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Abstract

A problem of H.P. Rosenthal asks whether every bounded linear operator T :C[0,1] → C[0,1] which
is an isomorphism on a closed linear infinite-dimensional subspace X not containing any isomorph of c0,
is actually an isomorphism on a subspace isomorphic to C[0,1]. An affirmative answer to this problem is
provided when T is a contraction whose restriction to X is an isometry.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A well-known property of C(K) spaces, where K is compact and Hausdorff, is that every
bounded linear operator defined on such a space is weakly compact if, and only if, it is strictly
singular [16]. Very little is known however, about non-strictly singular operators on C(K). In
particular, it is an open problem whether every infinite-dimensional complemented subspace
of C(K) is isomorphic to C(L) for some compact Hausdorff space L [5,14,16]. For an in-depth
analysis of this problem, we refer to [22].

When K is metrizable the following theorem, due to H. Rosenthal, provides important infor-
mation about operators on C(K) whose adjoints have non-separable range.
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Theorem 1.1. (See Rosenthal [19].) Let K be an uncountable compact, metrizable space,
X a Banach space and T :C(K) → X a bounded linear operator. Assume that T ∗(X∗) is non-
separable. Then there exists a closed, linear subspace Y of C(K), isomorphic to C(K) and such
that the restriction of T to Y is an into isomorphism.

Using the preceding result, combined with those of A. Miljutin [15] and A. Pelczynski [17],
Rosenthal was able to deduce that a complemented subspace X of C(K) having non-separable
dual is isomorphic to C(K). When X∗ is separable, the situation is more delicate. The results of
D. Alspach and Y. Benyamini [1,3], yield a countable compact metric space L such that each one
of X and C(L) is isomorphic to a quotient of the other. In this case it is not even known if X is
c0-saturated, that is if every infinite-dimensional subspace of X contains an isomorph of c0. This
is a well-known property of C(K) for a countable and compact metric space K [18]. Rosenthal
posed the following

Problem. Let K be an uncountable compact and metrizable space and let T :C(K) → C(K)

be a bounded linear operator. Assume that there exists a closed, linear, infinite-dimensional
subspace X of C(K) which does not contain c0 isomorphically and such that T |X is an into
isomorphism. Does there exist a closed, linear subspace Y of C(K), isomorphic to C(K), and
such that T |Y is an into isomorphism?

Of course, under the assumptions of this problem and thanks to Theorem 1.1, it will be suf-
ficient to show that T ∗ has non-separable range in order to solve the problem in the affirmative.
Note also that a positive answer to this problem yields that complemented, infinite-dimensional
subspaces of C(K) with separable dual are c0-saturated.

J. Bourgain [7] showed that Rosenthal’s problem has an affirmative answer when X is as-
sumed to have non-trivial cotype. In particular, when X is isomorphic to �p for some 1 < p < ∞,
then T ∗ has non-separable range.

We remark here that Rosenthal in [19], actually proved a result stronger than Theorem 1.1.
Namely, he showed that if M is a w∗-compact subset of BC(K)∗ which is not separable in the
C(K)∗-norm, then M norms a closed linear subspace X of C(K) which is isomorphic to C(K).

Recall that a subset M of BC(K)∗ is said to norm the closed linear subspace X of C(K),
provided that there exists a scalar 0 < ρ � 1 satisfying supμ∈M|∫

K
f dμ| � ρ‖f ‖, for all f ∈ X.

When ρ = 1, we say that M isometrically norms X.
Bourgain’s main result was that if M is a w∗-compact subset of BC(K)∗ which norms a closed,

linear, infinite-dimensional subspace X of C(K) having non-trivial cotype, then M is not sep-
arable in norm. He then derived his theorem on operators on C(K) from Rosenthal’s preceding
result.

In the present paper we investigate the isometric version of Rosenthal’s problem. Our main
result is as follows:

Theorem 1.2. Let K be an uncountable, compact and metrizable space and let X be a closed,
linear, infinite-dimensional subspace of C(K) containing no isomorph of c0. Suppose that
M ⊂ BC(K)∗ is w∗-compact and that it norms X isometrically. Then M is not separable in
the C(K)∗-norm.

The preceding result, combined with Theorem 1.1, yields that the isometric version of Rosen-
thal’s problem holds true.
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Corollary 1.3. Let K be an uncountable, compact and metrizable space and let X be a closed,
linear, infinite-dimensional subspace of C(K) not containing any isomorph of c0. Suppose that
T :C(K) → C(K) is a contraction such that T |X is an into isometry. Then there exists a closed,
linear subspace Y of C(K), isomorphic to C(K), and such that T |Y is an into isomorphism.

