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1. Introduction

Let μ be a positive Borel measure having infinite support suppμ ⊂ [a,b] ⊂ R. To every such a measure μ there corre-
sponds a linear functional defined on the linear space P = span{λk: k ∈ Z+ := N ∪ {0}} by the formula

sk = S
(
λk) :=

b∫
a

tk dμ(t), k ∈ Z+ := N ∪ {0}.

The functional S is positive definite on P , that is, det(si+ j)
n
i, j=0 > 0 for all n ∈ Z+ . Besides, the measure μ (or, equivalently,

the functional S) generates the holomorphic function

μ̂(λ) = St

(
1

t − λ

)
=

b∫
a

dμ(t)

t − λ
= − s0

λ
− s1

λ2
− · · · − sn

λn+1
− · · · (|λ| > R

)
, (1.1)

where R is large enough. By using the Euclidean algorithm, P.L. Tchebyshev [31] expanded the function μ̂ into the following
continued fraction

μ̂(λ) ∼ − 1

λ − a0 − b2
0

λ−a1− b2
1

...

= − 1

λ − a0 −
b2

0

λ − a1 −
b2

1

λ − a2 −· · · , (1.2)

where a j are real numbers, b j are positive numbers, and sup j∈Z+{|a j| + b j} < ∞. Such continued fractions are called J -
fractions [21]. Note that the coefficients a j and b j are uniquely determined by the coefficients s j of the Taylor series at
infinity (see (1.1)).
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It is well known (see [5,21,28]), that the nth convergent −Q n(λ)/Pn(λ) of the continued fraction (1.2) is characterized
by the following property

− Q n(λ)

Pn(λ)
= − s0

λ
− s1

λ2
− · · · − s2n−1

λ2n
+ O

(
1

λ2n+1

)
(λ → ∞). (1.3)

In other words, the rational function −Q n/Pn is the nth diagonal Padé approximant to μ̂, that is,

μ̂(λ) + Q n(λ)

Pn(λ)
= O

(
1

λ2n+1

)
(λ → ∞).

Further, by using standard argumentation (see [21]), one can see that the polynomials Pn and Q n are solutions of the
three-term recurrence relations

b j−1u j−1 + a ju j + b ju j+1 = λu j ( j ∈ N), (1.4)

with initial conditions

P0(λ) = 1, P1(λ) = p0(λ)

b0
, Q 0(λ) = 0, Q 1(λ) = 1

b0
. (1.5)

On the other hand, to the recurrence relations (1.4) (or, equivalently, to the continued fraction (1.2)) there corresponds
a linear bounded self-adjoint operator in the space �2

[0,∞) . More precisely, that operator is generated by the following
tridiagonal matrix

H =

⎛⎜⎜⎜⎜⎜⎝
a0 b0

b0 a1 b1

b1 a2
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎠
and its m-function m(λ) = ((H − λ)−1e, e)�2[0,∞)

, where e = (1,0, . . . ,0, . . .)� ∈ �2
[0,∞) , coincides with μ̂(λ). So, one has an

operator representation of μ̂,

μ̂(λ) = (
(H − λ)−1e, e

)
�2[0,∞)

, λ ∈ C \ R.

The relations between orthogonal polynomials, Padé approximants, and Jacobi operators are well known. These relations
allow to use operator methods to the investigation of orthogonal polynomials and the Padé approximants (see [2,29]).

Note, that the above-mentioned results are also valid if the underlying functional S is not positive and has the property

det(si+ j)
n
i, j=0 	= 0, s j = S

(
λ j) (1.6)

for all n ∈ Z+ (see [1,6,7]). The functional S having the property (1.6) is called regular.
In the present paper a similar relations for nonregular functionals are presented. In fact, the scheme proposed in [1,7]

(see also [29]) for investigation of the convergence of Padé approximants is generalized here to the nonregular case. The
paper is organized as follows. In Section 2, starting from a (not necessarily regular) functional on P , three-term recurrence
relations for associated polynomials are derived. In Section 3, a special class of generalized Jacobi matrices is presented.
Weyl solutions of the three-term recurrence relations and Weyl functions are introduced in Section 4. In Section 5, following
the scheme proposed in [1], the characterization of resolvent sets of generalized Jacobi operators is obtained. Section 6 is
concerned with the case of periodic generalized Jacobi matrices. In Section 7, convergence results for Padé approximants are
proved.

2. Associated polynomials

In this section, starting from a (not necessarily regular) functional on P , three-term recurrence relations for associated
polynomials are derived.

Let us consider a holomorphic in a neighborhood of infinity function ϕ such that

ϕ�(λ) := ϕ(λ) = ϕ(λ).

So, ϕ has the Taylor expansion at infinity

ϕ(λ) = −
∞∑ s j

λ j+1
,

j=0
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where s j ∈ R. To every such a function one can associate a real linear functional on P defined by the formula

S
(
λk) := 1

2π i

∮
|λ|=R

λkϕ(λ)dλ = sk ∈ R, k ∈ Z+ := N ∪ {0},

for sufficiently large R . Clearly, the functional S is not necessarily regular, that is det(si+ j)
n
i, j=0 = 0 may vanish for some

n ∈ Z+ (for instance, see [13]). In general case, the functional S generates an indefinite inner product on P (see [3,32])

[ f , g]S := S
(

f (λ)g�(λ)
)= 1

2π i

∮
|λ|=R

f (λ)g�(λ)ϕ(λ)dλ, f , g ∈ P ,

which is degenerate if and only if ϕ is rational. In what follows we suppose that ϕ is not rational. As in the regular case,
one can associate to S the following holomorphic function

Sz

(
1

z − λ

)
= 1

2π i

∮
|z|=R

ϕ(z)dz

z − λ
= − s0

λ
− s1

λ2
− · · · − sn

λn+1
− · · · (|λ| > R

)
. (2.1)

Throughout this paper we suppose that the sequence s := {s j}∞j=0 is normalized, i.e. the first nonvanishing moment has

modulus 1. A number n j ∈ N is called a normal index if det(si+k)
n j−1
i,k=0 	= 0. Since ϕ is not rational, there exists an infinite

number of normal indices (see [16, Section 16.10.2]). Let n1 < n2 < · · · < n j < · · · be a sequence of all normal indices. By the
choice of n1 one has sn1−1 	= 0. Let us set ε0 = sn1−1 (|ε0| = 1) and ϕ0 := ϕ . The principal part of the Laurent expansion for
− 1

ϕ0
is a polynomial of degree k0 := n1 with the leading coefficient ε0. So, we have

