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Abstract--In this paper, initial value problems for Sylvester differential equations X'(t) = A(t) 
X(t) +X(t)B(t)+F(t), with analytic matrix coefficients are considered. First, an exact series solution 
of the problem is obtained. Given a bounded domain It and an admissible error e, a finite analytic- 
numerical series solution is constructed, so that the error with respect to the exact series solution is 
uniformly upper bounded by ~ in It. An iterative procedure for the construction of the approximate 
solutions is included. 

Keywords--Sylvester differential equation, Initial value problem, Frobenius method, Accuracy, 
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1. I N T R O D U C T I O N  

Sylvester matrix differential equations of the form 

X'(t) = A(t)X(t) + X(t)B(t) + F(t), X(O) = C, (1) 

where the coefficient A(t), B(t), and F(t), as well as the unknown X(t) are matrices in C rxr are 
frequent in large-space flexible structures [1], jump linear systems [2], control of linear systems 
with non-Markovian modal changes [3], or when one uses semidiscretization techniques to solve 
scalar partial differential equations [4]. For the particular case where the coefficients are real 
matrices and B(t) is the transposed matrix of A(t), equation (1) becomes the Lyapunov differen- 
tial equation. An account of examples, properties, and applications of the Lyapunov differential 
equation may be found in [5]. 

Several numerical integration methods of solving problem (1) for the case where A(t), B(t), 
and F(t) are constant matrices, have been given in [6-10]. A modification of the Runge-Kutta 
method for problem (1) has been proposed in [11]. A method for constructing continuous numer- 
ical solutions of (1) has recently been given in [12] using linear unilateral associated problems and 
one-step matrix methods. However, the method proposed in [9] is expensive from a computational 
point of view. 

Here we consider problem (1), where the coefficients A(t), B(t), and F(t) are C rxr valued 
analytic functions in Itl < c, say 

A(t) = ~ A,t",  B(t) = ~ B,t",  F(t) = ~ Fnt", Itl < c. (2) 
n>O n>O n>O 

This work has been partially supported by the Generalitat Valenciana Grant GVl118/93 and the D.G.I.C.Y.T. 
Grant PB93-0381. 

Typeset by ~4A4S-TEX 

41 



42 L. JdDAR et al. 

The aim of this paper is to construct analytic-numerical solutions of problem (I) with a prefixed 
accuracy in a domain Itl _< A < c, and its organization is as follows. Section 2 deals with the 
convergence proof of a series solution of problem (1) in Itl < c, under the hypothesis (2). Some 
important technical lemmas that will be used in the further error analysis are proved in Section 3. 
In Section 4, we address the following question. How to construct an analytic-numerical finite 
series solution in Jt I _< A, whose error with respect to the exact infinite series solution is uniformly 
upper bounded by a prefixed admissible error e > 0. An iterative procedure for the construction 
of such an approximate solution is also included. 

Throughout this paper, the norm IIDII of a matrix D in C rxr, is the 2-norm of D, defined by 
[13, p. 53] 

~llO=ll IIDII = supx # u I '~  ' 

where for a vector y in C r, Ilyll denotes the usual Euclidean norm of y. If x is a real number, we 
denote by [x] its entire part. 

2. C O N V E R G E N C E  O F  T H E  S E R I E S  S O L U T I O N  

In this section, we seek an analytic series solution X(t) of problem (1) of the form 

x(t) = ~ x . t " ,  Itl < c, 
n>O 

(3) 

where X .  are matrices in C rxr to be determined. Taking formal derivatives in (3), one gets 

x ' (0  = ~ ( n  + 1)x.t". 
n>O 

(4) 

Assuming for the moment that  a solution of the form (3) exists, by Merten's theorem for the 
product of matrix series, by (1) and (3), it follows that  

( A ( t ) x ( t )  = A . t "  X . t "  = t n , (5) 
\._>o / V,>O / ,,>o 

X(t)S(t)= E Xntn B.tn = \n>o / ~>_o (~-~x"-kBk / (6) 

By imposing that  X(t)  given by (3) satisfies (1), and taking into account (4)-(6), one gets 

n>O n>_O n>_O \k=O n>_O 
. (~) 

