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This paper discusses equivalent-circuit modeling of the electrochemical impedance corresponding to
one-dimensional diffusion in a uniform medium. It argues that, of the several equivalent circuits in
use for such modeling, one – namely the nonuniform resistance–capacitance ladder – has attractive prop-
erties that are not shared by any other equivalent circuit. Explicit, analytical expressions are derived for
the efficient development of this ladder equivalent, which provide advantages compared to computer
optimization. Although the context of this work is battery modeling, the results presented can be of value
in other fields where diffusion is studied and modeled.
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1. Introduction

The modeling of the electrochemical impedance corresponding
to one-dimensional diffusion in a uniform medium [1–7] using
electrical circuit analogs has been discussed extensively in the
literature [2–5,7–20]. A significant number of alternative equiva-
lent circuits has been presented for this purpose, including Voight
(Foster) circuits, Maxwell circuits, and equal-R, equal-C ladder
structures [9,20]. This paper argues that nonuniform ladder equiv-
alents have certain unique properties not shared by other circuits.
In contrast to the common practice of determining the element
values of such circuits by computer optimization [21,22], this
paper develops analytical methods for doing so, and discusses
several advantages that can be had by using such an approach.
These include the ability to model internal time-domain behavior
(as opposed to only external frequency-domain behavior repre-
sented by the electrochemical impedance), predictive capability,
and efficient computation. These and other advantages, discussed
later in this section, make the model suitable for an important
emerging application: the computer simulation of mixed
electrochemical/electrical systems, such as systems involving both
energy storage devices and power electronics. The need for
efficient simulation of such systems arises during their design, as
well as in their deployment in the field, where on-site, real-time
computation can be an important aid in maximizing the perfor-
mance of the energy storage devices involved. The attributes of
the model presented make it attractive for inclusion in more
extensive models, containing additional elements that model
phenomena not addressed in this paper.

In order to prepare for the arguments to be made in this paper,
we consider the diffusion-electrical circuit correspondence, shown
in Fig. 1, in some detail. Diffusion is assumed within the structure
of Fig. 1a, with volume density qðx; tÞ and flux (number of particles
per unit of cross-sectional area, per unit time) jðx; tÞ, where x is po-
sition and t is time. This structure is characterized by the continu-
ity equation:

@q
@t
¼ � @j

@x
ð1Þ

Assuming a constant diffusion coefficient D, Fick’s first law is:

j ¼ �D
@q
@x

ð2Þ

Inserting (2) into (1) we obtain Fick’s second law (the ‘‘diffusion
equation’’):

@q
#t
¼ D

#2q
#x2 ð3Þ

https://core.ac.uk/display/81142103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jelechem.2013.08.017&domain=pdf
http://dx.doi.org/10.1016/j.jelechem.2013.08.017
mailto:jmilios@sendyne.com
http://dx.doi.org/10.1016/j.jelechem.2013.08.017
http://www.sciencedirect.com/science/journal/15726657
http://www.elsevier.com/locate/jelechem
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


0

(a)

(b)

Fig. 1. (a) One-dimensional diffusion and (b) corresponding one-dimensional
distributed RC circuit. The structures have the same length, L.

Table 1
Correspondence between quantities in diffusion problem and in electrical analog.

Diffusion problem – Fig. 1a Electrical analog – Fig. 1b

Volume density, q Charge per unit length, q
Diffusion flux, j Electric current, i
Diffusion coefficient, D 1=rc
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The structure in Fig. 1b is a linear uniformly-distributed RC
structure of the same length L as the top structure, characterized
by total resistance R and total capacitance C, corresponding to
resistance per unit length r = R/L and capacitance per unit length
c = C/L, respectively. The current at position x is denoted by iðx; tÞ,
and the charge per unit length stored at position x is denoted by
qðx; tÞ. Fig. 2 shows corresponding incremental elements of the
structures in Fig. 1. In Fig. 2b, the net increase in the charge in time
Dt is iDt � ðiþ DiÞDt ¼ �DiDt, which corresponds to a charge in-
crease per unit length of Dq ¼ �DiDt=Dx. Allowing finite differ-
ences to approach 0, we obtain:

@q
@t
¼ � @i

@x
ð4Þ

From Ohm’s law we have i ¼ �Dv=ðrDxÞ ; the changes in v and q
over the length Dx are related by Dv ¼ Dq=c. Combining these two
equations we obtain i ¼ �Dq=ðrcDxÞ. Allowing finite differences to
approach 0, we obtain:

i ¼ � 1
rc
@q
@x

ð5Þ

Inserting (5) into (4) we obtain:

@q
#t
¼ 1

rc
#2q
#x2 ð6Þ
(a)

(b)

Fig. 2. Incremental elements of the structures in Fig. 1.
The correspondence of the two structures in Fig. 1 is now appar-
ent, with (4)–(6) corresponding to (1)–(3) respectively, if the anal-
ogies shown in Table 1 are made.