− 1

ϕ0(λ)
= ε0 p0(λ) + b2

0ϕ1(λ), b0 > 0, (2.2)

where p0 is a monic polynomial of degree k0 and ϕ1 is holomorphic in a neighborhood of infinity. Furthermore, the func-
tion ϕ1 satisfies the relation ϕ

�
1(λ) = ϕ1(λ). Choose b0 > 0 such that the sequence s(1) = {s(1)

j }∞j=0 defined by the following
expansion

ϕ1(λ) = − s(1)
0

λ
− s(1)

1

λ2
− · · · − s(1)

2(n−k0)

λ2(n−k0)+1
− · · · (2.3)

at ∞ is normalized. This completes the first step of expanding the series (2.1) into a continued fraction (see [24,25]).
As was shown in [11], the set of the normal indices of s(1) coincides with the following sequence

n2 − k0 < · · · < n j − k0 < · · · .
Now one can apply the above reasoning to the function ϕ1 and so on. By recursion we obtain the following P -fraction

− ε0

p0(λ) −
ε0ε1b2

0

p1(λ) −· · ·−
ε j−1ε jb2

j−1

p j(λ) −· · · , (2.4)

where ε j = ±1, b j > 0 and p j(λ) = λk j + p( j)
k j−1λ

k j−1 + · · · + p( j)
1 λ + p( j)

0 are real monic polynomials of degree k j (see

also [11,14]). Note, that n j = k0 + k1 + · · · + k j−1.
It also should be mentioned that there exist holomorphic in a neighborhood of infinity functions for which the set

{b j, p( j)
0 , . . . , p( j)

k j−1: j ∈ Z+} of coefficients of the P -fraction is not necessarily bounded. In particular, the Cauchy transform

of the signed measure constructed in [30] gives such an example.
The continued fraction (2.4) can be considered as a sequence of the linear-fractional transformations (see [21, Sec-

tion 5.2])

T j(ω) := −ε j

p j(λ) + ε jb2
j ω

having the following matrix representation

W j(λ) =
( 0 − ε j

b j

ε jb j
p j(λ)

b j

)
, j ∈ Z+. (2.5)

The superposition T0 ◦ T1 ◦ · · · ◦ T j of the linear-fractional transformations corresponds to the product of the matrices Wl(λ),

W[0, j](λ) = (
w( j)

(λ)
)2 := W0(λ)W1(λ) · · · W j(λ). (2.6)
ik i,k=1
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To give an explicit formula for W[0, j] in terms of p j , b j , ε j , define the polynomials P j+1(λ), Q j+1(λ) by the equalities(−Q 0

P0

)
=
(

0

1

)
,

(−Q j+1(λ)

P j+1(λ)

)
:= W[0, j](λ)

(
0

1

)
, j ∈ Z+. (2.7)

The relation W[0, j](λ) = W[0, j−1](λ)W j(λ) (see (2.6)) yields

W[0, j](λ)

(
1

0

)
= W[0, j−1](λ)

(
0

ε jb j

)
=
(−ε jb j Q j(λ)

ε jb j P j(λ)

)
, j ∈ N. (2.8)

So, the matrix W[0, j](λ) has the form

W[0, j](λ) =
(−ε jb j Q j(λ) −Q j+1(λ)

ε jb j P j(λ) P j+1(λ)

)
, j ∈ Z+. (2.9)

Further, the equality(−Q j+1(λ)

P j+1(λ)

)
= W[0, j−1](λ)W j(λ)

(
0

1

)
= 1

b j
W[0, j−1](λ)

( −ε j

p j(λ)

)
, j ∈ N,

shows that the polynomials P j(λ), Q j(λ) are solutions of the difference equation

ε j−1ε jb j−1u j−1 − p j(λ)u j + b ju j+1 = 0 ( j ∈ N), (2.10)

obeying the initial conditions

P0(λ) = 1, P1(λ) = p0(λ)

b0
,

Q 0(λ) = 0, Q 1(λ) = ε0

b0
. (2.11)

According to (2.9), the ( j + 1)th convergent of the continued fraction (2.4) is equal to

f j := T0 ◦ T1 ◦ · · · ◦ T j(0) = −Q j+1(λ)/P j+1(λ).

The relations (2.9), (2.6), and (2.5) imply the following statement.

Proposition 2.1. (See [14].) The polynomials P j , Q j satisfy the following generalized Liouville–Ostrogradsky formula

ε jb j
(

Q j+1(λ)P j(λ) − Q j(λ)P j+1(λ)
)= 1 ( j ∈ Z+). (2.12)

3. Generalized Jacobi matrices

The main goal of this section is to present a special class of generalized Jacobi matrices.
Let p(λ) = pnλn + · · · + p1λ + p0 be a monic scalar real polynomial of degree n, i.e. pn = 1. Let us associate to the

polynomial p its symmetrizator E p and let the companion matrix C p be given by

E p =

⎛⎜⎜⎝
p1 . . . pn

.

.

. . .
.

pn 0

⎞⎟⎟⎠ , C p =

⎛⎜⎜⎜⎜⎝
0 . . . 0 −p0

1 0 −p1

. . .
.
.
.

0 1 −pn−1

⎞⎟⎟⎟⎟⎠ . (3.1)

As is known, det(λ − C p) = p(λ) and the spectrum σ(C p) of the companion matrix C p is simple. The matrices E p and C p

are related by (see [20])

C p E p = E p C�
p . (3.2)

So, C p E p is a symmetric matrix.

Definition 3.1. (See [13,23].) Let p j be real monic polynomials of degree k j ,

p j(λ) = λk j + p( j)
k j−1λ

k j−1 + · · · + p( j)
1 λ + p( j)

0 ,

and let ε j = ±1, b j > 0 ( j ∈ N). The tridiagonal block matrix
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H =

⎛⎜⎜⎜⎜⎜⎝
A0 B̃0 0

B0 A1 B̃1

B1 A2
. . .

0
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠ , (3.3)

where A j = C p j and k j+1 × k j matrices B j and k j × k j+1 matrices B̃ j are given by

B j =

⎛⎜⎜⎝
0 . . . b j

.

.

.
. . .

.

.

.

0 . . . 0

⎞⎟⎟⎠ , B̃ j =

⎛⎜⎜⎝
0 . . . b̃ j

.

.

.
. . .

.

.

.

0 . . . 0

⎞⎟⎟⎠ (̃b j = ε jε j+1b j, j = 0, . . . , N − 1), (3.4)

will be called a generalized Jacobi matrix associated with the sequences of polynomials {ε j p j}∞j=0 and numbers {b j}∞j=0.