= E I F. ~ ,  (A.-kXk + X.-kBk) } t". 
n>_0 ~, k=0  

Equating the coefficients of t n in (7), it follows that  

n 

(n + 1)X.+I = F. E (An-kXk + X.-kBk), n >_ O, Xo = C. 
k = O  

(8) 

Taking norms in (8), one gets 

n 

(n -4- 1)IIX-+lll ~ IIF~II ~ (llA.-kll IIX~ll + IIX~-kll IIBkll). 
k = O  

(9) 
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By Cauchy inequalities [14, p. 222], there exists a positive constant M > 0 such that  

M M M 
[[Anl[ < ~-'~, []Sn[[ _< ~- ,  [[Fnll < ~--~, 0 < p < c, n > 0. (10) 

From (9) and (10), it follows that  

(n+l) l lX.+l l l  <M-  1 + 2  IlXkllP ~ , n > 0 , _  0 < p < c .  (11 )  
- -  p n  k=0 

Hence, 

112,+111 < (n + 1)p n 1 + 2 IlXkllP k , n > 0, 0 < p < c. (12) 
k=0 

Let us introduce the sequence of positive numbers {/fn}n>o defined by/fo = IlXoll -- IICII, and/in 
for n > 0 is the solution of the equation 

/ i " + l =  ( n + l ) p "  1 + 2  /ikp k , n_>O. (13) 
k=0 / 

By the definition of {/in}n>0 and (12), using the induction principle, it is easy to prove that  

IIX.II _~/i., n > 0. (14) 

By (14), in order to prove the convergence of the series (3) where X ,  is given by (8), it is sufficient 
to guarantee the convergence of the numerical series 

/ i .t", o < Itl < c. (15) 
. > 0  

By the definition of/in, see (13), one gets 

(n + 1)/i.+1 - p-ln/i,~ = 2M/in, n > O. (16) 

Hence, 

~n+l 2 M p  + n 
/i, (n + 1)p'  

/in+lltl n+l It[ < 1, if It I < p. lim n ~ oo = - -  
/i.ltl" p 

Thus, (15) converges in It I < p, where p is any positive number with 0 < p < c, i.e., the series (5) 
converges in It I < c. This means that  the series (3),(8) is not only a formal solution, but the 
rigorous solution of problem (1). 

REMARK 1. Given a point to with 0 < It01 < c, by the properties of the analytic functions, the 
functions A( t ) ,  B ( t ) ,  and F ( t )  admit a power series development of the form 

ACt) = ~ A .  (to) (t - to)", nct)  = ~ .  B .  (to) (t - to)", 
. > 0  . > 0  

F ( t ) = ~ _ . F . ( t o ) ( t - t o )  '~ , I t -  tol < c -  Itol. 
n > 0  

If we consider the initial value problem 

X ' ( t )  = A ( t ) X ( t )  + X ( t ) B ( t )  + F( t ) ,  X (to) = C ( to) ,  to < t < c, (17) 
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by the previous arguments, it is easy to prove that  the exact series solution of problem (17) is 
given by 

X(t) = ~ X. (to) (t - t o ) " ,  to _< t < c, 
.>0  

)Co (to) = c (to),  

1 F.( to)  + y ~  (A. -k  (to) Xk (to) + X . - k  (to) Bk (to)) , n >_ O. X . + I  = n +---i" k=o 

Also, by Cauchy's inequalities [14, p. 222] applied in the disk Iz - to[ < c - It0[, one gets 

M M 
I IA. (to)ll ~ liB,, (to)ll 

( c -  Itol)"' ( c -  Itol)"' 
M 

IIF. (to)ll < (c - It01)"' n _> o, 

where M _> sup{llA(t)ll, liB(t)IIF(t) It - tol _< c - Ito[}. For the sake of clarity in the notation, 
in the following the coefficients of the power series expansions of A(t), B(t) ,  and F(t)  about 
t = (j - 1)81, j > 1, will be denoted by An( j  - 1), Bn( j  - 1), and Fn(j  - 1), respectively. 