For the structure in Fig. 1b, the equation for the current, iðx; tÞ,
has the same form as (6), with q replaced by i [23], and the voltage
can be found from:
v ¼ q
c

ð7Þ

The correspondence of physical variables in Table 1 is not only
qualitative, but also quantitative. Thus, the charge in the structure
of Fig. 1b is numerically equal to the volume density in Fig. 1a, at
the same position and the same time, if one chooses 1=rc ¼ D
and analogous excitation. Thus the analogy does not only hold
for the external behavior across, say, the port on the left, but rather
holds throughout the structure. This detailed analogy can be cru-
cial, as discussed below.
1.1. Need for equivalent circuits

Electrical equivalent circuits for the structure of Fig. 1a have
been used for a long time. Such circuits allow for efficient com-
puter simulation of this structure by highly-developed electrical
circuit simulators, such as Spice [24,25], not only for the small-signal
electrochemical impedance (which, after all, could also be com-
puted analytically), but also for transient response to a variety of
excitations.

In recent years, another reason for using electrical equivalents
has emerged. Electrochemical devices, such as batteries and sup-
ercapacitors, are increasingly incorporated into sophisticated elec-
tronic systems. The resulting hybrid (electrochemical/electronic)
systems need to be analyzed as a whole; for example, a designer
of power conversion circuits needs to analyze complicated circuits
that interface directly with a battery. In order to be able to use cir-
cuit analysis computer aids, such as Spice, for the simulation of the
hybrid systems mentioned above, one needs to model batteries
and supercapacitors in terms of equivalent electrical circuits. Such
equivalent circuits, besides modeling other phenomena [3,9–13],
need also to include structures such as the one shown in Fig. 1b
to model diffusion.

Most circuit simulators have been developed for lumped-ele-
ment circuits described by nodal equations, and have difficulties
handling distributed elements, for which nodal equations cannot,
in principle, be written. In various versions of the popular Spice
simulator, one may consider using the available transmission-line
elements, with an appropriate definition of their parameters, to
model a distributed structure. However, such use is plagued by
numerical issues; for example, calculating the real part of electro-
chemical impedance at very low frequencies can result in very
large errors (and even result in negative values). Transmission line
models are also known to have numerical problems in transient
simulations, which are essential in some electrochemical device
work (e.g., battery system simulation). Finally, known transmission
line models in circuit simulators are inherently linear elements,
and one cannot introduce nonlinearities in them.
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Fig. 3. Alternative circuits for modeling electrochemical impedance. (a) Equal-R,
equal-C ladder; (b) Voight or Foster circuit; (c) the circuit in (b) in series with a
voltage source representing the open-circuit voltage of a battery; (d) the circuit in
(b) in series with a capacitance representing storage; (e) Maxwell circuit (or Foster
admittance realization circuit).

Fig. 4. Nonuniform RC ladder representation of the distributed structures of Fig. 1.
This representation is studied analytically in this paper.
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1.2. Popular equivalent electrical circuits

The most straight-forward lumped-element representation of
the distributed structure in Fig. 1b is called the ladder circuit,
and it is shown in Fig. 3a. The total resistance and total capacitance
of the structure is split into a large number of equal resistances and
capacitances as shown [9,20]. As will be seen, though, for adequate
modeling one needs a huge number of RC sections. Thus, several
other circuits are used instead for representing electrochemical
impedance [7,15,16,18,19]. It is known that different internal cir-
cuit topologies can exhibit the same impedance across their two
external terminals [26], so it is not surprising that several different
circuits have been used for electrochemical impedance modeling.
The circuit in Fig. 3b is called the Voight circuit in [15], but is
known as the Foster circuit in electrical network theory [26]. This
equivalent circuit has been used to model systems exhibiting a var-
iation of properties along geometrical dimensions, and the associ-
ated distribution of time constants [27]. However, if this circuit is
used to model electrochemical impedance, it clearly can do so only
at sufficiently high frequencies; at very low frequencies, where the
capacitances can be viewed as open circuits, this circuit reduces to
just a resistance, failing to model storage, in contrast to the ladder
in Fig. 1a, which reduces to a capacitance at such low frequencies.
The circuit of Fig. 3b is sometimes used in conjunction with a volt-
age source representing the open-circuit voltage of a battery, as
shown in Fig. 3c. For an ideal voltage source, this circuit exhibits
identical AC impedance as the one in Fig. 3b, and thus fails to rep-
resent storage. This can be attempted to be rectified by using a
capacitance C in place of the voltage source, as shown in Fig. 3d.
At very low frequencies, this capacitance is all that is seen across
the terminals, and in order to match the storage behavior, it must
be equal to the total storage capacitance. This means that the rest
of the capacitances do not have clear physical meaning related to
storage, but nevertheless they are needed in order to represent
the correct AC external impedance. Finally, Fig. 3e shows a so-
called ‘‘Maxwell’’ structure, known in electrical circuit theory as
a Foster admittance realization [26]. At very low frequencies, the
capacitance seen across the terminals of this structure is the sum
of the individual capacitances – a property shared by the ladder
circuit.

