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Abstract :  Let R be a ring and A an R-module. We examine different notions of bases or generating 
sets for A. Of particular interest is the notion of an irredundant basis for A, that is, a subset X of 
A that generates A but for which no proper subset of X generates A. We investigate the existence 
and cardinality of irredundant bases. 
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1. I n t r o d u c t i o n  

The word "basis" is one of those overused words in mathematics whose meaning must often 
be deduced from context. On one hand the word "basis" is used for a linear independent 
spanning set in a vector space or free module while at the other extreme it is used to just 
mean any generating set for a module or ideal as in the Hilbert Basis Theorem. Equally 
ambiguous is the phrase "minimal basis" or "minimal generating set". The purpose of this 
article is to examine different types of "bases" or distinguished generating sets for modules. 
To compare and contrast the different types of bases we have included a number of well 
known results. Hopefully the less expert reader will enjoy our somewhat expository style 
and references to well known results while the expert reader will forgive us. 

Let R be a ring (always with identity) and M an R-module (always a unitary left R- 
module unless otherwise noted). A subset X C M is a basis (resp. weak basis, i-basis) for M 
if X generates M and for x l , ' - '  , x~ E X and r l , . . .  , r~ C R ,  r l x l  + . . .  + r~x,~ = 0 implies 
each ri = 0 (resp. each r~xi = 0 but xi ~ 0, each ri is a nonunit). So M has a basis precisely 
when M is a free R-module and M has a weak basis if and only if M is a direct sum of cyclic 
modules. It is easy to see that X is an i-basis if and only if X is irredundant in the sense 
that no proper subset of X generates M. 

In Section 2 these three types of bases are examined in some detail. A number of examples 
are given to illustrate the similarities and differences between the three types of bases. 
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However, we will concentrate on i-bases. Of particular interest is what modules have an 
i-basis and how i-bases behave with respect to standard ring and module constructions. 

In Section 3 we consider the possible different cardinalities for the different types of bases 
for a given module. It is of course well known that while a finitely generated free module 
may have bases of different (finite) cardinalities, this cannot happen for a free module with 
an infinite basis. We show that if a module M has an infinite i-basis X then any generating 
set Y for M has IX[ _< IY[. In particular, if Y is another i-basis for M, then IX[ = [Y[. 
We show that quasilocal rings are characterized by the property that any two i-bases for a 
module have the same cardinality. We also examine the possible different lengths of i-bases 
for a finitely generated module. 

In Section 4 we consider the question of what rings R have the property that every R- 
module has an i-basis. We show that a left perfect ring has this property and give a partial 
converse. 

As previously noted, "ring" will mean an associative ring with identity and "module" a 
unitary left R-module. We follow standard notation and terminology from [1] or [6]. 

2. Types  of Bases and Examples  

Throughout R is a ring with identity and module means left R-module. For a subset X of 
an R-module M, (X) denotes the submodule generated by X. The following definition gives 
three different notions of independence and basis. 

Definit ion 2.1. Let R be a ring and I an ideal of  R. Let M be an R-module and let X C_C_ M.  
Then X is/-independent (resp. weakly/-independent, irredundant) i f  for xm , . . . , x~.  E X ,  
r lx  m + . . .  + r ,x~ .  = 0 (rl, . ." , r ,  E R) implies each ri E I (resp. each r i x~  E I M  but each 
x~, ~ I M ,  each ri is a nonunit). I f  X generates M and X is I-independent (resp., weakly 
I-independent, irredundant), then X is an I-basis (resp., weak I-basis, i-basis) for M. I f  M 
has an i-basis, we say that M is/-generated. In the case I = O, we just  drop the I and say 
independent, weakly independent, basis, or weak basis. 

While in Definition 2.1 we have written X C M as just a subset of M, we will usually 
be thinking of X as a "list" or as an indexed set. Thus X may have repeated elements. Of 
course, an irredundant set (and hence a basis or weak basis) can not have repeated elements. 

Our first proposition gives an alternate formulation of each type of independence. 

