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1. INTRODUCTION 

For a vector x = {xi} and matrix o = (uij}, define the Euclidean norms 
1 x I2 = xi xi2, I u I2 = & uz, resp. Consider the homogeneous1 It6 
stochastic differential equation 

dx =f(x) dt + u(x) dx, t > 0, (1) 

where u( .) satisfies growth and Lipschitz conditions of the types2 

I +)I” < q1 + I x 12h 

I +> - 4Y)l e K I x -Y I 

(24 

(2b) 

and x(t) is a normalized vector-valued Wiener process. If 

and 

If(4l” < 41 + I x 12)> (34 

If(x) -f(Y)1 G K I x -Y I> Pb) 

then the It8 existence theory is applicable to (I) and the stability properties 
can be discussed [l]. If (3b) holds locally, but (3a) is violated, a “local” stability 

* This research was supported in part by the National Science Foundation under 
grant GK 24485, in part by the National Aeronautics and Space Administration under 
grant NGL 40-002-015, and in part by the Air Force Office of Scientific Research 
under grant AF-AFOSR 693-67D. 

r The homogeneity condition is not essential, except in Section 4. 
a K and KS always denote real numbers; their value may change from usage to 

usage. 
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property [l, Theorem 8, Chap. 21 ensures the existence of a solution to (1) 
for all t 3 0. 

Recent investigations [2-51 have studied an important class of Eqs. (I), 
wheref(.) is allowed some discontinuities. Rewrite (1) in the form (x1 and 
2 are vectors) 

dxl dx = dx2 = i 1 f’(x) dt 
f”(x) dt + j(x) dt + 6(x) dz, (4) 

where we assume that the fi and 8 satisfy (3) and (2), respectively, and 6(x) 
has a uniformly bounded inverse. (Thus &l(x) satisfies (2), butf*(.) does not 
necessarily satisfy (3)). In the sequel, we prove existence, uniqueness, and 
other properties of (4), when neither (3a) nor (3b) necessarily holds, but a 
“local’ stability property obtains. We also treat the problems of asymptotic 
stability, the existence of a unique invariant measure, and the convergence 
of the measures of (1) to the invariant measure. 

Dlffusions of the type (4) occur frequently in control applications. Consider, 
for example, a “white noise”-driven n-th-order differential equation where f 
IS a “bang-bang” control taking the values { + 1, - l}, or which may be discon- 
tinuous on a smooth “switching curve” and tend to infinity in certain 
directions. Also models such as 

dx = (;:) = ( 
x2 dt 

-(x1 + x13) dt + u dz 1 

are sometimes used, and the existence and asymptotic character of the corres- 
ponding measures are of interest. 

2. MATHEMATICAL PRELIMINARIES 

Assume: 

(Cl) f i and 6 satisfy (3) and (2), respectively, and &l(x) is uniformly 
bounded. f^( .) is a vector-valued Bore1 function of x which is bounded in any 
compact set. 

(C2) The I + 6 process (5) has a transition density p(x; t, y). 

(C3) (A condition on the discontinuities ofJ> Let S, denote a sphere 
of radius m, whose center is the origin. Let N,(A) denote an c-neighborhood 
of the set A and p(A) the Lebesgue measure of A. Suppose there is a 
{discontinuity) set D so that 
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as E - 0 for each m < co. For each E’ > 0, let there be an E > 0, so that 
j x - y / < E implies / f^(~, t) - f^(y, t)i < E’ uniformly in x in bounded 
regions, provided that x $ N,(D). 

Assume (Cl). Let !2 denote the sample space. We use the notation 
(62, z(t), ~28~ , P) for the Wiener process on [0, co], where g!t measures z(s), 
s < t and ,a(~~)-z(ri) is independent of 3Y6 for t < rl < ra , and P is the 
measure on all the ~3~. We say that z(t) is a Wiener process on (Q, a!t, P). 
Let x(t) be the unique solution to the It6 Eq. (5) 

dx = dx’ = f’(x) dt 
dx2 = f”(x) dt + 6(x) dz. (5) 