Proof. Let M = T ∗BC(K)∗ . Since T is a contraction, M is a w∗-compact subset of BC(K)∗ .
Moreover, M isometrically norms X as T |X is an into isometry. We deduce from Theorem 1.2
that M is not separable in norm. Hence, T ∗ has non-separable range and the assertion of the
corollary follows by Theorem 1.1. �

The main difficulty in proving Theorem 1.2 is to find an appropriate criterion for detecting
isomorphic copies of c0 in a given Banach space. We shall next discuss some of the existing
criteria by first recalling a classical result of C. Bessaga and A. Pelczynski [4].

Theorem 1.4 (Bessaga–Pelczynski). Let K be a compact Hausdorff space and (fn) be a sequence
in C(K) with infn ‖fn‖ > 0. Assume there is a constant C > 0 such that

∑∞
n=1 |fn(t)| � C for

all t ∈ K . Then there exists a subsequence of (fn) which is equivalent to the usual c0-basis.

The proof of Theorem 1.2 relies on a new approach towards the results of J. Elton [8] and
V. Fonf [9,10] concerning extremal tests for unconditional convergence of series in Banach
spaces not containing c0 isomorphically. To explain this approach, we first recall the statements
of the aforementioned results.

Theorem 1.5. (See Fonf [9].) Let X be a Banach space with the property that the set of the
extreme points of BX∗ is countable. Then X contains c0 isomorphically.

Fonf’s argument makes use of an important theorem by Bessaga and Pelczynski [6] which
states that in separable dual spaces, closed, convex and bounded subsets have extreme points.

Later on, Elton showed that if the set of the extreme points of BX∗ can be covered by a
countable union of norm-compact subsets of X∗, then X can be given an equivalent norm such
that the set of the extreme points of the renormed dual ball is countable. He then applied Fonf’s
preceding result to deduce that X contains c0 isomorphically. As a consequence, he obtained the
following theorem:

Theorem 1.6. (See Elton [8].) Let X be a Banach space and suppose that (xn) is a normalized
sequence in X satisfying

∑
n |e∗(xn)| < ∞ for every extreme point e∗ of BX∗ . Then X contains c0

isomorphically.

Fonf [10] strengthened Elton’s theorem by replacing the set of the extreme points of BX∗ in
the hypothesis of Theorem 1.6 by any boundary of X. We recall here that a subset B of BX∗ is
called a boundary for X provided that every x ∈ X attains its norm at an element of B ∪ −B .
Fonf proved a more general result which may be stated as follows:

Theorem 1.7. (See Fonf [10].) Let X be a closed linear subspace of C(K), where K is compact
and Hausdorff, containing no isomorph of c0. Suppose that (Kn) is an increasing sequence of
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subsets of K such that Kn does not norm X (i.e., there is no ρ > 0 satisfying supt∈Kn
|f (t)| �

ρ‖f ‖ for all f ∈ X) for all n ∈ N. Then there exists some f ∈ X with ‖f ‖ = 1 and such that

{
t ∈ K:

∣∣f (t)
∣∣ = 1

} ∩ Kn = ∅, ∀n ∈ N.

The next corollary to Theorem 1.7, also due to Fonf, generalizes Theorem 1.6.

Corollary 1.8. Let X be a Banach space and let B ⊂ BX∗ be a boundary for X. Suppose that
(xn) is a sequence in X with lim supn ‖xn‖ > 0 and so that

∑
n |b∗(xn)| < ∞ for all b∗ ∈ B .

Then X contains c0 isomorphically.

Fonf’s argument was based on finding a renorming of X so that the new dual ball has count-
ably many extreme points and thus he reduced the problem of embedding c0 in X to the case
dealt in [9].

G. Androulakis [2] and P. Hajek [11] have discovered further extensions of the results of
Elton and Fonf in the context of isomorphically polyhedral Banach spaces. A result deeper than
Corollary 1.8 was obtained in [2]. It was shown in that paper that, under the assumptions of
Corollary 1.8, there is a subsequence of (xn) spanning an isomorphically polyhedral Banach
space. The latter class of spaces are known to be c0-saturated.

We recall here Rosenthal’s deep characterization of Banach spaces not containing c0 isomor-
phically:

Theorem 1.9. (See Rosenthal [21].) Let X be a Banach space. Then X contains no isomorph
of c0 if, and only if, every non-trivial weak-Cauchy sequence in X admits a subsequence which
is strongly summing.

