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Over the last five decades more than 100 types of RNA

modifications have been identified in organism of all

kingdoms of life, yet their function and biological relevance

remain largely elusive. The recent development of

transcriptome-wide techniques to detect RNA modifications

such as N6-methyladenosine (m6A) and 5-methylcytidine

(m5C) has not only created a new field of research ‘the

epitranscriptome’ but also featured essential regulatory roles

of RNA methylation in a wide range of fundamental cellular

processes. Here, we discuss the current knowledge of m6A

and m5C RNA methylation pathways and summarize

how they impact normal tissues and contribute to human

disease.
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Introduction
Post-transcriptional  regulation of gene expression

ultimately determines the rate of protein translation

and is therefore crucial for virtually all cellular pro-

cesses. Post-transcriptional  modifications add complex-

ity to RNA-mediated functions by regulating how

and when a primary RNA transcript is converted

into mature RNA. There are around 150 known

RNA modifications [1], yet our knowledge about their

occurrence and function in RNA is still very limited.

The existence of methylated bases in RNA including

C5-methylcytidine (m5C) and N6-methyladenosine

(m6A) has been described 50 years ago [2]. However,

until only very recently, m5C for instance was thought

to be mainly restricted to the stable and highly abun-

dant transfer RNAs (tRNAs) and ribosome RNAs

(rRNAs) [3].
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The recent development of novel transcriptome-wide

approaches to capture global m5C and m6A RNA methy-

lomes has not only restored scientific interest in the field

but also contributed to a better understanding how gene

expression is regulated at different levels. In only a couple

of years it became evident that post-transcriptional meth-

ylation of both cytosines and adenosines regulate funda-

mental cellular processes that are essential for normal

development. The importance of a tightly controlled

deposition of both m5C and m6A into RNA is further

underscored by the strong link of loss-of-function

mutations in methylating and demethylating enzymes

to several severe human diseases.

Post-transcriptional 5-methylcytidine
Over the last years, several methods have been developed

to globally detect 5-methylcytidine in RNA. Bisulfite

sequencing was first adapted for detecting m5C in

RNA and confirmed that m5C can be reproducibly and

quantitatively detected in tRNA and rRNA (Figure 1a

and b) [4]. RNA bisulfite conversion in combination with

next generation sequencing further identified m5C in

both coding and non-coding RNAs in addition to tRNAs

and rRNAs [5,6�]. One limitation of RNA bisulfite se-

quencing is that ideally the data need to be compared to

cells lacking the specific RNA methyltransferases to

confirm the signals. Indeed, only a small fraction of

methylated RNAs identified by bisulfite sequencing

overlapped with the specific RNA targets of the cyto-

sine-5 RNA methylases Dnmt2 and NSun2 [3].

Two recently developed methods based on RNA immu-

noprecipitation approaches followed by next generation

sequencing identified Dnmt2- and NSun2-specific RNA

methylation targets [7��,8��]. In spite of all system-wide

approaches, Dnmt2-mediated methylation seems to be

restricted to only three tRNAs: GlyGCC, AspGTC and

ValAAC [8��,9,10]. The vast majority of NSun2-mediated

methylation was found in a wide range of tRNAs, but in

addition NSun2 also targeted other non-coding and a

small number of coding RNAs [7��,8��]. Among the

non-coding RNAs, NSun2 consistently methylated vault

RNAs [7��]. Hypomethylation of vault RNA at NSun2-

mediated sites altered its processing patterns into small

microRNA like molecules that can bind to Argonautes

and regulate mRNAs [7��].

NSun2-mediated methylation of mRNAs remains enig-

matic. Synthetic cytosine-5 methylated mRNAs can be

more stable and loss of NSun2-mediated methylation in
Current Opinion in Cell Biology 2014, 31:1–7
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Regulation and function of RNA methylation. C5-methylcytidine (m5C) is a common modification in (a) tRNAs and (b) other non-coding RNAs (ncRNAs).