We say that x(t) is an It6 process with respect to (52, z(t), gi, P,), where 
P, denotes the probability given that x(0) = x (and E, denotes the corres- 
ponding expectation). E and P denote expectation and probability for 
functionals of z(t). Define ~2~ as the sample space for z(t), t < T. Suppose 
that 

s 

T 

I W(x(t)) f(x(t))12 dt < co w.p. 1. (6) o 

(which is certainly true iff’is bounded). Define 

c,,‘(3) = j’&‘(x(t)) &x(t)) dx(t) - + j’ 1 6-1(x(t))f(x(t))i2 dt, 
0 0 

and suppose that 

E,exp toT(3) = 1 (7) 

((7) holds for all T < CO if 3 is bounded.) Then the set function jZT 
defined bys 

PET(A) = jA exp COT(f) . VW) 

is a probability measure on the J?JZ~ , t < T. The process Z(t), t < T, 

a(t) = z(t) - ,I s-1(x(s))3(x(s)) ds 

is a Wiener process on (Q, , 3Y’t , FzT), and the process 

dx = f’cx) dt dx = f ‘b) dt 
f”(x) dt +3(x) dt + b(x)[dz - B-l(x)3(x) dt] f”(x) dt +3(x) dt + b(x)[dz - B-l(x)3(x) dt] 

= f ‘(4 dt = f ‘(4 dt 
f”(x) dt + f(x) dt + 6(x) dZ f”(x) dt + f(x) dt + 6(x) d2 

(8) (8) 

3 The measure p,T depends on the initial condition of (5), as does the Wiener 

process 2(t). 
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is an It6 process with respect to (Sz, , Z(t), g’t , pnr’). The construction was 
first done by Girsanov [4], and exploited by Benes [5], Rishel [2] and then 
Kushner [3], for several control problems. Note the sample space Q, , the 
a-algebras &‘?, , and the random variables x(t) for the Wiener process Z(t), 
and It8 process (Q, , s(t), gt , pzT) are the same as those for the Wiener 
process z(t) and It6 process (5), for t < T. Only the measures have been 
changed. The process (8) is constructed by a transformation of measures on 
the “nicer” process (5). 

Assume thatfis bounded and that (Cl) holds. 

The following facts (drawn from [2-4]) about (8) will be needed: 

(01) [3, Theorem 51. Assume, in addition, (C2-3). The multivariate 
distributions of (8) are continuous with respect to the initial condition x(O) 
(in the sense that the characteristic functions are continuous in x(O)). 

(02 [3, Theorem 21. The solution to (8) is unique in the sense that 
any solutions to (8) have the same multivariate distributions. 

(03) Assume, in addition, (C2-3). Then 

lsz= sup / X(S) - X 14 < K,P(l + / x Id), 
t> s>o 

t < T, 

where B,r is the expectation given x(0) = X, and Ki depends on the bound 
onf: The proof of (03) is close to that of (27)-(28) of [3, Theorem 61. 

(04) Assume, in addition, (C2). Then (8) has a transition density, 
which is any version of [2, Lemma l] (boundedness off is not required if 
(6)-(7) hold) for t < T 

4(x; 4 Y) = -GT[exp 50t(3)l X(t) = rl PC%; 4 Y). 

Also.f^is not required to be bounded in (05). 

(05) [4, Corollary to Lemma 31. Let g(w) be JZ~~ measurable with 
EzT / g(w)1 < cc, and t < T. Then, for s < t ,< T, w.p.1, 

-CTL+) 194 = EiAw) exp hY3>l gsl. 

(The equation also holds if g[s is replaced by any sub u-algebra of .%?s .) 

Fix T, and define S(t) and POT by the Girsanov transformation. Write i?(t) 
as P(t). Suppose that (6)-(7) hold f or a time T, > T, and define the corres 
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ponding Grl L. 91(t), E’,‘1 . Then .91(t) = P(t) for t < T, and on sets B of 
9& we have PST(B) = P?(B). This follows from (05) since (xs is the charac- 
teristic function of the set B) 

P(B) = EJ-%(xB exp Z;,‘l(3) I gT)l 

= %xB exp SoT(3Wz,(exp C?(3) I ST)1 

= EzxB exp COT(f) = PzT(B). 