Recall that a weak-Cauchy basic sequence (en) is non-trivial, if it is non-weakly con-
vergent. It is strongly summing provided that whenever (cn) is a scalar sequence satisfying
supn ‖∑n

i=1 ciei‖ < ∞, then the series
∑∞

n=1 cn converges.
In Section 2, we give an alternative proof of the results of Elton and Fonf which is quite

elementary. It only uses Theorem 1.4. The main tool is the following characterization of Banach
spaces not containing an isomorph of c0:

Theorem 1.10. Let K be a compact Hausdorff space and X ⊂ C(K) be a closed linear subspace.
Let (δn) be a summable sequence in (0,1). Then X does not contain c0 isomorphically if, and
only if, for every sequence (εn) in (0,1) and every sequence (fn) in X with infn ‖fn‖ � 1,
the following property is satisfied: there exist f ∈ X with ‖f ‖ = 1, a sequence of non-zero
scalars (an) in (−1,1) and an infinite sequence of integers 1 = m1 < m2 < · · · such that

(1) f = ∑∞
n=1 anfn, uniformly on K . Moreover, the series

∑∞
n=1 |an||fn| is uniformly conver-

gent on K .
(2) ‖∑mn

i=1 |ai ||fi |‖ � (1 + δn)
−1‖∑mn+1

i=1 |ai ||fi |‖ < 1 , for all n ∈ N.
(3) |ai | < εn for each i ∈ (mn,mn+1] and all n ∈ N.

Theorem 1.10 will be mostly applied to a normalized weakly null sequence (fn) in a Banach
space not containing c0 isomorphically, in contrast to Rosenthal’s characterization which applies
to non-trivial weak-Cauchy sequences.



1516 I. Gasparis / Advances in Mathematics 218 (2008) 1512–1525
For our purposes, a weaker statement than that of the preceding theorem will actually suffice.
We state below an immediate consequence of Theorem 1.10.

Corollary 1.11. Let K be a compact Hausdorff space and X ⊂ C(K) be a closed linear subspace
not containing any isomorph of c0. Assume that (fn) is a sequence in X with infn ‖fn‖ � 1, and
that (δn) is a summable sequence of scalars in (0,1). Then there exist f ∈ X with ‖f ‖ = 1 and
a sequence of non-zero scalars (an) in (−1,1) so that the following properties are satisfied:

(1) f = ∑∞
n=1 anfn, uniformly on K . Moreover, the series

∑∞
n=1 |an||fn| is uniformly conver-

gent on K .
(2) ‖∑n

i=1 |ai ||fi |‖ � (1 + δn)
−1, for all n ∈ N.

We give two applications of Corollary 1.11. The first one is a direct proof of Theorems 1.7
and 1.6. The second application, given in Section 3, is Theorem 1.2 discussed in the preceding
paragraphs.

Our notation is standard as may be found in [13]. We shall consider Banach spaces over the
real field. If X is a Banach space then BX stands for its closed unit ball. X is said to contain an
isomorph of the Banach space Y (or, equivalently, that X contains Y isomorphically), if there
exists a bounded linear injection from Y into X having closed range. If Y ⊂ X, then it is called
complemented provided it is the range of a bounded, linear, idempotent operator on X.

Given sequences (xn) and (un) of non-zero vectors in X, then we say that (un) is a block
subsequence of (xn) if there exist a sequence of non-zero scalars (an) and a sequence (Fn) of
successive finite subsets of N (i.e., maxFn < minFn+1 for all n ∈ N), so that un = ∑

i∈Fn
aixi ,

for all n ∈ N. We then call Fn the support of un for all n ∈ N. Any member of a block subse-
quence of (xn) will be called a block of (xn).

The sequence (xn) is said to be semi-normalized if infn ‖xn‖ > 0 and supn ‖xn‖ < ∞. It
is called a basic sequence provided it is a Schauder basis for its closed linear span in X.
(xn) is equivalent to the usual c0-basis, if there exist positive constants λ1 � λ2 such that
λ1 maxi�n |ai | � ‖∑n

i=1 aixi‖ � λ2 maxi�n |ai | for every choice of scalars (ai)
n
i=1 and all

n ∈ N.
Finally, for an infinite subset M of N we let [M] denote the set of its infinite subsets, while

[M]2 stands for the set of all doubletons of M , that is the collection {(m,n): m,n ∈ M, m < n}.

2. A proof of the Elton–Fonf theorems

This section is devoted to the proof of Theorem 1.10. Before giving the details, let us see how
this implies the results of Elton and Fonf described in the previous section.

Proof of Theorem 1.7. Choose a summable sequence (δn) of scalars in (0,1). Then choose
another such sequence (εn) satisfying 2

∑
i>n εi < δn, for all n ∈ N. Since none of the Kn’s

norms X, we can find a normalized sequence (fn) in X satisfying

∣∣fn(t)
∣∣ < εn, ∀t ∈ Kn, ∀n ∈ N. (2.1)

We next apply Corollary 1.11 to the sequences (fn) and (δn), to obtain a sequence of scalars (an)

in (−1,1) and an f ∈ X so that
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(1) f = ∑∞
n=1 anfn, uniformly on K , and ‖f ‖ = 1.

