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We continue the study of the computational power of synchronized alternating Turing machines 

(S.4 T.M) introduced in (Hromkovi? 1986, Slohodob$ 1987. 19883. h) IO allow communication via 

synchromzation among processes of alternating Turing machines. We are interested m comparing 

the four main clasbcs of space-bounded synchronized alternating Turing-machines obtained by 

adding or removing off-line capability and nondeterminism (lSUTM(S(n)). SUTM(S(n)). 

lS.47’.%I(S(r1)). and SATM(S(,z))) against one another and against other variants of alter- 

nating Turing machines. Denoting the class of languages accepted by machines in C by Y(C). we 

show 3s our main results that Y’(IS(/T.~(S(n)))cY(SCTM(S(~~)))c~~(lSATM(S(n)))= 

Y’(SA TM(S(r7))) for all space-hounded functions S(II)EO(~I), and Y’(ISUTM(S(~I)))= 

Y(S~T~~I(S(n)))c Y’(IS.4TM(S(n)))= Y(SATM(S(II))) for S(rl)>~ Furthermore. we show that 

for loglog(n)~S(~~)~n(log(~~)). Y(ISL’TM(S(n))) is incomparable to Y([I] ATM(S(rl))). 

J/‘(L’7‘hf(S(r1))). -r/‘( IML’TII~(S(~I))). and Y(MUT.U(S(~I))). where hl.4Th4s are alternating Turing 

mxhincs with moditicd acceptance proposed in (Inoue et al. 1989): in contrast. we show that these 

relationships become proper inclusions when Io~(,I)~~(II)Eo(II). 

For deterministic synchronized alternating finite automata with at mobt k processes (IDSA(L) 

and DSA(L)F.4 ) we establish a tight hierarchy on the number of processes for the one-way case. 

namely. Y’(IL)SA(n)~ cY’(IDSA(H+I)FA) for all rl>O. and show that JP(lDFA(2))- 

U;_, L”(fX4(k)FA,&, 3 h err Dt‘A(k) denotes deterministic k-head finite automata. Finally WC 

investigate closure properties under Boolean operations for some of these classes of languages. 

1. Introduction 

Alternating Turing machines (ATM) were proposed in [I] to model parallel 

computation. Informally, an alternating Turing machine is a generalization of a 
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non-deterministic Turing machine which can. at some point during ;I computation. 

split into sew-31 processes working in paraIL and indcpcndently: an input is accepted 

iffall parallel processes tinish in accepting ~~)nlipuratioIls. The power of alternation on 

various machine models has since been in\cstigated. and many intcrehting results have 

been established in [IX. 17. 3. I I. 5. 6. I?. 13. 1-l. 15. 21. Howwr. the alternating 

Turing machine is not a realistic model for real-world parallel c~~mputers. because it 

dots not allow any communication among its processus. To rcmcdq the situation. two 

modilications ha\e been propowd rccentl> to <tudy the clTwt of communication 

among processes on the computation~il power of alternating Turing machines. 

The lirst modilication. alternating Turing machine5 Lvith modilied acceptance 

(,21.-l T,Zl ). was proposed in [ IO]. In thih model. an input is accepted ill’ the internal 

states of the Iea\e5 of it\ computation tree l’orm an accepting state 4~21. It ~v;i’r 

sho\vn that although for any space-bounded function S(U) Y(.\!.,l T.\J(.S(rl)))= 

Y(.~TA~(S’(~I))) and ~‘(l.~l.-17‘.\I(S(,11))= ‘/‘(I 47’,2f(.S(~))). the modified model bc- 

comes more powetful when onI!, universal stata art allo\ved and the space bound is 

small. 

The second modification. s> nchronkcd alternating Turing machines (S 4 I’!21 ). wa:, 

introduced in [7] and inwstigated in [25. 22 241. A s~nchroniLt‘d alternating ma- 

chine is an alternating machine with ;I \pccial subset of internal states called s!n- 

chronizing states. Each synchronizing state i’r associated with ;I s~nchroniAng symbol. 

If during the course of computation so111c process cntcrs ;I 5) nchroniAng state. then it 

has to wait until aII other processes enter either an accepting state or ;I synchroni,Gng 

stale ivith the same synchronking sb mbol. When this happens. all proccsscs 

2 re :illowcd to continue their computation. It was ~~OMII in [X] that 

S.1SP.3C‘E(S(,r))= u, ,,:~SP.~(‘~I(rlc~\‘” ) for a11 space-constru~tiblc S (II). and hence 

S,3SP.-1CE(S(rr))= U< .,,.s.-I’I‘I!\II:(( ..‘I’,’ , = i), ,(, ,_1 /‘[!\f/i((,,““’ ). This result cstah- 

lishes the synchronized alternating Turing machine as the lirht model known to use: 

space optimally. As another corollar!-. :VSf’.3(‘/: (II) = Y(2.S -IF’ -1 ). i.c. t\vo-May s!‘n- 

chronizcd alternating linitc automata rccogniLe osactl!~ the class of contcxt-wnhiti\c 

langll~lfes. 

The parallel complexit> of hynchroni/ed alternating tinite automata was also 

investigated in [Xl. whcrc several results wcrc sivc‘n for synchronked alternating linitc 

automata bounded in the number or procc~scs (S.4 (k)F. 1 ). I-‘or example. it was 

shown that for an! L>O r/‘([l].S-l(k)b’-l)= Y’([l]:Vk -I(X)) and therefore 

I/‘( [I] S.-l (k)k’4 )c !I’( [ I] S.-l (I< + I ) f 4 1. ~hcrc [I] S.-l(/~)k’.~l dcnotos [one-way] syn- 

chronixd alternating linite autc~mata with at most I< pr~xxsws. and [I] .Yk’.-l (A) 

dcnotcs [one-\\-a~] k-head linitc automata. Ir M;IS asked in [XJ whether the samc 

relations hold true u hen these s> nchronwd automata ha\~c cjnl! universal states 

(D.S.4 (k) b‘.-1 1. i.C. 

(i) r/‘([l]D.S.-l(k)F‘.-l)~ i/‘(~l]D~‘.4(k)) for an\ k>l’!. 2nd 

(ii) Y(lDSA(k)F.l)e i(‘(l/~.S:l(~+I)~.-I)for anyX>I’I 

The sxond question ~21s solved partially in [Xl. bvherc it bcas stated that 

for I, > I. r/‘( I DS-l (A ~ 1)F.d )c r/‘( I D.S.4 [(I )+ I ] I-‘.4 ). and the positive answer 



was given without proof as a corollary in [3]. The first question remained open 

until now. 

In [24] some properties of space-bounded synchronized alternating Turing 

machines with only universal states were established. In particular, it was 

shown that ~(lSr/TM(S(n)))c~(lSATM(S(n))) for S(n)~o(n). Furthermore, if 

log(n)<S(n)Eo(n), then ~~(lSSUTM(S(n)))c~(SUTM(S(n))). As a corollary, 

Y( ISr/TM(S(n))) is not closed under complementation for any S(n)~o(n). 

In this paper we continue the investigation of properties of space-bounded synchro- 

nized alternating Turing machines using the powerful Kolmogorov complexity theory 

as our main tool [l9, 201. First we study the relationships among the four classes of 

synchronized alternating Turing machines: one-way and with universal states only 

(ISUTM ). with universal states only (SUTM), one-way ( 1SATM ), and general 

(SATM ). We also investigate their relationships with the corresponding plain and 

modified variants of alternating Turing machines ( 1 UTM, UTM, IATM, ATM, 

I MUTM. MUTM, I MATM. MATM ). Our main result shows that 

(i) Y(ISUTM(S(n)))c Y(SUTM(S(n)))cY’(ISATM(S(n)))=5?(SATM(S(n))) 
for S(H)EO(II). 

