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The heavy quarks constitute a unique probe of the quark–gluon plasma properties. A puzzling relation 
between the nuclear modification factor R A A(pT ) and the elliptic flow v2(pT ) has been observed both at 
RHIC and LHC energies. Predicting correctly both observables has been a challenge to all existing models, 
especially for D mesons. We discuss how the temperature dependence of the heavy quark drag coefficient 
is responsible for a large part of such a puzzle. In particular, we have considered four different models 
to evaluate the temperature dependence of drag and diffusion coefficients propagating through a quark 
gluon plasma (QGP). All the four different models are set to reproduce the same R A A(pT ) observed in 
experiments at RHIC and LHC energy. We point out that for the same R A A(pT ) one can generate 2–3 
times more v2 depending on the temperature dependence of the heavy quark drag coefficient. A non-
decreasing drag coefficient as T → Tc is a major ingredient for a simultaneous description of R A A(pT )

and v2(pT ).
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The ongoing nuclear collision programs at Relativistic Heavy Ion 
Collider (RHIC) and Large Hadron Collider (LHC) energies have cre-
ated a medium that behaves like a nearly perfect fluid. The bulk 
properties of such a matter, called Quark Gluon Plasma (QGP), are 
governed by the light quarks and gluons [1,2]. To characterize the 
QGP, penetrating and well-calibrated probes are essential. In this 
context, the heavy quarks (HQs), mainly charm and bottom quarks, 
play a vital role since they do not constitute the bulk part of the 
matter owing to their larger mass compared to the temperature 
created in ultra-relativistic heavy-ion collisions (uRHICs) [3].

There are presently two main observables related to heavy 
quarks that have been measured at both RHIC and LHC energies. 
The first one is the so-called nuclear suppression factor R A A that 
is the ratio between the pT spectra of heavy flavored hadrons 
(D and B) produced in nucleus + nucleus collisions with respect to 
those produced in proton + proton collisions. More specifically at 
RHIC until recently it has not been possible to measure directly D 
and B but only the leptons through their semileptonic decays. The 
other key observable is the elliptic flow v2 = 〈cos(2φp)〉, a measure 
of the anisotropy in the angular distribution that corresponds to 
the anisotropic emission of particles with respect to the azimuthal 
angle φp . Despite their large mass, experimentally measured nu-
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clear suppression factor R A A and elliptic flow v2 of the heavy 
mesons are comparable to that of light hadrons [16–19]. This is in 
contrast to the expectations drawn initially from the perturbative 
interaction of HQs with the medium which predicted an R A A ≈ 0.6
for charm quarks, R A A ≈ 0.8–0.9 for bottom quarks in the central 
collisions [11,12] at intermediate pT . Also the v2 was predicted to 
be much smaller with respect to the light hadron ones [12].

Several theoretical efforts have been made in order to calcu-
late the experimentally observed RAA [16–19] and v2 [16] for 
the non-photonic single electron spectra within the Fokker–Planck 
approach [7–10,14,20,23,25,26,34–37] and relativistic Boltzmann 
transport approach [15,28–33,50–52]. Furthermore, also in a pQCD 
framework supplemented by the hard thermal loop scheme sev-
eral advances have been made to evaluate realistic Debye mass 
and running coupling constants [15,25] and also three-body scat-
tering effects [10,20,21,24] have been implemented. It has been 
shown in [38] that the inclusion of both elastic and inelastic col-
lisions within a dynamical energy loss formalism reduces the gap 
between the theoretical and experimental results for R A A as pT ≥
5–10 GeV [39,40]. Several other improvements have been proposed 
to advance the description of the data [41–43]. Interactions from 
AdS/CFT [57] have also been implemented [23,27,59] to study the 
heavy flavor dynamics at RHIC and LHC. Essentially all the models 
show some difficulties to describe simultaneously both R A A(pT )