Remark 3.2. The papers [13,14,23] are only concerned with the case of generalized Jacobi matrices which are finite rank per-
turbations of classical Jacobi matrices. In fact, the generalized Jacobi matrix in question is associated to the P -fraction (2.4)
or, equivalently, to the sequence of matrices W j having the form (2.5).

From now on, we suppose that

(A.1) there exists N ∈ N: deg p j � N, j ∈ Z+,

(A.2) sup{b j, |p( j)
k |: j ∈ Z+, k = 0, . . . ,k j − 1} < +∞.

Let �2
[0,∞)

denote the Hilbert space of complex square summable sequences (w0, w1, . . .) with the usual inner product.
Setting

n0 = 0, n j =
j−1∑
i=0

ki ( j ∈ N), (3.5)

define a standard basis in �2
[0,∞) by the equalities

e j,k = {δl,n j+k}∞l=0
( j ∈ Z+; k = 0, . . . ,k j − 1), e := e0,0.

Define the symmetric matrix G by the equality

G = diag(G0, G1, . . .), G j = ε j E−1
p j

( j ∈ Z+). (3.6)

Further, we may identify via usual matrix product the matrix G with an operator on the linear space C0 of finite sequences
of �2

[0,∞)
. Its closure will be also denoted by G . In view of (A.1), (A.2), the operator G defined on �2

[0,∞)
is bounded and

self-adjoint. Moreover, G−1 is a bounded linear operator in �2
[0,∞) .

Let H[ j,l] (G[ j,l]) be a submatrix of H (G), corresponding to the basis vectors {ei,k}k=0,...,ki−1
i= j,...,l (0 � j � l < +∞). The

matrix H[ j,l] will be called a finite generalized Jacobi matrix.
Let H[0,∞) be a space of elements of �2

[0,∞) provided with the following indefinite inner product

[x, y] = (Gx, y)�2[0,∞)

(
x, y ∈ �2

[0,∞)

)
. (3.7)

Let us recall [3] that a pair (H, [·,·]) consisting of a Hilbert space H and a sesquilinear form [·,·] on H × H is called
a space with indefinite inner product. A space with indefinite metric (H, [·,·]) is called a Krein space if the indefinite scalar
product [·,·] can be represented as follows

[x, y] = ( J x, y)H, x, y ∈ H,

where the linear operator J satisfies the following conditions

J = J−1 = J∗.

The operator J is called the fundamental symmetry. So, one can see that the space H[0,∞) is the Krein space with the
fundamental symmetry J = sign G (see [3] for details).
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Proposition 3.3. Under the assumptions (A.1), (A.2), the considered generalized Jacobi matrix defines a bounded self-adjoint opera-
tor H (a generalized Jacobi operator) in the Krein space H[0,∞) , that is,

[Hx, y] = [x, H y], x, y ∈ H[0,∞). (3.8)

Proof. It is not hard to see that, according to (A.1), (A.2), the matrix in question generates a bounded operator in H[0,∞) .
Relation (3.8) is implied by (3.2) (see [13] for details). �

Let us extend the system {P j(λ)}∞j=0, {Q j(λ)}∞j=0 by the equalities

P j,k(λ) = λk P j(λ), Q j,k(λ) = λk Q j(λ) ( j ∈ Z+; k = 0, . . . ,k j − 1). (3.9)

Setting

P[l, j](λ) = (
Pl,0(λ), . . . , Pl,kl−1(λ), . . . , P j,0(λ), . . . , P j,k j−1(λ)

)
,

Q[l, j](λ) = (
Q l,0(λ), . . . , Q l,kl−1(λ), . . . , Q j,0(λ), . . . , Q j,k j−1(λ)

)
one can rewrite the system (2.10), (3.9) in the following manner

P[0, j](λ)(λ − H[0, j]) = (
0, . . . ,0,b j P j+1,0(λ)

)
( j ∈ Z+), (3.10)

Q[0, j](λ)(λ − H[0, j]) = (
0, . . . ,0,−ε0︸ ︷︷ ︸

k0

,0, . . . ,0,b j Q j+1,0(λ)
)

( j ∈ Z+). (3.11)

Since Q 0,0(λ) = · · · = Q 0,k0−1(λ) ≡ 0, the relation (3.11) reduces to

Q[1, j](λ)(λ − H[1, j]) = (
0, . . . ,0,b j Q j+1,0(λ)

)
( j ∈ N). (3.12)

It follows from (3.10) and (3.12) that the eigenvalues of H[0, j] and H[1, j] coincide with the roots of P j+1(λ) and Q j+1(λ),
respectively.

Proposition 3.4. (See [13].) The polynomials P j and Q j ( j ∈ N) can be found by the formulas

P j(λ) = (b0 . . .b j−1)
−1 det(λ − H[0, j−1]), (3.13)

Q j(λ) = ε0(b0 . . .b j−1)
−1 det(λ − H[1, j−1]). (3.14)

The formulas (3.13) and (3.14) in the classical case can be found in [9, Section 7.1.2] and [4, Section 6.1]. The following
statement is an easy consequence of the recurrence relations (2.10).

Proposition 3.5. (See [13,14].) Let j ∈ N. Then:

(i) The polynomials P j and P j+1 have no common zeros.
(ii) The polynomials Q j and Q j+1 have no common zeros.

(iii) The polynomials P j and Q j have no common zeros.

Taking into account the equality G[0, j] H[0, j] = H�
[0, j]G[0, j] which is implied by (3.2) (see [13]) and setting

π[0, j](λ) = G−1
[0, j]P[0, j](λ)�, ξ[0, j](λ) = G−1

[0, j]Q[0, j](λ)�,

one can rewrite (3.10), (3.11) in the form

(λ − H[0, j])π[0, j](λ) = ε jb j P j+1,0(λ)e j,0 ( j ∈ Z+), (3.15)

(λ − H[0, j])ξ[0, j](λ) + e0,0 = ε jb j Q j+1,0(λ)e j,0 ( j ∈ Z+). (3.16)

Further, let us set

π(λ) = G−1(P0,0(λ), . . . , P0,k0−1(λ), . . .
)�

, ξ(λ) = G−1(Q 0,0(λ), . . . , Q 0,k0−1(λ), . . .
)�

. (3.17)

Now, it follows from (3.15)–(3.17) that the following formal equalities hold true

(λ − H)π(λ) = 0, (λ − H)ξ(λ) = −e0,0. (3.18)

The first equality in (3.18) allows us to characterize the point spectrum of H .
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Proposition 3.6. λ ∈ σp(H) if and only if π(λ) ∈ �2
[0,∞) .