(ii) ~(ISUTM(S(r~)))=Y(SUTM(S(n)))c~(ISATM(S(n)))=Y(SATM(S(n))) 
for S(n)>n. 

(iii) Y(lSUTM(S(n))) is incomparable to Y(lATM(S(n))), P’(ATM(S(n))). 

Y(UTM(S(n))), Y(lMUTM(S(n))), and Y(MUTM(S(n))) for loglog(n)<S(n)c 

o(log(n)), and 

(iv) Ic’(lSuTM(S(n)))c~(IATM(S(n))), Y’(UTM(S(n))), Jf’(lMUTM(S(n))), 

and Y(MUTM(S(n))) for log(rr)<S(n)Eo(n). 

Next we prove a more general result to answer positively the first open question 

mentioned above. namely. Y’( 1 DF.4 (2)) - ukX= i -I(‘( DSA (k) FA ) #8. We also give 

a different proof for the second open question ([3] suggested a solution which appeals 

to results concerning the hierarchy of multihead automata in 126, 161). Finally, we 

show various (non-)closure properties under Boolean operations for some of these 

classes of languages. For example. we show that U( lDSA( k) FA ) is not closed under 

complementation, union, or intersection for any k > 1; Y’(DSA (k) FA ) is not closed 

under complementation for any k> 1; Y’( ISATM(S(n))) is closed under comp- 

lementation. intersection, union, concatenation, and Kleene closure for all S(n); and 

Y(SUTM(S(n))) is not closed under complementation for S(n)6o(log(n)). We also 

give some partial answers for some of the remaining separation problems involving 

different variants of alternating Turing machines. 

The rest of this paper is organized as follows. Section 2 gives definitions relating to 

different variants of alternating Turing machines and to Kolmogorov complexity. 

Section 3 establishes our main result and gives our solutions to the two open 

problems mentioned above. Section 4 gives various corollaries and related results, and 

Section 5 concludes the paper with a discussion of some open problems. 



2. Preliminaries 

First we give precise definitions of operation and acceptance for synchronized 

alternating machines. Our dctinitions use straightforward notions (instantaneous 

description. E,,/. configuration tree) and arc based on those given in [X] (see also [I].) 

Definition 2.1. A synchronized alternating machine (dcnotcd by S.4 TIZl ) is ;L I?-tuple 

:\I = (Q. CT. E, S, 2‘. c, S. L7, I‘. ii. q(,. F 1. whcrc 

0 2‘ is ;I tinite i/?plrt t7//‘/7dJCf. 

l c.S$z‘ arc the /q/i and ~.iqhr 771trr~lic~r~s respectively, 

0 I‘ is ;I finite .stc~tr(qc’ ftrpc tr//Jlrtr/Jc)1 containing the special hltrrih .5~wiho/ B. 

0 I7 is ;i tinite ~~//J/Ic~/JP~ o~‘.~~~r7c~/7r~orii~ir7~~ s~~ri7hol.s. 

0 I” is the set of 7r77i7~wrrl .sttrrc’s. 

l E is the set of c~.~i.~fvr~fitr/ .sfrl/~s. 

l ~i~(I)x(~u[~.$~)xl~)x(Qx(l‘-IBI)x Ileft. stationary. right;‘) is the /ICI\-/ 

//IOIC /Y’/tr/io//. 

:\I has ;I read-only input tape with the left and right markers c and $. and one 

semi-infinite storage tape. initially filled with the blank symbols. ‘21 begins in state q,,. 

A .S/C~I of :\I consist\ of reading one symbol from each tape. writing a symbol on the 

storage tape. mo\ ing the input and storage tape heads in specified directions. and 

entering ;I new state. according to the next move relation ci. 

h?finitOn 2.2. An i/l.S/t/rJftr/lc’ol/.~ d(‘.\C~i/J~iO/l (ID) of :\C/ iS a11 ehlent (n‘. /Ji. q. 1, IJ, )EL * 

x ( ,2’u I(): ) x Q x (I‘~ I13 1 )* x .2:. where \\‘ is the content of the input tape (excluding 

c and $). 71, is the position of input tape head. q is the internal state. I is the nonblank 

content of the storage tape. and 11, is the position of storage tape head of &I. 

An ID is 1rr7i7~~v~strl (~~~i.s~~v7titrl. .s~.//c./~/.o/~i-ir/~/. trc’wptir~(g) depending on the type of its 

internal state. The irli/itr/ ID of ill on input .\- is (.Y. 0. q,). c. I ). \vhere c is the null word. 

Definition 2.3. Suppose I, and /? are t\\o IDS of .Zf and II follows from I, in one step 

according to the next move relation (5. Then WC write I, I- ,, l2 and say that I2 is 

;t .\77~‘~‘~‘,s,sor of I, 

Definition 2.4. The /[r/l c,or1ti(/177.tr/iorl rrw of ,$I on an input word \\’ is ;I (possibl) 

inlinite) Inbelcd tree r:’ such that 

(i) oath node 18 is Iabeled hy some ID c’, of :\I: 

(ii) the root is labeled by the initial ID of ,ZI on I\‘: 

(iii) I’? i4 a direct desxndant of I’, ill’ c’, , k ,, (‘, 
Each branch of T,‘,! is called ;I /J~YMI~,SY. 



Definition 2.5. The synchronizing sequence (s-sequence) of a node v in a full configura- 

tion tree Twith root v,, is the sequence of synchronizing symbols occurring in labels of 

the nodes on the path from r0 to V. Two s-sequences are compatible if one is a prefix of 

the other. Ifs, and s2 are two compatible s-sequences, and s2 is longer than s,, then we 

use s2 - .sl to denote their difference. 

Definition 2.6. A computution tree of M on an input \V is a (possibly infinite) subtree T’ 

of the full configuration tree Tc;f such that 

(i) each node in T’ labeled by a universal ID has the same direct descendants 

as in T; 

(ii) each node in T’ labeled by an existential ID has at most one direct descendant; 

(iii) for arbitrary nodes \,I and 19~ in T’, the s-sequences of \lI and \12 are compatible. 

If A4 on input 11’ has no computation trees, then any subtree of TF that satisfies the 

first two conditions above must have two processes with incompatible s-sequences. In 

this case, we say M deadlocks on ~1. The two processes with incompatible s-sequences 

are called deudlock processes and the nonmatching synchronizing states causing the 

deadlock are called deudlock states. 

Definition 2.7. An uccepting computation tree of M on an input u’ is a finite computa- 

tion tree of M on 1%’ such that each leaf node is labeled by an accepting configuration. 

Definition 2.8. The set of all internul cor$igurutions of M on inputs of size n with 

spar-bound S(n) is given by I b=[(~,i,~): qEQ, O<i, I\i’I<IS(n)l, WE~~~““~). The 

following inequality holds for the size of I k : I I& I < I Q I . I S(n) I . I f / s(n) < cS(“) for some 

constant c depending only on M. 

Next we define alternating Turing machines with modified acceptance. Since there 

is no risk of ambiguity, we only give an informal definition; the full definition was 

given in detail in [IO]. 

Definition 2.9. An alternating Turing machine with modified acceptance (MA TM ) is 

an alternating Turing machine some of whose internal states are called hulfiny states, 

and whose set of accepting states F is replaced by a collection of accepting state sets 

Cc Iv called ucceptiny stmte sets. An MATM M works in the same way an ATM does, 

except that if M enters a halting state then it can make no further moves. Acceptance 

of an input \t’ by M is defined by the set of internal states of the leaves LF of its 

computation tree: M accepts H’ iff L~EC. 

Definition 2.10. Let M be an alternating Turing machine of any kind. We say M is 

(weukl?,) spuce-hounded by S(n) if for each input x of length n, if M accepts .Y, then there 

is an accepting computation tree of M on s such that the space used by each node is at 

most S(n). 