3 .  T E C H N I C A L  L E M M A S  

We begin this section with a result that  provides an a priori error bound of the theoretical 
solution of problem (1). 

LEMMA 1. Let A(t),  B(t) ,  and F(t)  be continuous C rxr valued functions in [0, A], and let X ( t )  
be the solution of  problem (1) in [O,A]. Then 

( ) ( / :  ) IIX(t)[I < IlCII + IlF(s)llds exp (llA(s)ll + IlB(s)ll) ds , 0 < t < A. (18) 

PROOF. By integrating in (1), one gets that  the solution X ( t )  verifies 

~0 t X ( t )  - C = { A ( s ) X ( s )  + X ( s ) B ( s )  + F(s)} ds. (19) 

Let f ( t )  = IIX(t)ll and g(t) = IIA(t)ll Jr liB(011. Taking norms in (18), it follows that  

i 
t 

f ( t )  < f(0) ÷ g(s ) f ( s )  ds, 0 < t < A. (20) 

By application of Gronwall's inequality [15, p. 95] to (20), one gets (18). 

LEMMA 2. Let A(t),  B(t) ,  and F( t )  be continuous C rxr valued functions, and let X l ( t  ) be the 
solution of  

X~(t)  = A ( t )X l ( t )  + X l ( t ) B ( t )  + F(t) ,  Xl(a)  = P, a < t < fl, (21) 

and let X2(t)  be the solution of  

X~(t)  = A(t )X2(t )  + X2( t )B( t )  + F(t) ,  X2(a) = Q, a < t < ~. (22) 

Then 

IlXl(t) - Xz(t)ll < liP - QII exp ((~ - a)(HA(t)l ] + [IB(t)]l)), a < t < ~.  (23) 
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PROOF. Let G(t) = X l ( t )  - X 2 ( t ) .  By integrating (21) and (22), one gets 

~ t Xl( t  ) = P + {A(s )Xt ( s )  + X l ( s ) S ( s )  -[- F(s)}  ds, a < t < ~, 

/: X2(t) = Q + {A(s)X2(s)  -b X2(s)B(s)  q- F(s)}  ds, a < t < 13, 

a ( t )  = P - Q + {A(s )  (Xl(S)  - X2(s) )  + ( X i ( s )  - X~(s)) S ( s ) }  as. 

(24) 

Taking norms in (24) and denoting g(t) -- [[G(t)][, it follows that 

~f 
t 

g(t) <_ H P -  Q[[ + (HA(s)[[ + [[B(s)[[)g(s)ds, < t < Z. (25) 

By application of Gronwall's inequality to (25), see [15, p. 95], one gets (23). For the sake of 
clarity in the presentation, we state the following result about the summation of double series, 
whose proof may be found in [4, p. 173]. 

LEMMA 3. Given a double sequence {aq}, i >_ 1, j >_ 1, let us suppose that 

Z [aq[ = bi, i _> 1, (26) 
j_>l 

and t h a t  ~-~'i.~1 bi converges. Then 

i>1 j > l  j > l  i ~ l  

(27) 

4 .  C O N S T R U C T I O N  O F  A C C U R A T E  A P P R O X I M A T I O N S  

In this section, we address the following question under the hypothesis (2). Given a bounded 
domain [0, A], with A < c, and an admissible error ~ > 0, how do we construct a finite approximate 
solution X( t ,  ¢) defined in [0, A] so that  the error with respect to the infinite series solution given 
in Section 2, be uniformly upper bounded by e in [0, A]. 

Given ¢ > 0 and A > 1, let h = [A] + 1, and note that  

A 
b l = - - < l ,  b l h = A ,  h = [ A ] + l .  (28) 

[A] + 1 

Let b and a be positive numbers such that 

0 < b l < b < l ,  A < a < c ,  b < b l + ( a - A ) ,  (29) 

where b is defined by (28) and c by (2). Note that, in this way, the interval [0, A] has been divided 
in h subintervals [0, bl], [bl, 2bl ] , . . . ,  [(h - 1)bl, A]. 

