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In the epidermis, local and systemic factors including extracellular nucleotides and parathyroid hormone-
related protein (PTHrP) regulate keratinocyte proliferation and differentiation. Extracellular nucleotides
increase proliferation via activation of P2 receptors and induction of calcium transients, while endoproteases
cleave PTHrP, resulting in fragments with different cellular functions. We investigated the effects of adenosine
50-triphosphate (ATP) alone and in combination with synthetic PTHrP peptides on calcium transients in HaCaT
cells. ATP induced calcium transients, while PTHrP peptides did not. C-terminal and mid-molecule PTHrP
peptides (1–100 pM) potentiated ATP-induced calcium transients independently of calcium influx. 3-isobutyl-1-
methylxanthine potentiated ATP-induced calcium transients, suggesting that a cyclic monophosphate is
responsible. Cyclic AMP is not involved, but cyclic GMP is a likely candidate since the protein kinase G inhibitor,
KT5823, inhibited potentiation. Co-stimulation with ATP and either PTHrP (43–52) or PTHrP (70–77) increased
proliferation, suggesting that this is important in the regulation of cell turnover and wound healing and
may be a mechanism for hyperproliferation in skin disorders such as psoriasis. Finally, PTHrP fragments
potentiated bradykinin-induced calcium transients, suggesting a role in inflammation in the skin. Since PTHrP is
found in many normal and malignant cells, potentiation is likely to have a wider role in modulating signal
transduction events.
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INTRODUCTION
Extracellular nucleotides, via activation of P2 receptors, are
important regulators of cellular processes including proliferation,
differentiation, and apoptosis. In cultured keratinocytes, activa-
tion of the G protein-coupled P2Y2 receptor has been linked to
proliferation via elevation of cytosolic-free calcium concentra-
tion ([Ca2þ ]c) (Pillai and Bikle, 1992; Dixon et al., 1999; Burrell
et al., 2003; Greig et al., 2003). P2Y2 receptor mRNA is
differentially expressed in normal keratinocytes (Burrell et al.,
2003) in agreement with in situ hybridization (Dixon et al.,
1999) and immunohistochemistry (Greig et al., 2003). Extra-
cellular nucleotides can act synergistically with other growth

regulators in the skin, including neurotransmitters (Wang et al.,
1990), epidermal growth factor, and insulin (Huang et al., 1989)
to enhance proliferation, for example during wound healing. In
bone, extracellular nucleotides act synergistically with para-
thyroid hormone (PTH), in both human (Buckley et al., 2001)
and rat (Kaplan et al., 1995) osteoblasts. PTH also potentiates
the carbachol-induced elevation of [Ca2þ ]c in HEK-293 cells
after stable transfection with the human PTH type I receptor
(Short and Taylor, 2000; Tovey et al., 2003). In the epidermis,
a related protein, parathyroid hormone-related protein (PTHrP),
is involved in the regulation of proliferation and differentiation
and this led us to hypothesize that PTHrP may also synergize
with extracellular nucleotides in keratinocytes.

PTHrP is a multifunctional autocrine/paracrine protein
produced by normal and malignant cells (Burtis, 1992; Kaiser
and Goltzman, 1993). Depending on the cell type, the PTHrP
gene can be transcribed from three separate promoter regions
into at least 15 different mRNA products, which form proteins
containing 139, 141, or 173 amino acids (Heath et al., 1995).
These proteins are post-translationally modified by enzymes,
which cleave the protein producing smaller fragments that
may act at different receptors (Burtis, 1992; Orloff et al.,
1994). Expression of some of these enzymes is ubiquitous
(Hatsuzawa et al., 1990), while others are restricted (Johnson
et al., 1994). Post-translational processing (Yang et al., 1994)
and fragment function (Fenton et al., 1991; Whitfield et al.,
1996) appear to be species-, tissue-, and isoform-specific,
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and in the epidermis there are conflicting results. While the
N-terminal (1–34) fragment triggers differentiation in
normal keratinocytes (Holick et al., 1988), the C-terminal
fragment stimulates growth of quiescent cells but inhibits
growth of actively cycling cells (Whitfield et al., 1996). High
levels of PTHrP increase epidermal proliferation (Foly et al.,
1998) with production predominantly in the proliferating
basal (Blomme et al., 1999) and early-spinous layers
(Sharpe et al., 1998) although localization can be
altered since the PTHrP (34–68) peptide is predominantly
expressed in the granular cells (Juhlin et al., 1992). PTHrP
expression in HaCaT cells is greatest in actively dividing
cells (Lam et al., 1997). In contrast, absence or low levels of
PTHrP induces differentiation (Kaiser et al., 1992, 1994; Foly
et al., 1998; Sharpe et al., 1998) and once the cells have
migrated to the granular layer, PTHrP production ceases
(Danks et al., 1989).