(2) ‖∑n
i=1 |ai ||fi |‖ � (1 + δn)

−1, for all n ∈ N.

Now let t ∈ K satisfy |f (t)| = 1. We claim t /∈ ⋃∞
n=1 Kn. Indeed, assuming otherwise, there is

some n ∈ N with t ∈ Kn. Since (Kn) is increasing, we infer from (2.1) that∣∣fi(t)
∣∣ < εi, ∀i > n.

We finally have the estimate

1 = ∣∣f (t)
∣∣ �

∞∑
i=1

|ai |
∣∣fi(t)

∣∣

�
n∑

i=1

|ai |
∣∣fi(t)

∣∣ +
∑
i>n

|ai |
∣∣fi(t)

∣∣
� (1 + δn)

−1 +
∑
i>n

εi

(
by (2) and (2.1)

)
< (1 + δn)

−1 + (1/2)δn.

We deduce from the above, that δn > 1 contradicting our choice of the sequence (δn). It is clear
now, that f satisfies the conclusion of the theorem. �
Proof of Corollary 1.8. Assume on the contrary, that X contains no isomorph of c0. Let K

denote the compact space BX∗ endowed with the w∗-topology. Set

Kn =
{

x∗ ∈ K:
∞∑
i=1

∣∣x∗(xi)
∣∣ � n

}
, ∀n ∈ N.

It is clear that each Kn is a w∗-closed subset of K . Moreover, our hypotheses yield that
B ⊂ ⋃∞

n=1 Kn. We can of course identify X with a subspace of C(K). If there is some n ∈ N such
that Kn norms X, then Theorem 1.4 would imply that some subsequence of (xn) is equivalent to
the c0-basis. This contradicts our assumption on X.

Therefore, Kn norms X for no n ∈ N. Since (Kn) is increasing, Theorem 1.7 yields that⋃∞
n=1 Kn is not a boundary for X, despite the fact that it contains B as a subset. This contradiction

proves the corollary. �
Remark 2.1. If X satisfies the hypotheses of Corollary 1.8 then, evidently, so does every closed
linear subspace Y of X containing a subsequence of (xn) which does not converge to zero in
norm. It follows from this that c0 is contained isomorphically in the closed linear span of the xn’s
in X. Moreover, there is a subsequence of (xn) spanning a closed linear subspace Z of X which
is c0-saturated. In fact, a stronger result is obtained in [2] where it is proved that Z can be chosen
to be isomorphically polyhedral.

To find a c0-saturated Z, spanned by a subsequence, we can assume that (xn) is bounded
away from zero. Letting yn = ‖xn‖−1xn for all n ∈ N, one checks that (b∗(yn)) is absolutely
summable for all b∗ ∈ B . It follows that some subsequence of (yn) is basic. To see this, observe
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that no subsequence of (yn) is equivalent to the usual �1-basis as c0 is contained in the closed
linear span of the yn’s in X, thanks to Corollary 1.8 and the preceding comment. We now deduce
from Rosenthal’s �1-Theorem [20], that there is a subsequence of (yn) which is weak-Cauchy.
Without loss of generality, assume that (yn) is itself weak-Cauchy.

In case (yn) is weakly convergent then, since B is a boundary for X and (b∗(yn)) is absolutely
summable for all b∗ ∈ B , we obtain that (yn) is a normalized weakly null sequence in X. Hence,
by a classical result [4], there is a subsequence of (yn) which is basic. When (yn) is a non-trivial
weak-Cauchy sequence (i.e., non-weakly convergent) then, again, it admits a subsequence which
is basic (in fact dominating the summing basis of c0). The latter is shown in [21]. Concluding,
every subsequence of (yn) admits a basic subsequence. Once again, there is no loss of generality
in assuming that (yn) is itself a basic sequence. Let Z denote the closed linear span of (yn) in X.

We next observe that (b∗(un)) is absolutely summable for every normalized block basis (un)

of (yn) and each b∗ ∈ B . Therefore, c0 is contained isomorphically in the closed linear span in X

of every normalized block basis of (yn). Standard permanence properties of basic sequences
now yield that every infinite-dimensional subspace of Z contains a basic sequence equivalent to
a normalized block basis of (yn) and thus Z is c0-saturated.

The proof of Theorem 1.10 requires two lemmas.

Terminology. If (xn) is a sequence of non-zero vectors in a Banach space, then a positive block
of (xn) is a vector of the form u = ∑

i∈F aixi , where F is a finite subset of N and ai > 0 for all
i ∈ F . We also set ‖u‖c0 = maxi∈F ai .