By the definition of π(λ) and the assumptions (A.1), (A.2), we see that

π(λ) ∈ �2
[0,∞) ⇔

∞∑
j=0

∣∣P j(λ)
∣∣2 < +∞.

4. Weyl solutions and Weyl functions

If for some λ ∈ C there exists a solution {W j(λ)}∞j=0 of the recurrence relations (2.10) such that{
W j(λ)

}∞
j=0 ∈ �2

[0,∞) and
{

W j(λ)
}∞

j=0 	= {
P j(λ)

}∞
j=0 (4.1)

then we will say that there exists a Weyl solution {W j(λ)}∞j=0 of the recurrence relations (2.10) at the point λ. Since
{P j(λ)}∞j=0 and {Q j(λ)}∞j=0 are linearly independent solutions of (2.10), the Weyl solution admits the following representa-
tion

W j(λ) = Q j(λ) + m(λ)P j(λ), (4.2)

where m(λ) is a complex number. The following statement shows the relation between m(λ) and the operator H .

Proposition 4.1. Let λ ∈ ρ(H) and let

m(λ) = [
(H − λ)−1e, e

]
, e := e0,0. (4.3)

Then the family {W j(λ)}∞j=0 given by (4.2) is the Weyl solution of (2.10) at λ. Moreover, {W j(λ)}∞j=0 has the form

W j(λ) = [
(H − λ)−1e, e j,0

]
, j ∈ Z+. (4.4)

Proof. For λ ∈ ρ(H) the relation (3.18) implies that there exists a number m(λ) ∈ C such that

ξ(λ) + m(λ)π(λ) = (H − λ)−1e ∈ �2
[0,∞).

Since G is a bounded operator, we have

G
(
ξ(λ) + m(λ)π(λ)

) ∈ �2
[0,∞). (4.5)

Using (3.17) yields[
(H − λ)−1e, e j,0

]= (
G
(
ξ(λ) + m(λ)π(λ)

)
, e j,0

)
�2 = Q j(λ) + m(λ)P j(λ) =: W j(λ)

(	= P j(λ)
)
.

The latter relation means that {W j(λ)}∞j=0 is a solution of (2.10). Due to (4.5), we obtain that {W j(λ)}∞j=0 ∈ �2
[0,∞) . Now, it

follows from (2.11) that

W0(λ) = m(λ) = [
(H − λ)−1e, e

]
. �

Definition 4.2. The function m defined by (4.2) is called a Weyl function of the operator H .

Remark 4.3. It should be mentioned that a general treatment of the Weyl functions of classical Jacobi matrices in the
framework of extension theory of nondensely defined symmetric operators was proposed in [26]. A general treatment of
the Weyl functions of symmetric operators in Krein spaces in the framework of extension theory was presented in [15]. The
function m defined by (4.3) on ρ(H) is also called the m-function of H (see [13,18]).

Since H is bounded, m admits the representation

m(λ) = [
(H − λ)−1e, e

]= −
∞∑
j=0

s j

λ j+1

(|λ| > ‖H‖), (4.6)

where si = [Hie, e].
Analogously, one can define m-functions of shortened generalized Jacobi matrices.
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Definition 4.4. The function

m[0, j](λ) = [
(H[0, j] − λ)−1e, e

]
(4.7)

is called the m-function of H[0, j] .

Making use of the structure of H[0, j] , we obtain that (see [13])

m[0, j](λ) = −ε0
det(λ − H[1, j])
det(λ − H[0, j])

. (4.8)

According to (3.13), (3.14), the formula (4.8) can be rewritten as follows

m[0, j](λ) = − Q j+1(λ)

P j+1(λ)
. (4.9)

It follows from (2.10) (see [13] for details) that the m-function m[0, j](λ) and the m-function m[1, j](λ) of H[1, j] are related
by the equality

m[0, j](λ) = −ε0

p0(λ) + ε0b2
0m[1, j](λ)

, j ∈ N. (4.10)

An analogous statement for infinite generalized Jacobi matrices is an essential ingredient in the proof of the following
result.

Theorem 4.5. Under the assumptions (A.1), (A.2), the generalized Jacobi matrix H is uniquely determined by its Weyl function m.

Proof. By using the Frobenius formula, one can see that the Weyl function m of H and the Weyl function

m[1,∞)(λ) = [
(H[1,∞) − λ)−1e1,0, e1,0

]
of H[1,∞) are related by the equality

m(λ) = −ε0

p0(λ) + ε0b2
0m[1,∞)(λ)

, |λ| > ‖H‖ � ‖H[1,∞)‖ (4.11)

(a more detailed reasoning can be found in [13]). Further, consecutive applications of the relation (4.11) leads to the P -
fraction (2.4). So, one can uniquely recover the generalized Jacobi matrix H . �
Remark 4.6. In the definite case, formulas (4.8) and (4.9) are easy consequences of the theory developed in [26]. In this
case, it is well known that the Weyl function determines the classical Jacobi matrix uniquely (for instance, see [18,26]). It
is worth to mention that this result as well as Borg type uniqueness result was recently extended to the case of normal
matrices (see [27]). Besides, a canonical form of a normal matrix (an analog of Jacobi matrix for self-adjoint matrices) was
also introduced there. Some inverse problems for finite generalized Jacobi matrices were considered in [12,13].

5. The resolvent set of H

Here, following the scheme proposed in [1], the characterization of resolvent sets ρ(H) of generalized Jacobi operators
is obtained. We begin with an auxiliary lemma which gives a criterion of the density of ran(H − λ) in �2

[0,∞) .

Lemma 5.1. For λ ∈ C the equation

(H − λI)x = e j,k

has a solution x = x( j,k) ∈ �2
[0,∞) for all j,k ∈ Z+ iff there exists a Weyl solution at λ.