PTHrP (1–34) has significant sequence and functional
similarities with PTH and shares a common receptor, the
PTH/PTHrP type I receptor. Receptor activation initiates
cellular responses via protein kinase C (Whitfield et al.,
1996), Ca2þ , and adenylyl cyclase (Orloff et al., 1994)
depending on the G-protein subtype utilized. There are links
with both Gq and Gs subtypes of G proteins. However, the
PTH/PTHrP type I receptor is not expressed by keratinocytes
(Hanafin et al., 1995; Sharpe et al., 1998), but is expressed by
underlying dermal fibroblasts. It is thought that keratinocytes
produce PTHrP, which may affect the dermal fibroblasts to
later induce a secondary effect on the keratinocytes (Hanafin
et al., 1995). The C-terminal (107–111) region also stimulates
protein kinase C activity (Whitfield et al., 1996) and has been
postulated to bind to a separate and distinct receptor, which
is as yet uncharacterized.

The aims of this study are to use the HaCaT keratinocyte
cell line to identify whether PTHrP fragments can also
synergize with extracellular nucleotides and to elucidate the
mechanism by which any responses occur. These fragments
have been designed around cleavage sites for the modifica-
tion enzymes that are known to exist in skin in vivo (Pearton
et al., 2001). Consequently, they are likely to be naturally
occurring. N-, C-, and mid-molecule PTHrP fragments have
been used to identify the biologically active regions in
cultured human keratinocytes.

RESULTS
Effects of PTHrP peptides on ATP-induced [Ca2þ ]c responses

Adenosine 50-triphosphate (ATP; 5 mM) induced acute Ca2þ

transients, which lasted for approximately 200 seconds
(Figure 1a). PTHrP fragments (Table 1) alone failed to acutely
elevate [Ca2þ ]c (Figure 1b; only PTHrP (43–52) shown for
clarity). Acute Ca2þ responses due to simultaneous delivery
of ATP and PTHrP (Figure 1c), or delivery of C-terminal or
mid-molecule PTHrP prior to ATP (Figure 1b) had equal
duration but greater amplitudes compared with ATP alone
(Figure 1a; PTHrP (43–52) is shown for clarity). The acute
increase in [Ca2þ ]c from simultaneous addition of ATP and
PTHrP (43–52) was approximately three times greater
(803±58.6 nM) than with 5 mM ATP alone (248±41.9 nM)

(mean±SEM; Figure 2). Similar potentiation occurred
with simultaneous addition of ATP and PTHrP (70–77),
PTHrP (107–113), PTHrP (127–138), and PTHrP (145–172),
while the background [Ca2þ ]c remained unaltered in the
short-term (Figure 2). The potentiation was concentration-
dependent in the range from 1 to 100 pM PTHrP fragment
(Figure 3) and occurred when PTHrP (43–52) was added
10 minutes prior to ATP (Figure 4), but acute changes in
[Ca2þ ]c were not observed with the N-terminal PTHrP (1–34)
fragment (Figure 2). In contrast, simultaneous incubation of
5 mM ATP with 100 pM PTHrP (1–34) for 24 hours significantly
elevated the mean baseline [Ca2þ ]c (177±3.6 nM) in
comparison with untreated controls (109±1.5 nM) (mean±
SEM; Po0.01 Student’s t-test, n¼14). This effect was
not observed with either ATP or PTHrP (1–34) when added
alone (n¼ 14).