By the development of Section 2, we know that the exact solution of problem (1) in [0, bl] is 
given by 

x,(t) = y~ x . t - ,  o < t < bl, 
n>_O 1{5  } 

X0 = C, Xn+l - n + 1 Fn + (An-kXk  + X n - k B k )  , n >_ O. 
k=0 

(30) 
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Now let us consider the truncated series of order m of Xl(t): 

WI 

yi(t, m ) =  ~ x.t", 
n-~O 

O ~ t S b ~ .  (31) 

For Itl < bl, it follows that 

IlXdt) - Ydt, m) ll = [.>_~+1 X"tn < IIX.II b?. (32) 
n < m + l  

Let l lx . I I  = ~ . ,  and let M > 0 such that 

sup0 < t < a{llA(t)ll, liB(011, IIF(t)ll, IIX(t)ll} _ M, (33) 

and recall that  by Lemma 1, such a value of M is easy to obtain in terms of the data. By Cauchy's 
inequalities and Section 2, one gets (see (12)) 

~an+l < (n + l)b n 1+2 ~okb k n > O, 
k=O / 

~o. < ~ 1+2 ~okb k _ , n > _ l .  

(34) 

From (32) and (34), one gets 

IlXa(t)- gdt, m)ll < ~ ~ 1 + 2  ~pkb k b? 
n ~ m + l  ~- 

=Mb Z 1 + Z ~kbk .>m+l n ._>m+l \ ~--Vrr b? 

<Mb Z + Z ~ ~pkb k b'~. 
n_>m+l n~_m+l k=0 

(35) 

By the convergence of the series Y~m>m+l ~n5~ and Lemma 3, we can write 

2M Z ~ok b b~ __ 2Mbcpo E m + j 
n~_m + l \ kffiO j ~_ l 

j>l 

1 ( ~ . )  m+j 
+ 2Mbm+l~om Z m + j 

j>_l 

+ 2Mbm+2~°m+l E m + j 
j>2 

+ 2Mbm+Z~°m+~ Z m + j + " "  
$_>3 

1 ( . ~ )  m+j 
2Mbm+t~°m+l-1 Z~.., m + j + +. . .  

j r . _  
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Hence, 

E ~ ~kb k b'~ = 2Ub ~ m -+ j (~Po .4- b~a "Jr'''' Jr- bm~om) 
n)_m+l k=O ( j_) l  

Im+' E 1 ( ~ )  m+j + 2Mb b ~om+l 
( j>2 m + j 

+ b m + 2 ~ m + 2 E i  (~) '~+J 
j>3 m +j  + "'" 

m + l  + . . . . +b ~Om+t E 1 
j>l m + j 

(36) 

As for l _> 1, one gets 

(~)m+j __~. (~)rnj~)l ( ~ ) j  (~)tn (bl/b) l 

(~)'_____~,b~lb = -'---=~b~ (~ )m <_ 
1 - b , , ~  b - ~ 

l ( ~ ) m + j  ( ~ ) m + j  
E +j <-E , 
j>z j_>z 

from (36), it follows that 

E n>_m+l ("-') k -+'] 2M ~ 2Mb(bl/b)m + E 
~okb k b~ <_ 1 - b,/b bnq°n q°nbn 

n)_m+l 
2 M b ( b d b )  ~ 

<- 1-  b~/b ~ b'%,. n>_O 

(37) 

By Cauchy's inequality [14, p. 222] and (33), it follows that 

M 
I1~.11 < - -  n > o, 

- -  a n , 
(38) 

where M is given by (33). Since 

( ~ ) n (bl/b)m+ 1 
F_, - = 1-b~/b' n)_m+l 

(39) 

by (35),(37)-(39), it follows that  

[ [ X l ( t )  - -  Y l ( t ,  m ) H  

<- 1 -~ l /b  (bl/b)m+l ÷ 1 -  b/a J <- 1 "-~l/b 1 + 1-"-'~/a -- " (40) 

Let us suppose for a moment that  we choose the first positive integer ml such that 

(~)m, < ~(1-bl/b) 
3Mb(1 + (2M/1 - (b/a))) [h + (h - 1)eLb,] ' (41) 
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where 
L = max{HA(s)[ [ + [[B(s)fl; 0 < s < A}. (42) 