The circuits in Fig. 3b–e share a common problem. Unlike the
ladder in Fig. 3a, the individual nodes in those circuits do not
correspond to internal points in the diffusion problem in Fig. 1a.
To see this, consider an application of an external excitation across
the terminals of any of these circuits. In circuits (b)–(d), it follows
from Kirchhoff’s current law that the current entering each parallel
RC circuit is equal to the current leaving it, and equal to the input
current. Thus as soon as the input current is applied, all nodes in
these circuits are activated simultaneously, and this is communi-
cated to all node voltages; there is no notion of internal delay in
these circuits. In the circuit of Fig. 3e, a similar observation can
be made: all voltages across the vertical branches are equal to
the terminal voltage, and thus all change instantaneously, as soon
as the input voltage changes; no propagation of the input distur-
bance is evident from left to right (for that, one would have to look
at the individual capacitor voltages, but the correspondence of
those to the situation of Fig. 1a is far less obvious). In contrast to
this, the ladder circuit in Fig. 3a maintains a close correspondence
to that of Fig. 1b, which in turn represents exactly the diffusion
problem illustrated in Fig. 1a.

The above observations make the difference between the ladder
in Fig. 3a and the models in Fig. 3b–e clear: The latter are circuits
meant to model the external behavior of the distributed structure
in Fig. 1b, but they are not useful for representing the internal
behavior of the structure. For example, the circuit in Fig. 3d can
have the same mathematics as far as the impedance observed
externally is concerned, but different mathematics internally.

The ladder in Fig. 3a, by contrast, can model both the external
and the internal behavior of the distributed structures of Fig. 1.
As a consequence, the transient behavior of the distributed struc-
ture can be studied by imposing initial charges on the capacitors
in Fig. 3a (corresponding to initial volume densities in the structure
of Fig. 1a), and then simulating with an electrical simulator; this is
not possible for the rest of the structures in the in Fig. 3.

The close analogy of the physics of the electrochemical and lad-
der structures becomes even more important if other effects are
considered, such as nonlinearities, which are now briefly dis-
cussed. In the development leading to (3), we have assumed that
the diffusion coefficient is constant. In the more general case, the
diffusion coefficient can be a function of the density and/or other
factors, leading to a nonlinear diffusion equation; this can be mod-
eled if the resistors and capacitors in the ladder are allowed to be
nonlinear. This fact, and the capabilities and properties of the
resulting structure, are part of an extensive study that will be re-
ported separately.
1.3. Need for a nonuniform RC ladder equivalent circuit

Having discussed the advantages of the RC ladder equivalent
circuit in Fig. 3a, we now return to its major disadvantage, which
has already been mentioned above: In order for this structure to
give acceptable results, a huge number of RC sections must be used.
For example, one needs over 5000 sections in order to model the
impedance phase within a 0.5� error, in the constant phase region
over a frequency range of 3 decades (Section 4). This makes the
structure unsuitable for practical purposes. This drawback can be
traced to the use of equal-R, equal-C elements. If unequal-R and un-
equal-C elements are allowed, as indicated in Fig. 4, much more
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efficient modeling is possible. This has been proven using com-
puter optimization of such ladders [21,22,28].

Computer optimization though, however valuable it may be, is
not a substitute for analytical results. There are several reasons for
this: (a) Computer optimization is, as far as the user is concerned, a
blind process; it does not provide insight into the workings of the
system being optimized, in contrast to analytical results. (b) Com-
puter optimization is useful for matching computed results to
available data; it cannot be used to predict behavior before such
data is available, in contrast again to analytical results. (c) Com-
puter optimization can be a time-consuming process; in fact, it
can fail for high-order systems, unless a very good first guess is
provided. These issues can become critical in cases where rapid
computation is needed, as is the case, for example, in sophisticated
battery management systems, where a resident model must be
dynamically adapted to predict the behavior for different values
of the state of the battery. It is not just impractical to have to
run an optimizer each time such updates are needed; it is actually
impossible, as no data are available to be matched for such up-
dates. In fact, the main reason for the existence of models in such
applications is to predict behavior in the absence of appropriate
data.

For the above reasons, the rest of this paper derives analytical
results for the nonuniform structure of Fig. 4 with emphasis on
high accuracy and computational efficiency. The finite-length,
blocking-boundary electrochemical impedance will be used as a
vehicle to illustrate the principles, which themselves are of general
validity.

A promising direction toward developing an efficient nonuni-
form ladder representation will now be discussed with the help
of Fig. 5, which shows part of a distributed structure to be modeled.
The right end of the structure (not shown) is assumed to be open-
circuited. We seek to model the input impedance at the input port,
indicated on the left with an arrow. One may intuitively expect
that attention must be paid to modeling more accurately the parts
of the structure that are near the input port, as those affect the in-
put impedance directly. On the other hand, the further away seg-
ments of the structure are from that port, the less accurately
they need to be modeled, since their effect is seen at the input only
indirectly, through other segments. One may thus attempt to di-
vide the structure into progressively longer segments, as those
shown bounded by the broken lines in Fig. 5, and use a lumped rep-
resentation for each segment. This observation naturally leads to a
ladder representation of the type shown in Fig. 4, where it can now
be expected that the capacitance and resistance values will be pro-
gressively larger toward the right. While these observations are
only intuitive at this point, they will be seen to be confirmed by
the results of the mathematical development that follows. It is
noted that the use of a nonuniform ladder as in Fig. 4 in no way im-
plies that the diffusion being modeled is nonuniform; we remind
the reader that the diffusion coefficient is assumed to be constant,
independent of position, as has been stated above (2). In fact, the
entire purpose of this paper is to efficiently model uniform
Fig. 5. Uniform distributed RC structure, separated into progressively longer
segments, each to be modeled by a lumped approximation, for the purposes of
modeling the input impedance on the left. The right end of the structure (not
shown) is assumed to be open-circuited.
diffusion using analytically-determined nonuniform ladders, and
to discuss the several advantages that ensue.