Thus r’,‘l is an extension of eT. If (6)-(7) hold for each T < co, we can 
replace Sz, by JJ and define a unique measure pX on all the SY’t , t < co, which 
will be consistent with the pzT on gT . Then Z(t) will be an It8 process with 
respect to (JJ, 9f , pz), and (!S, Z(t), at, pz) an It6 process (for all t < co). 
Both (6)-(7) hold for all T < co if3 is bounded. Let g = uta,, .gt . 

3. EXISTENCE OF A SOLUTION TO (8) FOR UNBOUNDED j 

Let V(x) denote a nonnegative twice continuously differentiable function 
which tends to infinity as 1 x / + co. Define QN = (x : V(x) < N} and 
define p(x) = f”(x) for x E QN and fN(x) = 0, x $ QN . Define 

CNT = {w : x(t) cQN, t E [0, T]}. 

Let 2 denote the differential generator of the process (8) and write gN for the 
differential generator when 3 is replaced by jN in (8). Theorem I uses a 
stability idea to prove existence for (8), for all t < co. Lemma 1 is used in 
Theorem 1. 

LEMMA 1. Assume (Cl)-(C3) and that f(x) is bounded. Then x(t), the 
Itt6 process (8) on (-0, .2(t), gi , I’,) is a Markov process and a Feller process, 
hence a strong Markov process.4 

Proof. It is sufficient only to consider the process on an arbitrary finite 
interval [0, T]. The Markov property, under (Cl) and for boundedi( is 
proved in the first part of Theorem 2, and we will not duplicate the proof here. 
To prove the Feller property it is sufficient to show that G(x) = &.=g(x(t)) 
is continuous in x for any continuous function g(x) with compact support. 

4 If &g(x(t)) is continuous in x for each continuous bounded real-valued function 
g(x), then the process is said to be a Feller process. A Markov process which is a right 
continuous Feller process is a strong Markov process [6, Theorem 3.101. 
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Let g(x) be such a function. For any E > 0 there are finitely many rectangles 
(open or closed or partly open) A,, ,..., AtnE and points x,< E AEi so that 

““,P I g(x) - R&)l < E? 

where 

By (01) and (04), the It8 process (8) on (Qn,, g(t), gt, P,=)has a density, and the 
pz’{x(t) E A,$} are continuous in X, for any rectangle (with closed, open, or 
partly open boundary). Thus G,(x) = E,rg,(x(t)) is continuous in X, and 
since G,(x) is within E of G(x), the Lemma is proved. 

THEOREM 1. Assume (Cl)-(C3) and the conditions on V(x) given above 
Lemma 1. Let pV(x) < Ofor all x not in someQ, , a < CO. Then 

E, exp L’,‘(f) = 1 (9) 

for all T < 00, and 

n(t) = z(t) - j-1 8-1(x(s))f(x(s)) ds 

is a Wiener process, for all t < 00 with respect to (J2, ~28~ , P,). The solution 
to (8) exists for all t < co. It is an It6 process with respect to (fi, Z(t), S?i , P,), 
and it is unique (in the sense that the multivariate distributions of any two solutions 
are equal). 

Remark. Let f(y), u(y) satisfy (3), (2) locally, and let 9’i denote the 
differential generator, with coefficients determined by f(y), o(y). If V(x) 
and -Iz;V(x) have the properties required in Theorem 1, then the proof can 
be altered to yield existence and uniqueness for the process 

dy =f (y) dt + u(y) dz. 

Proof. Let fN replace j in (8), where N > a. Let P$’ denote the trans- 
formed measure with pflT(A) = sA exp &,T(fnN) dP and pzN the extension 
of the pz’ to the u-algebra 9 on Q. Write the Wiener process corresponding 
to pzN as zN(t) (instead of S(t)). Then (8) is an Ita process with respect 
to (51, Z’“(t), S?‘t , p,“). By virtue of (03)5 (for x = x(0)) 

ly{ sup / x(s) - x 1 > E > O} --f 0 (10) 
t2 s>o 

5 For the proof of (03), (Cl)-(C3) are used. 

jO5/11/1-II 
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as t -+ 0, uniformly for x in compact regions. Also PNV(x) ,< 0 in6 