and v2(pT ) and such a trait is not only present at RHIC energy but 
also in the results coming from collisions at LHC energy [19].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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In this letter we will address the impact of the temperature de-
pendence of the interaction (drag coefficient) on both R A A and v2
relation. For this we are considering four different models having 
different T dependent drag coefficients. For the momentum evo-
lution of the HQ, we are using 3 + 1D Langevin dynamics. We 
notice that the several approaches and modelings of the HQ in-
medium interaction differ significantly for the T dependence of 
the drag coefficient they entail. One can go from drag coefficients 
increasing as T 2 (like in Ads/CFT) to cases with the drag coeffi-
cient decreasing with T . The aim of this letter is to show that, 
while generally a smaller R A A(pT ) corresponds to larger v2(pT ), 
the specific T dependence of the drag can strongly modify such an 
amount of v2(pT ), even if the models are tuned to reproduce the 
same R A A(pT ) observed experimentally. Our analysis shows that it 
is quite unlike that a drag with T 2 dependence can generate larger 
elliptic flow than the one observed experimentally at both RHIC 
and LHC. Instead a nearly constant drag or an increasing one as 
T → Tc strongly quenches the puzzling R A A(pT ) − v2(pT ) relation.

The standard approach to HQ dynamics in the QGP is to fol-
low their evolution by means of a Fokker–Planck equation solved 
stochastically by the Langevin equations. The relativistic Langevin 
equations of motion for the evolution of the momentum and posi-
tion of the heavy quarks can be written in the form

dxi = pi

E
dt,

dpi = −�pidt + Cijρ j

√
dt (1)

where dxi and dpi are the shift of the coordinate and momentum 
in each time step dt . � and Cij are the drag force and the covari-
ance matrix in terms of independent Gaussian-normal distributed 
random variables ρ , P (ρ) = (2π)−3/2e−ρ2/2, which obey the re-
lations < ρiρ j >= δi j and < ρi >= 0, respectively. The covariance 
matrix is related to the diffusion tensor,

Cij = √
2B0 P⊥

i j + √
2B1 P ‖

i j, (2)

where P⊥
i j = δi j − pi p j/p2 and P ‖

i j = pi p j/p2 are the transverse 
and longitudinal projector operators respectively. Under the as-
sumption, B0 = B1 = D , Eq. (2) becomes Cij = √

2D(p)δi j . Such an 
assumption strictly valid only for p → 0, is usually employed at fi-
nite p in application for heavy quark dynamics in the QGP [8–10,
14,24,34].

We will discuss our results in terms of the drag coefficient �, 
but we remind that it is related to the diffusion coefficient by the 
fluctuation–dissipation theorem that within a Langevin approach 
reads D = �E T , for the case of the post-point Ito realization of 
the stochastic integral [44]. In the post-point discretization the dif-
fusion coefficients have to be used at the momentum argument 
p + dp, where dp is the increment from a pre-point Ito (Euler) 
time-step according to Eq. (1).

The solution of the stochastic Langevin equation needs a back-
ground medium describing the evolution of the bulk QGP matter. 
To describe the expansion and cooling of the bulk and its elliptic 
flow v2(pT ) at both RHIC and LHC, we have employed a relativis-
tic transport code with an initial condition given by a standard 
Glauber model and with an evolution at fixed η/s = 0.16 (simi-
larly to viscous hydro), see Refs. [45–48] for more details.

Our objective is to demonstrate the effect of the temperature 
dependent interaction (drag coefficient) on the R A A and v2 ob-
tained from different models. More specifically we investigate at 
fixed R A A how the v2 is built up under various temperature de-
pendence of the interaction. For this purpose we consider four 
different modelings to calculate the drag and diffusion coefficients 
which are the key ingredients to solve the Langevin equation. Such 
models have to be considered merely as an expedient-device to 
generate different T dependence of the �(T ) but the results and 
conclusions deduced will be much more general because they do 
not depend on the way the �(T ) has been obtained. In this sense 
within a Fokker–Planck approach it is not relevant if the drag and 
diffusion coefficients have been evaluated considering only colli-
sional or radiative loss.

Model-I (pQCD): The elastic interaction of heavy quarks with 
the light quarks, antiquarks and gluons in the bulk has been con-
sidered within the framework of pQCD to calculate the drag and 
diffusion coefficients. The scattering matrices MgHQ , MqHQ and 
Mq̄HQ are the well-known Combridge matrix that includes s, t, u
channel and their interferences terms [58]. The divergence asso-
ciated with the t-channel diagrams due to massless intermediate 
particle exchange has been shielded introducing the Debye screen-
ing mass mD = √

4παs T . The temperature dependence of the cou-
pling [55]:

g−2(T ) = 2β0ln

(
2π T

a Tc

)
+ β1

β0
ln

[
ln

(
2π T

a Tc

)]
(3)

where β0 = (11 − 2N f /3)/16π2, β1 = (102 − 38N f /3)/(16π2)2

and a = 1.3. N f is the number of flavor and TC is the transition 
temperature.