P ropos i t ion  2.2. Let M be an R-module and let X C M.  
(1) X is independent i f  and only i f  (X)  is a free R-module on X .  So M has a basis i f  and 
only i f  M is a free R-module. 
(2) X is weakly independent i f  and only i f  (X} = ~ e x R x  and each Rx  ~ O. So M has a 
weak basis i f  and only i f  M is a direct sum of cyclic R-modules. 
(3) X is irredundant i f  and o n l y i f  for each x~ E X ,  x~ q~ ( X  - {x~}). So M has an i-basis 
if and only i f  M has a minimal generating set {g~}; i.e., {g~} generates M but no proper 
subset of  {g~} generates M. 
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Proof .  Clear. • 

Let X C M where M is an R-module. Then X independent ==~ X is weakly independent 
X is irredundant. However, neither of these implications can be reversed. For example, 

{i} is a weak basis for Z2 considered as a Z-module but is not a basis for Z2 and {2, 3} is an 
/-basis for Z but is not a weak basis for 7, Note that for each ideal I, O is/-independent, 
/-weakly independent, and irredundant. We next observe that division rings are precisely 
the rings for which the three types of independence coincide. 

T h e o r e m  2.3. For a ring R the following conditious are equivalent. 
(1) R is a division ring. 
(2) Every R-module has a basis. 
(3) Every irredundant subset of an R-module is independent. 
(4) Every irredundant subset of an R-module is weakly independent. 
(5) Every weakly independent subset of an R-module is independent. 

Proof .  (1) ~ (2) This implication is well known; see, for example [6, Theorem 
IV.2.4]. (2) ~ (1) While this implication is also well known, we provide a proof. Let 
A4 be a maximal left ideal of R. Now R / M  has a basis. Since R/A4 is simple, the basis 
has one element. So R/A4 is isomorphic to R. So 0 is a maximal left ideal of R. Hence 
R is a division ring. (1) ~ (3) This implication is clear as 0 is the only nonunit of a 
division ring R. (3) ==~ (4) and (3) ~ (5) Clear. (5) ~ (1) Let Z4 be a maximal left 
ideal of R. Then T in R/A4 is weakly independent and hence independent. But Adi = 0, 
so A/I = 0. Thus R is a division ring. (4) ~ (1) Suppose that R is not a division 
ring. So R has a nonzero proper left ideal Rr. Let A = R @ (R/Rr)  and rl = (1,1) and 
r2 = (1, 0). Then {rl, r2} is an i-basis for A. However, {rl, r2} is not weakly independent 
since (0, 0) ~ (r, O) = rrl = rr2 E Rrl A Rr2. • 

We next give some examples of/-generated modules and non-i-generated modules. 

P ropos i t i on  2.4. 
(1) A direct sum of cyclic modules is i-generated. More generally, /f {Ms} is a family of 
i-generated R-modules, then M = @Ms is i-generated. 
(2) A uniserial R-module (i.e., the set of submodules of M is totally ordered by inclusion) 
is i-generated if and only if it is cyclic. Thus, the abel/an group Zp~ is not i-generated. 
(3) Suppose that M is a finitely generated R-module. Then any generating set X for M has 
a finite subset Y C_ X that is an i-generating set for M. Thus a finitely generated module is 
i-generated. 
(4) A nonzero divisible abe//an group G is not i-generated. More genera/ly, if D is an integral 
domain that is not a field, then a nonzero divisible D-module cannot be i-generated. 
(5) A nonzero i-generated R-module A must have a maximal submodule. More generally, if 
A has an i-basis X ,  then any submodule B of A that can be generated by fewer than IX[ 
elements is contained in a maximal submodule. 

Proof .  
(1) Let { m ~ }  be an i-basis for Ms. Identify m ~  with its image in M = GM~. Then 
U~{m~} is an i-basis for M. For [.J~{m~} certainly generates M and ~ ~ r ~ m ~  = 0 