Proof. (1) First, let us consider the case where j = k = 0. It follows from (3.18) that the equation (H − λ)x = e0,0 has a
solution belonging to �2

[0,∞)
if and only if there exists a number m(λ) ∈ C such that ξ(λ) + m(λ)π(λ) ∈ �2

[0,∞)
. Furthermore,

in this case we have

x = x(0,0) = ξ(λ) + m(λ)π(λ). (5.1)

(2) Next, let k = 0 and j ∈ N. According to (3.15) and (3.16), we see that

(H − λ)ξ[0, j](λ) = e0,0 − ε jb j Q j+1,0(λ)e j,0 + ε jb j Q j,0(λ)e j+1,0, (5.2)

(H − λ)π[0, j](λ) = −ε jb j P j+1,0(λ)e j,0 + ε jb j P j,0(λ)e j+1,0. (5.3)



576 M. Derevyagin / J. Math. Anal. Appl. 349 (2009) 568–582
Adding (5.2) multiplied by −P j and (5.3) multiplied by Q j , one obtains

(H − λ)
[−P j(λ)ξ[0, j](λ) + Q j(λ)π[0, j](λ)

]= −P j(λ)e0,0 − ε jb j
(

P j+1(λ)Q j(λ) − Q j+1(λ)P j(λ)
)
e j,0. (5.4)

Due to (2.12), (5.4) can be rewritten as follows

(H − λ)
[−P j(λ)ξ[0, j](λ) + Q j(λ)π[0, j](λ)

]+ P j(λ)e0,0 = e j,0.

The latter relation shows that the equation (H −λ)x = e j,0 has a solution x = x( j,0) ∈ �2
[0,∞) if and only if e0,0 ∈ ran(H −λ).

Moreover, the solution admits the representation

x = x( j,0) = −P j(λ)ξ[0, j](λ) + Q j(λ)π[0, j](λ) + P j(λ)
[
ξ(λ) + m(λ)π(λ)

]
. (5.5)

(3) Finally, assume that k 	= 0. Observe that

(H − λ)e j,0 = e j,1 − λe j,0, . . . , (H − λ)e j,k j−2 = e j,k j−1 − λe j,k j−2. (5.6)

The chain of equalities (5.6) implies that the equation (H − λ)x = e j,k has a solution x = x( j,k) ∈ �2
[0,∞) if and only if

e j,0 ∈ ran(H − λ) (or, equivalently, e0,0 ∈ ran(H − λ)). Besides, the solution x = x( j,k) can be expressed in the following
manner

x = x( j,k) = e j,k−1 + λe j,k−2 + · · · + λk(−P j(λ)ξ[0, j](λ) + Q j(λ)π[0, j](λ) + P j(λ)
[
ξ(λ) + m(λ)π(λ)

])
. �

Remark 5.2. In fact, Lemma 5.1 gives a way to express the formal inverse operator Rλ to H − λ. Moreover, it is not so hard
to see that the Weyl solution at λ exists if and only if e ∈ ran(H − λ).

Now we are ready to prove the main result of the present paper.

Theorem 5.3. Under the assumptions (A.1), (A.2), λ ∈ ρ(H) if and only if there exist a Weyl solution {W j(λ)}∞j=0 at λ and numbers
q ∈ (0,1), C > 0 such that∣∣Pi(λ)W j(λ)

∣∣� Cqn j−ni , i � j. (5.7)

Proof. Let us prove the sufficiency. Let Hk := span{e j,k | j ∈ Z+} and let P Hk be the orthogonal projector onto Hk in �2
[0,∞) .

We start with proving the boundedness of the operator RλP Hk for any k ∈ {0, . . . , N − 1}. First, it is convenient to consider
the operator G RλP H0 . Taking into account (5.5), we obtain

(G RλP H0 e j,0)i,k = (G Rλe j,0)i,k := (G Rλe j,0, ei,k) =
{

λk P i(λ)(Q j(λ) + m(λ)P j(λ)), i � j,

λk P j(λ)(Q i(λ) + m(λ)Pi(λ)), i > j.

It is clear that one can represent the operator G RλP H0 as the sum of upper and lower triangular operators: G RλP H0 =
R(1)

λ + R(2)
λ . To be more precise, we choose R(1)

λ in the following way

R(1)
λ e j,k = 0 for k 	= 0, R(1)

λ e j,0 = y(1)
j , where

(
y(1)

j

)
i,k =

{
λk P i(λ)(Q j(λ) + m(λ)P j(λ)), i � j,

0, i > j.

Now, one can prove that R(1)
λ is bounded. Indeed, setting

x =
l∑

j=0

k j−1∑
k=0

x j,ke j,k and y =
l∑

j=0

k j−1∑
k=0

y j,ke j,k

we get the following relation

(
R(1)

λ x, y
)
�2 =

l∑
j=0

x j,0

(
R(1)

λ e j,0,

l∑
i=0

ki−1∑
k=0

yi,kei,k

)
=

l∑
j=0

x j,0

j∑
i=0

ki−1∑
k=0

λk P i(λ)
(

Q j(λ) + m(λ)P j(λ)
)

yi,k.

Thus, (5.7) yields

∣∣(R(1)
λ x, y

)
�2

∣∣� C max
{

1, |λ|N−1} l∑
j=0

|x j,0|
j∑

i=0

ki−1∑
k=0

qn j−ni |yi,k|.

Notice that n j − ni =∑ j kl �
∑ j 1 = j − i and, therefore, we have
l=i+1 l=i+1
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∣∣(R(1)
λ x, y

)
�2

∣∣� C max
{

1, |λ|N−1} l∑
j=0

j∑
i=0

ki−1∑
k=0

q j−i |x j,0||yi,k| � C max
{

1, |λ|N−1} l∑
s=0

qs
l∑

j=s

|x j,0|
k j−s−1∑

k=0

|y j−s,k|

� C
√

N max
{

1, |λ|N−1} l∑
s=0

qi‖x‖�2‖y‖�2 = C̃
1 − ql+1

1 − q
‖x‖�2‖y‖�2 .

Hence, R(1)
λ is a bounded operator. Similarly, one can prove the boundedness of R(2)

λ . So, we have proved that G RλP H0 is
bounded. Since G−1 is bounded, RλP H0 is also bounded.

Further, let k ∈ {1, . . . , N − 1}. From (5.6) one can deduce

Rλe j,k = e j,k−1 + λRλe j,k−1 = Vke j,k + λRλVke j,k,

where Vk : e j,k �→ e j,k−1 is an isometric operator from Hk to Hk−1. If h ∈ Hk then Rλh = Vkh+λRλVkh. So, the boundedness
of V 1 and RλP H0 implies that RλP H1 is bounded. Analogously, RλP Hk is bounded for k ∈ {2, . . . , N − 1}. This implies that

Rλ = ∑N−1
i=0 RλP Hi is a bounded operator. The latter means that the domain of Rλ is �2

[0,∞) . Since λ is not an eigenvalue,

we have ker(H − λ) = {0} and ran(H − λ) = �2
[0,∞) . Now, applying the Banach theorem on inverse operators we obtain that

λ ∈ ρ(H).
The necessity of (5.7) follows from [10] and the relation

(Rλe j,0)i,ki−1 =
{

Pi(λ)(Q j(λ) + m(λ)P j(λ)), i � j,

P j(λ)(Q i(λ) + m(λ)Pi(λ)), i > j,

which directly follows from (5.5). �
Remark 5.4. In the case of nonsymmetric tridiagonal operators Theorem 5.3 was proved in [1]. In fact, we have extended the
scheme proposed in [1] to the case of generalized Jacobi matrices. A similar result for banded matrices with nonvanishing
extreme diagonals in terms of the corresponding vector polynomials was obtained in [8].

