes. each simulating a pair of processes chosen
from p, and the descendants of py . Finally. suppose a process ¢ of M’ is used to verify
the kth s-symbol of some process ¢ of M. and during the process it finds that process
¢ enters o universal state and splits into J descendants. Then ¢ also splits into
d descendants to verify the kth s-symbol of cach descendant of .

[C1s casy (o see that M accepts its input x <> every process of M finishes
in an accepting state. and there are no deadlocks < M accepts x. Also. Al
uses the same amount of space as M does because the counters take up at most S(n)

space.

When off-line capability is present. the situation is slightly different. In the next
three femmas we show that when the space bound is at least log(n). neither synchron-
ization nor modified acceptance add to the computational power of two-way alternat-
ing Turing machines with only universal states.

Lemma 3.6. Y(SUTM(S(n)))= L (UTM(S(n))) for any S(n)=log(n).
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Proof. We modify the simulation technique given in [24] to prove the lemma. Given
an SUTM (S (n)) M where S(n)>log(n), we construct a UTM (S(n)) M’ to accept the
same language as follows. On input w, M’ simulates each process of M with a process
of its own. When the current internal state of some process p of M is an s-state, the
corresponding process p’ of M’ spawns off a process ¢ whose worktape contains the
s-symbol associated with the s-state and the number of s-states p has entered so far.
Since each process makes at most d¥* moves, d is a constant, and §(n)>log(n), there
is enough space to store them. Process ¢ restarts the computation of M on w and
verifies that the corresponding s-symbols in other processes match with the one stored
on its worktape. If a discrepancy occurs, M’ rejects. It is easy to see that M and M’
accept the same language. [

To obtain the same result for MU TMs, we first show that MU TM (S(n)) is closed
under complementation for S(n)=log(n).

Lemma 3.7. ¥ (MUTM (S(n)))} is closed under complementation for any S(n)=log(n).

Proof. Given a MUTM (S(n)) M where S(n)=log(n), we construct a MUTM (S (n))
M’ to accept the complement language using the technique used in [9] to show
nondeterministic space is closed under complementation.

The idea is to cycle through all configurations to find the set of internal states of the
leaves of the computation tree of M on some input w. Since there are at most d5™
configurations, d is a constant, and S{(n)>log(n), there is enough space to do this. Let
R(n) denote the number of configurations reachable from the initial configuration in
at most n steps. We use two counters and R(1) to identify all leaf configurations in the
computation tree of M on w as follows:

let LEAVES=0
let R(1)=the number of configurations reachable in one step from
the initial configuration
repeat until R(n)=R(n+1)
Jfor each configuration ¢, in counter 1 do
for each configuration ¢, in counter 2 do
branch
d) do nothing
by verify that c, is reachable from the initial configuration in
at most n steps (with more branching). For each branch:
if it is not halt in state g
else if ¢, is reachable from ¢, in at most one step then
increment R(n+ 1)
if ¢y is a halting configuration then
add its state to LEAVES
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cndif
endbranch
endfor
if not all Rin) configurations have been tound then enter state g
endfor
('ndr('puur
enter state 4 iff LEAVES is not an accepting state set

M’ has only two halting states: ¢, and gg. and the accepting state sets of M’ are
tg gy and [ g.a. gk, T0is easy to see that M7 uses as much space as M does. and that
LM y=L(M).

Corollary 3.8. Y/ (MUTAM(S(n)= 2 (UTMS(m)) for any S(n)y=login).

Proof. Given a MU TAM(S(n)) AL where S(ni=log(n), we show how to construct
a UTM(S(n)) M which accepts L(M). By the proof of Lemma 3.7 there is some
MUTM(S(ny) N that accepts L(M) with only 2 halting states ¢, and ¢g. and whose
accepting state sets are ¢4 and [ ¢ . gg,. Now let N bea UTM(S(n)) obtained from
the MUTM (S(n)) N by defining the set of accepting states to be [ gg . It is clear that
N uses only S(n) space, and that xe L(M) < v is accepted by M <> v is rejected by
N <= the internal states of all leaves of the computation tree of N on xare ¢ <> N’
accepts .

