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0. Introduction 

This paper is mainly an exposition of the use of the Burnside ring in equivariant 

bordism. The main results are the splittings of the unoriented geometric and homo- 

topical bordism rings for odd-order groups, and a fairly explicit calculation of the 

multiplicative structures of these rings (Theorems 4.7 and 7.4). These splittings were 

already known (see [6], [lo] and [12]), but by other techniques. In particular, [12, 

§ 131 gives a similar method, using the O-dimensional bordism ring, and at the end 

of that section a question is asked: is this splitting given by projections corresponding 

to idempotents in the bordism ring? Theorem 4.7 answers this affirmatively, at least 

for odd-order groups. 

The study of the Burnside ring, and its use as in this paper to produce splittings 

of equivariant homology and cohomology theories, is due mainly to T. tom Dieck 

(see, for example, [4]). Another source for the general study and use of this ring is 

[9]. The arguments given here are, for the most part, just the general arguments of 

these references, written out in a concrete way for the specific example of bordism 

theory. 

An important caveat is needed. The results in this paper depend very much on 

the fact that we are using odd-order groups. Since bordism is 2-local, we are really 

working away from the order of the group, and it is well-known that the phenomena 

we see here will be very much like those we see in the nonequivariant world. This 
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is made precise by the complete splitting of the Burnside ring, and the corresponding 

splittings of equivariant homology theories, like bordism theory. The real interest 

and real work comes in studying 2-groups, where new things will happen (see, for 

example, [l] and [6]). 

1. The Burnside ring 

Let G be a finite odd-order group. Recall that the Burnside ring A(G) is defined 

to be the Grothendieck group of finite G-sets, with multiplication given by Cartesian 

product. It is the free abelian group on the distinct orbits G/H. Since we are 

concerned with the action of A(G) on the unoriented bordism groups, we really 

are interested in A( G)OB,. This ring has a particularly simple form when G has 

odd order. 

For any subgroup H of G, let cpH :A(G)@Z,+P2 be the ring homomorphism 

which assigns to a G-set S the number of points of S fixed by H, reduced mod 2. 

Writing (H) for the conjugacy class of H in G, let H(H) Zz denote the direct product 

of one copy of h, for each conjugacy class in G. Let cp : A( G)Ohz+ nCHj Z2 be the 

ring map defined by the maps qH. 

Theorem 1.1. cp : A( G)Oh,+ nCH, E2 is a ring isomorphism when G is an odd-order 

group. 

Proof. cp is a ring map, so it suffices to show that it is an isomorphism of Hz-vector 

spaces. A( G)OZz has a basis given by the classes of the orbits G/H. Since 

qH( G/ H) = 1 and (Pi (G/ H) = 0 if K is not subconjugate to H, it is easy to see 

that cp maps this basis to a basis, hence is an isomorphism. 0 

This theorem implies that every element of A(G)@& is an idempotent. We are 

interested in a particular set of idempotents. 

Corollary 1.2. There are idempotents eH E A( G)@Z,, characterized by 

cpK(eH) = 
{ 

1 if(K)=(H); 

0 if(K)#(H). 

Moreover, eHeK =0 if(H) # (K) and CC,, eH = 1. 

Given any decomposition of the identity into orthogonal idempotents like this, 

we get a corresponding splitting of every A(G)@Z,-module. Thus we have the 

following: 

Corollary 1.3. If U is an A(G)@Z,-module, then 
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as A( G)OZ,-modules. Moreover, if U is an A( G)OZ,-algebra, then this is a splitting 

of algebras. 

2. Unoriented bordism and families 

We will now quickly review some basic facts about unoriented bordism. Let X 

be a G-space. We denote by X?(X) the group of n-dimensional closed G-manifolds 

over X under the equivalence relation of G-bordism over X. This is the familiar 

generalization of the nonequivariant definition of unoriented bordism. 

Recall the notion of restricted bordism introduced by Conner and Floyd [2]. Let 

9 be a family of subgroups of G, i.e., a collection of subgroups closed under 

conjugation and passage to subgroups. An 9-manifold is a G-manifold, all of whose 

isotropy groups are members of S. If we restrict our manifolds to be S-manifolds, 

then we get a new theory, restricted bordism, denoted .&“,“[S](X). If 9’~ 9 are 

two families in G, then an (9, 9’)-manifold is an S-manifold whose boundary is 

an 9’-manifold. Considering such manifolds, we can define the restricted bordism 

groups JV,G[S, s’](X) ( see [2] for details). If we agree that the only @manifold is 

the empty set, then an (5, @)-manifold is the same thing as an P-manifold, and 

XF[S]( G) = X,“[S, g](X). We will need the following fact. 