6. The Floquet theory

In the present section, by using Theorem 5.3, we give a description of spectra of periodic generalized Jacobi operators.

Definition 6.1. Let s ∈ N. A generalized Jacobi matrix satisfying the properties

A js+k = Ak, B js+k = Bk, ε js+k = εk, j ∈ Z+, k ∈ {0, . . . , s − 1},
will be called an s-periodic generalized Jacobi matrix. The corresponding generalized Jacobi operator in H[0,∞) will be also
called an s-periodic generalized Jacobi operator.

Evidently, any s-periodic generalized Jacobi matrix satisfies the assumptions (A.1), (A.2) and we have

W js+k(λ) = Wk(λ), j ∈ Z+, k ∈ {0, . . . , s − 1}. (6.1)

The main tool for analysis of periodic generalized Jacobi operators is the following matrix

T (λ) := W[0,s−1](λ) =
(−εs−1bs−1 Q s−1(λ) −Q s(λ)

εs−1bs−1 P s−1(λ) P s(λ)

)
.

The matrix T (λ) is called the monodromy matrix. Using (6.1), we get the following relation

W[0, js+k−1](λ) = T j(λ)W[0,k−1](λ), j ∈ Z+, k ∈ {1, . . . , s}. (6.2)

Let w1 = w1(λ) and w2 = w2(λ) be the roots of the characteristic equation det(T (λ) − w) = 0. Introduce the following
notations

E := {
λ ∈ C:

∣∣w1(λ)
∣∣= ∣∣w2(λ)

∣∣}, E p := {
λ ∈ C: P s−1(λ) = 0,

∣∣bs−1 Q s−1(λ)
∣∣> ∣∣P s(λ)

∣∣}.
Now, we are ready to give a description of spectra of periodic generalized Jacobi operators.

Theorem 6.2. The spectrum of an s-periodic generalized Jacobi operator has the form

σ(H) = E ∪ E p, σp(H) = E p .
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Proof. Since det T (λ) ≡ 1, we have that

w1(λ)w2(λ) = 1.

Step 1. First, let us prove that{
λ ∈ C: P s−1(λ) 	= 0,

∣∣w1(λ)
∣∣ 	= ∣∣w2(λ)

∣∣}⊂ ρ(H).

To be definite, assume that |w1(λ)| > |w2(λ)|. In this case, we see that

T (λ) =
(

x1 x2

x3 x4

)(
w1(λ) 0

0 w2(λ)

)(
x4 −x2

−x3 x1

)
, det

(
x1 x2

x3 x4

)
= 1. (6.3)

Now, (6.2) can be rewritten in the form

W[0, js+k−1](λ) =
(

x1 x2

x3 x4

)(
w j

1 0

0 w j
2

)(
x4 −x2

−x3 x1

)
W[0,k−1](λ). (6.4)

Further, (6.4) is reduced to the following relation

W[0, js+k−1](λ) =
(

x1x4 w j
1 − x2x3 w j

2 −x1x2 w j
1 + x1x2 w j

2

x3x4 w j
1 − x4x3 w j

2 −x3x2 w j
1 + x1x4 w j

2

)
W[0,k−1](λ). (6.5)

Multiplying (6.5) by the vector (1 0)� we obtain(−εk−1bk−1 Q js+k−1(λ)

εk−1bk−1 P js+k−1(λ)

)
=
(

x1x4 w j
1 − x2x3 w j

2 −x1x2 w j
1 + x1x2 w j

2

x3x4 w j
1 − x4x3 w j

2 −x3x2 w j
1 + x1x4 w j

2

)(−εk−1bk−1 Q k−1(λ)

εk−1bk−1 Pk−1(λ)

)
.

Thus, for the polynomials Q · one has

Q js+k−1(λ) = −w j
1

(
x1x4 Q k−1(λ) + x1x2 Pk−1(λ)

)+ w j
2

(
x2x3 Q k−1(λ) + x1x2 Pk−1(λ)

)
. (6.6)

Similarly, for the polynomials P · we have

P js+k−1(λ) = −w j
1

(
x3x4 Q k−1(λ) + x3x2 Pk−1(λ)

)+ w j
2

(
x4x3 Q k−1(λ) + x1x4 Pk−1(λ)

)
. (6.7)

Note that x3 	= 0. Indeed, if x3 = 0 then according to (6.3) we would have that P s−1(λ) = 0. Now, formulas (6.6) and (6.7)
yield

Q js+k−1(λ) − x1

x3
P js+k−1 = −w j

2

(
x1

x3
Pk−1(λ) + Q k−1(λ)

)
. (6.8)

For brevity, define Ck(λ) := −( x1
x3

Pk−1(λ) + Q k−1(λ)). Then the equality (6.8) can be rewritten in the following way

Q js+k−1(λ) − x1

x3
P js+k−1 = (w̃2)

js+k−1Ck(λ), w̃2 = w1/s
2 , k ∈ {1, . . . , s}. (6.9)

Since |w2| < 1, it follows from (6.9) that ξ(λ) − x1
x3

π(λ) ∈ �2
[0,∞) . A linear independence of π(λ) and ξ(λ), and (6.7), (6.6)

imply π(λ) /∈ �2
[0,∞) . Now we are ready to verify the condition (5.7) of Theorem 5.3. Let us assume that i < j. Then∣∣∣∣Pi(λ)

[
Q j(λ) − x1

x3
P j(λ)

]∣∣∣∣= ∣∣(−w̃i
1 f (k1)

1 (λ) + w̃i
2 f (k1)

2 (λ)
)

w̃ j
2Ck2 (λ)

∣∣, w̃1 = w̃−1
2 , k1,k2 ∈ {1, . . . , s},

where k1 ≡ i (mod s) and k2 ≡ j (mod s). Since (n j − ni)/N = (
∑ j

l=i+1 kl)/N � (
∑ j

l=i+1 N)/N = j − i we have that
(n j − ni)/N � j − i. Thus, one obtains∣∣∣∣Pi(λ)

[
Q j(λ) − x1

x3
P j(λ)

]∣∣∣∣� |w̃2| j−i C(λ) � qn j−ni C(λ),

where C(λ) = supk,k2∈{1,...,s}{(| f (k1)
1 (λ)| + | f (k2)

2 (λ)|)|Ck2 (λ)|} and q = w̃2 < 1.
Step 2. Let us show that{

λ ∈ C: P s−1(λ) = 0,
∣∣bs−1 Q s−1(λ)

∣∣> ∣∣P s(λ)
∣∣}⊂ σp(H).