286 D.D. Anderson and J. Robeson 

implies ~ r ~ m ~  = 0 for each ~. But then ( m ~ }  an i-basis for M~ gives that each r~z is 
a nonunit. Hence [.J~{m~} is an i-basis for M = @Mo. 
(2) Let M be a uniserial R-module. We may assume that M is nonzero. If M = Rm is cyclic, 
then {m} is an i-basis for M. Conversely, suppose that M is/-generated; say {m~}~eA is an 
i-basis. Suppose IAI > 1; so m~ 1, m~ 2 are distinct elements of (m~}. But then since M is 
uniserial, Rm,~ 1 and R m ~  are comparable; say Rm,~ 1 C Rm~2. So ({m~} - {m~l} ) = M, a 
contradiction. Thus M must be cyclic. 
(3) Let M be finitely generated and suppose that  X generates M. Then some finite subset 
X '  = {x l , . . .  , xn} of X generates M. If X '  is an i-basis for M, we are done. So suppose 
that some xi0 E ({xl} - {xio}), so X '  - {X~o} generates M. Continuing we get that  some 
subset of X '  - {xio} C X '  C_ X is an i-basis for M. 
(4) Let {d~} be an i-basis for G. Let do E {d~}. Then ({d~} - {do}) = Go C G and G/Go 
is a nonzero cyclic abelian group, necessarily divisible. But this is a contradiction. For the 
generalizaton, it suffices to observe that  if D / I  is a divisible D-module for some proper ideal 
I ,  then I = 0 and hence D is a field (for more detail see the proof of Lemma 4.4). 
(5) First, suppose that  A is finitely generated with i-basis x l , . - . ,  xn. Then the module 
A~ (xl , . . .  ,x~-l) is cyclic, say A~ (Xl,. . .  ,x,~-l) is isomorphic to R / I  for some left ideal I 
of R. But then for a maximal left ideal A4 D I, A4/I  is a maximal submodule of R/I .  So A 
has a maximal submodule. Thus for the second statement we can assume that X is infinite. 
Let B = (Y) where IYI < IX]. Since each element of Y is a finite linear combination of 
elements of X, B C (X') for some X '  C X. Let x0 e X - X' ;  so B C (X - {x0}). Now 
A~ (X - {x0}) is a nonzero cyclic R-module and hence has a maximal submodule. Thus 
(X - {x0}), and hence B, is contained in a maximal submodule. • 

Now observe that  a module can have a maximal submodule without being/-generated. 
For example, Z2 ® Z2= has a maximal submodule 0 @ Z~=, but  Z2 @ Z2= is easily checked 
(or see Corollary 2.10) to not be i-genergted. Also, the condition in Proposition 2.4(5) 
that B be generated by fewer than IX] elements is necessary. For G = (O~=1Z2) ~ Z2= 

oo Z is/-generated (Example 2.11), but  @,~=1 2 is not contained in a maximal submodule since 
oo Z G~ @~=1 2 "~ Z2=. While Proposition 2.4(1) gives that a direct sum of/-generated modules 

is/-generated, the next example shows that a direct product of/-generated modules need 
not be/-generated. 

E x a m p l e  2.5. ( A direct product of i-generated (even cyclic) modules need not be i-generated. ) 
Let G = l ip  Zp where the product runs over all primes p of N. Then the torsion subgroup 
tG = @pZp and G/tG is divisible. Suppose that G is i-generated with i-basis X.  Then X 
is not countable. Since tG is countably generated, by Proposition 2.4(5) tG is contained 
in a maxima/subgroup.  But then the divisible group G/tG has a maximal subgroup, a 
contradiction. Thus G is not i-generated. 

In a vector space, any set of vectors can be cut down to an independent set of vectors 
with the same span. In particular, any spanning set can be cut down to a basis. This need 
not be true for a generating set of a module. For example, {1/2 ~ + Z}~= 1 is a generating set 
for Z2~, but  no subset is an/-basis  for Z2~ since Z2~ is not/-generated.  However, if X is a 
finite subset of a module, then there is a subset Y C X with Y irredundant and (X) = (Y). 
Also, in a vector space any independent set can be enlarged to a basis. However, even a 
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finite irredundant subset of a finitely generated module cannot necessarily be enlarged to an 
/-basis. For example, for 2 E Z4, {2} is an irredundant subset of Z4 that  can not be enlarged 
to an/-basis  for Z4. For a second example, let k be a field and R = k[{X~}] where {X~} is 
a set of indeterminates over k. Then {X~} is an irredundant subset of R as is {1}. However 
{X~} cannot be extended to an/-basis  for R. If we take {X~} to be infinite, we see that  
({X~}) C R where ({X~}) has an infinite i-basis while R has a finite/-basis. 