Thapsigargin (1 mM) was added after ATP, PTHrP, or ATP/
PTHrP to identify whether potentiation occurred via different
Ca2þ pools. While the duration was not significantly altered,
the amplitude of the acute thapsigargin-induced Ca2þ

responses was reduced after addition of ATP (Figure 1e),
was unchanged after addition of PTHrP (data not shown), and
was abolished after co-stimulation with ATP and PTHrP
(Figure 1f) in comparison to thapsigargin alone (Figure 1d).
Since Ca2þ -free conditions were used (treated with 1 mM

EGTA), Ca2þ influx was prevented and stimulation with
ATP resulted in Ca2þ store depletion, thus preventing
subsequent thapsigargin responses. ATP in the presence or
absence of PTHrP failed to acutely elevate [Ca2þ ]c after
cells were treated with 1mM thapsigargin (data not shown).
This suggests that a thapsigargin-sensitive Ca2þ pool is
responsible for both the ATP and PTHrP-enhanced Ca2þ

responses.

Potentiation of ATP-induced [Ca2þ ]c response is independent
of cAMP, but dependent on cGMP

ATP in the presence or absence of PTHrP fragments failed to
stimulate cAMP production in HaCaT cells in comparison
with the control (Figure 5). However, the cell-permeable
adenylyl cyclase activator, forskolin (50 mM), significantly
increased cAMP production as would be expected (Figure 5).
Although 50 mM forskolin elevated cAMP (Figure 5), it
significantly reduced the ATP-evoked elevation of [Ca2þ ]c

(Figure 4). In contrast, the addition of the nonspecific
phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine
(IBMX; 0.1 mM), mimicked the response observed with PTHrP
(only data for PTHrP (43–52) shown for clarity; Figures 4 and
6b), indicating the involvement of another cyclic monopho-
sphate. Since cAMP does not appear to be involved in the
peptide- or IBMX-induced potentiation of [Ca2þ ]c, we
examined whether cyclic guanosine monophosphate (cGMP)
could be involved. Addition of the highly selective protein
kinase G inhibitor, KT5823 (0.25 mM), prevented PTHrP or
IBMX from potentiating the ATP-induced elevation of
[Ca2þ ]c (Figure 6a and c respectively; 327±134.6 and
162±21.4 nM for KT5823 in the presence of PTHrP or IBMX
respectively; mean increase in [Ca2þ ]c±SEM), indicating
that cGMP was the likely mediator.
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Effects of PTHrP on ATP-induced proliferation

ATP-induced proliferation was significantly increased by
100 pM PTHrP (43–52) and (70–77), but significantly
decreased by 100 pM PTHrP (1–34), (127–138), and
(145–172) (Figure 7). The greatest increase in proliferation
was observed with ATP in combination with PTHrP (43–52).
PTHrP fragments alone failed to induce a change in cell
numbers in comparison with untreated cells (data not
shown), indicating that fragments are not active when alone.

PTHrP (43–52) potentiates the bradykinin-induced [Ca2þ ]c

response

To identify whether the synergistic effects of PTHrP were
confined to ATP, the effect on bradykinin was investigated.
Bradykinin (10 mM) induced Ca2þ transients, which, like ATP,
lasted for approximately 200 seconds (Figure 8a) and these
were potentiated by 100 pM PTHrP (43–52) (Figure 8b) by
approximately two-fold in comparison to bradykinin alone
(Figure 9).
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Figure 1. Effect of ATP (5 lM) and PTHrP peptides on [Ca2þ ]c in HaCaT cells. Fura-2-loaded cells were stimulated with (a) ATP (5 mM) alone, (b) ATP