In this case the monodromy matrix can be represented as follows

T (λ) =
(−εs−1bs−1 Q s−1(λ) −Q s(λ)

)
=
(

1 x1
)(

w1(λ) 0
)(

1 −x1
)

,

0 P s(λ) 0 1 0 w2(λ) 0 1
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where w1(λ) = −εs−1bs−1 Q s−1(λ) and w2(λ) = P s(λ). Further, we have that(−εk−1bk−1 Q js+k−1(λ)

εk−1bk−1 P js+k−1(λ)

)
=
(

w j
1 w j

1x1 − w j
2x1

0 w j
2

)(−εk−1bk−1 Q k−1(λ)

εk−1bk−1 Pk−1(λ)

)
,

that is, the following formulas hold true

P js+k−1(λ) = w j
2 Pk−1(λ),

Q js+k−1(λ) = −w j
1 Q k−1(λ) + (

w j
1 − w j

2

)
x1 Pk−1(λ).

Since |w2(λ)| < |w1(λ)|, Gπ(λ) ∈ �2
[0,∞) and, therefore, π(λ) ∈ �2

[0,∞) . So, we have proved that E p ⊂ σ(H).
Step 3. By the same reasoning as in Step 1 it can be shown that{

λ ∈ C: P s−1(λ) = 0,
∣∣bs−1 Q s−1(λ)

∣∣> ∣∣P s(λ)
∣∣}⊂ ρ(H).

Step 4. We complete this proof by proving the following inclusion{
λ ∈ C:

∣∣w1(λ)
∣∣= ∣∣w2(λ)

∣∣}⊂ σ(H).

Since w1 w2 = 1 we have that |w1(λ)| = |w2(λ)| = 1. If T is diagonalizable then, due to (6.6), (6.7), there exist numbers
α

(1)

k (λ),α
(2)

k (λ),β
(1)

k (λ),β
(2)

k (λ) ∈ C such that

Q js+k−1(λ) = w− j
2 α

(1)

k + w j
2α

(2)

k , j ∈ Z+, k ∈ {1, . . . , s}, (6.10)

P js+k−1(λ) = w− j
2 β

(1)

k + w j
2β

(2)

k , j ∈ Z+, k ∈ {1, . . . , s}. (6.11)

Since the sequences Q · and P · are linearly independent, the sequence {Q j +mP j}∞j=0 is nonzero for any m ∈ C. Also, observe

that the sequence {|w jα + β|}∞j=1 (α 	= 0, |w| = 1) converges only for w = 1. Taking into account these observations one
can conclude that the series

∞∑
j=0

∣∣Q j(λ) + mP j(λ)
∣∣2 =

∞∑
i=0

s−1∑
k=0

∣∣α(1)

k + mβ
(1)

k + w2i
2

(
α

(2)

k + mβ
(2)

k

)∣∣2
does not converge for any number m ∈ C. So, we have that ξ(λ)+mπ(λ) /∈ �2

[0,∞)
for any m ∈ C. Similarly, one can conclude

that π(λ) /∈ �2
[0,∞) .

If T is similar to a Jordan block then w1 = w2 and w1 w2 = 1. So, w1 = ±1. First, let us consider the case w1 = 1. The
monodromy matrix takes the form

T (λ) =
(

x1 x2

x3 x4

)(
1 1

0 1

)(
x4 −x2

−x3 x1

)
.

Further, (6.2) yields

W[0, js+k−1](λ) =
(

x2x4 − x1x3 j − x2x3 −x2
2 + x2

1 j − x1x2

−x2
3 j −x3x2 + x3x1 j + x4x1

)
W[0,k−1](λ).

Thus for any m ∈ C the vectors ξ(λ) + mπ(λ) and π(λ) do not belong to �2
[0,∞) . Analogously, one can consider the case

w1 = −1. �
Remark 6.3. A description of spectra of classical Jacobi operators was obtained in [17].

Let us remind that w1 and w2 are the roots of the equation

w2 − (
P s(λ) − εs−1bs Q s−1(λ)

)
w + 1 = 0. (6.12)

Due to (6.12), one has

w1 + w2 = P s(λ) − εs−1bs Q s−1(λ), (6.13)

w1 w2 = 1. (6.14)

Remark 6.4. (See [7].) Formulas (6.13), (6.14) allow us to give another description of E ,

E = {
λ ∈ C:

(
P s(λ) − εs−1bs Q s−1(λ)

) ∈ [−2,2]}. (6.15)
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Example 6.5. Let us consider the following difference equation

1

2
u j+1 − λ2u j − 1

2
u j−1 = 0 ( j ∈ N). (6.16)

Clearly, the three-term recurrence relations (6.16) generate the following 1-periodic generalized Jacobi matrix

H =

⎛⎜⎜⎝
A B 0

B A
. . .

0
. . .

. . .

⎞⎟⎟⎠ , A =
(

0 0

1 0

)
, B =

(
0 1

2

0 0

)
.

In this case, by easy calculations, we have

P0(λ) = 1, P1(λ) = 2λ2, Q 0(λ) = 0, Q 1(λ) = 2.

Since P0(λ) = 1 	= 0, it follows from Theorem 6.2 that σp(H) = ∅. Next, according to Theorem 6.2 and (6.15), we have

σ(H) = {
λ ∈ C: 2λ2 ∈ [−2,2]}= [−1,1] ∪ [−i, i].

By the same reasoning as in [7], one can prove the following statement on the structure of the set E .

Proposition 6.6. (See [7].) The compact set E has no interior points. The open set D := C \ E is connected. The functions w1 and w2
are single-valued in D.

7. Padé approximants

Our goal in this section is to prove convergence results for Padé approximants.