Model-II (AdS/CFT): We have also considered the drag force from 
the gauge/string duality [56], namely the conjectured equivalence 
between conformal N = 4 SYM gauge theory and gravitational the-
ory in anti-de Sitter space–time i.e. AdS/CFT. By matching the en-

ergy density of QCD and SYM, which leads to TSYM = TQCD/3
1
4 , 

and the string prediction for quark–antiquark potential with lat-
tice gauge theory which gives 3.5 < λ < 8 [57], one finds

�conf = C
T 2

QCD

Mc
(4)

where C = π
√

λ

2
√

3
= 2.1 ± 0.5. The corresponding diffusion constant 

D can be obtained from the fluctuation–dissipation relation. Stud-
ies of heavy flavor momentum evolution within the Langevin dy-
namics using AdS/CFT can be found in Refs. [23,27].

Model-III (QPM): The third model recently applied to esti-
mate the heavy flavor transport coefficients is inspired by the 
quasi-particle model (QPM) [62–64]. The QPM approach is a way 
to account for the non-perturbative dynamics by T-dependent 
quasi-particle masses, mq = 1/3g2T 2, mg = 3/4g2T 2, plus a T-
dependence background field known as bag constant. Such an 
approach is able to successfully reproduce the thermodynamics 
of lQCD [60] by fitting the coupling g(T ). To evaluate the drag and 
diffusion coefficients we have employed QPM tuned to the thermo-
dynamics of the lattice QCD [61]. Such a fit leads to the following 
coupling [60]:

g2(T ) = 48π2

[(11Nc − 2N f )ln[λ( T
Tc

− Ts
Tc

)]2
(5)

where λ = 2.6 and T /Ts = 0.57.
Model-IV (αQPM(T ), mq = mg = 0): To have a different set of 

drag and diffusion coefficients we are considering a case where 
the light quarks and gluons are massless but the coupling is from 
the QPM which is obtained from the fit to the lattice data. This 
case has to be mainly considered as an expedient to have a drag 
which decreases with T as obtained for example in the T-matrix 
approach [3,14,37].

In the following, except for the case of AdS/CFT, we have cal-
culated the drag coefficient numerically from the scattering matrix 
of the model by means of the standard definition of drag [6], see 
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Fig. 1. Variation of drag coefficient with respect to temperature.

also Ref. [54,64] for a recent detailed description of the calculation 
of the transport coefficients for heavy quarks.

The variation of the drag coefficient with respect to temper-
ature at p = 100 MeV obtained within the four different models 
discussed above has been shown in Fig. 1. The behaviors remain 
quite similar also at high momentum but with different magni-
tude. These rescaled drag coefficients can reproduce almost the 
same R A A at RHIC energy. In AdS/CFT case the drag coefficient 
is proportional to T 2 whereas in αQPM(T ), mq = mg = 0 case the 
drag coefficient decreases with T due to the strong coupling at low 
temperature. It may be mentioned here that the drag coefficient 
obtained from the T-matrix [3,14,53] is almost constant or slightly 
decreasing with temperature.

We mention that the drag coefficient increases with tempera-
ture when the system behaves like a gas. For a molecular liquid the 
drag coefficient decreases with increasing temperature (except in a 
very few cases) because a significant part of the thermal energy 
goes into making the attraction between the interacting particles 
weaker, allowing them to move more freely and hence reducing 
the drag coefficient. The drag force of the partonic medium with 
non-perturbative effects may decrease with increasing temperature 
as shown in Refs. [3,14,53] because in this case the medium inter-
acts strongly more like a liquid.