Definition 2.11. Let S(U).L(II). and L’(n) be functions of 17. We say s(n)~[L(n), li(,7)1 

if S(n)>L(n) and S(H)EO(L:(~I)). 

Specifically. we are interested in the following classes of machines. 

Definition 2.12. We use [I] DF.3 (k) ( [I] A’F,-l(k)) to denote [one-way] k-head detcr- 

ministic (nondeterministic) finite automata. 

We call an SA T,2f 51 1/~‘rc~rrl7ir7istic, if it has only universal states. In this case. there is 

a unique computation tree of :\I on cvcry input I\‘E lo. I j *. 

WC LISL’ [I]~~‘T,Zl..2fC~‘T!~f.SI~T.~t~(,S(r7)) and [I] ~.4T.Zl.:21AT.~l..SATlLl)(S(r7)) 

to denote [one-way] i plain. with moditicd acccptancc. synchronized) alternating 

Turing machines with universal states only and [one-way] (plain, with modified 

acceptance. synchronkcdl alternating Turing machines space-bounded by function 

S(r7), respectively. 

We use [I] DS,-l (k) F.4 ( [I] S.4 (k) F.4 ) to denote [one-way] deterministic (general) 

synchronized alternating tinite automata such that any computation tree of ,ZI on an) 

input 11. has at most I, Icaves. 

We use the symbol c to denote proper inclusion for classes of languages. 

We now define some important concepts in Kolmogorov (descriptional) complexity 

theory. Informsllq. the Kolmogorov complexity of ;I binary string I\. measures how 

succinctly \t’ can be described or coded (using a common coding method for all binary 

strings.) We follow the approach in [?I]. 

Because there ia a universal computable partial function. there is some F’,, for which 

since F,, can simulate any computable function F given the code of a Turing 

machine ,$I) for E‘. We detine the w/trtirxl rlw~ripfior7tr/ cor~7p/c~.~it~~ k? : (0. 1. # I * 

x 10. I. # i*+,Y by h’(.\-Ij,) g k,,,(.\-I!,). We define IY(.Y) g ii(.\-1~). where t: is the 

null string. 

Definition 2.14. A string \\‘E 10. I ) * is ir7c~or77~~~c~.s.sihIc or IColrr~o~goror rtr/~tlor?~ (or just 

rtrr7tlorr7) if K(.Y) >, /I/. Since there are 1” binary strings of length II but only 7” ~ I 

possible shorter descriptions. there is a random string I’ of each length. Similarly. for 

each J‘, ~‘(.\-IJ’)>~.Y holds for some binary string .Y of each length. 



The fact that random strings exist in all lengths gives rise to a powerful proof 

technique in proving lower bounds. which was popularized by [21]. While combina- 

torial proofs of lower bounds must usually deal with aggregates of inputs, typical 

Kolmogorov proofs establish lower bounds by showing that sor77e random strings are 

not really random if the lower bounds fail. Since the proofs only deal with certain 

random strings, they are usually much shorter and more intuitive. 

3. Main results 

First, we establish the relationships among different variants of space-bounded 

synchronized alternating Turing machines. We start out by proving a few lemmas. In 

the following proofs we say u p7~7cr.s~ p of’an SATM M measures out the length n with 

arz s-scyuwce to mean that p enters an s-sequence of length 77+ I of the form .$sI, 

where s0 and s, are special s-symbols reserved for this counting process. 

The first lemma shows that synchronization cannot be replaced by nondetermin- 

ism, modified acceptance, off-line capability and sublogarithmic space combined. 

Lemma3.1. Y’(lDSA(2)FA)-Y(MATM(S(n)))#O,f or an~~,fincrion S(n)~o(log(n)). 

Proof. LetL,=(.~#.~:.~~(O,l)+~. There is a 1 DSA(2) FA M to accept L1 as follows: 

on input x # _r. M splits universally into two processes p1 and pz. Process pz moves 

onto the symbol # and then synchronizes with process p1 to compare .Y and J. 

M accepts s # x iff s = J’. Note that M uses only constant space. 

On the other hand, it was shown in [lo] that L1$9( MATM(S(n))) for 

S(77)Eo(log(n)). n 

It was shown in [24] that Y’(lSUTM(S(n)))cY(SUTM(S(n))) for 

S(n)e[ log(n), o(n)l. The next lemma shows the same relation holds for S(n)Eo(log(n)). 

Lemma 3.2. Y(DSA(Z)FA)-Y(lSUTM(S(n)))#B,f Or anyfirnction S(n)Eo(log(n)). 

Proof. Let LZ = (SE [O, 1 ) ’ : x is a palindrome). There is an DSA(2) FA M that accepts 

Lz as follows: on input s, M splits universally into two processes p1 and pz. Process pZ 

moves onto the right marker S and then synchronizes with process pr to compare 

.Y and .yR. M accepts Y iff .Y is a palindrome. M uses only constant space. 

Now suppose there is some ISUTM(S(n)) N that accepts Lz where S(n)co(log(n)). 

Let s be a random string, t7 = 2.1 .x 1. and consider the computation tree of N on .x@ 

with its processes labeled in some fixed order. We say that processes p and y are in the 

suw c~lm.s i if at the time their input heads move off the prefix .Y they have the same 

internal configuration i. Let ki and li be the largest and smallest numbers of s-states 

that processes in class i enter while reading .Y. We say that process p in class i is 

repwsenttrtiw if it enters ki s-states while reading X. Let K. denote the ordered list of all 



s-states a process 11 in class i will enter while reading the right marker $. It is easy to see 

that the following assertions hold for any processes p and ~1 of A’ on .Y.Y~: 

(i) if /> and (/ are in the same class and both arc representative. then the s-sequences 

they generate on .Y.Y~ are the same: 

(ii) suppose p and C/ arc in the same class i. and 11 is representative whereas y is not. 

Denote the dif-ference of the two s-sequences by the string of s-symbols (1. Then the 

s-sequence that process /I will make on reading the remaining input string xR has the 

form (1’ C. where P is ;I prefix of rl and /‘is some integer. Let tl, denote the longest such 

string for class i. ( ) rl, 1 = k, ~ I, ) and c , and ii’ bc the corresponding \,alues. 

Nat. WC note that if tMo processes 1~ , and 11~ of :V dcndlock on .x11’ for some string 

11’ of length 1.~1. then one deadlock process must have reached the right marker S, else 

A’ re.jects the string .\-~tx?\-“. Furthermore. it is easy to see that either both I>, and 11~ 

are reprcscntative of their classes. or I), and 17 1 are in the same class and one of them is 

representati\c. 

Let C = ; (i. /ci. li. ‘I;. / tli 1. I ci 1): ill’; I. Then the following program P uses C‘ to 

dctcrmine .x: 

We show the correctness of P. If \I’=.Y then all representative processes end LIP in 

accepting states and thcrc is no deadlock. so I-’ prints .\-. Conlcrsely. if P prints 11,“. 

then ail rcprcscntative processes of X on .x\t‘ tinish in accepting states. and there are no 

deadlocks. because P makes sure that no two representative processes deadlock with 

each other (using I<, and 7;‘s). and that no two processes in the same class deadleck 

with each other (using l/,‘s. c,‘s. /;,‘s, and 7j.s to verify the s-scqucncc gcneratcd by each 

representative process). Hcncc. ~1 is ;L palindrome. i.e. 11.~ = .A. 

WC have If~~=(.+I~~~(~_\.~)+~(‘~. where C’ is some constant. (’ contains at most 
I[” / = /p’“l wctors. an d the siLe of each vector is at most (11:. S(u) + /I,~ log(~) + 

ill: .S(ri)l 1~:“” ). where II, . II,. II,. A,. hi arc all constants, 5~) / (‘1 < II~“‘” for some 

constant Ii,,. Since S(r7)~o(Iog(11)). for sulticiently large .Y \ve have lPJ<l i-1. This 

contradicts the randomness of .x. 