2. Finite-length, blocking-boundary electrochemical impedance

In this paper we will use the term ‘‘electrochemical impedance’’
rather than ‘‘Warburg impedance’’. The latter term is normally
used in the original context of [1], in which diffusion over infinite
length is considered. The more realistic case of diffusion over a fi-
nite length has been treated extensively in the literature [2–7], and
the associated impedance is sometimes referred to as ‘‘finite-
length Warburg impedance’’. This impedance depends on the
boundary conditions. In this work we concentrate on a finite-
length structure with a blocking boundary, i.e. with diffusion pre-
vented at the right end as shown in Fig. 1a [3,4]; this will be seen to
be of special use in battery modeling, which is the context in which
this work has originated. This situation corresponds to the struc-
ture of Fig. 1b, with finite length L, and with a boundary condition
imposed by an open circuit at its end, i.e. iðL; tÞ ¼ 0. The voltage and
current equations can be solved to provide the corresponding La-
place transforms Vðx; sÞ and Iðx; sÞ, where s is the Laplace transform
variable [26]. One can then solve for the resulting Vðx; sÞ and Iðx; sÞ
and use them to calculate the input impedance of the structure:

ZoðsÞ �
Vð0; sÞ
Ið0; sÞ ð8Þ

which can be shown to give [23,29]

ZoðsÞ ¼
Rffiffiffiffiffiffiffiffi
sRC
p coth

ffiffiffiffiffiffiffiffi
sRC
p

ð9Þ

where R and C are respectively the total resistance and capacitance
of the line. The quantity ZoðsÞ is the blocking-boundary, finite-
length diffusion impedance. It is of the same form as the one de-
rived directly for the corresponding electrochemical systems [2–5].

To determine the frequency response, we use in (9):

s ¼ jx ¼ j2pf ð10Þ

with x the radian frequency in rad/s and f the frequency in Hz. The
phase and magnitude of ZoðjxÞ are shown in Fig. 6a and b, respec-
tively. Three regions can be identified on the phase plot: A region
where the phase is essentially �90�, thus corresponding to (capac-
itive) storage; a region where the phase is essentially �45�, thus
corresponding to the behavior of a constant-phase element (CPE);
and a transition region between the two, which includes a point
at which the phase peaks (for future reference, we note that this
point is at fRC = 1.224). The exact boundary positions between re-
gions depend on the phase error one is willing to accept for the
two outer regions.

Phase and magnitude plots are more valuable than Nyquist
plots for our purposes; in the latter, small phase errors are difficult
to spot, and the parametric representation used in them makes it
difficult to compare two superimposed plots. As phase and magni-
tude plots do not have this problem, they were selected for use in
this paper.

It is not easy to distinguish the boundaries between regions in
the magnitude plot, shown in Fig. 6b. Thus, in this paper we will
emphasize phase plots, which provide a more sensitive indication
of the accuracy of the approximations we are about to introduce.

For future reference, we note that, from (9) and (10), the follow-
ing holds:

lim
x!1

ZoðjxÞ ¼ 0 ð11Þ

As already mentioned, the impedance in (9) is different from
what is commonly called ‘‘Warburg impedance’’ [1], which
characterizes structures of infinite length, and results in 1=

ffiffi
s
p
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Fig. 6. (a) Phase and (b) magnitude of impedance of the distributed structure of
Fig. 1b, as a function of fRC.

Im
pe

da
nc

e 
ph

as
e 

(d
eg

re
es

)
Im

pe
da

nc
e 

m
ag

ni
tu

de
 

no
rm

al
iz

ed
 to

 

10-4 10-3 10-2 10-1 100 101 102 103 104
−90

−80

−70

−60

−50

−40

10-4 10-3 10-2 10-1 100 101 102 103 104
10-2

10-1

100

101

102

Ideal

48th order

24th order

12th order

Ideal

48th order
24th order

12th order

(a)

(b)

12 element
equal-R, equal-C

12 element equal-R, equal-C

Fig. 7. Solid lines: Truncated Weierstrass approximation compared to ideal
(distributed structure) impedance as a function of fRC, for different orders of
approximation. Broken lines: Corresponding results from a 12th order equal-R,
equal-C ladder. (a) Phase and (b) magnitude.
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dependence, but without the coth factor seen in (9). Equivalent cir-
cuits for the (infinite-length) Warburg impedance often model the
CPE behavior only [19]. Such models cannot capture the behavior
of the transition region from low- to high-frequency behavior;
yet this transition region turns out to contain important diagnostic
and identification information [6,30].

The above exact results can be used to illustrate the failure of
the equal-R, equal-C ladder, which has already been mentioned.
Such a ladder, with 12 capacitors, gives the impedance shown by
the broken lines in Fig. 7 (the rest of the lines will be discussed be-
low); it is seen that this approximation fails in both the transition
and CPE regions.