Lemma 2.2. Suppose that X is a closed linear subspace of C(K) not containing any isomorph
of c0 and let (fn) be a sequence of non-zero elements of X. Set gn = |fn|, for all n ∈ N, and
consider a block subsequence (un) of (gn) consisting of positive blocks. Then, the following
properties hold:

(1) If (un) is a basic sequence in C(K), then it is not equivalent to the c0-basis.
(2) If supn ‖∑n

i=1 ui‖ < ∞, then the series
∑∞

n=1 un is uniformly convergent on K .

Proof. (1) Assume, on the contrary, that (un) is equivalent to the c0-basis. It follows that (un) is
semi-normalized and there is some C > 0 such that

∞∑
n=1

un(t) � C, ∀t ∈ K.

We may write un = ∑
i∈Fn

aigi for all n ∈ N, where F1 < F2 < · · · form a sequence of succes-
sive, finite subsets of N, and the ai ’s are all positive.

Let n ∈ N and choose tn ∈ K such that ‖un‖ = un(tn). Then choose signs (σi)i∈Fn so that
σifi(tn) = gi(tn), for all i ∈ Fn. Set vn = ∑

i∈Fn
σiaifi . Clearly, (vn) is a block subsequence

of (fn). Note also that

∣∣vn(t)
∣∣ �

∑
ai

∣∣fi(t)
∣∣ = un(t), ∀t ∈ K, ∀n ∈ N. (2.2)
i∈Fn
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Since vn(tn) = un(tn) = ‖un‖, we conclude that ‖vn‖ = ‖un‖ for all n ∈ N. In particular, (vn) is
semi-normalized. Moreover, (2.2) implies that

∞∑
n=1

∣∣vn(t)
∣∣ � C, ∀t ∈ K.

Therefore, some subsequence of (vn) is equivalent to the c0-basis, by Theorem 1.4. Hence, c0 is
contained isomorphically in X contradicting our assumptions. Thus, (1) holds.

(2) Let d > 0 satisfy
∑∞

n=1 un(t) � d , for all t ∈ K . Suppose that the series
∑∞

n=1 un is not
uniformly convergent on K . Then there exist ε > 0 and a sequence of successive, finite subsets
of N I1 < I2 < · · · , such that

∥∥∥∥∑
i∈In

ui

∥∥∥∥ � ε, ∀n ∈ N.

Set wn = ∑
i∈In

ui , for all n ∈ N. It follows now that ε � ‖wn‖ � d , for all n ∈ N, and that∑∞
n=1 wn(t) � d , for all t ∈ K . We infer from Theorem 1.4, that (wn) has a subsequence equiv-

alent to the c0-basis. Since (wn) is a block subsequence of (gn) consisting of positive blocks
of (gn), we have contradicted (1). Thus, (2) holds as well. �

We thank the referee for simplifying the proof of the next lemma.

Lemma 2.3. Suppose that (gn) is a sequence of non-negative and non-zero functions in C(K)

such that supn ‖∑n
i=1 gi‖ = ∞. Let λ1, λ2 be scalars in (0,1], and let u be a block of (gn)

satisfying ‖u‖ < λ1λ2. Then, given ε > 0, there exists a positive block v of (gn), u < v (i.e.,
max suppu < min suppv), satisfying

λ−1
1 ‖u‖ < ‖u + v‖ < λ2 and ‖v‖c0 < ε.

Proof. Set m = max suppu. Given n ∈ N, n > m, put kn = n − m and define a map
φn : [0, ε]kn → R by the rule

φn(t1, . . . , tkn) =
∥∥∥∥∥u +

kn∑
i=1

tigm+i

∥∥∥∥∥.

Clearly, φn is continuous for all n > m. We claim that there exist n > m and (h1, . . . , hkn) ∈
(0, ε)kn so that

λ−1
1 ‖u‖ < φn(h1, . . . , hkn) < λ2.

Once our claim is established, then v = ∑kn

i=1 higm+i will be the required positive block of (gn).
To prove the claim, we choose n > m so that

φn(ε, . . . , ε) > λ−1‖u‖. (2.3)
1
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Note that if such a choice of n was not possible, then

∥∥∥∥∥u +
k∑

i=m+1

εgi

∥∥∥∥∥ � λ−1
1 ‖u‖, ∀k > m.

Therefore, ‖∑k
i=1 gi‖ � ‖∑m

i=1 gi‖+ε−1(1+λ−1
1 )‖u‖, for all k ∈ N. This of course contradicts

our assumption that the sequence of partial sums of (gn) is unbounded in the C(K)-norm. Hence,
there is some n > m so that (2.3) is satisfied. But since [0, ε]kn is connected, φn is continuous,
and φn(0, . . . ,0) = ‖u‖ � λ−1

1 ‖u‖ < φn(ε, . . . , ε), the intermediate value theorem readily yields
the existence of some (h1, . . . , hkn) ∈ (0, ε)kn satisfying the claim. �
Remark 2.4. The proof of Lemma 2.3 shows that v can be chosen such that suppv is an interval
in N whose left endpoint is max suppu + 1.