In order to study the impact of the temperature dependence 
of the drag coefficient presented in the previous sections on the 
experimental observables, we have calculated the nuclear sup-
pression factor, R A A , using our initial charm and bottom quark 
distributions at initial time t = τi and final time t = τ f at the 
freeze-out temperature as R A A(p) = f (p,τ f )

f (p,τi)
. Along with R A A we 

evaluate the anisotropic momentum distribution induced by the 
spatial anisotropy of the bulk medium and defined as

v2 =
〈

p2
x − p2

y

p2
x + p2

y

〉
, (6)

which measures the momentum space anisotropy.
We have performed simulation of Au + Au collisions at 

√
s =

200 AGeV for the minimum bias using a 3+1D transport approach 
[45,46,49]. The initial conditions for the bulk evolution in the co-
ordinate space are given by the Glauber model condition, while 
in the momentum space we use a Boltzmann–Juttner distribution 
function up to a transverse momentum pT = 2 GeV and at larger 
momenta mini-jet distributions as calculated within pQCD at NLO 
order [22]. At RHIC energy, Au+Au at 

√
s = 200, the maximum ini-

tial temperature of the fireball in the center is Ti = 340 MeV and 
the initial time for the fireball simulations is τi = 0.6 fm/c (ac-
cording to the criteria τi · Ti ∼ 1). The heavy quarks in momentum 
Fig. 2. Comparison of the nuclear suppression factor, R A A , as a function of pT , 
obtained within the Langevin (LV) evolution for the four different cases, with the 
experimental data at RHIC energy.

Fig. 3. Comparison of the elliptic flow, v2, as a function of pT , obtained within the 
Langevin (LV) evolution for the four different cases, with the experimental data at 
RHIC energy.

space are distributed in accordance with the charm distribution in 
pp collisions that have been taken from Refs. [4,5] where in the 
coordinate space they are distributed according to Ncoll .

The solution of the Langevin equation has been convoluted with 
the fragmentation functions of the heavy quarks at the quark-
hadron transition temperature Tc to obtain the momentum dis-
tribution of the D and B mesons. For the fragmentation, we use 
the Peterson fragmentation function:

f (z) ∝ 1

[z[1 − 1
z − εc

1−z ]2] (7)

where εc = 0.04 for charm quarks and εc = 0.005 for bottom 
quark.

In Fig. 2 we have plotted R A A as a function of pT for the four 
different cases obtained within the Langevin dynamics at RHIC en-
ergy. As we mentioned, we try to reproduce the same R A A in all 
the cases by rescaling the drag and diffusion coefficients. We re-
mind that RHIC data and calculations refer to the single electrons 
from the semileptonic decay of D and B mesons. The v2 for the 
same R A A has been displayed in Fig. 3 for all cases as a func-
tion of pT . Our main striking point is that even if the R A A is very 
similar for all the four different cases, the v2 built up is quite 
different depending on the temperature dependence of the drag 
coefficients (see Fig. 1). This is because the R A A is more sensitive 
to the early stage of the evolution whereas the v2 is more sen-
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Fig. 4. Comparison of the nuclear suppression factor R A A vs v2, obtained within the 
Langevin (LV) evolution for the four different cases, with the experimental data at 
RHIC energy at pT = 1.3 GeV.

sitive to the later stage of the evolution (near Tc ). Some studies 
in this direction have been done also in the light flavor sector as 
shown in Refs. [66–68] and very recently related to the presence 
of magnetic monopoles [69]. The larger drag coefficient is at low 
temperature the larger is the v2 even for the same R A A . For ex-
ample in the region of the peak for v2(pT ) we see a difference of 
about a factor 2.5 going from a T 2 dependence, like AdS/CFT to an
inverse T dependence as it can occur in a liquid. This last case or 
at least a nearly constant drag appears to be very much favored by 
the comparison with the data.

This study suggests that the correct temperature dependence 
of drag coefficient has a crucial role for a simultaneous reproduc-
tion of R A A and v2. The reason for such a relation between the 
two observables is that a small R A A (strong suppression) can be 
generated very quickly at the beginning of the QGP lifetime, i.e. 
at high T. However such a strong interaction will not be accom-
panied by a build-up of v2 because the bulk medium has not yet 
developed a sizeable part of its elliptic flow. On the contrary to 
generate a large v2 one needs there to be a strong interaction with 
the medium at later stages of the QGP lifetime in order to match 
the build-up of both R A A and v2. The experimental data seem to 
clearly suggest that the drag of the medium cannot decrease with 
large power of T otherwise the interaction will be relatively weak 
just when a strong interaction would make possible the build of 
the anisotropy in momentum space. It can be here mentioned that 
the drag coefficient is almost constant with respect to tempera-
ture in the T-matrix case [3,14,37,53]. However also a QPM can 
be considered quite close to the data given that we have not in-
cluded the coalescence mechanism that would shift the v2(pT )

in all the cases considered by about a 20–25% upward. In Fig. 4
we have introduced a new plot R A A vs v2 at a given momentum 
(pT = 1.3 GeV) to promote the importance of simultaneous repro-
duction of R A A and v2. Fig. 4 highlights how the v2(pT ) built up 
can differ up to a factor of around 2.5 (in the region of peak), for 
the same R A A(pT ), depending on the temperature dependence of 
the drag coefficient.