(5 mM) in the presence of 100 pM PTHrP (43–52), (c) simultaneous delivery of both ATP (5 mM) and 100 pM PTHrP (43–52), (d) thapsigargin (1 mM) alone,

(e) ATP (5 mM) followed by a wash and 1 mM thapsigargin, and (f) co-stimulation with 5 mM ATP and 100 pM PTHrP (43–52) followed by a wash and 1 mM

thapsigargin (results are representative of n¼6 responses per treatment). The ratio of emitted light (520 nm) after excitation at 340 and 380 nm was

converted into [Ca2þ ]c (nM) by comparison with a standard curve.
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DISCUSSION
Although extracellular nucleotides are important regulators of
proliferation, differentiation, and apoptosis in the epidermis
(Pillai and Bikle, 1992; Dixon et al., 1999; Burrell et al.,

2003; Greig et al., 2003), the mechanism by which
keratinocyte proliferation is increased during wound healing
is unclear. Extracellular nucleotides can act synergistically
with other growth regulators to elevate proliferation (Huang
et al., 1989; Wang et al., 1990). In this study, we have shown
early evidence that multiple PTHrP fragments act synergis-
tically with ATP (Figure 2) and alter proliferation in HaCaT
cells (Figure 7). Previously, the function of specific PTHrP
domains was unclear with some fragments, inducing
proliferation and/or differentiation depending on the tissue
or stage of the cell cycle (Whitfield et al., 1996).

As HaCaT cells express multiple P2Y receptors, 5 mM ATP
was used to only activate P2Y2 receptors (Burrell et al., 2003).
Normal keratinocytes have been reported to respond to
PTHrP (1–34) with elevated [Ca2þ ]c (Orloff et al., 1992), but
we found no evidence for this (Figure 1b), indicating
differences in the responsiveness between the HaCaT cell
line and normal keratinocytes. Although mechanical stress
induces ATP release from normal keratinocytes (Dixon et al.,
1999) and HaCaT cells (Burrell et al., 2005), addition of
PTHrP fragments alone cannot have induced sufficient ATP
release to initiate subsequent [Ca2þ ]c responses. The [Ca2þ ]c

responses reported here are therefore a consequence of the
agonists and not mechanical stress.

Table 1. Summary of PTHrP peptides

Sequence Residues
Number of
amino acids pI Mw

AVSEHQLLHDKGKSIQDL

RRRFFLHHLIAEIHTA

1–34 34 8.66 4,118

SPNSKPSPNT 43–52 10 8.47 1,112

QETNKVET 70–77 8 4.53 1,032

TRSAWLD 107–113 7 5.75 931

SDTSTTSLELDS 127–138 12 3.49 1,339

GLKKKKENN 145–153 9 10.00 1,142

Mw, molecular weight; pI, isoelectric point.
Details include primary sequence, location, pI, and Mw.
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The increase in [Ca2þ ]c during potentiation of ATP-
induced [Ca2þ ]c responses by PTHrP can occur via a number
of sources. [Ca2þ ]c is controlled by the balance of elevation
by release from intracellular stores, and Ca2þ influx with
removal from the cytoplasm by Ca2þ efflux and sequestra-
tion. In our studies, Ca2þ -free conditions prevented Ca2þ

influx, and Ca2þ efflux is unlikely to be maintained in the
continued absence of Ca2þ influx since this would result in a
steady decline in the cellular Ca2þ content and no such
decline was observed. For sequestration to be involved in
potentiation, a decrease in the rate of reuptake would be
necessary. From our results, the converse is true since the
duration of the transient when co-stimulated is approximately
equal to that when stimulated with ATP alone (Figure 1c and
a respectively), suggesting that sequestration is enhanced in
co-stimulated cells. PTHrP, like PTH, may also facilitate
translocation of Ca2þ between discrete intracellular stores
(Short and Taylor, 2000). Ca2þ stores that lack inositol 1,4,5-
trisphosphate (InsP3) receptors (i.e. InsP3-insensitive) and
possess InsP3 receptors (i.e. InsP3-sensitive) have been
suggested with the releasable Ca2þ pool regulated by linking
these stores (Short and Taylor, 2000; Tovey et al., 2003). Our
results show that if this is the case, then both Ca2þ pools are
thapsigargin-sensitive. Another hypothesis is that G proteins
may also directly ‘‘tune’’ the sensitivity of InsP3 receptors
(Tovey et al., 2003), although the mechanism remains
unknown.