We next relate the notions of basis and/-basis .  

T h e o r e m  2.6. Let  R be a ring, I an ideal o[ R, A an R-module and X C A. Put  [~ = R /  I 
and A = A /  IA .  Suppose that (X} = A. Then the following conditions are equivalent. 
(1) X is an I-basis for A. 
(2) For r t , " .  , rn E R and x l , " "  , xn E X ,  r lx l  + ' "  + r~x~ E I A  ~ each ri E I .  
(3) X is an [~-basis for A. 

Proof .  
(1) ==* (2) Suppose that  r lx l  + . . .  + r ,xn  E IA ,  say r lx l  + ' "  + r~xn = i l x l  -k. . . q- inXn "~ 
i,+lXn+l + "'" + i,~x,~ where i l , ' "  ,im E I and x ,+ l , . - "  , xm 6 X - { x l , ' "  , xn}. Then 
0 = (il - r l )x l  + . "  + (in - r,~)xn + in+lXn+l + ' ' "  + i,~x,~ implies each ij - r i E I and hence 
each rj  E I .  
(2) ~ (3) and (3) ~ (1) Clear. • 

Note that  in (3) ==~ (1) of Theorem 2.6 it is crucial that  we think of X as an indexed 
set rather than just a set. Indeed, for X = {1,3}, X is not a (2)-basis for Z, while as sets 
{i, 3} = {i} is a Z = Z2-basis for Z2. 

Recall that  a ring R is quasilocal if it has a unique maximal left ideal ~4. In this case 
3,t is also the unique maximal right ideal and R/J~4 is a division ring (for example, see [13, 
Lemma 4.42]). We will write (R, 3,t) to indicate that  R is a quasilocal ring with maximal 
left ideal A~. We have the following two well known corollaries to Theorem 2.6. 

C o r o l l a r y  2.7. Suppose that (R, Ad) is quasilocal, A is an R-module and X C_ A with 
(X)  = A. Then the following are equivalent. 
(1) X is an M-bas i s  for A. 
(2) For r l , ' . .  , r ,  E R and x l , ' "  , xn E X ,  r lx t  + " "  + r , x ,  E AAA ~ each ri E 3,t. 
(3) f (  is an R / M - v e c t o r  space basis for f~ = A / A d A .  
(4) X is an i-basis for A. 

C o r o l l a r y  2.8. Suppose that (R, ~/t) is quasitocal and A is an R-module with the property 
that for a submodule B of  A, A = B + ~4 A  implies A = B (e.g., A is finitely generated or 
J~4 is nilpotent). Let X C A. Then the following are equivalent. 
(1) X is an M-bas is  for A. 
(2) (X)  = A and for r l , ' "  , r ,  E R and x l , . . .  , xn 6 X ,  f i x  1 + . . .  + rnXn E J~4A ~ each 
r~ E JM. 
(3) X is an R/Ad-vector  space basis t:or f~ = A /AdA .  
(4) X is an i-basis for A. 
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Proof .  It suffices to show that  for (1)-(4) we have (X / = A. This is assumed for (1), 
(2), and (4). For (3), X is an R/M-vec to r  space basis gives that A = / X} + A4A. Hence 
by hypothesis, (X} = A. • 

We have remarked (Proposition 2.4) that if {Ms} is a family of R-modules each having 
an i-basis, then OM~ has an i-basis. Similar statements hold for bases and weak bases. 
Conversely, we can ask whether A ® B/-genera ted  implies A and B are/-generated.  First 
observe that if A @ B has a basis (resp., weak basis), A and B need not have a basis 
(resp., weak basis). Indeed, a direct surnmand of a free module is a projective module and a 
projective module need not be free. For example, let Q be a nonprincipal ideal of a Dedekind 
domain. Then  Q is a direct summand of a free module but is not free and hence doesn't 
have a basis or even a weak basis. Of course, Q being finitely generated has an i-basis. We 
give an example of a direct summand of an/-generated module that is not/-generated.  

