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ABSTRACT 

A characterization of ring isomorphisms between endomorphism rings of infinitely 
generated free modules (over arbitrary rings) is given in terms of Morita equivalences. 
In addition, we indicate the interrelationship between our characterization and the 
classical description which uses semilinear maps. 

Let R and S denote arbitrary associative rings with identity, and let RCN) 
and ScN) be free right modules with countably infinite basis over R and S 
respectively. We wish to describe the isomorphisms between End,( RcN)) (the 
ring of column finite matrices over R) and Ends(SN)) (the ring of column 
finite matrices over S). These isomorphisms are known when R and S are 
principal ideal domains [6], and when R = S and R has the property that 
certain projective modules are free [4]. The descriptions obtained in both 
were in terms of semilinear maps between the underlying modules. A similar 
situation occurred in describing the isomorphisms for free modules with finite 
basis, and it was realized [l] that the semilinear description must, and can, be 
replaced by a categorical description if one wishes to include all rings. Thus 
we pursue a categorical description for the isomorphisms between rings of 
column finite matrices, and show how the semilinear descriptions in [4] and 
[6] can be recovered from the categorical. 

For sake of brevity, we set U = RcN) andV=S(N). Let {ui} beabasisfor 
U, {vi} be a basis for V, (eij} be the standard matrix units for {q} [i.e., 
ejj(uj)= ui, and eij(uk)= 0 for k # j], and { fij} be the standard matrix 
units for { vi }. Let @ be any ring isomorphism: 

@:End,(U) A End,(V). 
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It is shown by Camillo in [2] that End,(U) and Ends(V) are isomorphic 
if and only if R and S are Morita equivalent. We recall now some facts from 
the proof of his result. The right S-module O(e,,)V is a progenerator over S, 
with 

R = e,, Enda er, 

= e,,@~‘(End,(V))e,, 

= @(erAEnds (I%) 

= End,(@(e,,)V). (1) 

In addition, one has 

@(eil): Q(ell)V-‘,Q(eii)V, (2) 

an Smodule isomorphism for any i. Moreover, Ci@(eii)V is direct. 

LEMMA. Cj@(eii)V is all of V. 

Proof. We show that vis is in Ci@(eii)V for any i, s E S. Consider fii; 
using an argument similar to one in Camillo’s proof, one can find an integer k 
such that 

Now, 

[@(e,i)+ @(es,)+ . . . + @(ekk)l Ai = Xi* 

visEfiiV= [@(e,,)+ f.. +@(ekk)]f,,V 

C [@(e,,)+ . . . + @(e,,)] V 

G C@(eji)V. n 

Let AR denote the category of unital right R-modules; similarly A’,. We 
are now ready to prove our result. 

THEOREM. Let R, S be arbitrary associative rings with identity. Let 
U = RCN), V = SCN), where N is a countably infinite set. Let 

@:End,(U) G End,(V) 
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be a ring knnmphism. Then there exists a unique (up to natural ism- 
phism) category equivalence 

such that F,(U) = V, and F@(f) = @(f) for all f E End,(U). 

Proof. Existence: Retain all notation from the above. For any r E R, let 

From (1) there exists a natural left R-structure on P = @(e,,)V given by 

rap = r.(@(ell)u) 

= @(ell)@(A,)@(ell)u 

= @(el14ell)u 

= @( BJU. 

We have a natural isomorphism y : UB~ P -+ PcN), and using the isomor- 
phisms of (2) we have an obvious isomorphism S: PcN) + Ei@(eii)V = V. 

Consider [for any f E End,(U)] the diagram 

f@l 

us P-----+U@,P R 

Y I I Y 
p(N) p(N) 

6 
I 

6 

Q(f) I 
V -V 

We will show this diagram commutes. Since all maps are additive, we need 
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only check on a generator u,r@p of U@P. We want 

In the arguments below, ui = (0,. . . , l,O, . . . ), and f will be considered to be a 
column finite matrix. 

For the left hand side of (3), 

soyo(f@l)((o ,... J,O,...)@P) 

=Soy(f(O )..., r,O ,... )@p) 

=s 0 y((a1r,a2r,..*,(Y,r,0 ,... )@p) 

[where (ar,, q,, . . . , a,,O,. . . ) forms the ith column of f] 

=q(~P)P,(~~~)p ,...> (a,+4 >...) 

=S(b,-p, b,.p ,..., b;p,O ,...) (where bj = air) 

=S(b,.Q(el,)v ,..., b;Q(e,,)v,O ,...) 

[since P = @(e,,)v] 

=s(@(B,l)v ,..., @(B,“)V,O )...) 
(this comes from the R-structure on P) 

=‘( FeilBbi)’ 

= aqC)v, 

where C is the matrix with (b,, . . . , b,,, 0,. . . ) in the first column, and zero 
everywhere else. 
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For the right hand side of (3), 

@(f>+y((O ,...> eL..>@P> 

=@(f)d(O )..., rp,O ,...) 

=io(f)oy(O )...) @(B,)v,O ,...) 

= @(fN@teilP(~,>~) 

= @(feil6)0 

= @(C)u, 

where C is the same matrix as above. Therefore, the diagram commutes. 
Now define Fm : JIR -+ A, by F,(M)= MB, P, except F,(U)=%‘, and 

for f: M -+ N, then F*(f) = TN( f@ l)T,; l, with T, = Id, except TZi = 
(y 0 6). It is straightforward to show that FQ is an equivalence with the 
desired properties. 