2.1. Rational expression based on Weierstrass product expansions

The impedance in (9) cannot be represented by lumped-param-
eter electrical circuits, as such circuits have rational transfer func-
tions. In order to be able to employ such circuits, an approximation
of (9) using rational transfer functions becomes necessary
[23,29,31]. This equation can be written as:

ZoðsÞ ¼
Rffiffiffiffiffiffiffiffi
sRC
p cosh

ffiffiffiffiffiffiffiffi
sRC
p

sinh
ffiffiffiffiffiffiffiffi
sRC
p ð12Þ

We now find the roots of the numerator and denominator of the
second fraction in this equation. Using

h �
ffiffiffiffiffiffiffiffi
sRC
p

ð13Þ

we set cosh h ¼ ðeh þ e�hÞ=2 ¼ 0, from which e2h ¼ �1, thus
h ¼ �jð2n� 1Þp=2, where n is a positive integer. From this and
(13) we obtain the roots of the numerator:

szn ¼ �xzn; n ¼ 1;2;3; . . . ð14Þ
with

xzn ¼
p2ð2n� 1Þ2

4RC
ð15Þ

Similarly, for the sinh factor in the denominator, we set,
sinh h ¼ ðeh � e�hÞ=2 ¼ 0 thus e2h ¼ 1, thus h ¼ �jpn, where
n ¼ 0;1;2; . . .. From this and (13) we obtain the corresponding
roots:

spn ¼ �xpn; n ¼ 0;1;2 . . . ð16Þ

with

xpn ¼
p2n2

RC
ð17Þ

Using these results, the cosh and sinh functions in (12) can be
represented by their Weierstrass product expansions, which are
known to exist for complex functions that are analytic for all
values of their complex argument, and which have simple
zeros [23,32,33]. These product expansions are cosh h ¼Q1
n�1
f1þ 4h2=½ð2n� 1Þ2p2�g and sinh h ¼ h

Q1
n�1
½1þ h2=n2p2�. Using

these and (13) in (12) we obtain:

ZoðsÞ ¼
1
sC

Y1
n¼1

1þ s
xzn

� �

Y1
n¼1

1þ s
xpn

� � ð18Þ

The quantities szn and spn obtained earlier are, respectively, the
zeros and poles of the rational expression for ZoðsÞ in the above
equation.

At very low frequencies (x� xz1Þ, we have ZoðjxÞ � 1=ðjxCÞ,
consistent with the observation of low-frequency capacitive
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storage behavior made earlier. This observation will prove useful in
the discussions that follow.

2.2. Truncated Weierstrass approximation

For an Nth-order approximation, the product in the denomina-
tor of the second fraction in (18) must be of order N � 1 (note the
extra pole at s = 0 outside that product). In order to keep the impor-
tant property in (11), the numerator order must be less than that of
the denominator. We want to keep as many of the zeros as possible
while satisfying this constraint; this leads to a numerator of order
N � 1. We thus approximate (18) by:

ZoðsÞ ¼
1
sC

YN�1

n¼1

1þ s
xzn

� �

YN�1

n¼1

1þ s
xpn

� � ð19Þ

which can also be written in the form:

ZoðsÞ ¼
kN

sC

YN�1

n¼1

sþxznð Þ

YN�1

n¼1

sþxpn
� � ð20Þ

where

kN ¼
YN�1

n¼1

xpn

xzn
ð21Þ

The phase and magnitude of ZoðjxÞ using (19) are shown in
Fig. 7a and b, for three values of the order of approximation N,
and are compared to the ideal behavior from (9). It is seen that a
large order is needed for accurate representation over a significant
frequency range.

It is appropriate to study how the individual terms in (19) con-
tribute to the overall behavior. This will be accomplished using the
phase response. Using s ¼ jx in (19), it is seen that the phase starts
at �90� in the limit of zero frequency. As the frequency is raised,
each term of the form ð1þ jx=xznÞ in the numerator contributes
a phase change that increases from 0�, goes through +45� at
x ¼ xzn, and asymptotically reaches +90�. Similarly, each term of
the form ð1þ jx=xpnÞ in the denominator contributes to the
impedance a phase change that decreases from 0�, goes through
�45� at x ¼ xpn, and asymptotically reaches �90�. It is the inter-
play between these contributions that produces an overall value
of �45� in the CPE region. The beauty of the Weierstrass expansion
is that it distributes the zero and pole frequencies, xzn and xpn, in
such a way that the phase response is smooth and practically equal
to �45� if an infinite number of terms are included. If, however,
N � 1 terms are used in the products in (19), the highest-frequency
pole eventually wins out, and takes the phase toward �90�.