Remark. L2 WI be accepted by a I SAF’.rl :t” as rO~iows: on input \\.. :\:’ splits 

universally into lwo proccsscs 17, and 11~ Process /J, makes sure that the first and the 



last symbols are the same, and in the process measures out the length of w with an 

s-sequence. Using this s-sequence as the yardstick, process pz then compares the 

corresponding bits of the rest of the string LV. For example, to compare the ith bit, 

pz measures out the length 2. (i- I). reads the ith bit, and guesses the position 

of the corresponding bit to verify that they are the same, marking out the length 

1 M’ 1~ 2. (i - 1) in the process. At some point pz nondeterministically decides that it has 

finished comparing and quits. 

This is not surprising, because later on we will show that for SATMs bounded in 

space by any function S(n) the one-way and two-way models are equivalent. 

The next lemma improves Lemma 3.2 by showing that the off-line capability cannot 

be replaced by synchronization for any S(n)E[loglog(n),log(n)I. 

Lemma 3.3. d;Y(UTM(S(n)))-Y(lSUTM(S(n)))#Qj,for an~~,func.tion 

S(n)E[loglog(n),log(rl)~. 

Proof. Let L3= (B(n)b.u# J': B(n)=bin(l)#bin(2)#...# bin(n) & Ixl=log(n) 

& .u#_V), where bin(i) is the shortest binary representation of the integer i. That 

L3~_Y( UTM(loglog(n))) was shown in [14]. We show that L3 cannot be accepted by 

any lSUTM(S(n)) for S(n)Eo(log(n)). 

Suppose L3 is accepted by some lSUTM(S(n)) M with s(n)E[loglog(n),log(n)l. 

Let I be a random string of length log(n) relative to B(n)h. i.e. K(s_IB(n)tl)>[.ul, and 

consider the computation tree of M on J’= B(n) h s # s. In general if M deadlocks on 

B(n)h s # Y, then one deadlock process must have read the right marker $, else 

M rejects B(n)Qs#.ur. Since B(n)Q.u#s$L3, there are three cases: there must be 

a process that loops or finishes in a nonaccepting state, or two processes that deadlock 

with each other. 

In the first two cases, let C=(l, i), where i~lk’ is the internal configuration of 

a process p1 of N right after it finishes reading B(n) h x # , and one of whose children 

either loops or ends up in a nonaccepting state. In the third case, there are two 

processes that deadlock with each other, p1 and pz. One of them must deadlock while 

reading the right marker $, say pz, without loss of generality. If p1 deadlocks before it 

finishes reading the prefix B(n) Q .Y # with s-state s, then let C = (2, i2, k2, s1 ), where i2 

is the internal configuration of pz right after it finishes reading B(t1)Q.u # , k2 is the 

number of s-states pz will enter before it deadlocks with pl. Else if p1 and pz deadlock 

after they finish reading B(n)Qs#, let C=(3, il, k,, i2, k,), where i,,iz are the 

internal configurations ofp, ,pz right after they finish reading B(n)Q s #, k,, k2 are the 

number of s-states p1 ,p2 will, respectively, enter before they deadlock. 

Then the following program P uses C to determine X: 



P prints I\’ if there is a process \vhich loops. or ends in ;I nonaccepting state. or two 

processes that deadlock \vith each other. itT \\‘=.Y. Not counting the string B(rt)tz. WC 

have 1 PI SC, + log log(rl)+ ( (‘1 for some constant c’. and I(‘1 <r/, ‘S( 1 N/ )<dz S(n) fo1 

some constants II , and rl?. For suticiently largc X. we have 1 P 1 < log(rl) = 1.~1 since 

S(IJ)EO(~O~(IJ)). But then K (.\.I U(IJ): I< /.Y I. and this contradicts the randomness 

of .Y. 

It was shown in [24] that Y( ISC~7‘.\1(S(rfJ))~ Y( I.S.~T:~I(S(II))) for .S(H)EO(~J). 

The next lemma improLes this result for .S(IJ)EO(~O~(IJ)). 

Proof. Let LJ = I .x # I’: .x. J‘E IO. I I _ bi \-#J.;. There isa lS.4(7)F..4 M that accepts L5 

as follows: on input .Y # 1‘. AI first pucsscs whether .Y and J‘ have diKerent lengths or the 

lith symbol!, of Y and J’ differ for SOIIK k<min ~I_Y/.~J’~ I_ In the first case where it 

decides .Y and J’ ha\e dificrent lengths. ‘21 first splits universally into two processes ,J, 

and ~7~. Process 11, detcrministicall~ measures out the Icngth of.\- with an s-scqucncc. 

Process 1~~ first gucsscs that J’ i’r shorter (longer) than I and then vcrifics its guess by 

measuring out the same s-scqucncc as p, doa and noting that J‘ has less (more) 

symbols than the s-scqucnce. 

In the second case where it decides .\- and J’ dilrer at the Xth symbols for somt 

li<min :I.Y~. 1~‘; I. .I1 again splits universally into two processes /I, and 17~. Proccs, 17~ 

picks a symbol of.y. and process 11~ picks ;I symbol of j‘. and then both verify that thcl 

pick two symbols of the same position by measuring out the s;111lc’ s-sequence. Finally. 

11, and 11~ verify that the two symbols are diRerent by guessing each other’s symbol. 

Note that ,Zf is one-\~a\- and um onl) constant space. 

Suppose L, is accepted by some .SI;T:\I( S(IJ)) A’. where .S(rl)Eo(Iog(IJ)). We assume. 

without lash of generalit!. that .2: only halt\ on the right marker S. Let s be 21 random 

string. II= ?I.\-1 + I. and consider the computation tree of !V on .\- # .Y. Since .X # _Y$L,. 

there are three cases: there is sonic process 11, of IV 011 .\- # Y that halts in ;I nonacccpt- 

ing state. that loops. or there arc two prc)ccsscs 11, and 11~ that deadlock with each 

other. 

In the first GIW. where there is ;I nonaccepting process 11. let c’,, be the internal 

conliguration of 17 bvhen it lirst moves right from the prefix .\- #. and let E=( I. c’,,). 

During the c~~mputation. 17 \ isits the prefx \- # at most / f’t 1 = c,~““’ times for some 

constant 1’. Let (‘ bc the MY of all triples (I,. iA. ok). bvhere ia and oI are the internal 

configurations of /J when it cntcrs and csits .\- # in the lith visit. 

In the second cast, whcrc thcrc is ;I looping process 17. if 17 never exits from the prefix 

.Y # .\- then let E = (2. I ): other\% isc let I: = (2. c’,, ). where c’,, is delined as in the pre\,iouh 



case. During the computation, p visits the prefix .Y # at most j IllI =cS”‘) times, for 

some constant c, before looping occurs. Let C be the set of the first (,S’n’ triples 

(k, ik, ok), where ik and ok are the internal configurations of p when it enters and exits 

.Y # in the kth visit. If p never exits from s# after the kth visit then let ok= - 1. 

In the last case there are two processes p, and pr that deadlock with each other. Let 

C be the set of all tuples (k.ik.ok. I, k t I , Ok. Tk) where i, and ok are the internal 

configurations of p, when it enters and exits I # in the kth visit, and tk is the number 

of s-states p, enters during this period. Similarly, lli, 01,, and T, are the corresponding 

data for p2. Again, there can be at most c”“) such tuples. 