Proof of Theorem 1.10. We first assume that X does not contain any isomorph of c0. Let (δn),
(εn) be scalar sequences and (fn) be a sequence in X according to the hypotheses of the theorem.
Set gn = |fn| for all n ∈ N, and d = supn ‖∑n

i=1 gi‖. Note that d = ∞ or else,
∑∞

n=1 |fn(t)| � d

for all t ∈ K . Since infn ‖fn‖ � 1, Theorem 1.4 yields that some subsequence of (fn) is equiva-
lent to the c0-basis. This contradicts the hypothesis that c0 is not contained isomorphically in X.

Choose a scalar b1 with 0 < b1‖g1‖ <
∏∞

i=1(1 + δi)
−1 and set u1 = b1g1. Since d = ∞, we

can apply Lemma 2.3 to the block u1 and the scalars “λ1” = (1 + δ1)
−1, “λ2” = ∏∞

i=2(1 + δi)
−1

and “ε” = ‖u1‖ε1 (observe that ‖u1‖ = b1‖g1‖ < λ1λ2), to obtain a positive block u2 of (gn)

with u1 < u2 and so that

(1 + δ1)‖u1‖ < ‖u1 + u2‖ <

∞∏
i=2

(1 + δi)
−1, and ‖u2‖c0 < ‖u1‖ε1.

Next, apply Lemma 2.3 to the positive block u1 + u2 of (gn) and the scalars “λ1” = (1 + δ2)
−1,

“λ2” = ∏∞
i=3(1 + δi)

−1 and “ε” = ‖u1‖ε2, to obtain a positive block u3 of (gn) with u2 < u3
and such that

(1 + δ2)‖u1 + u2‖ < ‖u1 + u2 + u3‖ <

∞∏
i=3

(1 + δi)
−1, and ‖u3‖c0 < ‖u1‖ε2.

We continue this process in the same fashion, applying Lemma 2.3 to the sum of the blocks of
(gn) produced at the nth stage of the process with “λ1” = (1 + δn)

−1, “λ2” = ∏∞
i=n+1(1 + δi)

−1

and “ε” = ‖u1‖εn and inductively construct a block subsequence (un) of (gn), consisting of
positive blocks, so that ‖u1‖ > 0 and

(1 + δn)

∥∥∥∥∥
n∑

i=1

ui

∥∥∥∥∥ <

∥∥∥∥∥
n+1∑
i=1

ui

∥∥∥∥∥ <

∞∏
i=n+1

(1 + δi)
−1,

and ‖un+1‖c0 < ‖u1‖εn, ∀n ∈ N. (2.4)

We obtain in particular, that supn ‖∑n
ui‖ � 1. Since X contains no isomorph of c0, part (2) of
i=1
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Lemma 2.2 yields that the series
∑∞

n=1 un converges uniformly on K to a non-negative function u

in C(K). Moreover, ‖u‖ � ‖u1‖ > 0. We set g = ∑∞
n=1 ‖u‖−1un. Of course, ‖g‖ = 1 and g is

non-negative. Note also that Remark 2.4 gives us that the supports of the un’s are successive
intervals of N whose union is N. Since the gn’s are non-negative and each un is a positive block
of (gn), we can write

g =
∞∑

n=1

cngn, uniformly on K, and cn > 0, ∀n ∈ N.

Observe that cn � 1 as ‖gn‖ � 1, for all n ∈ N. Moreover,

ci < εn, ∀i ∈ suppun+1, ∀n ∈ N, (2.5)

since ‖un+1‖c0 < ‖u1‖εn, for all n ∈ N and ‖u‖ � ‖u1‖.
Now let t0 ∈ K be such that g(t0) = 1 and choose a sequence of signs (σn) satisfying

σnfn(t0) = gn(t0) for all n ∈ N. Define

an = σncn, and mn = max suppun, ∀n ∈ N.

We now have, by the choices made, that |an||fn(t)| = cngn(t), for all t ∈ K and all n ∈ N. It
follows that the series

∑∞
n=1 |an||fn| converges uniformly on K . Therefore, so does the series∑∞

n=1 anfn and if we let f denote its sum, then f ∈ X, as X is closed. Moreover, we have that
for all n ∈ N,

∥∥∥∥∥
mn∑
i=1

|ai ||fi |
∥∥∥∥∥ =

∥∥∥∥∥
mn∑
i=1

cigi

∥∥∥∥∥
= ‖u‖−1

∥∥∥∥∥
n∑

i=1

ui

∥∥∥∥∥ < (1 + δn)
−1‖u‖−1

∥∥∥∥∥
n+1∑
i=1

ui

∥∥∥∥∥ (
by (2.4)

)

= (1 + δn)
−1

∥∥∥∥∥
mn+1∑
i=1

|ai ||fi |
∥∥∥∥∥ � (1 + δn)

−1‖g‖ = (1 + δn)
−1.