The values of the zero and pole frequencies, xzn and xpn, for
N = 12, are indicated along a logarithmic frequency axis by ‘‘�’’
and ‘‘	’’, respectively in the upper row of Fig. 8 (the lower row will
be discussed in the next subsection). Note that the ‘‘�’’ and ‘‘	’’
symbols indicate the positive frequencies corresponding to each
zero and pole; the zeros and poles themselves are negative, as seen
from (14) and (16). As can be checked from (15) and (17), as n is
increased, the quantities xp;nþ1=xpn, xz;nþ1=xzn, and xpn=xzn all
approach monotonically 1 in the limit. This explains the fact that,
as n increases, the logarithmic distance between successive zeros,
and between successive poles decreases, and the poles tend to pile
up on top of the zeros, as seen along the logarithmic axis for the top
row in Fig. 8. This suggests that the near-cancelation between
poles and zeros, on which the Weierstrass product relies, will
require many more poles and zeros for a significant logarithmic in-
crease of the frequency range of validity.

2.3. A ‘‘stretched constellation’’ approach

The unmodified, truncated Weierstrass approximation used
above provides low error for low frequencies but unacceptable er-
ror once the frequency is somewhat raised (Fig. 7). An increase of
the frequency range of validity can be achieved if one is willing
to accept a very small error in the transition region. This increase
of the range of validity can be accomplished by spreading the poles
and zeros apart, as shown at the bottom row in Fig. 8, resulting in
what we call the ‘‘stretched pole-zero constellation’’. By spreading
apart the poles and zeros, their opposing effects on the phase at
intermediate frequencies will not cancel out completely, but as
long as they are relatively close to each other, the error incurred
can be expected to be small.

Let xi be any pole or zero frequency. We define a new set of
poles and zeros fx̂ig as follows:

x̂i ¼ rixi ð22Þ

where ri is the ‘‘stretching factor’’ corresponding to pole or zero fre-
quency xi. The above relation defines a mapping between the sets
{xi} and fx̂ig, indicated by the arrows in Fig. 8. The upper row
indicates the frequency positions of the original pole and zero fre-
quencies; the bottom row indicates their position in the stretched
pole-zero constellation.

The problem now is how to choose the values of the stretching
factors ri. A clue on how to do this comes from Bode plot theory,
where a logarithmic frequency axis is used. It is known that phase
and magnitude contributions and errors depend not on absolute
frequency numbers, but rather on frequency ratios. Thus, for exam-
ple, we know [34] that the phase contributed by a zero at fre-
quency xz becomes 84.3� a decade above xz, where ‘‘decade’’
means a frequency ratio of 10. Frequency decades represent equal
distances along a logarithmic axis, such as the one used in Fig. 8.
This intuitively suggests that a reasonable candidate for the
stretching factors would be one that makes their logarithm propor-
tional to the frequency they are stretching. This implies stretching
factors of the form:

ri ¼ 10
xi
x0 ð23Þ

where 1=x0 is a scaling factor.
To set the value of x0, let us assume that we want the maxi-

mum pole frequency, xp;N�1, to be stretched by n; in other words:

n ¼ x̂p;N�1

xp;N�1
ð24Þ

From the above three equations we find x0 ¼ xp;N�1=log10n.
Using this in (23), we obtain a formula for the stretching factors:

ri ¼ n
xi

xp;N�1 ð25Þ
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We can further optimize things by increasing the last pole fre-
quency found as above by a factor g, to partially compensate for
the missing higher-order terms in the product. Thus, we replace
the highest pole frequency found above, x̂p;N�1, by:

b̂xp;N�1 ¼ gx̂p;N�1 ð26Þ

Consequently, the constellation stretching procedure consists of
the following steps. We choose a value for n, the stretching factor of
the highest pole frequency; we use this to find the stretching fac-
tors of the other poles and zeros from (25); finally, we further
stretch the resulting highest-frequency pole by a factor g, using
(26). Reasonable choices for the values of n and g are discussed be-
low in terms of examples. In the numerical examples below, N = 12
unless stated otherwise.

Fig. 9a shows the phase for a stretching factor n of 1000, and for
two values of g. The unstretched (original) truncated Weierstrass is
also shown as a reference. Over two orders of magnitude of
improvement is seen. Fig. 9b shows the corresponding magnitude
plots.

Fig. 10 shows the phase error with respect to the ideal response
obtained from (9). Fig. 10a illustrates the effect of n. For a given N,
the larger n is, the larger the frequency range of validity will be, but
a larger phase error must be tolerated near the transition fre-
quency from capacitive to CPE behavior. The value of g has been
adjusted to provide a relatively flat band near the upper frequency
limit of validity. Fig. 10b shows the effect of g on the phase error,
for n = 1000. It is seen that the phase error near the transition point
to CPE behavior is about 0.3�. From this figure, the role of g can be
clearly seen; it is to adjust the peaking of the frequency response
near the end of its range of validity. If, at that end, a 0.3� error
(same as at the transition point) can be tolerated, the frequency re-
sponse can be extended, as shown by the curve for g ¼ 1:55; other-
wise, this error peaking can be reduced using g = 1.50. Such
adjustments are very easy to perform by trying a few values and
observing their effect on the error plots.
The effects of n and g on the magnitude error are similar to
those discussed above, although the values of g needed to elimi-
nate the peaking near the upper frequency limit of validity are a lit-
tle different from those in Fig. 10b. However, at such frequencies
the magnitude itself is extremely small, and thus such details are
unlikely to be important.