Next, let c1 and cZ be the internal configurations of p, and pz when they first move 

right from .Y #. and rl, and d2 be the numbers of s-states they have entered at that 

point. Let nz be the number of s-states p1 and pz enter before deadlocking. If p1 

deadlocks while it is reading the prefix .u#, then let I, be the number of s-states 

p1 enters since the last time it crosses the symbol # (or since the beginning if p1 

has not crossed # ) before it deadlocks and s, be the deadlock s-state of p, ; else, 

let II = - 1 and .sl = - 1. Let I2 be defined in a similar fashion, and let 

E=(3,rll,I,.s,,l2,S2,(‘,,(1, .(.2,d2). 
Then the following program P uses C and E to determine X: 

We show the correctness of P. If M’= .Y then N rejects s # 1~ and so P prints M’, because 

P is able to detect a looping process, a nonaccepting process, or two processes that 

deadlock with each other. Conversely, if P prints 1t1 then N rejects .Y # M’, so IV=.Y. 

We have I PI = c + log( I-Y I) + I C I + I E 1. where c is some constant. There can be at 

most r;(n) elements in C, and the size of each element is at most cT(“‘.(e,.S(n) 

+log(n)), so /Clde:‘“‘“‘. where e,,ez, and eJ are constants. We also have I E I< 

(e,.S(n)+c),. log(n)). where e4 and es are constants. Since S(n)E[loglog(n),log(n)l, 

for sufficiently large .Y, we have I PI <I .Y I. This contradicts the randomness of .x. 0 

The next lemma shows that when the space bound is at least log(n), synchroniz- 

ation does not increase the power of one-way alternating Turing machines with only 

universal states. In contrast, modified acceptance dock increase the power of this 

class [IO]. 

Lemma 3.5. Y’(lSUTM(S(n)))=_Y(lUTM(S(n))) ./iv any S(n)>log(n). 



Proof. Given an ISL’T,M(S(rl)) :If we construct a I L’T,%l(S(rl)) ,21’ to accept the 

same language as follows. First we describe the simulation for the case when the 

computation tree of :\I on its input .Y has only two processes. $1’ stores the internal 

configurations of both processes /> , and 1): of M in the worktape of ;I process 1~‘. and it 

keeps track of the number of s-states each process has entered with ;I counter. Process 

p’ must simulate both 17, and /‘? one step at a time. and it will move the input head 

only when both 17, and II? are linished with the current input square. Suppose during 

the simulation process p, enters an b-state, and the counts of s-states entered so far are 

/c, for [J, and li, for 17~. If I,, <I\, then p’ continues the simulation. Else if li, 3k2 then 11’ 

spawns of‘ ;I child process I.’ to make sure that the l;,th s-state that II? enters has the 

same s-symbol. If they are not the same. 1.’ rcjccts. A symmetric procedure is carried 

out if /I~ cntcrs an s-state. It is easy to see that M’ accepts the same language ;IS 

:\,I does. and that AI’ uses tht: sxnc amount of space. since the counters take at most 

S ( rl) space. 

We now generalir.e the simulation given above to the general GISC. where an ID 01 

M may have many direct dcsccndants. Again. every process /I’ of M’ is used to 

simulate two processa of !!I. To do that. each 11’ stores in its worktape the internal 

configurations of the two proccsscs 11~ and 1p2 of ‘21 that it is to simulate. along with 

two counters to keep track of the numbers of s-states these processes ha\,c cntcrcd so 

far. During the simulation /I’ will mo\e its input head only if both /J, and /I? arc 

linished with the current input square. and 11’ follows the procedure described abo\,e 

to make sure that I), and 11: \\ill not deadlock with each other. For the sake 01 

uniformity. LVL’ assume that initially &I’ simulates two copies of the initial proccah 

of .21. 

Suppose during the simulation. proax 11, enters ;I uniLers:tl state and splits into 

tl dcsccndant proccsscs. M here tl is bounded b> a constant depending onI> on AJ. Then 

11’ will split into (” 5 ’ ) dcsccndant proceacs. each simulating ;i pair of proccsscs chosen 

from p2 and the descendants of 11, Finally. suppose ;I process I.’ of .%I’ is used to \crifq 

the kth s-symbol of some process I’ of 31, and during the process it finds that proctx 

I’ enters ;I uni\cr5al state and \plita into tl dexxndants. Then I.’ al5o splits into 

tl descendant\ to verify the kth s-symbol of each descendant of I‘. 

It i5 easy to see that .\I’ accept5 it4 input .\ 0 e\cry process of .\I finishes 

in an accepting state. atid thcrc xc no deadlocks o .ZI accepts Y. Also. !\I’ 

uses the same amount of space ;IS ,I1 dots bccau\c the counter\ take up at most S(U) 

5p:lcc. 

When ofl-line capability is present. the situation is slightly dif‘erent. In the next 

three lemmas we show that when the space bound is at least log(~). ncithcr synchron- 

kation nor modilicd acceptance add to the computational power of two-way alternat- 

ing Turing machines with only universal states. 

Lemma 3.6. I/‘(.SL’rM(S(r7)))= i/‘( C;7‘:1f(S(r7))) fog 011~’ .S(~)>log(r~). 



Proof. We modify the simulation technique given in [24] to prove the lemma. Given 

an SUTM(S(n)) A4 where S(n)>log(n), we construct a uTM(S(n)) M’to accept the 

same language as follows. On input N’, M’ simulates each process of M’ with a process 

of its own. When the current internal state of some process p of M is an s-state, the 

corresponding process p’ of M’ spawns off a process c whose worktape contains the 

s-symbol associated with the s-state and the number of s-states p has entered so far. 

Since each process makes at most d’(‘*) moves, d is a constant, and S(n) 2 log(n), there 

is enough space to store them. Process c restarts the computation of M on M’ and 

verifies that the corresponding s-symbols in other processes match with the one stored 

on its worktape. If a discrepancy occurs, M’ rejects. It is easy to see that M and M’ 

accept the same language. 0 

To obtain the same result for MUTMs, we first show that MUTM(S(n)) is closed 

under complementation for S( 11) > log(n). 

Lemma 3.7. Y’(MUTM(S(n))) is closed under complementation,for any S(n)>log(n). 

Proof. Given a MUTM(S(n)) M where S(n)>log(n), we construct a MUTM(S(n)) 

M’ to accept the complement language using the technique used in [9] to show 

nondeterministic space is closed under complementation. 

The idea is to cycle through all configurations to find the set of internal states of the 

leaves of the computation tree of M on some input 1~. Since there are at most dS(“) 

configurations. d is a constant, and S(n)>log(n), there is enough space to do this. Let 

R(n) denote the number of configurations reachable from the initial configuration in 

at most II steps. We use two counters and R(1) to identify all leaf configurations in the 

computation tree of M on \t’ as follows: 

irt LEA VES = 8 

lrt R( 1 ) = the number of corljgurutions reachable in one step ,from 

the initial cor$~~wution 

repeat until R(n)=R(n+ I) 

,fhr rach cor$yurution c, in counter 1 do 

,fi)r each cur$i(-luration cz in counter 2 do 

hrrrnch 

u) do Wt/?iH<J 

h) wr-$v that cz is reachahle,~knn the initial conjyuration in 

at most n steps (with more branching). For rach brunch: 

If it is not halt in state yR 

else $c 1 is reachuhle ,from cz in at most one step then 

increment R (II + 1) 

$‘cI is u halting conjiyurution then 

add its state to LEAVES 



Corollary 3.8. ~‘(.ZfI’T:~1(S(rr)))= r/‘(l’7..tI(.S(rr))) ,/ov ~/JIJ’ .S(r~)~log(,~l. 