QN - Qa - aQa = QN.a . Let 7 denote the first exit’ time of the path x(t) 

from QN - Qa - aQa, and t n 7 = min(t, 7). Then, by Ito’s Lemma, 
EzNV(x(t n T)) - V(x) < 0 for x eQzN - Qa . Since 

EzwI’(x(t n T)) - a 3 (N - a) ~z~{~(s) hits SQN before SQa 

and leaves QN,a in [0, t]}, 

we can conclude that 

w> - a, P,N{~N(l) hits aQN before aQa and leaves QN,@ in [0, T]} < N _ Q __ E . 
(1;) 

We will show that for each E > 0, there is an N < co so that 

p{CNT} 3 1 - E. (12) 

Fix a, > a. There is a 6, > 0 so that 

Let A C CNT. Then, since fN(x(t)) = f”(zc(t)) on [0, T] for M 3 N and 
w E CNT, we have 

Let 6, be an arbitrary real number. (03) implies that, for any 6, < 6, , 

sup PUN{ max j x(t) - y / > S,} ,< K2 6,2 = l a . 
Y@Qa 8,>G=O SO4 

But (13) implies that the constant Ks depends only on the number a, and 
does not depend on N, for N > a, . Thus, we can assume that Kg does not 
depend on N. 

Let 71 be an arbitrary integer for which T/n < 6, . Define 6, by T/n = 6, . 
Let GNT denote the event that x(t) goes to SQa before SQN (or never leaves 
QN,J, then takes no less time than 6, to reach SQ, , then returns to SQ. no 
fewer than n - 1 additional times and after each return takes no less than 
6, to reach SQ,, before leaving QN for the first time. Since CNT 1 GNT and 

B aQN is the boundary of the set QN . 
’ If T is undefined for some path, set 7 = + CO. Note that the exit time T(W) (as a path 

function) for x(t) and .@(t) are the same; but their distributions may differ. 
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GNT E a, we have paN{CNT} 3 pzN{GNT). Also the inequality P”zN{G,*) > 
1 - n(ei + 6s) - ~a , where 

pi = ,rn;x r’yN{x(t) reaches aQ,,, before aQ,> < (a1 - 4 

“1 (N-Q> 

follow from the fact that the ItB process (8) on (fiT, 5(t), g’t , P:“), with 

Z:(t) andf(x) replaced by Z’“(t) andfN( x , is a Feller (hence a strong Markov) ) 
process (Lemma 1). Thus, using 6, = T/n, 

and N and n can be chosen so that PzN{G,T} 2 1 - E. 

1 > p%*(QT) = E, exp &‘(f) 3 E, exp &,*(fN) xc; > 1 - E. 

Since E is arbitrary, (9) holds, g(t), t < T, is a Brownian motion with respect 
to (n, , g’t , pzT) and x(t), t < T, an It8 process with respect to 
(fi, , B(t), JZZJ~ , PXT). Furthermore, since T is arbitrary, we can replace t < T 
by t < co and pzT and Sz, by pz and Q. 

The process (8) is unique in the following sense. Suppose that both xi(t), 
I’ = 1, 2 satisfy (8). Let zbN(t) denote the processes which result when 3N 
replaces $ Suppose that if hN(t) E QN f or all t E [0, T], then xl(t) coincides 
with xisN(t) on [0, T]. Then the uniqueness of the xi.N(t) (in the sense of 
multivariate distributions) and the fact that pzN{CNT} = Pz~‘{C,T} > 1 - E 
for M > N (the pgzN do not depend on i) imply uniqueness of the x”(t) in the 
sense of multivariate distributions. Q.E.D. 

Remark. Lemma 7 of [4] would appear to yield existence for a large class 
of unboundedx But an examination of the proof shows that its content is the 
following. Let processes (5) and (8) exist with respect to some Wiener 
process, with (5) being unique, and J’r 1 6-1(x(t))f(.x(t))12 dt < co w.p.1, 
where x(t) is the solution to (5). U n d er some minor subsidiary condition, it is 
proved that 

E, exp G,‘(f) = 1, 

where the expectation corresponds to (5). Then (8) can be obtained by a 
Girsanov transformation from (5). But both the square integrability property 
and existence for (8) must be established first. But these properties are 
essentially the desired result. 
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3. MARKOV PROPERTIES OF (8) 

In Theorem 2, we will use the condition (C4). In each compact x set, there 
is an a: > 1 and M < 03 so that 

s p,(x;t,y) GM< co. 