Fig. 11 shows what happens assuming that the desired upper
frequency limit of validity is fixed. As seen, if a high order is al-
lowed (24th), the maximum phase error near the capacitive-to-
CPE transition can be made very small (less than 0.05�). However,
even with 12th order, this error does not become excessive (about
0.2�).

Up to this point, the emphasis has been on a very wide fre-
quency range of validity (several orders of magnitude above the
transition region). However, as already mentioned, at very high fre-
quencies the magnitude of the impedance becomes negligible and
in a real system such as a battery cell, other phenomena become
prevalent. For this reason, often the needed upper limit of validity
of a model is limited. In such cases, and depending on the phase
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error that can be accepted, the needed model order can be signifi-
cantly reduced. For example, with the upper frequency limit of
validity taken to be 80 times the transition point if a phase error
of 0.3� can be accepted, a 6th-order model will suffice, thanks to
the stretched constellation approach. A low order model implies
efficiency and speed in a simulation environment, making the
method suitable for use in ‘‘real time’’ simulations.

It can be seen from several figures above that the stretching law
in (25) works well, with the larger error being near the point
fRC = 1. This suggests that, if this error is to be minimized, more
attention needs to be paid around this point. The behavior in that
vicinity is governed by the low-frequency poles and zeros. Thus,
one can consider leaving the first few original pole and zero fre-
quencies intact, or at least stretch them less drastically than sug-
gested by (25). To accomplish this, one would use a stretching
law that starts at value 1, staying relatively constant for the first
few poles and zeros, and then gradually transitioning to the
stretching factors in (25). While such an empirical function for
the stretching law can be found, it is not considered worthwhile
doing so, as it would complicate the formulation, and we have al-
ready reached the point of diminishing returns, given that the
phase error in the transition point is small anyway.
10−4 10−2 100 102 104 106
10−4

10−3

10−2

Stretched Constellation (N=12) Im
pe

d no

Fig. 13. Simulated impedance of the ladder in Fig. 12, compared to the exact
impedance of the structure in Fig. 1 and of a 5001th-order equal-R, equal-C ladder.
(a) Phase and (b) magnitude. N = 12, R = 1 X, C = 1 F, n ¼ 1000, g = 1.50.
3. Equivalent circuit

Classical circuit synthesis [23,26,29,31] can be used to synthe-
size an equivalent circuit with a ladder structure. The procedure
is as follows. After multiplications are carried out in (20), the
admittance YoðsÞ ¼ 1=ZoðsÞ is of the form of a ratio of two polyno-
mials, PNðsÞ=QN�1ðsÞ, where the subscripts denote the degree of the
two polynomials. Polynomial division is then performed, resulting
in a quotient of the form sCo, where Co is the ratio of the two lead-
ing coefficients of the polynomials and, for the type of polynomials
we are dealing with, a remainder of order N � 1, denoted by
PN�1ðsÞ, thus leading to YoðsÞ ¼ sCo þ PN�1ðsÞ=QN�1ðsÞ. We write this
as sCo þ 1=½QN�1ðsÞ=PN�1ðsÞ�. Performing the division indicated in
the last quantity, we obtain a constant term, denoted by R1, and
a quotient of order N � 2; we continue in this fashion, each time
performing polynomial division and writing the resulting quo-
tient-over-divisor fraction as 1 over its inverse. This leads to an
expression of the form:

YoðsÞ ¼ sC0 þ
1

R1 þ 1
sC1þ 1

R2þ
1

sC3þ...

ð27Þ

By inspection, this is the input admittance of the ladder circuit
in Fig. 4, where each element corresponds to a quotient in the re-
peated division process outlined above.

From the above procedure, involving (20) we conclude:

C0 ¼
C
kN

ð28Þ

Performing the above procedure on a 12th order stretched con-
stellation approximation, and assuming R = 1 X, C = 1 F, n = 1000,
and g = 1.50, we obtain the element values shown in Fig. 12. The
resulting frequency response is shown in Fig. 13, and is compared
Fig. 12. 12th Order RC ladder circuit designed
to the response of a 5001th-order equal-R, equal-C ladder. The
upper frequency limit of validity is at least an order of magnitude
higher for the circuit of Fig. 12.
4. Simulation of internal behavior

The stretched-constellation ladder was developed for modeling
correctly the impedance across the input terminals. It is consistent
with the idea in Fig. 5 (note that the resistances and capacitances
in Fig. 12 get progressively larger, as we go toward the right),
and can successfully model even the internal behavior in the dis-
tributed structure. This is illustrated in Fig. 14, which compares
the transient response of the stretched-constellation ladder of
Fig. 12 to that of a 5001th-order equal-R, equal-C ladder. The
capacitances of both ladders are ‘‘charged’’ to 1 V, and then an in-
put is applied, consisting of a 0.8 A discharging current for 1 s, fol-
lowed by a 0.6 A charging current. In Fig. 14a, the voltages across
the capacitors in Fig. 12 are shown; Fig. 14b shows the voltages
at the corresponding points in the 5001th-order equal-R, equal-C
ladder, taken as the points where the total capacitance from the in-
put to those points is the same in the two circuits. It can be seen
that the responses for the two circuits closely match, and that
the 12th-order stretched-constellation ladder successfully models
for n = 1000 and g = 1.50. R = 1 X, C = 1 F.
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the propagation of the input disturbance to internal points. Various
phenomena can be studied thanks to this. For example, it can be
observed that after the input current changes direction, capacitors
toward the right side of the ladder keep discharging for some time,
reflecting the dynamics of diffusion. This happens because the in-
put disturbance does not immediately affect such faraway points.