We have also extended our calculation to study R A A and v2 at 
LHC performing simulations of Pb + Pb at 

√
s = 2.76 ATeV energy. 

In this case the initial maximum temperature in the center of the 
fireball is T0 = 510 MeV and the initial time for the simulations 
is τ0 ∼ 1/T0 = 0.3 fm/c. In Fig. 5 we show the R A A as a function 
of pT for the four different cases obtained within the Langevin 
dynamics at LHC energy. As we mentioned, we reproduce similar 
R A A in all the cases by rescaling the drag and diffusion coefficients. 
The elliptic flow v2 for the same R A A has been plotted in Fig. 6 for 
Fig. 5. Comparison of the nuclear suppression factor, R A A , as a function of pT , 
obtained within the Langevin (LV) evolution for the four different cases, with the 
experimental data at LHC energy.

Fig. 6. Comparison of the elliptic flow, v2, as a function of pT , obtained within the 
Langevin (LV) evolution for the four different cases, with the experimental data at 
LHC energy.

all cases as a function of pT . Similarly to the RHIC case we get a 
similar trend for the R A A vs v2 depending on the T dependence 
drag coefficients.

However, as pointed out in Ref. [33], for charm quarks, which 
have a moderate M/T ratio, a significant deviation with respect to 
the Brownian Langevin dynamics can be expected. In this case the 
full solution of the Boltzmann integral i.e. without the assumption 
of small collisional exchanged momenta, leads in general to a large 
v2(pT ). Such an effect depends on the anisotropy of the micro-
scopic scattering and cannot be studied in terms of only the drag 
coefficient. It is however an effect that in general can be expected 
to be of the order of about 20% and does not modify the system-
atic studied here. A further effect that is involved in the study of 
HQ observable is related to the hadronization process. If the possi-
bility of the coalescence process [13] is included, there is a further 
enhancement of the v2(pT ) of about a 20–25% [9,14,70]. Also the 
hadronic rescattering may play a role in enhancing the v2(pT )

without modifying the R A A(pT ) [65]. This however would generate 
a similar shift for all the cases discussed hence not affecting the 
discussed pattern entailed by �(T ). The impact of Boltzmann dy-
namics and hadronization by coalescence are larger at LHC and can 
be led to a better agreement with the data for the case αQPM(T )

and QPM but does not modify the impact of the T-dependence of 
the drag coefficient discussed in this letter.
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The results shown have been obtained evaluating the drag �
from the respective models and then the diffusion coefficient D
from FDT. Several other options are possible like evaluating the 
diffusion from the scattering matrix and the drag from the FDT or 
employing both drag and diffusion from the scattering matrix. We 
have seen that while these different options may lead to some dif-
ferences, once they are tuned to R A A , the differences in the elliptic 
flows stay within a 10% and in particular our main result on the 
impact of the T dependence of the drag is not affected by it.

In summary, we have evaluated the drag and diffusion coeffi-
cients of the heavy quarks within four different models. With these 
transport coefficients and heavy quark initial distributions we have 
solved the Langevin equation. The solution of Langevin equation 
has been used to evaluate the nuclear suppression factor, R A A , and 
elliptic flow, v2. The results have been compared with the exper-
imental data both at RHIC and LHC energies. Our primary intent 
is to highlight how the temperature dependence of the interaction 
(drag coefficient) provides an essential ingredient for the simul-
taneous reproduction of the nuclear suppression factor, R A A , and 
elliptic flow, v2 which is a current challenge almost for all the ex-
isting model. Our work shows that the reproduction of the data 
on R A A(pT ) only cannot be used to determine the drag coefficient 
�(T ) of heavy quarks. We find that the different T-dependences of 
the drag coefficients in the literature can lead to differences in v2
by 2–3 times even if the R A A is very similar. Our study suggests 
the correct temperature dependence of the drag coefficient cannot 
be a large power of T , like T 2 as in pQCD or AdS/CFT. We remind 
that �(T ) nearly constant or weakly decreasing with T would be 
more typical of a liquid and not of a gas.
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