NSun2, NSun4 and Dnmt2 can catalyze methylation of cytosine-5 but no m5C-demethylases have been reported yet (a and b). (c) N6-methyladenosine

(m6A) is an abundant internal modification in mRNA. Its deposition is dynamically regulated by methylases (Mettl3 and Mettl14) and demethylases (Fto

and AlkBH5). Accurate and adequate methylation levels dictate the fate, processing, interaction with ‘readers’ (YTHDF, HUR) and further function of

methylated RNAs. All reported molecular functions relate to the regulation of transcriptional and translational processes.
the 30UTR of p16 has been reported to reduce its stability

[11]. Yet we have shown recently that virtually none of

the mRNAs potentially methylated by NSun2 changed in

abundance in NSun2 depleted cells [7��].

Biological roles of cytosine-5 RNA methylases
RNA m5C methyltransferase belong to a large and highly

conserved group of proteins, yet their RNA substrate

specificity is predicted to be different [12]. Pioneering

work in single cell organisms shed light on the enzymatic

formation as well as the molecular and biological func-

tions of m5C in RNA and is reviewed elsewhere. For

space reasons, we will focus on the biological roles of m5C

methyltransferases in multicellular organisms.

The DNA methyltransferase homolog Dnmt2
Among all RNA methyltransferases Dnmt2 is the

best studied, yet mostly for its potential function in
Current Opinion in Cell Biology 2014, 31:1–7 
methylating DNA. Dnmt2 shares almost all sequence

and structural features of DNA methyltransferases [13].

However, over the last years it became evident that

Dnmt2 plays no major role in influencing global DNA

methylation. Dnmt2-deficient mouse embryonic stem

(ES) cells do not display altered genomic methylation

patterns and organisms expressing only Dnmt2 as the sole

candidate DNA methyltransferase gene lack genomic

methylation patterns [14,15].

Dnmt2 was one of the first cytosine-5 RNA methylases

identified in a multicellular organism [16��]. Although

Dnmt2-mediated methylation of cytosine 38 in the antic-

odon loop of tRNAAsp was conserved in plant, flies and

mice, none of these organisms lacking the functional

Dnmt2 protein displayed any morphological differences

to their wild-type counterparts [16��]. In contrast, mor-

pholino-mediated loss of Dnmt2 in zebrafish reduced the
www.sciencedirect.com
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size of the morphants by half and specifically affected

liver, retina and brain development due to a failure to

conduct late differentiation [17]. Over-expression of

Dnmt2 on the other hand prolonged the life span of

Drosophila by more than 50% and increased the resistance

to stress [18]. In line with these studies, Drosophila Dnmt2

loss-of-function mutants showed reduced viability under

stress conditions, and Dnmt2-mediated methylation pro-

tected tRNAs from stress-induced ribonuclease cleavage

(Figure 1a) [9].

Cleavage of tRNAs is a conserved response to several

stress stimuli in eukaryotes and the tRNA fragments are

produced to repress translation by displacing translation

initiation and elongation factors from mRNAs or by

interfering with efficient transpeptidation [19–21]. How-

ever, whether and how increased tRNA cleavage in

Drosophila Dnmt2 mutants is directly linked to stress

tolerance and protein translation is currently unknown.

While tRNA cleavage is mediated by angiogenin in

mammals, the only identified tRNA nuclease in Droso-
phila so far is Dicer [22]. Interestingly, also expression of

Dicer is down-regulated by oxidative stress and Dicer

knockout cells can be hypersensitive towards oxidative

stress whereas its over-expression confers stress resistance

[23]. Other functions that have been linked to Dnmt2 but

may be independent of its tRNA methyltransferase

activity are silencing of retro-transposons and control of

RNA viruses in Drosophila as well as RNA-mediated

paramutations in the mouse [24]. Together, these data

implicate that Dnmt2 is functionally redundant for nor-

mal development of most multicellular organisms but

implicated in cellular stress responses at least in adult

flies [24].