Thus, (2) holds and also ‖f ‖ � 1 and |an| < 1 for all n ∈ N. Since f (t0) = g(t0) = 1 we obtain
that ‖f ‖ = 1 and so (1) holds as well. The validity of (3) follows by (2.5). This completes the
proof of the first implication.

Conversely, suppose that X is a closed linear subspace of C(K) satisfying the hypotheses
of the theorem. Assume, to the contrary, that X contains a subspace isomorphic to c0. We can
now choose a normalized, basic sequence (fn) in X which is equivalent to the usual c0-basis. It
follows that there is a constant τ � 1 such that

∥∥∥∥∥
∞∑

λifi

∥∥∥∥∥ � τ sup
i

|λi |, ∀(λi) ∈ c0. (2.6)

i=1
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Let ε = δ1/(2τ) and (δn) be a summable sequence in (0,1). Our hypotheses, applied to the
sequence (fn), yield some f ∈ X with ‖f ‖ = 1 and a scalar sequence (an) satisfying

f =
∞∑

n=1

anfn, and |a1| � (1 + δ1)
−1, |an| < ε, ∀n � 2. (2.7)

But now,

1 = ‖f ‖ =
∥∥∥∥∑

i

aifi

∥∥∥∥ � ‖a1f1‖ +
∥∥∥∥∑

i>1

aifi

∥∥∥∥
� (1 + δ1)

−1 + τ sup
i>1

|ai |
(
by (2.7) and (2.6)

)
� (1 + δ1)

−1 + τε
(
by (2.7)

)
� (1 + δ1)

−1 + δ1/2.

It follows that δ1 � 1 contradicting our initial choices. The proof of the theorem is now com-
plete. �
Remark 2.5. The proof of Theorem 1.10 shows that, given a summable sequence (δn) in (0,1),
X contains no isomorph of c0 if, and only if, for every sequence (fn) in X with infn ‖fn‖ � 1 and
every sequence (εn) in (0,1) there exist f ∈ X with ‖f ‖ = 1, a sequence of non-zero scalars (an)

in (−1,1) and an infinite sequence of integers 1 = m1 < m1 < · · · fulfilling the following prop-
erties:

(1) f = ∑∞
n=1 anfn, uniformly on K .

(2) ‖∑mn

i=1 aifi‖ � (1 + δn)
−1 for all n ∈ N.

(3) |ai | < εn for every i ∈ (mn,mn+1] and all n ∈ N.

3. The isometric version of Rosenthal’s problem

In this section we give the proof of Theorem 1.2. The latter will follow after establishing the
next lemma.

Lemma 3.1. Let K be compact Hausdorff and let M ⊂ C(K)∗ be norm-separable. Suppose that
(fn) is a weakly null sequence in C(K) and let (εn) be a sequence of positive scalars. Then,
given N ∈ [N] there exists M ∈ [N ] such that for every L ∈ [M], L = (ln), and all μ ∈ M we
have that

|μ|
(

lim sup
n

[|fl2n
| � εl2n−1

]) = 0.

Proof. Fix some ν ∈ C(K)∗, a scalar a > 0 and some P ∈ [N]. We define

D = {
(l1, l2) ∈ [P ]2: |ν|([|fl | � εl

])
� a

}
.
2 1
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Ramsey’s theorem yields some Q ∈ [P ] such that either [Q]2 ⊂ D, or [Q]2 ∩ D = ∅. If the
former, let m = minQ. Then for all n ∈ Q, n > m, we have that (m,n) ∈ D and so |ν|([|fn| �
εm]) � a. It follows from this that

|ν|(|fn|
)
�

∫
[|fn|�εm]

|fn|d|ν| � εm|ν|([|fn| � εm

])
� εma > 0,

for all n ∈ Q with n > m. But this contradicts our assumption that (fn) is weakly null in C(K).
Therefore, [Q]2 ∩D = ∅ and so |ν|([|fl2 | � εl1]) < a, for all l1 < l2 in Q. By applying the pre-

ceding argument, successively, for a = 1/2n, n ∈ N, we obtain a nested sequence Q1 ⊃ Q2 ⊃ · · ·
of infinite subsets of P such that

|ν|([|fl2 | � εl1

])
< 1/2n, ∀l1 < l2 ∈ Qn, ∀n ∈ N.