Proposition 2.1. Suppose H is a subgroup of G, Fc 9 are families in G, and X is 

an H-space. Then 

X,H[alH, 5F’IH](X)=X,G[9, 9’](G xHX). 

Here 91 H = {K E 9) K c H}, and G x H X is G x X modulo the relation (g, x) - 

(gh, h-*x) for h E H. 

Proof. This follows from general stable homotopy theory, or we can establish the 

correspondence as follows. Given an H-manifold M over X, the corresponding 

G-manifold is G x H M + G x H X. Conversely, if N + G x H X is a G-manifold, let 

M+XbethepartofNlyingoverX=Hx,XcGx,X. 0 

We also need to recall that for each family 9 there is a G-CW-complex E9 which 

is terminal in the homotopy category of SCW-spaces. That is, E9 is an S-space, 

and given any other S-space Y there is a map Y+ E9, which is unique up to 

G-homotopy. For the construction of E9, see [4], [5] or [9]. For our purposes we 

need to know that 

X,“[S, S’](X)=./VF[P, F](EZFxX), 

which is obvious from the universal property of ET% We also note that if X is a 

G-CW-complex, then Es x X is a complex with all of its cells of the form G/H x D” 
where HE 9. Again, this is obvious. 
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3. The splitting of uooriented bordism 

A(G) acts on X,“(X) in an obvious way: if M + X is a G-manifold over X and 

S is a G-set, then [S][M + X] = [S x M + X]. Said’ another way, there is a ring 

homomorphism A(G) + JVF(*) which considers a finite G-set to be a O-dimensional 

manifold. As we noted before, this action factors through A( G)OZ, because X:(X) 

is a Hz-vector space. Thus we can apply Corollary 1.3 to the A(G)OZ,-module 

X,“(X) to get a splitting. With some more work we shall identify the summands. 

From now on, X will denote a G-CW-complex. 

Proposition 3.1. Suppose that e E A(G) @Z,, 9 c 9 are families in G, and qoH (e) = 1 

for every HE 9- 9’. Then e acts as the identity on JV~[T, F](X). 

Proof. We know that Xz[@, 9’](X) = X,“[ %, 9’](E9x X), and that the cells of 

E9 x X are all of the form G/H x D” for H E 9. Using induction on the cells and 

a Mayer-Vietoris argument, it suffices to show that e acts as the identity on 

Ng[.%, F’](G/H) when HE !F. But this group is isomorphic to Kz[.$ ,!F’G’( HI(*), 

where d = 91 H is the family of all subgroups of H, and e acts on this group via 

its restriction to A(H). 

Now in A(H) we can write 

e=[H/H]+ C aKIHIKl 
(K)cg’(H 

for some coefficients aK E Z2. For, certainly we can write e = CcK) aK[ H/K] where 

(K) runs over all conjugacy classes in H. Since qH(e) = 1, we must have aH = 1. If 

(K ) k a maXiIna1 proper COnjUgaCy ChSS with aK = 1, then pK (e) = aH + aK = 0, SO 

we must have (K) c 9’ 1 H, and hence this is true of all (K) with nontrivial coefficient. 

Now we just notice that [H/H] is the identity, while [H/K] acts as 0 if K E 9’1 H. 

This last statement is true since H/K x M is an Y-manifold for any H-manifold 

M, and an 9’-manifold represents the 0 class by the definition of (.‘9,9’)- 

bordism. •i 

Proposition 3.2. Suppose 9’ c 9 are families in G, and e E A(G) @H, is the element 

with {HIcp,(e)=1}=9-9’. Then 

eNz(X>=Nz[9, .27](X). 

Proof. Let & be the family of all subgroups of G. Then 1 -e acts as the identity 

on Xz[&, s](X), by the previous Proposition, so e annihilates this group. From 

the long exact sequence of the pair (&, 9) we see that 

eN*G[S](X) = eJ,G(X). 

Similarly, 1 - e acts as the identity on Xz[y”l’](X), so e annihilates it, and the long 

exact sequence of the pair (9, 9’) shows that 

eJ*G[S](X) = eN*G[9, al](X). 
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The result now follows when we notice that e acts as the identity on 

K,G[S, S’](X). 0 

It is interesting to see this isomorphism described explicitly in terms of manifolds. 