The NOP2/Sun (NSun) RNA methyltransferase
family
At least two more enzymes NSun2 and NSun4 can gen-

erate 5-methylcytidine in RNA in mammals (Figure 1a

and b) [25,26]. Both belong to the S-Adenosylmethionine

(AdoMet)-dependent methyltransferase superfamily and

at least five more putative m5C RNA methylases in

mammals (NOP2, NSun3, and NSun5–7) are predicted

to methylate RNA based on sequence conservation of key

catalytic residues [12]. Although the substrate specifici-

ties are unknown, NSun1 and NSun5, in addition to

NSun2 and Nsun4, have been identified as mRNA-bind-

ing proteins [27]. The biological functions of most mem-

bers of the NSun-protein family is largely unknown,

although all of them are expressed during mouse embry-

ogenesis and NSun2–7 are all enriched in the developing

brain [28].

NSun2 was first described in the mammalian epidermis as a

transcriptional target of the proto-oncogene c-Myc [25].

NSun2 is up-regulated in a wide range of cancers and

knockdown of NSun2 in human squamous-cell-carcinoma
www.sciencedirect.com 
xenografts decreased their growth [25,29]. NSun2 is a

nucleolar protein that is regulated by Aurora B kinase

and promotes cell division by stabilizing the mitotic spin-

dle in cancer cell lines, yet this function seems indepen-

dent of its methyltransferase activity and has yet to be

confirmed in vivo [30,31].

Interestingly, deletion of NSun2 in mice caused a phe-

notype resembling deletion of Dnmt2 in zebrafish.

NSun2 knockout mice are smaller than their littermates

and late differentiation is delayed or blocked in specific

tissues including skin and testis [32,33]. In humans,

several genetic mutations in the NSUN2 gene have been

identified and primarily cause autosomal-recessive intel-

lectual disability and a Dubowitz-like syndrome

[34,35,36�]. The common symptoms of the disorder in-

clude growth and mental retardation, unusual faces, and

cutaneous abnormalities [34,35,36�]. Whether and how

loss of RNA methylation is the underlying cause of all the

symptoms of these complex diseases is currently

unknown. However, similar to the human syndrome,

deletion of the NSun2 ortholog in Drosophila caused

severe short-term-memory deficits [35]; and simultaneous

deletion of Dnmt2 and NSun2, which abrogates all tRNA

methylation, specifically affected brain, liver, and adipose

tissue development due to impaired differentiation pro-

grams [10].

NSun4 functions in mitochondria where it methylates a

single cytosine (C911) of the mtDNA encoded 12S

rRNA [26]. In contrast to deletion of NSun2, germline

deletion of NSun4 is lethal and embryos at E8.5 are

severely growth retarded and lack visible discernible

anatomical structures [26]. Conditional deletion of

NSun4 in the heart caused cardiomyopathy and respir-

atory chain deficiency due to impaired assembly of

mitoribosomes and inhibition of mitochondrial trans-

lation [26].

The biological functions and targeted RNA species of

NSun5 are unknown, yet its yeast homolog Rcm1 has

been reported to target 25S rRNA [37]. In humans the

NSun5 gene is located to a genomic region deleted in

patients with Williams–Beuren syndrome, a rare neuro-

developmental disorder and lack of NSun5 may contrib-

ute to the growth retardation, the myopathy or the

premature aging effects reported for the syndrome [38].

Mutations in the NSUN7 gene has been linked to infer-

tility in mice and human due to impaired sperm motility

[39,40].

NOP2 (NSun1) is nucleolar protein that binds to 60–80S

pre-ribosomal particles and is mainly described for its

function in regulating cell proliferation and is up-

regulated in response DNA damaging agents [41,42].

Whether NOP2 methylates ribosomal RNA has yet to

be confirmed. NOP2 is located in a genomic region
Current Opinion in Cell Biology 2014, 31:1–7
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deleted in patients with Cri-du-chat, a syndrome that

includes a high-pitched cat-like cry, mental retardation,

and microcephaly [43]. The biological functions of

NSun3 and NSun6 proteins are unknown.

In summary, although the precise molecular and bio-

logical functions of RNA m5C methyltransferases are still

poorly understood some commonalities are emerging. A

conspicuously high number of NSun-proteins are associ-

ated with human disease syndromes that include growth

retardation and neurological deficits. This specific link to

human diseases may be explained by a direct role of 5-

methylcytidine in rRNA and tRNA to regulate global

protein translation. Protein synthesis pathways are

coupled to cell size, which may explain the small statue

described for many organisms lacking RNA methyltrans-

ferases. Another commonality is that in the absence of

RNA methylases, the affected organs are often brain and

testis, which both have been described to be the most

susceptible organs to altered protein translation rates

[44,45].