The computation time needed for the stretched-constellation
ladder was found to be 1953 times shorter than for the 5001th-order
one. No price seems to be paid for such drastic computational
savings; in fact, the 12th-order stretched-constellation ladder can
successfully model the input impedance over a significantly larger
frequency range, as has been shown in Fig. 13.
5. Capacitances and storage

The presence of C0 in the ladder circuit of Fig. 4 is instrumental,
as this is the element that ensures that the magnitude of the
impedance asymptotically goes to 0 as the frequency is increased,
in accordance with (11). This capacitance would not be present if
the numerator of (19) had been chosen to be of order N.

For the total capacitance in the ladder circuit of Fig. 4 we have

XN�1

n¼0

Cn ¼ C ð29Þ

where C is the total capacitance in the distributed-parameter ele-
ment in Fig. 1b . This can be confirmed by inspection of the ladder
circuit in Fig. 4. At very low frequencies the voltages across the
resistors are negligible compared to those across the capacitors.
As a consequence, all capacitors are effectively in parallel, resulting
in a total capacitance C as expected from (18). This, in the circuit of
Fig. 4, corresponds to the case in an actual diffusion layer, where the
frequency is so low that the concentrations involved have time to
reach equilibrium throughout the structure, i.e. the structure oper-
ates quasi-statically. The total resistance in the ladder circuit is of
similar magnitude as the total resistance in the structure of
Fig. 1b. The two are not exactly equal. This is a trivial difference:
the two can be made equal, simply by adding a small resistance
with one end floating, at the right end of the ladder; such a resis-
tance would not carry a current, and would not alter the impedance
ZoðsÞ.

The fact that the low-frequency behavior is capacitive (corre-
sponding to the factor 1=sC in (19)), allows one to use it to predict
storage in battery models. It is acknowledged, however, that other
phenomena have to be taken into account in a complete battery
model [3]. There are enough degrees of freedom here: C in (19)
can be chosen as the storage capacity, and then the rest of the ele-
ments can be chosen for the correct frequency behavior, as dis-
cussed in Section 2. In fact, once an equivalent circuit for a given
N has been designed, it can be adopted to other cases by using
the procedures known as magnitude scaling, impedance scaling,
and frequency scaling [34] as appropriate.

6. Comparison to experimental data

The diffusion impedance of electrochemical devices satisfying
(3) can be modeled by the electrical impedance in (9) (see, for
example, [3,11]); thus, the above results can profitably be used.
The accurate prediction of magnitude and phase throughout the
range of validity of the ladder circuit based on the stretched con-
stellation approximation, results in accurate prediction of the real
and imaginary parts of the impedance. This then leads to accurate
Nyquist plots, which are widely used in impedance spectroscopy
[3]. An example is shown in Fig. 15. The squares are measurements
on a supercapacitor [35]. The circles, which correspond to logarith-
mic frequency spacing, are from a 6th-order model, with n = 4 and
g = 1.7, with the real part shifted by 0.00188 X to account for series
resistance, not present in the model. It was found that the values of
n and g were not critical at all, since they chiefly affect the very
high frequency region, in which other effects become dominant.
Such effects dominate frequencies above 12 Hz, and cannot be de-
scribed by the diffusion equation; thus, no fitting was attempted at
such frequencies. It is important to note that, as seen in Fig. 15, the
approach we have presented successfully models the structure in
the CPE region, the capacitive (storage) region, and the transition
region in-between.

7. A comment on average power

It is desirable that an equivalent circuit for ZoðsÞ predict accu-
rately the (real) average power dissipated in it, as this represents
losses in the system. In sinusoidal steady state, assuming the
impedance is driven by a current of rms value Irms, this power is gi-
ven by:

P ¼ I2
rmsRe½ZoðjxÞ� ð30Þ
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where Re½ZoðjxÞ� represents the real part of the impedance. From
this and the accuracy of predicting the magnitude and phase of
the impedance and thus its real part, it can be seen that the power
dissipated in the impedance can be predicted accurately throughout
the range of validity of the above approximations.

8. Conclusions

We have pointed out several unique advantages of the
non-uniform RC ladder as an equivalent circuit for modeling
one-dimensional diffusion. These advantages include the ability
to correctly model storage, the ability to correctly model behavior
at internal points, and computational efficiency. We have pre-
sented systematic, analytical ways for finding approximations for
the poles and zeros of expressions that model the electrochemical
impedance of structures with finite length (referred to sometimes
as ‘‘finite-length Warburg impedance’’), with a blocking boundary
condition. A stretched constellation technique has been utilized
for this purpose, therefore making it possible to use low-order cir-
cuits that match electrochemical impedance over a wide frequency
range. Circuit simulations were used to confirm the theory. The
results in this paper make possible the computationally efficient
modeling of the electrochemical impedance with conventional,
lumped-element circuits, suitable for use in conventional circuit
simulators.
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