The map &z(X) + Xz[S, 9’](X) is easy: it takes a manifold of the form e[M], 

which is an S-manifold, and considers it to be an (3, S’)-manifold. The other 

direction is harder. If we start with an (9, 9’)-manifold, the proof of the last 

Proposition shows that it can be represented in its cobordism class by a closed 

@-manifold (in other words, the boundary must bound an F-manifold). The inverse 

isomorphism then takes a cobordism class to the class of one of its closed representa- 

tives, considered as a G-manifold, multiplied by e (which has the effect of eliminating 

the ambiguity introduced by our choice of representative). 

Combining Corollary 1.3 with Proposition 3.2 we get the following Corollary. 

Corollary 3.3. X~(X)~@(HjK~[~(H), 9’(H)](X) where &(H)={KI(K)< 

(H)} andB(H)={KEd(H)I(K)#(H)}. 

4. Calculation of the summands 

To complete the calculation we analyze the groups Xz[&(H), g(H)](X). Let 

NH be the normalizer of H in G. 

Proposition 4.1. Xz[.&(H), &P(H)](X)=JV~~[JB(H), P(H)](X). 

Proof. An (d(H), S(H))-G-manifold M is determined by the submanifold MCH) 

of points with isotropy a conjugate of H, and the normal bundle to the inclusion 

MCH)q M. We can write MCH) = G xNH MH where MH is the submanifold of 

points with isotropy exactly H (in this case the same as the set of points fixed by 

H), and the normal bundle decomposes as well. The correspondence M t, MH and 

its normal bundle establishes the desired isomorphism. 0 

For the rest of this analysis write N for NH, and W for N/H. Let B,O(k) be 

the classifying space for k-dimensional N-vector bundles. The fixed-point set 

B,O(k)H, a W-space, is nonequivariantly the disjoint union of components corre- 

sponding to the various k-dimensional real representations of H [7]. We let 

B,O(k) jl denote the union of those components corresponding to representations 

having no H-trivial summand. It is a W-subspace of B,O(k)H. 

Proposition 4.2. Jz[a(H), P(H)](X) zRr[Free](BH A (X”)‘) where BH = 

VL ~k@,Wd~)+, and Y+ denotes Y with a disjoint W-Jixed basepoint adjoined. 

Free denotes the family consisting of the identity subgroup only. 
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Proof. As usual, an (d(H), 9’(H))- manifold is cobordant to a normal tube around 

its H-fixed submanifold. Thus, we may regard X,“[ &( H), 9(H)](X) as the bordism 

group formed from manifolds with isotropy exactly H, equipped with bundles 

containing no H-trivial summands in any fiber. Since BNO( k) g classifies bundles 

of this sort, we see that 

XF[&(H), 9(H)](X) = 4 XrJFree](B,O(k)g xXH) 
k=O 

= i‘.W[Free](BH A (X”)‘). 0 

Proposition 4.3. If W is an odd-order group, then X,“[Free]( Y) = ..M_+.( Y) w for any 

W-space Y. Here N* denotes the nonequivariant unoriented bordism theory, and W 

acts on .N.J Y) via its action on Y. 

Proof. Let (Y : Xr[Free]( Y) + JV.+( Y) be the forgetful map. Notice that its image is 

contained in the W-invariant part. Let /3 : JV*( Y) + Xr[Free]( Y) be the map defined 

by p[ M] = [ W x M]. Now &Y is multiplication by [ W], which, by Proposition 3.1, 

acts as the identity of xy[Free]( Y). cup is given by 

@3(m)= C warn, 
WCW 

so on the W-invariant part it is just multiplication by 1 WI, an odd number, hence 

the identity. 0 

Let $H be the set of nontrivial irreducible real representations of H. If VE $H, 

let d, = dim V. Notice that Horn,,, V, V) = @ since H has odd order. 

Proposition 4.4. 33, = A VE9” (VFSo Ed$BU(k)‘) noneqwivariantly. 

Proof. As mentioned earlier, B,O(k)H is the disjoint union of components corre- 

sponding to the various k-dimensional representations of H. If 2 is a k-dimensional 

representation of H with no trivial summands, then we can write 2 =evEJH Viv 

for some integers iv, with 1 dviv = k. The component corresponding to 2 then has 

the form nvE9H BU( iv), so 

Thus, 

k=O cxdl=k ("5 H BU(iv)+)) 

=kfO(,v=kb H 

Ed~vBLJ(iv)‘)) = $, ( ito EdgvBU(iv)‘). 

Writing k for iv, we get the desired result. 0 
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B3, has a product, given by the Whitney sum maps BU(i) x SU(j) + SU(i+j). 

We compute .?*(a,) with the induced product. It suffices to consider each smash 

factor separately. 