Post-transcriptional N6-methyladenosine
m6A is thought to be the most abundant internal modi-

fication in mRNA (Figure 1c) [46]. The detection of m6A

was long challenging because of the inert chemical reac-

tivity of the methyl group and the fact that this modifi-

cation does not change base-pairing properties or inhibit

reverse transcription. Recently, two independent groups

determined the occurrence of m6A system-wide using

RNA-immunoprecipitation methods followed by next

generation sequencing [47��,48��]. m6A was found in

more than 7000 mRNAs and over 200 long non-coding

RNAs (lncRNAs), and the conserved most pronounced

location of this modification was in stop codons, 30UTRs

and long internal exons in human, mouse and yeast

[47��,48��,49]. The consensus sequence is RRm6ACH

(R = A/G and H = A/C/U), yet additionally RNA structure

or RNA binding proteins are likely to be involved in

determining the methylation sites [49]. The occurrence

of m6A-methylation is highly dynamic, and both the

fraction of modified RNAs and distribution of the modi-

fication within RNAs can vary depending on cell types,

tissues and stress conditions [47��,48��,50��].

The addition of a single methyl group to adenosines does

not perturb Watson–Crick base pairing, but it weakens

RNA secondary structure [51]. Thus, the molecular role

of m6A is thought to relate to various aspects of mRNA

metabolism, including mRNA expression and degra-

dation, splicing, translational regulation and regulation

of microRNA-binding [46]. Notably, with the exception

of m6A regulating RNA-protein interactions, there is

currently a considerable lack of evidence supporting other

proposed functions in vivo. The presence of m6A in

mRNA modulates the binding affinity to the RNA bind-

ing proteins Hu-antigen R (HUR) and YTHDF1–3,
Current Opinion in Cell Biology 2014, 31:1–7 
which in turn regulate the stability and cellular distri-

bution of the bound mRNA [47��,52,53].

Considering the high abundance of m6A in a large number

of mRNAs, it is not surprising that this modification has

been implicated in a wide range of cellular processes, and

is likely to play an essential role in development and

tissue differentiation by modulating cell fate and survival,

stress responses, meiosis, the circadian clock, as wells as

cellular immunity [47��,49,52,54–56].

Biological roles of N6-methyladenosine RNA
methylases
A not yet fully characterized multicomponent complex

catalyzes the formation of m6A in mammals. The two

methylases methyltransferase-like 3 (Mettl3, also known

as MT-A70) and methyltransferase-like 14 (Mettl14)

form the core of the complex and associate with additional

regulatory factors such as WTAP (Wilm’s tumour 1

associating protein) (Figure 1c) [52,57].

The precise biological functions of m6A-methyltransfer-

ases are not fully understood but emerging evidence

implicates a role in embryo development, gametogenesis

and stem cell self-renewal. Mouse ES cells lacking Mettl3

and Mettl14 lost self-renewal capability and the

decreased levels of m6A in mRNAs of developmental

regulators correlated with binding of the mRNA stabilizer

HUR, indicating that m6A methylation inversely corre-

lated with mRNA stability and is needed to maintain

pluripotency [52]. During embryo development expres-

sion Mettl3 is temporarily controlled, and inactivation of

the plant homolog leads to cell division defects and

embryo development failure [58]. In adult flies, Mettl3

expression is highest in reproductive organs and regulates

gametogenesis [59].

Biological roles of N6-methyladenosine RNA
demethylases
Similar to DNA m5C-methylation, also RNA m6A-meth-

ylation can be reverted. Fat mass and obesity associated

protein (Fto) and a-ketoglutarate-dependent dioxygen-

ase alkB homolog 5 (AlkBH5) are demethylases that

remove m6A from RNA (Figure 1c) [50��,54]. Yet, the

only subtle changes in the level of m6A in RNA after Fto

or AlkBH5 over-expression indicated substrate specificity

and suggests the existence of additional demethylating

enzymes [54,60].