Uniqueness: Suppose G: &, -+ MS is a category equivalence such that 
G(U) = V, G(f) = Q(f). We want to show G is naturally isomorphic to F@. 
Choose an inverse for G, and set 

H=G-‘OF@. 

It will suffice to show that H is naturally isomorphic to the identity 
autoequivalence on M,. 

By the properties of G and the definition of G _ ‘, we have an isomor- 
phism (Y : H(U) -I, U such that 

f 
u -u 

a I I a 

H(U)- H(f) H(U) 

(4) 

commutes for all f E End(U). 
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From Morita theory, there exists an R-R bimodule such that H is 
naturally isomorphic to 8, P. This fact together with (4) yields a diagram - 

(5) 

which commutes for all f E End,(U), and T is an R-module isomorphism. In 
particular, inserting e,, E End,(U), we find that P 2: image(e,,@ 1) is right 
R-isomorphic to R - image(e,,). It follows now that P is actually equal to the 
bimodule (I R i where u : R -+ R is a ring automorphism, H = @ ~ R 1, and H is 
naturally isomorphic to the identity functor if (I is an inner automorphism 
(see [5] for details). 

Extend u to a:End,(U)q End.(U) by acting on each element of the 
matrix. Let J, : U@,, R, + U be the R-isomorphism given by 

( r,,Q.,..., T",O,... )m+(rpr,?gr )..., r;r,o )... ). 

Using (5), we can put together a commuting diagram 

f 
u- U 

7 T T 7 

f@l 
UO,R,- U@*Rl 

v’ T 1 +-I 

S(f) 
u- U 

for any f E End.(U). (It is a straightforward check to see that the bottom 
square commutes.) 

In particular let r E R, and consider A,, the infinite matrix with r on the 
diagonal and 0 elsewhere. Let (ti,. . . , t,,O,. . .) be the image of ui under 
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7 0 4 - ‘. Then by commutativity 

A,(w,-‘)ur=A,(tr ,..., t,,O I...) 

=(rt r ,...> rt,>O,...) 

= (r 0 IJ-~)“(A,)u, 

= (7 0 $-‘)(P,O,...) 

=(v~~l)ul.r~ 

= ( tlrO ,..., t,r”,o )... ), 

and thus 

245 

rti = tire (6) 

foralll<i<n,andalIrE R. 
Now use commutativity of (5) applied to the matrix A, - A,ell, and 

acting on ur, to show that 

(0,o )... )=(O,rt,,rt, ,..., r&,0 ,... ), 

and (for r = 1) deduce that t, = t3 = . . . = t, = 0. Now (tl, 0,. . . ) is the image 
of ur under the isomorphism T 0 1c, ~ r, and it follows that t, must be 
invertible. 

From (6), we have rt, = tlro for all T E R, and since t, is invertible, u 
must be inner. H 

The semilinear descriptions can now be recovered under certain condi- 
tions. Recall that the isomorphism Cp: End,(U) --, Ends(V) is said to be 
induced by a semilinear if there exists: 

(1) a ring isomorphism u : R 4 S, 
(2) a u-semi&rear isomorphism ‘p : U + V [i.e., ‘p is group isomorphism 

with ‘p( ur) = ‘p( u)rO for all u E U, r E R] 

such that Q(f)= cpfv-’ for all f~ End&J). 

COROLLARY. Let R = S, together with the hypothesis of the Theorem (in 
particular, FQ E Pm(R)). Then @ is induced by a semilinear if F@ is in the 
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image of 
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J/: Aut(R) +Pic(R) 

Proof. If FQ is in the image of $, then by our Theorem we have a 
commuting diagram 

Fe(f) 
U- 7J 

Id I 
u 

Id 

for all f E End.(U), and some fixed (Y. Let $J be the isomorphism of groups, 
+:U-+Ugivenbyo-‘onat - ‘. Clearly + is a-semilinear, and Q(f) = + f+ ‘. 

n 

The semilinear description in [6] now follows easily, since Morita equiv- 
alent principal ideal domains are isomorphic, and for such rings the map 4 
above is onto (in a principal ideal domain projectives are free). 

Similarly, in the particular case when R = S, McDonald in [5] has a 
semilinear description for automorphisms of End,(U), provided R has the 
property: 

(*) if P is projective over R and End(P) = R, then P is free of rank 1. 

This result is more general than an automorphism version of our Theorem in 
that he considers infinitely generated projectives (with at least one unimodu- 
lar element) instead of free modules. On the other hand, for free modules our 
corollary provides a semilinear description under the less restrictive condition 
that +: Aut(R) + Pie(R) is onto. To see that our property is less restrictive 
than property ( * ), consider the ring R = III,, Z pI where pi ranges over all 
primes. This ring does not satisfy property ( * ), since End&&Z p,) = R with 
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&,Zp, projective and not free. However, Ic/ is onto for this ring. Since R is 
commutative, J, induces a splitting: Picent( R) @ Aut( R) = Pic( R). But 
Picent(h p,) is trivial for all pi, and by [3] we know that Picent must be 
trivial. 
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