Proposition 4.5. Let d 3 0. Then 

&* 
( 

7 .lYdkBU(k)+ 
) 

=N*[Y,, Y2,. . .], (y,l=2(i-l)+d. 
k=O 

-yi is represented by @P i-1- BU(1). /yi( is the dimension in which yi lives. 

This was shown for the real case when d = 1 in [l], and with suitable changes 

the same proof will work here. The argument is essentially a dimension count in 

homology, using the known structure of the homology of BU. 

Corollary 4.6. ~*(~~)~:./2r*[yv,iIVE‘aH,i=l,2,...] where ]Yv,il=2(i-l)+d, 
with d v=dimn V 

These results together imply our main result: 

Theorem 4.7. If G is an odd-order group, and X is a G-CW-complex, then 

x*G(x) ZZ ($?) (N*[YH,V,iI OK, N*(x”)) wH 

z $3) (x*[YH,V,iI @Z2 H*(XH)) wH9 

where the sum is taken over all conjugacy classes of subgroups of G, V ranges over 

the nontrivial irreducible representations of H, and i = 1,2, . . . , ]~~,v,~l= 2( i - 1) + d, 

as in Corollary 4.6. WH = NH/H acts on the polynomial generators by permuting 

the representations. In particular, 

x,” z (!I, (Ar*[3/H,V,i]) wH 

as rings. Moreover, the action of A(G) is given by the fact that 

A(G)@Z,=#,G-~~~Hz, 

SO an e E A(G) OH, acts by projecting onto the factors corresponding to those (H) for 

which q”(e) = 1. 

5. Abelian groups 

Theorem 4.7 takes on a particularly simple form when G is an abelian group of 

odd order. In this case, WH = G/H acts trivially on H, for any subgroup H of G, 

hence it acts trivially on the representations of H. Thus we get the following corollary. 
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Corollary 5.1. If G is an abelian group of odd order, and X is a G-CW-complex, then 

xz(x)S@ N*[YH,V.iI @.N* (N*(x”))G’” Se N*[YH,V,iI OZ, (H*(XH))G’H* 
H H 

In particular, 

x,“zn N*[yH,V.iI 
H 

as rings. 

We can find manifolds representing the polynomial generators ‘yc;r,v,i by unwinding 

the isomorphisms used in finding the splitting. When we do this we find that 

YH,V,iceH[G XH RP(R@(Ti-1 OC V))] 

where eH is the idempotent mentioned in Proposition 1.2, and ni-r is the canonical 

line bundle over @Pi-’ given trivial H-action. V is given either of its complex 

structures. This should be compared to 0 4.1 of [6], which gives a similar set of 

multiplicative generators. To make the similarity clearer, we may notice that the 

H-representation V may be extended to a G-representation, which we also call V, 

and then we can write 

YH,V,i = eH[RP@@(77i--1 @c V)>l- 

6. Bordism and homology 

Nonequivariantly, we know that unoriented bordism is given by singular homology 

with coefficients in the bordism ring (see, e.g., [ll]). The computation of Theorem 

4.7 allows us to deduce a similar result for odd-order groups. 

The analog of singular homology theory that we will use is Bredon homology, as 

discussed in [8], for example. This theory depends on the G-space X, and also on 

a Mackey functor M, which is an algebraic functor on the category of orbits of G, 

having both restriction maps and transfers. For any such M, the value M(G/H) 

will be an A(H)-module. The example that we are interested in is M = 82, where 

&“,G(G/H) = X,“. 

As mentioned earlier, the technique of splitting homology theories along the 

splittings of A(G) works quite generally. Details are given in [4] or [9]. If we apply 

this to homology, we get the following theorem. 

Theorem 6.1. Let G be an odd-order group, and let M be a Mackey functor having 

Z,-vector spaces as values. Then for any G-CW-complex X we have 

Hz(X; M) = @ H,(XH; egM(G/EI))wH 
(H) 

=($)) (eiM(GIH) @z, KJXH))WH 
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where ez E A(H)OZ2 is the idempotent satisfying 

po,(e3 = 
1 ifK=H, 

0 ifK#H. 

If we notice, from Theorem 4.7 that 

&X,” z N*[TH,V,il, 
and then compare Theorems 4.7 and 6.1, we get 

Corollary 6.2. If G is an odd-order group and X is a G-CW-complex, then 

X,“(X) = H;(X; 8:). 