If potentiation involves the PTH/PTHrP type I receptor,
[Ca2þ ]c elevation could occur via activation of Gq (phos-
pholipase C/InsP3 pathway) or Gs (adenylyl cyclase/cAMP
pathway) G proteins (Abou-Samra et al., 1992). While InsP3

directly elevates [Ca2þ ]c, cAMP activates protein kinase A,

which phosphorylates the InsP3 receptor at serines 1755 and
1589 (Ferris et al., 1991; Haug et al., 1999; Bruce et al.,
2002; Straub et al., 2002) on the endoplasmic reticulum
surface, triggering release of stored Ca2þ . We found no
evidence for the involvement of Gs-coupled events (Figures 4
and 5) in agreement with previous studies where protein
kinase A activation did not alter proliferation or [Ca2þ ]c in
HaCaT cells (Paramio and Jorcano, 1997), although events
upstream of adenylyl cyclase may occur via direct cross-talk
of Gs with the adjacent Gq protein (Jimenez et al., 1999;
Tovey et al., 2003).

From the results with KT5823 and IBMX we suggest that
the potentiation is due to cGMP, although the cGMP source
remains unknown. IBMX, which is not Gq protein-coupled,
prevents cyclic monophosphate breakdown and since cAMP
can be discounted (Figure 5) it suggests the involvement of
another cyclic monophosphate. Potentiation of Ca2þ re-
sponses by IBMX occurs in several cell types (Pannabecker
and Orchard, 1987; Dasarathy and Fanburg, 1988; Buckley
et al., 2001). However, the involvement of cGMP was
discounted in UMR-106 clonal rat osteoblasts as dibutyryl-
cGMP (a cGMP analogue) did not mimic the effects of PTH
(Buckley et al., 2001). cGMP is elevated in specific
intracellular pools with discrete effects on Ca2þ signaling
(Zolle et al., 2000). There are distinct particulate and
cytosolic sources of cGMP within cells (Braughler et al.,
1979; Waldman et al., 1984; Mittal, 1985; Ignarro et al.,
1986; Chinkers et al., 1989; Drewett and Garbers, 1994) and
at least five phosphodiesterases are involved in cGMP
hydrolysis. These are expressed in different cellular regions
(Braughler et al., 1979; Waldman et al., 1984; Mittal, 1985;
Ignarro et al., 1986; Beavo, 1988; Fisher et al., 1998).
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Dibutyryl-cGMP is poor at inducing pool-specific effects of
cGMP (Zolle et al., 2000), which explains the results of
Buckley et al. (2001). Potentiation of ATP-induced elevation
of [Ca2þ ]c by brain natriuretic peptide has also been linked
to cGMP in ECV304 cells (Zolle et al., 2000).

[Ca2þ ]c elevation is linked to both proliferation and
differentiation (Sharpe et al., 1993). The significant decrease
in cell number with ATP in combination with PTHrP (1–34),
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cells. HaCaT cells were seeded at a density of 1�105 cells/6 cm petri dish