Genome-wide association studies linked common poly-

morphisms in the first intron of FTO to body mass index,

risk of obesity, type 2 diabetes, polycystic ovary syndrome

and cardiovascular diseases [61]. Studies in Fto loss-of-

function or gain-of-function mice suggest that the main

mechanism by which Fto predisposes to obesity and

metabolic syndrome is driven by obesity-prone behaviors

such as increased food intake and preference for high
www.sciencedirect.com
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caloric food [62,63]. Consistent with these studies, Fto

inactivation in mice increased methylation of mRNAs

encoding components of the dopamine signaling pathway

and consequently the dopaminergic reward circuitry sig-

naling was reduced [60]. Other human neurological con-

ditions that have been linked to genetic variations in

FTO include reduced brain volume, increased cognitive

decline in elderly, dementia, Alzheimer’s disease, atten-

tion deficit disorder in children and depression [64].

In addition, FTO polymorphisms in intron 1 have been

linked to a range of human cancers, yet a recent meta-

analysis study suggested that except for pancreatic cancer

the increased cancer risk is rather associated to obesity

than the FTO polymorphism itself [65]. Other poly-

morphisms such as in intron 8 of the FTO gene has been

linked to an increased risk of developing melanoma [66].

While the functional consequences of single nucleotide

polymorphisms in the intronic region of FTO are still

unknown, loss-of-function mutations of FTO in humans

lead to an autosomal-recessive lethal syndrome of severe

growth retardation, microcephaly, psychomotor delay,

cardiac deficits, and multiple malformations, and at least

some of these effects may be due to impaired prolifer-

ation and accelerated senescence [67]. Similarly, Fto

deficiency in mice leads to postnatal lethality, growth

retardation, and multiple malformations [62].

The only limited information available about AlkBH5

indicated an essential role in gametogenesis. AlkBH5

expression is highest in primary spermatocytes in the

mouse testes, and its inactivation leads to testis atrophy

and infertility due to failure to enter and proceed through

spermatogenic differentiation [54].

In summary, it is not fully understood how m6A affects

the fate of methylated mRNAs and lncRNAs. While some

evidence suggests that m6A occurrence in mRNA is

inversely correlated to stability [52], it remains unclear

whether specific locations within a transcript dictates

distinct roles in RNA processing. What does become clear

however is that m6A deposition plays essential roles in

mRNA metabolism, and both m6A methylases and

demethylases are crucial during embryonic development

and homeostasis of the central nervous, cardiovascular

and reproductive systems. Furthermore, aberrant m6A

methylation pathways are linked to a range of human

diseases including infertility, obesity as well as develop-

mental and neurological disorders.

Conclusions and future directions
In only a couple years, our understanding about RNA

methylation pathways advanced with remarkable speed

and the importance of RNA methylation and its role in

human diseases is now widely recognized. However, the

precise molecular pathways and cellular processes
www.sciencedirect.com 
regulated by these modifications are still largely unclear.

Furthermore, we only described current advances on m5C

and m6A methylation, but a large number of other intri-

guing chemical modifications exist in RNAs. Thus, our

current knowledge only scratches the surface of the many

roles of post-transcriptional modifications in modulating

transcriptional and translational processes.

Further advances in the field will rely on the develop-

ment of new system-wide strategies to first, reliably

detect m5C in mRNA or other low abundant RNAs,

second, map m6A at single nucleotide resolution and

third, to identify other RNA modifications. To fully

understand the biological roles of RNA methylation, it

will be required to identify all RNA methylases, de-

methylases, the regulatory pathways that control their

activity and their specific RNA targets. A major goal will

be to dissect the precise mechanisms how RNA modifi-

cations affect global and specific protein production.

Indeed, a modest correlation between cellular mRNA

and protein levels highlights the importance post-tran-

scriptional and post-translational regulatory pathways.

Ultimately, by understanding fundamental aspects of

RNA modification biology we will be able to develop

selective and specific small-molecule inhibitors to modu-

late RNA methylation levels. Such discoveries may well

lead to the identification of novel therapeutic strategies to

treat complex diseases including developmental and

neurological disorders, obesity or cancer.
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