P r o p o s i t i o n  2.9. Let R be a ring and let A be an R-module i-generated by {a~}~h. Let 
B be an R-module and {bs}~eh C B. Suppose there exist {ds}~eh C R with d~as = 0 and 
({d~bs}~eA> = B. Then G = A @ B is i-generated by {7~} where 7~ = (a~, bs). 

Proof .  We first show that  {Ta} generates G. Since d~Ts = (0, d~b~), 0 • B c <{7~}}- 
But then (a~, 0) = 7~ - (0, bs) 6 <{3'~}}; so A @ B = <{7~}}- Suppose that  0 = ~ c~7~, so 
0 = ~ csa~. Since {as} is an i-basis for A, each cs is a nonunit. Hence {Ts} is an i-basis 
f o r G = A ® B . I  

Coro l l a ry  2.10. Let A be an i-generated torsion abelian group and let B be a divisible 
abelian group with IAI > IBI . Then G = A @ B is i-generated. Conversely, let A and B be 
abelian groups with B divisible. I rA  @ B is i-generated, then IAI > IBI . 

Proof .  Let X = {Xa}aeA be an i-basis for A. If X = o ,  A = 0; so G = 0 is i- 
generated. So assume X ~ O. Now X finite gives A finite and hence B -- 0. So we can 
assume that X is infinite. Then IXI -- IAI > IBI . So B can be generated by IXI elements, 
say {ds}~eh generates B. Choose 0 ¢ rs C R with r~xs = 0 and d~ E B with d~ = r~d'. 
Then by Proposition 2.9 {(x~, d')}~eA is an i-basis for G. 

For the partial converse, suppose that A and B are abelian groups with B divisible and 
A @ B are/-generated. Suppose that IA[ < IBI. By Proposition 2.4(5), A ® 0 _C C C A @ B 
where C is a maximal subgroup of A @ B. But then C/A ® 0 is a maximal subgroup of the 
divisible group A @ B / A  @ 0 ~ B, a contradiction. • 

Using Corollary 2.10 we get a number of interesting examples of/-generated abelian 
groups. 

E x a m p l e  2.11. 
(1) Let {dn}n~__l be a sequence of integers where each dn ~_ 2 and let p be a prime. Then by 

~ Z  ° ° Z  Corollary 2.10 (~n=l d~) @ Zp~ and (®~=1 d~) • Q are i-generated abelian groups but Zp~ 
and Q being divisible are not i-generated (Proposition 2.4). Hence A @ B i-generated need 
not imply that A and B are i-generated. 
(2) Let p be a prime. Then (@~=lZp) @ 7/,p~ is an i-generated p-primary abelian group. 
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(3) Let p ~ q be primes. Let G = (@~=~Zp) ® Zqc¢. Then G is i-generated, but its q-primary 
component Zq~ is not i-generated. 
(4) Let {P~)~=I be the set of primes. Put G~ = Zp. ® Zv~, so G~ is the p~-primary 

oo G co co  component of G = @~=1 ~ = (@~=IZv~) ® (@~=lZv~) • By Corollary 2.10 G is an i-generated 
torsion abelian group (since @~co=lZv~ is countably generated). However, since each G~ is 
not i-generated (see the paragraph after Proposition 2.4), no primary component of G is 
i-generated. 
(5) Let p be a prime and iet G = (@~=IZv) • Q. Then G is i-generated but Q is not. Here 
G = tG 69 C/ tG where tG=@~=lZ v is the torsion subgroup of G, but G/ tG = Q is not 
i-generated. 

Example 2.11 shows some of the pitfalls in attempting to characterize the/-generated 
abehan groups. For example, a torsion abelian group can be /-generated without its p- 
primary components being i-generated and while a divisible abelian group cannot be i- 
generated, an/-generated abelian group need not be reduced. Also, note that  Example 2.5 
gives an example of a reduced abelian group that is not/-generated.  

P r o b l e m  2.12. Characterize the i-generated abelian groups. 