Then from (40),(41), it follows that 

[IXl(t) - Y l ( t ,  ml)[[ <_ 3 [ h + ( h _ l ) e n b , ] ,  It[ <_ bl. (43) 

Note that  ml  can be determined taking the first positive integer ml verifying 

In -1 . . . . .  
3Mb l~_M ) [h + (h --1)eLb~l 

ml > In ~ (44) 

Now let us consider the initial value problem in [bl, 2bl]: 

X'( t )  = A( t )X( t )  + X( t )B( t )  + F(t),  X(bl)  = Yl(bl, ml).  (45) 

By application of the method developed in Section 2, and taking into account Remark 1, the 
solution of (48) can be written in the form 

X2(t) = Z X n ( 1 )  ( t -  hi) n, bl < t < 251, 
n>0 

X0(1) = Yl(bl,  ml),  (46) 

1 1) + An-k(1)Xk(1)  + Xn-k(1)Bk(1  , 
Xn+l(1) = n + 1 k=0 

where Fn(1), Bn(1), and An(l)  are the Taylor coefficients of the power series expansions of F(t),  
B(t) ,  and A(t),  respectively, about  t = bl. Note that  from (33), and Cauchy's inequalities applied 
to F(t) ,  B(t),  and A(t) in the disk [z - bl[ < a - bl = al ,  it follows that 

M M M 
[[An(i)][ _< a-~' [[Fn(1)][ _< a-~' [[Bn(1)]] _< a-~' n _> 0. (47) 

If we truncate the series (46) by its ml th partial sum 

m l  

Y2(t, ml) = Z Xn(1) (t - bl) n, 51 ~_ t ~_ 2b1, (48) 
n=0 

then by Remark 1, (47) and (44) replacing a by al = a - b, if m2 is the first positive integer 

{(1 ) 3Mb + 2M 1---:"~_-- J [h + (h - 1)e Lb, ] 

m 2  > In ' (49)  

verifying 

it follows that 

[[X2(t) - Y2(t, m2)[[ <_ h + (h - 1 ) e  L b , '  bl < t < 2tl, (50) 

where L is given by (42). Inductively, going on from [bt, 2bl] to [2bt, 3bl], and so on, if we denote 
by Yj- l ( t ,  mj -1 )  the approximation of 

X j ( t ) =  Z X n ( j - 1 )  ( t - ( j - 1 ) b l )  n ,  ( j - 1 ) b l  <_t<_jbl, 
n>O 

Xo( j  - 1) = Yj-1 (jbl, m j - 1 ) ,  (51) 

Xn+l ( j  - 1) = n ~-1 1 Fn(j  - 1) + = (An-k ( j  -- 1)Xk(j - 1) + X n - k ( j  -- 1)Bk(j  -- 1)) 
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where mj is the first positive integer verifying 

and 

e(i- } 
In - - - - -  

3 M b ( l +  ~ 2 M  ) [ h + ( h _ l ) e L b x ]  

m2 > 
In ~" ' 

aj-1 = a -  ( j -  1)bl, 1 < j < h, 

by the previous arguments, the truncation series of order m s of Xj ( t ) ,  defined by 

mj 

Y j ( t , m  s) = ~- '~Xn(j  - 1) (t - (j - 1 ) 5 1 )  n 

n=O 

satisfies 

(52) 

(53) 

(54) 

e 
IIXs(t) - Yj(t ,  ms)ll  < h + (h - 1)e Lbl ' (J - 1)51 <~ $ ~<~ j51" (55) 

Note that  in order to select mj,  we have used that  the matrix coefficients A n ( j  - 1), B n ( j  - 1), 
Fn( j  - 1) of the power series expansions of ACt), B(t), and Fi t ) ,  respectively, verify 

M M M 
IlAn(j - 1)H < ~ ,  I lSn( j  - 1)11 < n , IlFn(j - 1)11 _< - 7 - ,  n > o. (56) 

as - 1 aj _ 1 a j_ 1 

Thus, the approximate solution X ( t ,  e) defined by 

X ( t ,  e) = Yj (t, m j ) ,  ( j  - 1)bl <_ t <_ jb l ,  1 < j < h, (57) 

where Yl(t, ml)  by (30),(31), with m = ml ,  and for 1 < j < h, Yj( t ,  m j )  is defined by (51), 
being mj the first positive integer verifying (52). 