In the next two lemmas we sharpen a main result in [8] which states that
Uevo ZANTM (n-c¥"))= v (SATM(S(n))) for any spacc-constructible function
Stn). We will modify the prools leading to this result to remove the requirement of
space-constructibility for Stn) and the off-line capability of the SATAMs.

o DANTM(n-cS" )y = 2 (ISATM (S ) for any function S(n).

«

Lemma 3.9. |

Proof. We  will  show  that  Y(SATMSNS ) o Z(NTM@u- ")
YUISATM(S(n))) for any function S(n). The first (<) relation was shown in [,
Lemma 3.1] for space-constructible Stn). We reproduce the proof below and show
how to remove the space-constructibility requirement. Given an 15 A7M(S(n)) M. we
can construct an NTM M to simulate Af by doing a breadth-first-like traversal of the
computation tree of M on its input w of size n. Each process of M is simulated until it
enters an s-state: M’ will compare the corresponding s-states to make sure that no

deadlock occurs before continuing the simulation. Since there are at most a-d*™

distinct configurations of M on an input w ol size n. M’ needs at most i+ ™™ space. for
M on w. It is easy to see that the space-constructibility requirement is not necessary:
M’ keeps track of the length [ of the longest worktape used during the simulation. and
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at the end of the simulation uses up n-e' squares of tape. Then on any input w of
length n, M uses at most S(n) space iff M’ uses at most n-e>"™ space.

The second ( < ) relation was shown in [8, Lemma 3.2] for space-constructible S(n)
and for off-line SATMs. We reproduce the proof here and show how to remove both
conditions. First assume that S(n) is space-constructible. Given an NTM (n-¢5™) M,
we construct a ISATM (S(n)) M’ to simulate M as follows. On some input w of length
n. M’ first splits into n+4 processes A, B,Dy.D,, ..., D, in such a way that the head
of D; is on the ith position of the input tape and both 4 and B have their input heads at
the first position. Since S(n) is space-constructible, we assume that each of these n+4
processes has the word 05" in its worktape. Each process D; then splits into ¢5™
copies D!.....,D*". The significance of these processes are as follows: M’ uses
A to represent the position of the input head and its state, each D/ to represent the
(3" (i — 1) +j)th square of the worktape, and B to represent the position of the
worktape head (suppose the input head of process B is on bth square and its work-
tape contains the number 0<m<¢%™: then the worktape head of M is at position
(h—1) 5" + m).

To simulate a step of M, M’ performs the [ollowing steps: first M’ synchronizes all
of its processes with a special s-symbol S,. Then some process D{ has to decide that
the worktape head is on the square it represents. To do that, B spawns a copy B’ to
measure out deterministically the lengths b and m with two s-sequences. Each process
D! decides either to verify that (h. m)= (i j) or to verify that (b, m)#(i, j) by spawning
a copy (D) and the technique described in Lemma 3.4. All other processes guess
along with process B. M’ concludes this phase with a special s-symbol S, . At the end
of this phase. exactly one unique process D} satisfies the relations (b, n)=(k, I).

In the next phase, processes B, A, and Dj synchronize among themselves (by
guessing each other’s symbol) to determine the next move of M. All other processes
guess along with them. Next 4 updates its state and the position of its input head to
reflect the change of the input head position and state of M: process B updates its
input head position and worktape content to reflect the change in the position of the
worktape head of M process D} updates the symbol at the square it represents. M’
ends this phase with a special s-symbol S,.

In the last phase. if process A4 is in a final state of M, 4 deterministically produces
the special s-symbol S; and stops: else it deterministically produces the s-symbol S, to
restart the process. Other processes guess along with 4. This concludes the description
of the simulation of M by M'.