If we use the general techniques of [9] to express these results as stable splittings, 

we can conclude, as in the nonequivariant case, that the equivariant spectrum 

representing X,“(-) (which is found, and called mOG, in [3]), splits as a wedge of 

equivariant Eilenberg-MacLane spectra. 

7. Homotopical bordism 

We can carry through much the same analysis for homotopical bordism. This is 

the theory defined by the equivariant Thorn spectrum MOG. Precisely, we let 

MO:(X) = co$m [S”, X+ A MO&IV/)],, 

where 1 VI = dimu V and MOG(k) is the Thorn space of the universal G-k-plane 

bundle. We refer to Xz(-) as geometric bordism, in contrast. As shown in [3], we 

can interpret the homotopical theory as the bordism groups of stable manifolds over 

X, where a stable manifold is a map f: (M, aM> + (D(V), S(V)) with M a 

G-manifold and V a real representation of G. The relation of stable equivalence is 

the one generated by considering f to be equivalent to 

fxl: (MxD(W),d(MxD(W)))+(D(VOW),S(VOW)), 

where W is any other representation of G. 

Using either this interpretation, or the fact that our results through Proposition 

4.1 hold for any G-homology theory, we can split MO:(X): 

MO:(X) = @ MO,NH[d(H), P(H)](X). 
(HI 

It remains only to compute the summands. We use the notations introduced in 

Section 4. Let BH =nvVEJH BU where BU = colim, BU(k). Let z(H) be the 

subgroup of the representation ring RO( H) generated by the nontrivial irreducible 

representations of H. Finally, let aH = VolcRrcH) Zta’BL where ]LY( is the virtual 

dimension of (Y (so BH is a spectrum, not a space). 
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Proposition 7.1. Suppose that H is a normal subgroup of IV and W = N/H. Then 

MO,N[,rQ(H), P(H)](X) = E,W[Free](L& A (X”)‘) 

=Rr[Free](8jH A (X”)‘) 

= &&&, A (X”)‘) “. 

Proof. The first isomorphism follows when we use the interpretation of MOT(-) 

as bordism of stable manifolds. The normal bundle to the H-fixed submanifold is 

now a stable bundle with no H-fixed summands, and bundles of this sort are 

classified by B,. Hence 

MO,N[d(H), B(H)](X) = @ MO,W_I,I[Free](B, XX”) 
as=(H) 

= MOy[Free](aF A (XH)‘). 

In general, MOr[Free]( Y) = X,“[Free]( Y) for any W-space Y, because equivariant 

transversality works for maps out of free manifolds (see, e.g., [3]). The final 

isomorphism in our Proposition comes from Proposition 4.3. 0 

Just as in Proposition 4.4 we can prove the following: 

Proposition 7.2. 6, = A 7 EdvkBUf nonequivariantly. 
VEIL k=-m 

Analogous to Proposition 4.5 we have the following: 

Proposition 7.3. J?*(V~=_~ ZdkBU+) = .N*[,;‘, y,, yz, . . .], Iyil = 2( i - 1) + d. 

The proof is similar to that of Proposition 4.5. We may also notice that 

v EdkBU+= BU+A b Sdk. 
k=--m k=-m 

3/i is represented just as before, in fact it is the image of the yi of Proposition 4.5 

under the obvious map. If we think of y, as a point with the virtual representation 

V, or as the bundle V-;, *, then 7;’ may be thought of as a point with the virtual 

representation - V or as the stable manifold *L* D( V), inclusion of the origin. Our 

main result is now the following theorem. 

Theorem 7.4. If G is an odd order group, and X is a G-CW-complex, then 

MO:(X) ‘(9) (N*[YTI:v,I, yH,V,i] ON* Jz+c(XH))WH 

‘(9) (~z+z[YG~v,i, YH,V,iI @z, H*(XH))wH. 
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In particular, 

as rings. e E A(G) @iZ, acts by projecting to the summands corresponding to those (H) 

for which q,(e) = 1. 

Again, if G is abelian, WH acts trivially on the y H,v,i, and the results simplify. 

In this case the generators yH,v,i can be taken to be the images of the generators of 

geometric bordism of the same names, hence are represented in the same way. The 

generator -y&fv,, is represented as follows. Extend V to a representation of G. Then 

Y;ltV,i= eH[*- D(V)l, 
where the object inside the brackets is a stable G-manifold. 

Just as in the last section, we can show the following corollary. 

Corollary 7.5. If G is an odd-order group and X is a G-CW-complex, then 

MO;(X) = H;(X; MO:). 

We may also conclude that the Thorn spectrum MOG splits as a wedge of 

equivariant Eilenberg-MacLane spectra. 
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