We have noted that if R-modules A and C have a basis (resp. weak basis, i-basis), then 
so does A @ C. For a short exact sequence of R-modules 0 ~ A ~ B ~ C --* 0 this raises 
the general question of what is the relationship of A, B, or C having a basis, weak basis, or 
i-basis. Of course, B can have a basis (and hence a weak basis) without A or C having a 
basis or even a weak basis. But if A and C have a basis, then the short exact sequence splits 
so B ~ A 69 C has a basis. However, unlike the case for bases, A and C can have weak bases 
without B having a weak basis (e.g., over Q[X, Y], 0 ~ (X)  ~ (X,  Y)  --* (X, Y ) / ( X )  ~ 0). 
We next consider the/ -generated case. Now B i-generated does not imply that  A or C 
is /-generated. In fact, A and B (resp., B and C) /-generated does not imply that  C 

-* c o Z  c o Z  (resp., A) is /-generated as seen by 0 @~=1 2 --* (@~=~ 2) @ Z2~ --* Z2~ --* 0 (resp., 
co ~ co 0 ~ Z2~ --* ( ~ = i  2) • Z2~ --* @~=1Z2 ~ 0). However, if X ___ B and X is irredundant 

in C, then X is irredundant in B, see Proposition 2.13. It remains open whether A and C 
/-generated implies B is/-generated. We suspect not. But our next result gives a special 
case where this is true. 

P r o p o s i t i o n  2.13. Let 0 --* A -+ B --* C -* 0 be a short exact sequence of R-modules. 
(1) Let X = {x~} C B and let f (  = { ~ }  be its image in C. If  f (  is irredundant, then X is 
irredundant. Hence if X generates B and f (  is an i-basis for C, then X is an i-basis for B. 
(2) Suppose that A is finitely generated and C is i-generated. Then B is i-generated. 

Proof .  
(1) If Y C X with (Y) : iX),  then ~2 C J( (for a # /3, ~ # ~ since )£ cannot have 
repeated elements) and ( l  2} = (J~}, a contradiction. 
(2) Let a l , ' "  , a~ generate A and choose {b~} C_ B so that  {b~} is an i-basis for C. Then 
{ h i , . . . ,  a~}O{b~} certainly generates B. Note that  no b~ 0 e (({al, • • • , a~} U {b~}) - {b~o}), 
for then {b~}-{b~0} would generate C. Suppose that  some ai • ({al , .  • • , & i , " " ,  an} [3 {b~}). 
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Then ({hi, . . .  , h i , " "  ,an} t.J {b~}) = B. Continuing, we get a subset {a i~ , ' "  ,his} c 
{ h a , ' "  ,an} (possibly empty) with {a,1,.. .  ,hi,} U {b~} an i-basis for B. • 

We end this section with a result which in principal gives all /-generated R-modules. This 
result was remarked to us by Victor Camillo. 

T h e o r e m  2.14. An R-moduIe M is i-generated if  and only if it has a presentation F 
M ~ 0 where F is a free R-module on a set Y = (y~} and k e r r  C GA4~y~ for some 
collection (A4~} of maximal left ideals of R. 

Proof i  Suppose that  M has i-basis X = (X~}~eh. Let Y = {Y~}~en be a set disjoint 
from X indexed by the same set A. Let F be a free R-module on Y and let r :  F -~ M be the 
R-module homomorphism induced by ~r(y~) = x~. For each a E A, let Af~ = ((X - {x~}) : 
x~). Since X is irredundant, Af~ is a proper left ideal of R. For each a choose a maximal 
left ideal A4~ _D Aft. If r ly~  + . . .  + rny~, E kerr ,  then r l x~  + . . .  + r~x~. = 0 and 
hence rl E Af~ C A4~. Thus k e r r  C_ @Af~y~ C_ @A4aya. If conversely we have such a 
presentation, X = (r(y~)} is easily seen to be an i-basis for M. • 

3. N u m b e r  of  G e n e r a t o r s  

In this short section we consider the different possible cardinalities for a basis, weak basis, or 
i-basis of a module having such a basis. As is the case (see below) for bases for (free) modules 
where if a free module has an infinite basis, then any other basis has the same caxdinality, if 
a module has an infinite weak basis (resp. i-basis), then any other weak basis (resp. /-basis) 
has the same cardinality (Theorem 3.3). We show (Theorem 3.4) that  quasilocal rings are 
characterized by the property that  any two weak bases (resp. i-bases) for a module have the 
same cardinality. Finally, we consider (Theorem 3.5) the possible cardinalities of an i-basis 
for a finitely generated module. 