THEOREM 2. Assume (Cl)-( C3) and the conditions on V and BP’ of 
Theorem 1. Then the process (8) is a strong Markov process. 

If (C4) holds, for some a > 1, (8) is a strong Feller process. 

Proof. The terminology of Theorem 1 will be used. By Theorem 1, 
the process is defined on the time interval [0, co), and has continuous paths 
w.p.1. 

First, we prove that (8) is a Markov process. Let 9’tz C 9Yf measure x(s), 
s < t. Define the transition function I’,(x; t, A) = p*{x(t) E A}. Since the 
right term of 

I& E 4 = -%x{~(~)~~) exp ~ott.f) 

is a Bore1 measurable function of x, so is P(x; t, A) for each A E .99’tZ, Now 
assume that fN replaces 3, The Chapman-Kolmogorov equation holds since, 
by (05) and the fact that (5) is a Markov process, 

w.p.1. Thus by the definition Dynkin of [6, Chap. 31, xN(t) (the It8 process 
on (Q, i+“(t), &“t , pzN) corresponding to the use of fN) is a Markov process. 

The u-algebras &Jtz also measure (8). The measure pz for the unbounded 
3, has the correct conditioning properties since, by (05) and the dominated 
convergence theorem, 

- ~%[xkd~+~k~~ exp C+"(P) I BaYl 
= G4s)[~zuk4~ exp GYP>1 
= &x(s); t, A) 

w.p.1. Then, by the definition [6, Chapter 31, (8) is a Markov process. 
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Since (8) is a Feller process, it is also a strong Markov process [6, Theorem 
3.101. The proof is Lemma 1. The proof of the stronger “strong” Feller* 
property will be given next, under the additional condition (C4). Let (C4) 
hold. 

Supposing that (8) is a strong Feller process if j is bounded, we show 
that it is also a strong Feller process for unbounded& Let g(.) be bounded 
and measurable. Then EzNg(a(t)) = GN(z) is continuous in X, for t > 0. 
Write G(x) x e,g(x(t)). Then 

I G(x) - GN(x)/ < my I &)I . [p&Q - CNTJ 

+ P,“{Q - C&T}] + 0 as N-co 

uniformly in any compact x set. Thus, G(x), being the uniform limit of 
continuous functions is continuous. 

Finally, suppose f is bounded and (C4) holds. Reproducing an argument of 
Rishel [2], we show that for each compact x set there is a /3 > 1 and M < co 
so that (4 is the density of (8); see (04)) 

s q”(x; t,y> dy < Ml < ~0. 
Define Y(X; t, y) E E,[exp <a”(j) 1 x(t) = y]. Let 731-l + n-l = 1, and note 

that, for any p > 1 and compact x set, there is an N, < 00 so that 

JG exp ~5~Yf”) < N, [4, L emma 11. Let p > & , /3 > 1. By Holder’s 
inequality, 

I PS(T t, Y> @(T 4 Y) 

= 
i’ 

pa~(x; t, y) Y’(x; t, y) PO-“(x; t, y) dy 

< [I p4q; t, y) rDn(x; t, y) dy]+ [j. P(‘-‘~)~(x; t, y) dy]lim. 

We can choose fi > 1, /3 > fir , m, n and p > 1 so that (/3 - jr) m = CX, 
fin = p, /&n = 1, which, together with (C4), proves (14). Equation (14) 
implies that, as x varies in any compact set, the family p(x; t, y) of functions 
of y is uniformly integrable. This, together with the continuity (in x) of 
P”(x; t, (- co, b)) for any vector b (recall that there is a density) implies that 
P”(x; t, A) is continuous in x for any Bore1 set A, which implies, in turn, 
the strong Feller property. For more detail, note that the boundary of any 

8 x(t) is a strong Feller process if E,f(x(t)) is continuous in x for any bounded 
Bore1 functionf(x) and t > 0. 
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rectangle in the range space of x(t) has zero probability, and that P(x; t, A) 
is continuous in x on the algebra of sets which are sums of rectangles (open, 
closed or neither) by (01). Let P(x; t, Ai) be continuous in x for a collection 
of sets Aj , which increase monotonically to A 

The second integral goes to zero as j -+ co uniformly in x in any compact 
set, by the uniform integrability of 4(x; t, y). Since the first integral is conti- 
nuous, so is the uniform limit P”(x; t, A). Thus P (x; t, 4) is continuous in x 
on the least u-algebra containing sums of rectangles, the Bore1 field. Q.E.D. 