Now we show how to make M’ an on-line SATM. We note that only processes
A and B need the off-line capability: all processes D{ stay stationary throughout the
simulation, and their copies (D')/ move only to the right. First we show that B is not
necessary. and then we show how to replace A with n on-line processes E, . ..., E,.

The position of the worktape head can be maintained by marking the state of the
process D{ representing the square the head is currently on. Initially, the state of
process DY is marked. To move the head. process D! needs only to identify its
successor DY by entering two s-sequences of lengths i and j'. Only one unique process
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DY can match this sequence. so the position of the worktape head will be correctly
maintained at all times. Hence. process B can be removed. Note also that processes
D¥are still on-line processes. Similarly, the position of the input tape head of M can be
maintatned with n on-line processes E . ... E,. s0 process A can be removed also.

Now we show how to remove the requircment of space-constructibility. Before
spawning off the processes D7’s. M’ guesses the amount of worktape of M needed by
input w and marks the amount on the worktapes of all of its children processes. If
during the computation, M attempts to use more space than allowed then M’ rejects.
Clearly. M’ accepts w within space S(n) iff M accepts w within space (n-¢3"). This
removes the requirement of space-constructibility for S(n). 11

We are now ready to establish the relationships among different variants of
synchronized alternating Turing machines.

Theorem 3.10. ' (1SATM(S(n))y= L(SATM(S(m)) for dll functions S(n).
Proof. Follows immediately from Lemma 3.9 and [8]. |-
Corollary 3.11. Z(SUTM(S(n)) < L (ISATM(S(n))) for uny Sin)=log(n).

Proof. Follows [rom the fact that £ (UTM(Sn))= L INTM(S(n))) for
Stm=log(n). Lemmas 3.6 and 3.9.

Theorem 302, (i) LUISUTM(S(m)ye Z(SUTM(S(m))c LSATM(S(n)))=
LASATM(S(n))) for any function S(nyeo(n).

(i) LASUTM(Sm))= Z(SUTM(S(m))yc L(ISATM(Sn)))= L (SATM (S(n)))
Jor any S(n)zn.

Proof. The relations between 2 (1SUTM(S(m)) and Z(SUTM(S(n))) follow from
Lemma 3.2 and a result in [24]. The relation between Z(SUTM (S(n))) and
L USATM(S(m))) follows from Lemma 3.4 and Corollary 3.11, and the relation
between Y (ISATAM(S(un) and Z(SATM(S(m)) follows from Theorem 3.10.

Considering the results of the lemmas above, we expect no surprise from the next
theorem.

Theorem 3.13. (i) V' (ISUTM(S(m))) is incompardable 1o P (TATM(S(n).
S CATMS), S(UTMS)). Z(IMUTM(S(m)). and £ (MUTM(S(n))) for
Stme[loglogin). logn)|.

(i) LUSUTMS(mNe LJATMSn)). LAUTAM(S(n)).
LOOMUTMS (). and L (MUTM{S(n))) for Stmellogn). nl.
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Proof. The first part follows from Lemmas 3.1, 3.3, and the fact that
Lie £ (IMUTM (S(n))) for S(n)=loglog(n). The second part follows from Lemma
3.5, [10] and Corollary 3.8. [J

Below we give our solutions to the open problems posed in [8]. The first result
shows that for all k>0 L ([1IDSA(k)FA)yc L ([1]DFA(k)). We begin by stating
a corollary to Lemma 3.4.

Corollary 3.14. ¥ (1DFAQ2))— /-, Z(DSA(k)FA4)#0.

Proof. Follows from Lemma 3.4 and the fact that there is a IDFA(2) M that accepts
Ly: on input x # y, one head of M moves onto the # symbol and then works in
tandem with the other head to compare x and y. M accepts iff x and y differ in one
position or their lengths are different. M rejects its input if no # is found. [J

Theorem 3.15. ¥ ([11DSA(KYFA)= Z([1]DFAk)) for all k> 1.
Proof. Follows immediately from Corollary 3.14. [

The second result establishes a tight hierarchy on the number of processes for
1DSA(k)F As. We need a few terminologies for our proofs.