Choose an infinite sequence of integers q1 < q2 < · · · with qn ∈ Qn for all n ∈ N. It follows that
for all L ∈ [{qn: n ∈ N}], L = (ln), one has that

∞∑
n=1

|ν|([|fl2n
| � εl2n−1

])
<

∞∑
n=1

1/2n = 1.

This is so because l2n−1 < l2n belong to Qn for all n ∈ N.
We next consider a countable, norm-dense subset {μk: k ∈ N} of M. Our previous argument

yields some M1 ∈ [N ] such that

∞∑
n=1

|μ1|
([|fl2n

| � εl2n−1

])
< ∞, ∀L ∈ [M1], L = (ln).

By the same reasoning, we may choose a nested sequence M1 ⊃ M2 ⊃ · · · of infinite subsets
of N so that

∞∑
n=1

|μk|
([|fl2n

| � εl2n−1

])
< ∞, ∀L ∈ [Mk], L = (ln), ∀k ∈ N.

We now choose an infinite sequence of integers m1 < m2 < · · · with mk ∈ Mk for all k ∈ N, and
set M = (mk). One checks that for every L ∈ [M], L = (ln), and every k ∈ N we have that

∞∑
n=k

|μk|
([|fl2n

| � εl2n−1

])
< ∞, as {ln: n � 2k − 1} ⊂ Mk.

Hence,

∞∑
|μk|

([|fl2n
| � εl2n−1

])
< ∞, ∀L ∈ [M], L = (ln), ∀k ∈ N.
n=1
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We conclude that

|μk|
(

lim sup
n

[|fl2n
| � εl2n−1

]) = 0, ∀L ∈ [M], L = (ln), ∀k ∈ N.

The assertion of the lemma now follows by the norm-density of the sequence (μk) in M. �
Proof of Theorem 1.2. If X∗ is not separable, then by a result of R. Haydon [12] we obtain that
M is not separable in norm and so the assertion of the theorem holds in this case.

We next assume that X∗ is separable. In this case, we employ Rosenthal’s theorem [20] to
find a normalized weakly null sequence (hn) in X. Suppose M is norm-separable. Let (δn) be
a summable sequence of scalars in (0,1). Then choose another such sequence (εn) satisfying
2
∑

i>n εi < δn, for all n ∈ N. Apply Lemma 3.1 to the weakly null sequence (hn), the norm-
separable subset M of C(K)∗ and the scalar sequence (εn), to obtain L ∈ [N], L = (ln), so
that

|μ|
(

lim sup
n

[|hl2n
| � εl2n−1

]) = 0, ∀μ ∈ M. (3.1)

Put fn = hl2n
for all n ∈ N. Now, (fn) is a normalized sequence in X and we may apply Corol-

lary 1.11 to this sequence and the scalar sequence (δn) to obtain f ∈ X and a sequence of scalars
(an) in (−1,1) so that

(1) f = ∑∞
n=1 anfn, in the C(K)-norm, and ‖f ‖ = 1.

(2) ‖∑n
i=1 |ai ||fi |‖ � (1 + δn)

−1, for all n ∈ N.

Since M is w∗-compact and norms X isometrically, there is a μ ∈ M such that | ∫
K

f dμ| = 1.
It follows now, as ‖f ‖ = 1 and ‖μ‖ � 1, that

∫
K

|f |d|μ| = 1 and so

|μ|([|f | = 1
]) = 1.

We claim however, that [|f | = 1] ⊂ lim supn[|hl2n
| � εl2n−1] and so we contradict (3.1). To prove

the claim, we assume it does not hold and derive a contradiction as follows: Choose some t ∈ K

such that |f (t)| = 1, yet t /∈ lim supn[|hl2n
| � εl2n−1]. We next choose some n ∈ N such that∣∣hl2i

(t)
∣∣ < εl2i−1, ∀i > n. (3.2)

We now have the estimates

1 = ∣∣f (t)
∣∣ =

∣∣∣∣∣
∞∑
i=1

aifi(t)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
i=1

aihl2i
(t)

∣∣∣∣∣
�

n∑
i=1

|ai |
∣∣hl2i

(t)
∣∣ +

∑
i>n

|ai |
∣∣hl2i

(t)
∣∣

� (1 + δn)
−1 +

∑
i>n

εl2i−1

(
by (2) and (3.2)

)

� (1 + δn)
−1 +

∑
εi < (1 + δn)

−1 + (1/2)δn.
i>n
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So, it must be the case that δn > 1 contradicting our choice of the sequence (δn). Therefore,
our claim holds and we arrived at a contradiction by assuming M was separable in norm. This
completes the proof of the theorem. �
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