Definition 7.1. (See [28].) The [L/M] Padé approximant to the function ϕ(λ) = −∑+∞
j=0

s j

λ j+1 is defined as a ratio

f [L/M](λ) = A[L/M]( 1
λ
)

B[L/M]( 1
λ
)

of two polynomials A[L/M] , B[L/M] of formal degree L and M , respectively, such that B[L/M](0) 	= 0 and

+∞∑
j=0

s j

λ j+1
+ f [L/M](λ) = O

(
λ−(L+M+1)

)
(λ → ∞).

In the case L = M = n, the [n/n] Padé approximant is also called the nth diagonal Padé approximant.
Let us consider the Weyl function m(λ) = [(H − λ)−1e, e], where the corresponding matrix H satisfies the assump-

tions (A.1), (A.2). The representation (4.7) of m[0, j−1] yields

m[0, j−1](λ) = − Q j(λ)

P j(λ)
= − s0

λ
− s1

λ2
− · · · − s2n j−2

λ2n j−1
+ O

(
1

λ2n j

)
(λ → ∞), (7.1)

where si = [Hie, e] (i = 0, . . . ,2n j − 2). Moreover, it was shown in [13] that m[0, j−1](λ) has the following asymptotic expan-
sion

m[0, j−1](λ) = −
2n j−2+k j∑

i=0

si

λi+1
+ O

(
1

λ2n j+k j

)
(λ → ∞), (7.2)

where si = [Hie, e] (i = 0, . . . ,2n j − 2 + k j ). The latter means that the rational function

f [n j/n j ](λ) = m[0, j−1](λ) = A[n j/n j ](1/λ)

B[n j/n j ](1/λ)
=

− 1
λ

n j Q j(λ)

1
λ

n j P j(λ)
( j = 1,2, . . .) (7.3)

is the [n j/n j] Padé approximant to m. Besides, it follows from the Padé theorem (see [5, Theorem 1.4.3]), that for L and M
satisfying

L � n j, M � n j, L + M � 2n j + k j − 1

the [L/M] Padé approximants coincide with f [n j/n j ] , and for L, M satisfying
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L � n j + k j − 1, M � n j + k j − 1, L + M � 2n j + k j

the [L/M] Padé approximants do not exist (for details see [13]).
In what follows we need the following definition.

Definition 7.2. The set Θ(H) := {(H y, y)�2 : ‖y‖ = 1} ⊂ C is called a numerical range of the operator H .

Clearly, the numerical range of a bounded operator is a bounded set. By the Hausdorff theorem we have that σ(H) ⊂
Θ(H) (see [22]).

Theorem 7.3. Let m(λ) = [(H −λ)−1e, e] be the Weyl function of H satisfying (A.1), (A.2). Then there exists a subsequence of diagonal
Padé approximants f [n j/n j ] to m, which converges to m locally uniformly in C \ Θ(H).

Proof. First, note that Θ(H[0,n]) ⊂ Θ(H), and, therefore, Θ(H[0,n]) ⊂ Θ(H). As a consequence, we have that if λ ∈ C \ Θ(H)

then λ ∈ ρ(H[0,n]) for all n ∈ Z+ . Let λ ∈ C \ Θ(H). Then ran(H − λ) = �2
[0,∞) and for any finite vector φ we have

(H[0, j] − λ)−1φ → (H − λ)−1φ, j → +∞.

Thus, one can obtain

f [n j/n j ](λ) = m[0, j−1](λ) = [
(H[0, j−1] − λ)−1e, e

]= (
(H[0, j−1] − λ)−1e, Ge

)
�2 → (

(H − λ)−1e, Ge
)
�2 = m(λ). (7.4)

According to [22, Theorem 3.2, p. 336] one has∥∥(H[0, j] − λ)−1
∥∥� 1

dist(λ,Θ(H[0,n]))
� 1

dist(λ,Θ(H))
.

Hence, the family f [n j/n j ] = m[0, j] is uniformly bounded on compact sets in C \Θ(H). Actually, the following estimates hold
true ∣∣m[0, j](λ)

∣∣= ∣∣((H[0, j] − λ)−1e, Ge
)
�2

∣∣� ∥∥(H[0, j] − λ)−1e
∥∥

�2‖Ge‖�2 � ‖Ge‖�2

dist(λ,Θ(H))
.

So, the family f [n j/n j ] is uniformly bounded and, therefore, f [n j/n j ] is precompact. Now, to complete the proof it is sufficient
to apply (7.4) and the Vitali theorem. �
Remark 7.4. In the proof of Theorem 7.3 we used the method proposed in [7] for complex Jacobi matrices. Note that
Theorem 7.3 is a generalization of [19, Theorem 1]. More precisely, we do not suppose existence of all diagonal Padé
approximants and all poles of the existed diagonal Padé approximants belong to the convex set Θ(H).

Further, following the scheme proposed in [1], we find out a behavior of the associated polynomials at the points of the
resolvent set.

Proposition 7.5. For any λ ∈ ρ(H) the following inequality holds true

lim sup
j→+∞

∣∣P j(λ)
∣∣1/ j

> 1. (7.5)

Proof. In fact, the proof is in line with that in [1]. However, we give the proof here for the convenience of the readers.
Using (2.12) and (4.2), one can see

P j(λ)
(
ε jb j W j+1(λ)

)− P j+1(λ)
(
ε jb j W j(λ)

)= 1. (7.6)

Due to (A.1), (A.2), and (5.7), one has∣∣ε jb j W j(λ)
∣∣� C1q1

j, 0 < q1 < 1. (7.7)

It follows from (7.6) and (7.7) that the sequence P j(λ) cannot be majorized by a geometric sequence p j with p < 1/q1, that
is, for any p < 1/q1 and any positive constant C2 the inequality∣∣P j(λ)

∣∣� C2 p j

is not satisfied for an infinite number of indices j. We thus have∣∣P jk (λ)
∣∣� C2 p jk .

If we choose p such that 1/q1 > p > 1 we obtain the required result. �
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From these statements one can deduce the following result on convergence of diagonal Padé approximants.

Theorem 7.6. Under the assumptions (A.1), (A.2), for any λ ∈ ρ(H) there exists a subsequence of diagonal Padé approximants to
m(λ) = [(H − λ)−1e, e], which converges to m(λ) at λ.

Proof. From (7.5) we get that there exists a subsequence jk such that∣∣P jk (λ)
∣∣� C2 p jk , p > 1. (7.8)

Further, Theorem 5.3 and (7.8) imply the relation∣∣∣∣m(λ) + Q jk (λ)

P jk (λ)

∣∣∣∣= ∣∣∣∣W jk (λ)

P jk (λ)

∣∣∣∣� C3

(
q

p

) jk

,

which completes the proof. �
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