Definition 3.16. For m>0, n>0, let
Ly o= Wy #wad o #w, #w, # - #ws#owy #"wisel0, 1]%].

Definition 3.17. Suppose M is a 1DSA (k) F A which accepts L,, , for some m> 1, n =0,
k>0.Letwbein L, , and ¢ be a prefix of w, and p be a process in the computation tree
of M on w. We use
(i) 85, to denote the s-sequence of process p after reading the prefix v,

(i) SS. to denote the longest s-sequence among all processes of M after reading v,

(iii} ss, to denote the shortest s-sequence among all processes of M after reading r.
Also, we call §S,—SS§,, . the expected s-sequence of process p after reading v. In other
words. to avoid deadlocks, process p must enter these s-states after reading .

Lemma 3.18. L, ,e Z/(1DSA(2)FA)— L (1DSA(1)FA) for all n>0.

Proof. By definition, ¥ (IDSA(1)FA) is just the class of regular languages. It is
evident that L, , are not regular. [

Lemma 3.19. Suppose L,, ., is accepted by some |DSAmYFA M, m>1, n=0. Then
there is a random string wy and a process p of M on w, # such that for all vel,, | ,,
process p on input w # v # cnters no more than d s-states, where d is some constant
depending only on wy and M.
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Proof. Let w; be random and let SS, .., » =ss,, ». Then for all reL, , ,. process
p on input w, #r# can enter no more than SS,., . s-states, or else, the following
program P can be used to determine w:

let Q=g 1)) g2 1200 L)) where

g denotes the state of process i after reading wy # and I; the length of SS; ., »
for all v in L, _, o lexicographically do

simulate M on v # with initial states ¢ .q-..... n
SS,w s 1=5S., »

until for some ry.

endfor
Jor all v lexicographically do
simulate M on #7272y # " with initial states ¢y .s.....q,

print v iff there is an accepting computation tree of
M on x# ™ y# " (this can be checked using SSp ., w o and 1y s 1)

endfor

Clearly. P prints v iff y=w,. We have | PI<c¢; - logt|w,|)+ ¢, for some constants ¢,
and ¢,. But then for sufficiently large random w, . we have | P'|<|w|. This contra-
dicts the randomness of w, . Hence there is a random string w . a constant d depend-
ing only on w, and M. and a process p of M such that for all ¢ in L, _, .
ISS )y wen | <d.

Lemma 3.20. Suppose there is some 1DSA(myFA M that accepts L, .. m>1. n1=20.
Then there is some 1DSA(m— 1) FA M that accepts Ly, 1 v p. k20108 some constant.

Proof. Suppose M is a IDSA(m)F A that accepts L, , for some m>1. n=0. Then by
Lemma 3.19. there is @ random string w . a constant d depending only on w, and M,
and a process p of M. such that for any velL,, _, . 1SS, » .~ |<d. Without loss of
generality. let p=1.

We construct a 1DSAm—NDFA M (o accept L, |, as follows. Let
(p1.Pa-....pm) be states of the m processes of M after reading w #. Some of them
might be null, if the corresponding processes do not exist at the time. M’ on input
re€l,, { uiw+1 branches into m— 1 processes with initial states ([ p.p2 ] pa- oo P
Note that the first two processes of M are combined into one.

M’ continues to simulate M on input r#""" L except for some minor
modifications:

(i) for i>1. process i of M’ refrains from entering the next |SS,, » — 5SS, ., - |
s-states. Instead. 1t checks to sce whether they form the expected
s-sequence for process i+ 1 of M and. if so, it enters some equivalent but
nonsynchronizing states. Else. process 7 rejects the input. Once the expected
s-sequence has been confirmed. process i will resume entering s-states.