Proof. Given ;I AlI /‘!\I ( S(H)) :\I whcrc S(u)> log(~). \+t: 5how how to construct 

;I L’T,V(.S(H)) AI’ \vhich accepts L(.21). Bv the proof of Lemma 3.7 there is some 

:\1C:7‘.If (S(u)) ,‘I’ that XCC~~S L( .\I) with onl 2 halting states q , and qK, and M how 

accepting state set5 are I q, : and i q , . q,< i Now Ict .Y ’ be ;I I. 7‘.lf ( S( II ) J obtained from 

the A1 L’T,tI( S( /I)) :Y by defining the \et of accepting states to be : qK I. It is clear that 

N’ uses only S( rl) \p;tce. and that .x~LtAl) o Y is acccptcd b! .\I c> .\- is rejected bq 

3’ * the internal states of all Ica\cs of the computation trw of .Y on .\- are qK 0 .A” 

acccpta .\. 

In the next two lemmas we sharpen ;I main result in [X] \vhich statcs that 

UC. , 0 i/‘( ,1’7‘,21( II c,“‘“‘))= I/‘( S.-l I.!\! (S(u))) for any space-constructible function 

S(H). WC \vill modif! the proofs leading to thi5 result to remo\e the requirement of 

space-constructibitit~ for S(H) and the cjll-line capabilit! of the S -lT:\fs. 

Lemma 3.9. (,J< ,, I/‘( .‘L’ T:\l( I/ c”“’ ))= (/ ( IS. 1 T,Zf( S’(H))) \rw t//i!‘ /,r/lc’tic,/~ S(H). 

Proof. We M ill ShO\l tht i/‘(.S-l/‘,\f(.S(//)))~~), ,, ~‘I!~f~.Zf(//~~~~““‘))~ 

I/‘( lS,4T,2f( S(,I))) for any function S(u). The lir5t ( c ) relation was >hoMn in [X. 

Lemma 3.11 for spank-constructible .S(~I). WC rcproducc the proof below and sho~z 

how to remow the sp~l~e-construutibilit! requirement. <;i\cn ~111 I S -1 7‘,21 (S(n) I AI. WC 

can construct m .\;T,If AI’ to simulate :\I b!, doing ;I breadth-lirst-like traversal of the 

computation tree of A1 on its input \\’ of si/e II. Each prows4 of .\I i4 simulated until it 

enters an a-state: Al’ Mill compare the corrcaponding s-statcs to tllahc surt: that no 

deadloch occurs before continuing the simulation. Since there are at most II. cl,““’ 

distinct configurations of A1 on an input 11‘ of aia II. ,%I’ needs at 11lc>st II cS6”’ space. fol 

some constants rl and c. at an! time to maintain the currcnt IDS of all proccsscs ol 

A1 on n‘. It is easy to see that the space-constructibilit! rcquircmt‘nt is not neccssar!: 

,!I’ keeps track of the length I of the longest worktape used during the simulatic~n. and 



at the end of the simulation uses up II .c’ squares of tape. Then on any input u’ of 

length n, M uses at most S(n) space iff M’ uses at most II. r”‘“’ space. 

The second (G ) relation was shown in [S, Lemma 3.23 for space-constructible S(n) 

and for off-line SATMs. We reproduce the proof here and show how to remove both 

conditions. First assume that S(n) is space-constructible. Given an N TM (n . ?““) M, 

we construct a 1SATM (S(n)) M’ to simulate M as follows. On some input M’ of length 

n. M’ first splits into II + 4 processes A, B, D,, , D, , , D,, + 1 in such a way that the head 

of Di is on the ith position of the input tape and both A and B have their input heads at 

the first position. Since S(n) is space-constructible, we assume that each of these n+4 

processes has the word 0”‘“’ m its worktape. Each process Di then splits into cS”” 

copies D! . . . . 0:“‘“‘. The significance of these processes are as follows: M’ uses 

A to represent the position of the input head and its state, each D{ to represent the 

((, sc”l.(i- I)+j)th square of the worktape. and B to represent the position of the 

worktape head (suppose the input head of process B is on hth square and its work- 

tape contains the number O<H~<C .““. then the worktape head of M is at position . 

(h - 1 ) P”, + rn). 

To simulate a step of M, M’ performs the following steps: first M’ synchronizes all 

of its processes with a special s-symbol S,,. Then some process D{ has to decide that 

the worktape head is on the square it represents. To do that, B spawns a copy B’ to 

measure out deterministically the lengths h and VI with two s-sequences. Each process 

Di decides either to verify that (h. nr)=(i,,j) or to verify that (h. m)#(i,,j) by spawning 

a copy (D’): and the technique described in Lemma 3.4. All other processes guess 

along with process B. M’ concludes this phase with a special s-symbol S, At the end 

of this phase. exactly one unique process 0: satisfies the relations (h, m)=(k, I). 

In the next phase, processes B, A, and 0: synchronize among themselves (by 

guessing each other’s symbol) to determine the next move of M. All other processes 

guess along with them. Next A updates its state and the position of its input head to 

reflect the change of the input head position and state of M: process B updates its 

input head position and worktape content to reflect the change in the position of the 

worktape head of M; process 0; updates the symbol at the square it represents. M’ 

ends this phase with a special s-symbol S,. 

In the last phase. if process A is in a final state of M, A deterministically produces 

the special s-symbol S3 and stops: else it deterministically produces the s-symbol So to 

restart the process. Other processes guess along with A. This concludes the description 

of the simulation of M by M’. 

Now we show how to make M’ an on-line SATM. We note that only processes 

A and B need the off-line capability: all processes Di stay stationary throughout the 

simulation, and their copies (D’)! move only to the right. First we show that B is not 

necessary. and then we show how to replace A with II on-line processes El,. , E,. 

The position of the worktape head can be maintained by marking the state of the 

process D! representing the square the head is currently on. Initially, the state of 

process 0:’ is marked. To move the head. process 0:’ needs only to identify its 

successor D{: by entering two s-sequences of lengths i’ andj’. Only one unique process 



11:: can match this sequence. so the position of the worktape head will be correctly 

maintained at all times. Hence. process R can be removed. Note also that processes 

0: are still on-line processes. Similarly. the position of the input tape head of :M can be 

maintained with /I on-line processes E,. . E,,. so process A can be removed also. 

Now we show how to remove the requirement of space-constructibility. Before 

spawning &the processes 0:‘s. AI’ guesses the amount of worktape of M needed by 

input 11. and marks the amount on the worktapcs of all of its children processes. If 

during the computation, .I1 attempts to use more space than allowed then ‘$2’ rejects. 

Clearly. Al’ accepts I\‘ within space S(/I) itl’ AI accepts 11’ within space (r7.c.““‘). This 

removes the requirement of spuce-constructibility for S(r7). i I 

We are now ready to establish the relationships among difrcrcnt variants of 

synchronized alternating Turing machines. 

Theorem 3.10. Y( IS.-ITlZf(S(/7)))= Y(S.~T.~I(S(/I))) f;/r t/l/ fi//~c~tio/~s S(n). 

Proof. Follows immediately from Lcmmu 3.9 and [Xl. 1 

Corollary 3.11. Y(SLT,2f(S(/7)))c I/‘( IS.-lT,Zf(S(/7))) Ii//. rr/i~~S(/7)3log(/7) 

Proof. Follows from the fact that I/‘(I’T2if(S(/7)))= Y(.YTiZf(S(/7))) for 

S(U) 3 log(~). Lemmas 3.6 and 3.9. 

Theorem 3.12. (i) ~‘(lSC,‘T:2f(S(/7)))c [/‘(SI,~TA%f(S(/7)))c Y(lS.4T:1f(S(/7)))= 

Y(S.4Thf (S(r7))) /iw ~777)’ /ir77c,rior7 S(rrlro(r7). 

(ii) ~/‘(l.SC’T:~f(S(/l)))= !!‘(SC’T.Zf(S(/7)))c Y(IS.4T.l1(S(/7)))= i/‘(S,4T:Z1(S(J7))) 

for t//l)’ S(/7)a/7. 