4. THE INVARIANT MEASURE, AND THE ASYMPTOTIC PROPERTIES 

OF THE MEASURES OF (8) 

In [8], under the conditions (Dl)-(D5), Khasminskii proved the existence 
of a unique u-finite invariant measure for a process x(t) with a stationary 
transition function P”(x; t, A) under the conditions (Dl-5). 

(Dl) For any E neighborhood N,(x) of x, 1 - P(x; t, NE(x)) = o(t) 
uniformly in x in any compact set. 

(D2) The process is a strong Markov and strong Feller process. 

(D3) p(x; t, U) > 0 for all open sets U and t > 0. 

(D4) The paths are continuous w.p.1. 

(D5) The process is recurrent. (There is some compact set K and a 
random time 7 < a3 w.p. 1. so that x(7) E K w.p. I., for each initial condition.) 

In [9], Kushner applied the result in [8] to obtain a sufficient condition for 
the convergence of the measures of a class of diffusions to a unique invariant 
measure. Theorem 3 includes the prior result as a special case. Zakai [IO] 
has treated the invariant measure problem for a class of diffusions satisfying 
(2)-(3), using a general method of Benes [ll]. A similar problem is treated 
in Elliot [12]. Elliot’s method involves a condition on a Lie algebra generated 
by certain functions of the diffusion coefficients, which is hard to check in 
special cases. The result of Benes [l l] ( concerning only existence of an 
invariant measure) uses the condition that liml,~,m P(x; t, K) + 0 for all 
compact sets K. This would not always hold under our conditions. For 
example, the solution to 2 + x3 = 0, reaches x = 1 in a time that is bounded 
as x(0) + co, and we would expect a similar result for dx = -x3 dt + u dz. 

THEOREM 3. Assume (Cl)-(C4), and the conditions on V(.) in Theorem 1, 
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except let .S?V(x) < --E < 0 outside of Qa . Let (5) have a nowhere zero 
density for each initial condition x. Then (8) has a unique invariant measure 
Q(.) and P(x; t, A) -+ Q(A) as t + co for any x. Both P”(x; t, A) and Q(A) 
have nowhere zero densities. 

Remark. Theorem 3 only deals with invariant measures, but almost all 
of stability results in [l] can be carried over to the problem with discontinuous 
drift terms. 

Proof. The second inequality of (03) implies (Dl) for bounded f, and, 
hence, for the processes xN(t). But, if (Dl) holds for each xN(t), it holds for (8). 
(D2) is proved in Theorem 2. Since &[exp I;sf(j> / x(t) = y] > 0 w.p.1. and 
p(x; t, y) > 0 for all y by assumption, 4(x; t, y) (the density for p(x; t, A)) is 
positive for almost all y (Lebesgue measure). This implies (D3). (D4) is 
a consequence of Theorem 1. (D5) is a consequence of -@V(x) < --E < 0 
for all large x. (See Theorem 4 in [9]). Indeed, the average time to leave the 
set QN - Q,, - aQo (for x(O) = ) ’ b x is ounded above by (V(x) - a)/e < co. 
This together with (11) gives (D5). Thus all (Dl-5) hold. 

Q(A) satisfies 

QW = j” Q(dx) &; t, 4 

= s I A du QW dx; t, 4. 

Thus Q(A) > 0 for all sets A of positive Lebesgue measure and has density 

J-Q@4 dx; t, > h’ h u , w IC must be positive almost everywhere. 

For a process with a transition density and a unique invariant measure 
Q(.) with a nowhere zero density, Doob [7, Theorem 51 proves that 

P(x; t, A) + Q(A) as t ---f co for any x. Q.E.D. 
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