(i1) The first (combined) process of M will simulate process 2 of M in the manner
described above. It will also verify that process 1 is not involved in a deadlock
in the computation of Al on w, #v#w, #" Because process 1 of M on
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w,#r#w, #" does not enter more than d+e-(|w,|+n) s-states (e is some
constant depending only on M), it suffices to keep track of the first
d+e-(|w,|+n) s-states of the other processes of M. This can be done with
constant space.
(ili) M’ treats the first |w,| #’s that comes after v as w,.
Clearly, v #" 1" e, |,y T wy#v#w, #"€L,,,, iff there is an accepting
computation of M on w, # v #w, #"iffl M’ accepts v #" "1, ]

Theorem 3.21. L, ,e Z(1DSA(m+1)FA)— ¥ (1DSA(m)FA) for all m>0, n=0.

Proof. We use induction on m. The theorem is true when m=1 because of Lemma
3.18. Suppose L, ,e ¥ (IDSA()FA)— ¥ (1DSA(I—1)FA) for some [>1 and all
nz0. We show L, ,e Z(1DSA(I+1)FA)— X (1DSA({)FA) for all n>0.

Suppose for some n, L, e (1DSA(I)FA). Then by Lemma 3.20, L,_; ,+\€
L(I1DSA(I—1)FA)for some k=0. This contradicts the induction hypothesis. On the
other hand, the following IDSA(m+1)FA M accepts L, , in a straightforward
manner: a process p, of M sequentially outputs as its s-sequence the first m segments
of the input delimited by two #'s, or a # and the left endmarker; at the end of each
segment, p, spawns off a process which seeks and outputs the corresponding segment
as its s-sequence. Also p, verifies that the input contains exactly (2m —1+n) # sym-
bols. It is clear that M accepts x ifl xel, ,. Hence the theorem holds for
allm>0. 0O

4. Related results and corollaries
We give a number of corollaries and other results related to our main theorems.

Corollary 4.1. The following classes are closed under complementation, intersection,
union concatenation, and Kleene closure:
) L([11SATM(S(n))) for any S(n).
(11) L(SUTM (S(n))) for S(n)=log(n).
(i) L(1SUTM(S(n))) for S(n)=n
Also:
(1) L(SUTM(S(n)

)) is not closed under complementation for S(n)eo(log(n)).
(i) LUSUTM(S(n))
))
)

) is not closed under complementation for S(n)eo(n).
) is not closed under union for S(n)eo(log(n))
) is closed under intersection for S(n)e[log(n),n|.

(my LUSUTM(S(n
(iv) L(ISUTM(S(n

Proof. The first part follows from Lemmas 3.9 and 3.6 and Theorem 3.12(ii).

The first two items of the second part follow from Lemma 3.4 and [24]. To prove
the third item, consider Lg={x#x#y: x,ye{0,1}*} and Lo={x#y# x
x,ye{0, 11*}. It is easy to see that Lg and Lqoe ¥ (1SA(2)FA); however, by using
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an argument similar to the one given in Lemma 3.2 we can show that
LywLod Z(ISUTM(S(m)) for any S(meo(log(n)). The fourth item follows from
Lemma 3.5

Corollary 4.2. #([11DSAk)FA) is not closed under complementation for any k> 1.

Proof. We¢ construct a 1DSA(2)FA M to accept L,. On input x. M splits into
2 processes py and pa. Process p, moves to the right until it reaches the symbol # and
then synchronizes with p; to compare the first half and the sccond half of the input.
M accepts v it x=u# .o wrel0.1]" and u=¢. or x does not have the form u # r.
w.rel0. 11" The corollary then follows from Lemma 3.4,

Corollary 4.3. #(IDSA(KYFA) is not closed under union or intersection for any k> 1.

Proof. For cach A>0. let Ry=w  #wy# #F W #ENH UHEW H o #Fw, #wyo
wis.x,ye 0.1 * and Si=N#EW HEWH F W FEw E o Fas Fw #
wis,v, ve 0.1 % Both R and S, are in Z/(IDSAk+ D FA) but RgnS, =1L, 18
not. by Theorem 3.21. Hence ¥ (1DSAkYFA) 1s not closed under intersection for
all k> 1.