Proof. The relations between I/‘( ISC,‘T.\I(S(/I))) and r/‘(SI’ir,21( S(/I))) follow from 

Lemma 3.2 and ;I result in 1241. The relation between i/‘(.SL:Thf (S(r7))) and 

Y( I S.-l T:\l (S(r7))) follows from Lemma 3.4 and Corollary 3. I I. and the relation 

between r/‘( ISA T:\f( S(r7))) and i/‘(S 4 Tnf (S(r7))) follows from Theorem 3. IO. 

C‘onsidering the results of the lemmas above, \vc expect no surprise from the nest 

theorem. 

Theorem 3.13. (i) r/‘( ISLrT.Lf (S(r7))) is i/rc~f///l/~trrtrl/l~~ IO Y’ ( 1,4 TAI ( S ( 17 ) ) ). 

i/‘(.47,Vf(S(/7))). Y’(L:T:Zf(S(/7))). Y( 1,2fL’71\1(.S(/7))). t//d Y’(,291’T,2rl(.S(/7))) ,fiw 

S(/7)E[loglog(/7),log(/?)~. 

(ii) Y’( ISL’TAf(S(r7)))c i/‘([l].47,2f(S(/7))). Y’(C:TAf(S(/7))). 

ii’( I.\fC;T:1f(.S(r7))). t7/7rl Y(:\IL:TAf(S(/7))) 1;//. S(/l)E[Iog(/7). /Il. 



Proof. The first part follows from Lemmas 3.1, 3.3, and the fact that 

L,EY(~MUTM(S(II))) for S(n)>loglog(n). The second part follows from Lemma 

3.5, [IO] and Corollary 3.8. n 

Below we give our solutions to the open problems posed in [8]. The first result 

shows that for all li>O iY([l]DSA(k)FA)c~([l]DFA(k)). We begin by stating 

a corollary to Lemma 3.4. 

Corollary 3.14. Y’(IDFA(2))-lJ;=, Y(DSA(k)FA)f@ 

Proof. Follows from Lemma 3.4 and the fact that there is a IDFA(2) A4 that accepts 

Lb: on input s # ~3. one head of M moves onto the # symbol and then works in 

tandem with the other head to compare .Y and y. M accepts 8 .Y and J differ in one 

position or their lengths are different. M rejects its input if no # is found. n 

Theorem 3.15. Y’([l]DSA(k)FA)cY’([l]DFA(k)),fbr dl k> 1. 

Proof. Follows immediately from Corollary 3.14. n 

The second result establishes a tight hierarchy on the number of processes for 

1 DSA(k)FAs. We need a few terminologies for our proofs. 

Definition 3.16. For 111 >O, II 30, let 

L m. ,I =(,~,#\\‘z#...#~~,#\~,#“‘#\~,#\~,#”:\~I.s~(O,lj*). 

Definition 3.17. Suppose M is a 1 DSA (k) FA which accepts L,,,, for some HI> I, II > 0, 

k >O. Let 1~ be in L,,,,, and 13 be a prefix of M*. and p be a process in the computation tree 

of M on IV. We use 

(i) SS,,,. to denote the s-sequence of process p after reading the prefix I‘, 

(ii) SS,. to denote the longest s-sequence among all processes of M after reading I’, 

(iii) ss,. to denote the shortest s-sequence among all processes of M after reading 1’. 

Also, we call SS,.- SS,,,. the esprctrd s-seyurnce o~‘procc~ss p L!fiev reudiny 1’. In other 

words. to avoid deadlocks, process p must enter these s-states after reading I’. 

Lemma 3.18. L,,,,cY( lDSA(I)FA)-2’(lDSA(l)FA),fbr trll ~20. 

Proof. By definition, 9’( IDSA( I) FA) is just the class of regular languages. It is 

evident that LI,,, are not regular. 0 



Proof. Let \t‘1 be random and let SS ,,,,, , ,, = ss ,,,, n Then for all I.EL, ,, ,). process 

17 on input \I’, # I,# can enter no more than SS,,., i* s-states, or else. the following 

program P can be used to determine \\‘, : 

Clearly. P prints j‘ ifT j‘= \I‘, We have 1 I’! <c’, log( 1 w, / )+ (‘: for sonic constants c, 

and (‘:. But then for suticiently large random 11’~ . we have / I-” 1 < 1 lt., 1, This contra- 

dicts the randomness of \\‘, Hence there is ;I random string \\‘1 . a constant rl dcpend- 

ing only on \\‘, and M. and ;I process [J of !\I such that for all I’ in L,, , ,,, . 
I ss,.,,., tf ! * I Gd. 

Proof. Suppose Ail is ;I I DSA (//I) F.4 that accepts L,,,,,, for some ))I> 1. II > 0. Then by 

Lemma 3.19. thcrc is ;I random string 113, . ;I constant rl depending only on 1%~~ and M. 

and a process p of AI. such that for any I.EL,,,- ,,(,, ISS, ,,,, *I n 1 <r/. Without loss of 

generality. Ict \J = I. 

We construct ;i 1 DS.3 (//I ~ I )F.3 31’ to accept L,,, , .,, , , ,,., , as follows. Let 

( /J~ . [J?. . /J,,, ) be states of the /ii processus of :\I after reading it‘, # Some of them 

might be null. if the corresponding proccsscs do not exist at the time. &I’ on input 

1.E L,,, , ,, + , ,, + , , branches into ~7 ~ 1 processes with initial states ( [p, , p2]. /I,{. _. . pm ). 

Note that the first two processes of 31 are combined into enc. 

:\I’ continues to Gmulate :\I on input I. # ” + ’ I” ‘. except for some minor 

modifications: 

(i) for i> I. process i of AI’ refrain5 from cntcring the next ISS,,., n -SSi,,,., r? 1 
s-states. Instead. it checks to see whether they form the expected 

s-sequence for process i+ I of :!I and. if so. it enters some equivalent but 

nonsynchronizing states. Else. process i rc.jccts the input. Once the cxpccted 

s-sequcncc has been confirmed. process i will resume entering s-states. 

(ii) The first (combined) process of If’ will simulate process 2 of M in the manner 

described above. it will also verify that process I is not involved in ;i deadlock 

in the computation of .\I on I\‘, # r# n‘, # ‘I. Becvuse process I of ,Zil on 



\v, # r # N, #’ does not enter more than d+e .( 1 w1 I+ n) s-states (e is some 

constant depending only on M ), it suffices to keep track of the first 

d+ c’( 1 \v, 1-t n) s-states of the other processes of M. This can be done with 

constant space. 

(iii) M’ treats the first I H’, I #‘s that comes after 11 as wl. 

Clearly, I’ #““““‘EL,,_ l,n+I ,,II I iff )\‘I # r# 1~~ #“EL,,,., iff there is an accepting 

computation of M on MI, # r # ~1, #’ itf M’ accepts L’ #“+I “‘11. n 

Theorem 3.21. L,,.E~(~~SA(~+~)FA)-.~(lDSA(m)FA)for all m>O, n30. 

Proof. We use induction on rn. The theorem is true when m= 1 because of Lemma 

3.18. Suppose LI_l., E~(~DSA(~)FA)-_Y(~DS.~(~-~)FA) for some 1~1 and all 

n>O. We show L,~~E~(IDSA(I+I)FA)-~(I~SA(I)FA)~~~ all n>O. 