Note that  in the interval [0, bl], the approximation error between the exact series solution X ( t )  
given by (30) and X ( t ,  e) defined by (31), is the truncation error bounded by (43). However, 
in each subinterval [(j - 1)bl, jbl] for 2 _ j _< h, we have two contributions to the error; the 
one coming from the consideration of an approximate initial condition at the (j - 1)bl, and the 
truncation error when one considers the mth  partial sum instead the infinite series. Hence, for 
any t • [0, hbl] = [0, A], by the previous comments and Lemma 2, one gets 

t5 e 
IIX(t) X(t,  e) H _< 

h -[- (h - l ) e  Lb, -[" ~ h -I- (h 1)e Lb' h + ( - ' h = l ) e  Lb, 

he ( h -  1)e (58) = + 
h + (h - 1)e Lb, h + (h - 1)e Lb' 

e [h + (h - 1)e Lb' ] = e. 
= h + ( h - 1 ) e  Lb, 

Note that  if A < 1, then taking bl = A, the approximate solution X ( t , e )  = Yy(t, m)  defined 
by (31), satisfies also 

I I X ( 0 -  X(t,e)ll < e, O < t < b y = A .  (59) 

Note that  by the selection of b given by (29), even in the last subinterval of the construction 
procedure [(h - 1)bl,hbi = A], the distance a - (h - 1)bl = ah-1 = bl + (a - A)  > b. Thus, the 
series 

and (40) holds, replacing a by aj-1,  for 2 < j < h. 
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Summarizing, the following result has been established. 

THEOREM 1. Let  us consider the initial value problem (1) in the interval [0, A], where 0 < A < c 
and  the mat r /x  coefficients A(Q,  B( t ) ,  and F( t ) ,  are C rxr  valued analytic functions in [t[ < c. Let  
X ( t )  be the  exact  series solution given by (3),(8). Given an admissible error e > 0, the  following 

procedure  provides  the  construction o f  an approximate  solution X ( t, e ), whose  error with respect  

to X ( t )  is uniform/y bounded  by  e in [0,A]: 

IlX(O - X(t,e)[I < e. (60) 

CASE 1. A < 1, e > 0. Let bl = A, h = 1, b : 1, a > 1. Compute  M satisfying (33) using (18). 
Let m l  be the first positive integer verifying (44). Let X0 and Xn+l  for 0 < n < m l  - 1 be defined 
by (30). Then X ( t ,  e) = Yl( t ,  m)  defined by (31) is the approximate solution of problem (1) in 

[0, A] verifying (54). 

CASE 2. A > 1, e > 0. Let h = [A] + 1, bl = A/([A] + 1), A = blh, A < a < c, b < bl + a - A.  

Compute  M satisfying (33) using (18). Let ml  be the first positive integer verifying (44). Let 
us compute  An = An(0), Bn = Bn(O), and Fn = Fn(O) for 0 _< n < ml ,  given by (2). Let 
Yl( t ,  rnl)  be defined by (30),(31). Let j = 2 and al  = a - bl. Let ms be the first positive integer 
verifying (49) and Y2(t, m2) be defined by (54) with j = 2 and Xn(1) given by (51). Inductively, 
for each j > 2, given Y j - l ( t ,  m j - 1 )  defined by (51)-(54), for j - 1 instead of j ,  let rnj be the 

first positive integer verifying (52), where a j -1  is defined by (53). Let Yj(t, m j )  be defined by 
(51)-(54) in ( j  - 1)bl <_ t < jb l .  For j = h, construct Yh(t,  mh)  by (51)-(54), where m h  is the 
first positive integer verifying (52) with ah-1 defined by (53). Then X ( t ,  e) defined by (57) is the 
required approximate  solution of problem (1) in [0, A] verifying (59). 
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