Now et Ti= w# X, #Xa# - # N #WH - # vy # v #wlNsoyisowe 001% )
which is in (I1DSA(k+1)FA) We show that S,uT, ¢ Y (IDSAk+ 1Y EF ).

Suppose there is some 1DSA(k+ 1 FA M that accepts S w7y, Using the same
technigue shown in Lemma 3,19, we can find a random string w, and a process p of
M oonw, # such thatfor all re L, process p on input w, # ¢ # cnters no more than
d s-states. where d is a constant depending only on w, and M. But then using the
simulation technique in Lemma 3.20. we can show that L, ,, can be accepted by some
IDSA(k)F 4 M. This contradicts Theorem 3.21: hence Y 11DSAK)FA) is not closed
under union for all k> 1.

Corollary 4.4. /(DSAQ)FAYy—1 )/, Z(IDF Ak #0.

Proof. Let L;:U,,’Pl L, . Ls can be accepted by a DSA(2)FA M as follows. On
input w. M splits into 2 processes py and p,. Process p. moves onto the right marker
S and then synchronizes with p; to compare the w;'s. Note that p, moves backward
after cach comparison, whereas p; moves forward. Also. M makes sure that there is an
odd number of #'s. M accepts w ifl w is in Ls. Suppose L« 1s accepted by some
IDF A(ky M’ for some k. Then we can construct a {DF.A(k) N to accept the language
L., , by making surc that w has exactly k-(k - 1)+ 1 # s beforc accepting. This
contradicts a result by Yao Rivest [26]. which shows L ¢ Y (1DFA(k)). Hence
the corollary follows.

(110

Corollary 4.5. { || | Z(DSA(KVFA)c £ (DFAQ2)).
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Proof. Given Le Z(DSA(k)F A)for some k>0, we construct a DFA(2) M to accept L:
on each input x, M first does a depth-first search with one head to identify the shape of
the computation tree of M on x without paying any attention to synchronizing
symbols. This can be done in constant space because there are only finitely many
different trees with k leaves. M then uses this information to compare all (%) possible
pairs of s-sequences of the processes of M on x using two heads. M accepts x iff all
k processes finish in accepting states and there are no deadlocks. [

Corollary 4.6. Z(SUTM(S(m))— £ (MUTM(Sm))#0 and ¥ (SUTM(S(n))—
LATM(S())#0 for uny S(n)e[loglog(n), log(n)].

Proof. Follows directly [rom Lemma 3.1. [

5. Concluding remarks

Although the relationships between ¥ (1SUTM (S(n))) and other classes of alter-
nating Turing machines are well understood, some corresponding relationships con-
cerning ¢ (SUTM (S(n))) remain open or only partially understood. Below we list
some partial results and remaining open questions as directions for further research.

The following relationships are known:

(i) OATM(S(n)— L (UTM(S(n)))#0 for S(nye[loglog(n),log(n)| ([15]).

(i) Z(SUTM (S(n)))— L (ATM(S(n)))#9 for S(n)e[loglog(n),log(n}| (Corollary

4.6).

The following questions are open:

(i) L(UTM(S(n)))—~L(TATM(S(n)))#9 for S(n)e[loglog(n), log(n}} ({15])?

(i) LUNATM (SN —ZL(SUTM (S (1)) #9 for S(n)e[loglog(n),log(n)|?

(iii) X(DSAKFA)c L (DSAk+1)FA) for all k>0?

(iv) Characterize ¥ (SUTM (S(n})) for S(n)eo(logn).

(v) LUASATM(S(n))— L (1ATM (S(n)))#£0 for S(n)e[log(n),n|?

Note that if (1SATM (log(n}))= <L (1ATM (log(n))) then alternating Turing
machines use space optimally, and hence P=NP (see [8]). We conjecture that the
answer to (iit) is positive and offer the class of languages T;=1{x; # x, # - # x;:
X, X2, x;€10, 1}1* are pairwise compatible] as candidate witness languages.
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