Suppose for some II, L,,.EY(~DSA(I)FA). Then by Lemma 3.20, L1_l,n+k~ 

_Y’( 1 DSA(l- 1) FA) for some k 30. This contradicts the induction hypothesis. On the 

other hand, the following lDSA(m+ 1) FA M accepts L,,,, in a straightforward 

manner: a process p1 of M sequentially outputs as its s-sequence the first m segments 

of the input delimited by two #‘s, or a # and the left endmarker; at the end of each 

segment. p1 spawns off a process which seeks and outputs the corresponding segment 

as its s-sequence. Also p, verifies that the input contains exactly (2m - 1 + n) # sym- 

bols. It is clear that M accepts .Y iff XEL,,,,. Hence the theorem holds for 

all 01 > 0. 0 

4. Related results and corollaries 

We give a number of corollaries and other results related to our main theorems. 

Corollary 4.1. The jdlortYq classes are c~losed under complementution, intersection, 

union, concutenution, and Kleene closuw: 

(i) Y([l]SATM(S(n)))for unj’ S(n). 

(ii) Y(SUTM(S(n)))Jiw S(n)>log(n). 

(iii) Y( lSUTM(S(n))),for S(n)>n. 

Ah: 

(i) .Y’(SUTM(S(n))) is not closrd w&r c,omplemrntation,for S(n)Eo(log(n)). 

(ii) Y( 1SU TM (S(n))) is not closed w&r complementutionjbr S(n)Eo(n). 

(iii) .Y’( lSUTM(S(n))) is not closrd undrr uniorl,for S(n)eo(log(n)). 

(iv) Y’(lSUTM(S(n))) ,I d Ii IS c ox un er intersectionfiw S(n)E[log(n),nj. 

Proof. The first part follows from Lemmas 3.9 and 3.6 and Theorem 3.12(ii). 

The first two items of the second part follow from Lemma 3.4 and [24]. To prove 

the third item, consider L8 = (.Y # s # y: Y, YE (0, 1 }* 1 and L9 = {x # y # x: 

.Y,JF(O, 1;*;. It is easy to see that L, and L9~P’(1SA(2)FA); however, by using 



an argument similar to the one given in Lemma 3.2 \ve can show that 

L,uL,,$ i/‘( lSC:T,ZI(S(u))) for any S(rr)~o(log(r~J). The fourth item follows from 

Lemma 3.5. 

Proof. WC construct ;I I DS.4 (2) F.3 ‘II to accept 1_4. On input .x. :CI splits into 

2 processes 11, and 11~. Process /I: mo\‘es to the right until it reaches the symbol # and 

then synchronizes with 11, to compare the tirst half and the second half of the input. 

.\I accepts .y itf .x = II # I’. II. 1.6 10. I i ’ and II = I’. or y dots not have the form II # I.. 

II. 1’E ; 0. I ; +. The corollar! then follows from Lemma 3.4. 

Proof. For wch I, >O. Ict K, = j II’, # 11‘~ # “. # i\‘i. #.Y # j’ # 11‘~ # ... # \\‘? # \I‘, : 

n~;s..\-.vE;o. 1 ;* I. Lllld .SA = j .Y # 1\‘, # \\‘J # ” # \\‘A # \\‘k # ” # 11’2 # 11.1 # )‘I 

r\.; s. \-. J‘E ; 0. 1 1 * ;. Roth R, and S,, are in Y/‘( I DS.3 (I, + I ) k’.3 ). but K,nS,, = Lk + , ,, is 

not. by Thcorcm 3.Zl. Hence r/‘( I DS.4(/;)F,4 ) is not closed under intersection for 

all I, > I. 

Suppose there is \onie lDSl(l, + I )/,‘.-I AI that accept> .Sku7;. Ilsing the saniC 

technique shown in Lemma 3.19. ti’e can lind ;I random string \\., and ;i process /I of 

.I1 on \\‘, # such that for all I’E L k, ,,. procaT 11 on input I\., # I‘ # enters no more than 

I/ s-states. \zhcre i/ i3 ;I con5lant depending onI1 on 11’~ and .\I. Hut then using the 

simulation technique in Lemma 3.20. \ve can show that LA,,, can bc accepted by some 

I DS.1 (/;)f’-l .\I’. Thih contradicts Thcnrcm 3.21: hcncc r/‘( IDS.1 (/i)F..-l ) is not closed 

under union for all Ii > I. 

Corollary 4.4. i/‘(D.S.-l (2)/+.-l l-u;_, i/‘( I DF.~(/c))#O. 

Proof. Let Li = u,:_ , L ,,,, ,,. Li can be xccpted by ;I DS,‘l (3) F.4 :\I as follows. On 

input I(‘. :\I splits into 2 processcs 11, and 11~. Process ~7~ move\ onto the right market 

S and then synchronizes with /I, to compare the \\.,‘h. Note that /jr mo\es back\vard 

aftor each comparison. whereas /J, move\ for\+ard. Also. ‘21 make\ sure that there is an 

odd number of #‘s. :\I accepts \I’ iIf \I‘ is in L,. Suppose Li i\ accepted bq some 

I Db’.-l (k) II’ for some I\. Then we can construct ;I I DE‘.3 (A) .1; to accept the language 

L , ?, + ,,,j by making sure that \\’ has exactly I<. (I< I ) + I # ‘s beforc accepting. Thia 

contradicts ;I result b> Yao Riiest [X3]. which show I!_,,, , ,,,,$ i/‘( IDI-, (k)). Hence 

the corollary follo\vs. 

Corollary 4.5. cjk’ .(l Y’(DS.-l(k)FA )c !l(‘(DE‘.4(2)) 



Proof. Given LEY(DSA(~)FA) for some k>O, we construct a DFA(2) A4 to accept L: 

on each input x, M first does a depth-first search with one head to identify the shape of 

the computation tree of M on s without paying any attention to synchronizing 

symbols. This can be done in constant space because there are only finitely many 

different trees with k leaves. M then uses this information to compare all (i) possible 

pairs of s-sequences of the processes of M on .Y using two heads. M accepts .Y iff all 

k processes finish in accepting states and there are no deadlocks. 0 

Corollary 4.6. JY’(SUTM(S(n)))-Y(MUTM(S(n)))#CI ard _Y(SUTM(S(n)))- 
Y(ATM(S(n)))#0,ftir trn~’ S(u)E[loglog(rl), log(n)/. 

Proof. Follows directly from Lemma 3.1. 0 

5. Concluding remarks 

Although the relationships between U( lSUTM(S(n))) and other classes of alter- 

nating Turing machines are well understood. some corresponding relationships con- 

cerning Y’( SU TM (S(n))) remain open or only partially understood. Below we list 

some partial results and remaining open questions as directions for further research. 

The following relationships are known: 

(i) Y’(IATM(S(n)))-Y’(UTM(S(n)))#0 for S(n)E[loglog(n),log(n)I ([H]). 

(ii) Y(SUTM(S(n)))- Y’(ATM(S(n)))#0 for S(n)E[loglog(rr),log(n)l (Corollary 

4.6). 

The following questions are open: 

(i) Y(UTM(S(n)))-Y’(lATM(S(n)))#0 for S(~r)E[loglog(rr),log(n)) ([15])? 

(ii) Y’(lATM(S(n)))-Y(SUTM(S(n)))#0 for S(n)E[loglog(n),log(n)~? 

(iii) Y’(DSA(k)FA)c Y’(DSA(k+ l)FA) for all li>O? 

(iv) Characterize I/‘( SU TM (S(n))) for S(H)EO( log n). 

(v) Y(lSATM(S(n)))-.Y’(lATM(S(n)))#0 for S(tr)E[log(n),nl‘? 

Note that if U( lS.4 TM (log(n))) = Y’( 1 A TM (log(n))) then alternating Turing 

machines use space optimally, and hence P= NP (see [S]). We conjecture that the 

answer to (iii) is positive and offer the class of languages c = (x1 # x2 # ... # xi: 

.Y , , .Y ?, . .Y,E 10. I ) * are pairwise compatible) as candidate witness languages. 
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