and allowed to settle for 24 hours prior to stimulation by 100 pM PTHrP

fragments in combination with 5 mM ATP. Proliferation was determined using

a Coulter counter (model ZM) to obtain mean cell numbers after a further

24 hours incubation with agonist. Results are expressed as % ATP

response±SD (n¼8 for controls and n¼4 for treatments). Figures are

representative of four separate studies. Statistical significance between ATP

alone and ATP in combination with PTHrP is denoted by *Po0.05 and

**Po0.01 (Student’s t-test).
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(127–138), or (145–153) in comparison with ATP alone
(Figure 7) may be due to the cells differentiating, as has been
previously suggested (Holick et al., 1989). On examination of
the effects of ATP/PTHrP (1–34) on long-term elevation of
[Ca2þ ]c, we found that the mean baseline [Ca2þ ]c increased,
which is also consistent with the onset of differentiation
(Sharpe et al., 1993). As ATP/PTHrP (43–52) or (70–77)
increased proliferation above that induced by ATP alone
(Figure 7), this suggests that PTHrP fragments may be
important in the localized regulation of wound healing
where accelerated proliferation is necessary to replace the
epidermal barrier.

Finally, the effects of PTHrP in combination with a non-
nucleotide substitute were studied. In contrast to normal
keratinocytes (McGovern et al., 1995), [Ca2þ ]c is elevated by
relatively few agonists in HaCaT cells with carbachol and
substance P being ineffective (Rosenbach et al., 1993).
Bradykinin elevates [Ca2þ ]c in HaCaT cells (Rosenbach
et al., 1993) and normal keratinocytes (Tuschil et al., 1992;
Rosenbach et al., 1993; Coutant et al., 1998; Koegel and
Alzheimer, 2001) via phospholipase C (Talwar et al., 1990)
and InsP3 production (Rosenbach et al., 1993). As PTHrP
(43–52) potentiated the bradykinin-induced elevation of
[Ca2þ ]c (Figure 8b), the potentiation is not confined to
extracellular nucleotides. Since potentiation of the [Ca2þ ]c

response is linked to an increase in proliferation (Figure 7),
we hypothesize that bradykinin, which is involved in the
inflammatory response in the skin (Mullins, 1986) and is
present in wounds, may increase the inflammation leading to
accelerated proliferation above that of normal epidermal
homeostasis particularly during wound healing.

In conclusion, these studies suggest that PTHrP peptides
are functional in the epidermis where they act in synergy with
G protein-coupled agonists such as ATP and the inflamma-
tory-mediator, bradykinin, and are involved in the regulation
of proliferation and differentiation. More importantly, since
PTHrP is found in many normal and malignant cells (Burtis,
1992; Kaiser and Goltzman, 1993), the potentiation shown in
this paper is likely to have a wider role in modulation of
signal transduction events.

MATERIALS AND METHODS
Materials

DMEM, fetal calf serum, penicillin, streptomycin, and 0.05% trypsin

in 0.02% EDTA were purchased from Invitrogen (Paisley, UK) and

fura-2AM was from Molecular Probes via Invitrogen (Paisley, UK).

EDTA (0.02%), nucleotides, IBMX, forskolin, triethylamine, acetic

anhydride, and cAMP were purchased from Sigma (Poole, UK). The

HaCaT cell line was a gift from Professor Fusenig (Division of

Differentiation and Carcinogenesis In Vitro, Institute of Biochem-

istry, German Carcinogenesis Research Centre). Synthetic PTHrP

peptides were purchased from Thistle Research (Glasgow, UK).
125I-labeled cAMP, acetate buffer, primary antibody (rabbit), and

donkey anti-rabbit secondary antibody solid phased to Sepharose 4B

were purchased as a kit from Amersham (Buckinghamshire, UK).

KT5823 was purchased from Tocris (Avonmouth, UK).

Cell culture

HaCaT cells were cultured as described previously (Burrell et al.,

2003). Cells were passaged at approximately 70% confluence and

were pre-incubated with 0.02% EDTA for 5–10 minutes, before

5 minutes incubation with 0.05% trypsin in 0.02% EDTA. Cells were

resuspended in fresh DMEM and split at a ratio of 1:10.

[Ca2þ ]c Measurements

Cells were grown on 22 mm round coverslips for 24 hours at

densities of approximately 1� 104 cells/coverslip. Measurements

were made from single cells from colonies of approximately 4–8

cells, loaded with the fluorescent calcium dye, fura-2 in calcium-free

phosphate-buffered saline (EGTA-treated), using methods and

equipment described previously (Sharpe et al., 1993; Zolle et al.,

2000; Burrell et al., 2003). Cells were washed in calcium-free

phosphate-buffered saline to remove residual medium containing

calcium, before stimulation by agonists. The ratio of emitted light

(measured at 520 nm), after excitation at 340 and 380 nm, was

plotted graphically and was converted into the [Ca2þ ]c by

calibrating the 340/380 nm ratio (Grynkiewicz et al., 1985). The

increase in [Ca2þ ]c was determined by subtracting the baseline

level from the peak level and a mean was calculated for each

treatment.

Induction of cAMP

HaCaT cells were seeded onto 6 cm petri dishes and allowed to

adhere and grow until confluence. Cultures were serum-starved

overnight in medium containing 0.1 mM IBMX to prevent breakdown

of cAMP by phosphodiesterases. Cells were treated for 45 minutes

with agonists before the medium was removed and the cells scraped

into 1 ml 65% ethanol. Forskolin (10 mg/ml), a cell-permeable

adenylyl cyclase activator, was used as a positive control. The cells

were stored at �201C prior to cAMP analysis. Samples of cells

(500ml) were acetylated using 10 ml triethylamine and 5ml acetic

anhydride and were vortexed thoroughly between additions.

A standard curve, to which samples were compared, was produced

by serially diluting a stock solution of 20 mM cAMP in 0.05 M acetate

buffer (pH 5.8) forming eight concentrations in the range

40–2,500 pM. These were acetylated as described above and

analyzed in the same way as the samples. Additionally, three

controls containing 0.25, 0.5, and 1 mM of cAMP were analyzed

both at the beginning and at the end of the assay.
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Figure 9. PTHrP (43–52) potentiates the bradykinin-induced [Ca2þ ]c

response in HaCaT cells. Bradykinin (10 mM) was added to fura-2-loaded

HaCaT cells in the presence of 100 pM PTHrP (43–52). The increase in

[Ca2þ ]c was calculated by subtracting the baseline level from the peak

concentration. Results are shown as mean increases in [Ca2þ ]c±SEM

(n¼6 per treatment). Statistical significance is denoted as *Po0.05 as

determined by Mann–Whitney U-test.
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cAMP analysis
cAMP analysis was carried out in 12� 75 mm borosilicate glass

tubes. Acetylated standards, controls, or samples (50ml) were added

to 100ml primary antibody (rabbit) and 100 ml of 125I-labeled cAMP

(100ml of 5 mCi stock diluted in 20 ml 0.05 M acetate buffer, pH 5.8).

They were then vortexed thoroughly, sealed, and incubated over-

night for a minimum of 12 hours at 41C, before 200 ml secondary

antibody (donkey anti-rabbit solid phased to Sepharose 4B, diluted

between 1:2 and 1:8 times) were added and shaken for a minimum

of 2 hours. Samples were then centrifuged at 2,000� g for 5 minutes

and the pellet washed three times in 2 ml 0.09 % NaCl. Readings of

the radioactivity were taken on a NE1600 gamma counter for

1 minute/sample and compared to the standard curve.

Proliferation assay

Proliferation was measured according to the protocol outlined

previously (Burrell et al., 2003). Cells were serum-starved overnight

before being incubated for 24 hours in the presence of 100 pM

PTHrP fragments, and 5 mM ATP before cell numbers were counted

using a Coulter counter (model ZM). Results are expressed as % ATP

response.

Statistical analysis
As the [Ca2þ ]c measurements from keratinocytes are not normally

distributed (Shapiro–Wilk W-test for normality), the non-parametric

Mann–Whitney U-test was employed. For the proliferation data, the

results were normally distributed (Shapiro–Wilk W-test for normality)

and so unpaired Student’s t-tests were carried out.
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