It is well known that for a vector space over a division ring, any two bases have the same 
cardinality (for example, see [6, Theorem IV.2.7]). Now for a general ring R, if F is a free 
R-module with infinite basis X, then for any other basis Y of F we have [X[ = ]YI (see, 
for example [6, Theorem IV.2.6]). However, two bases for a finitely generated free R-module 
need not have the same cardinality as the following classic example shows (for example, see 
[6, Exercise IV.2.13]). 

e o o  E x a m p l e  3.1. Let K be a ring and iet F be a free K-module with basis { n}n=l" Then 
for R = HomK(F, F),  the free R-module nR has a basis with one dement, namely ln, and 
also a basis with two elements {fl,  f2} where fi is defined by fl(e2n) = f2(e2n-1) = en and 
fx(e2n-1) = f2(e2n) = 0. Alternatively, observe that nR = HomK(F, F)  ~ HomK(F @ 
F, F)  ~ HomK(F, F) ® HomK(F,F) = nR @ hR. In fact, it is easily shown that nR has a 
basis of length n for each n _> 1. 

It is even easier to give examples of modules having weak bases or i-bases of different 
lengths. Indeed, taking R = Z, we see that Z/6Z ~ Z/2Z G Z/3Z has weak bases of length 
one and two and Z itself has i-bases of length one and two, namely {1} and (2, 3}. 

This leads us to the following definition. 
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Definit ion 3.2. A ring R satisfies the invariant basis number property (IBN) (resp. invari- 
ant weak basis number property (IwBN), invariant/-basis number property (IiBN)) if t:or 
each R-module M with a basis (rasp. weak basis, i-basis), any two bases (resp. weak bases, 
i-bases) for M have the same cardinality. 

Strictly speaking each of the previous definitions should have a left and a right version 
and as we are using "module" to mean a left R-module, we have given the left version. For 
the case of I B N ,  it is well known (and follows from an easy matrix argument [5, Proposition 
2.2]) that the notions of left and right I B N  coincide. It follows from Theorem 3.4 that the 
notions of left and right I i B N  and left and right I w B N  coincide, indeed, the rings satisfying 
I i B N  or I w B N  are just the quasilocal rings. 

A "useful" characterization of the rings satisfying I B N  is not known. However, any 
commutative ring satisfies I B N .  For if f :  R ~ S is a ring homomorphism and S satisfies 
I B N ,  then so does R. Since a division ring satisfies I B N ,  a ring having a division ring 
as a homomorphic image (e.g., a commutative ring) satisfies I B N  (for example, see [6, 
Proposition IV.2.11, Corollary IV.2.12]). For further results on I B N ,  the reader is referred 
to [5]. 

However, it is easy to characterize the rings satisfying I w B N  or I i B N .  Recall that a ring 
R is quasilocal if R has a unique maximal left ideal A4. In this case A4 is also the unique 
maximal right ideal of R and R/A4 is actually a division ring. Dually, a ring is quasilocal 
if it has a unique maximal right ideal Af, for then Af is also the unique maximal left ideal 
of R. Now by Theorem 3.4, R satisfies (left) I w B N  or (left) I i B N  if and only if R is (left) 
quasilocal. Thus the right version of Theorem 3.4 gives that R satisfies right I w B N  or right 
I i B N  if and only if R is (right) quasilocal. Since the notions of "left quasilocal" and "right 
quasilocal" coincide, the notions of left and right I w B N  and left and right I i B N  coincide. 

But we first show that if an R-module M has an infinite/-basis, then any other/-basis 
for M has the same cardinality. Since a weak basis is an i-basis, the same result also holds 
for weak bases. This of course also gives a proof of the previously mentioned result that if 
F is free with an infinite basis X, then any other basis Y for F has IX[ = [Y[. 

T h e o r e m  3.3. Let R be a ring and M an R-module. Suppose that M has an infin/te i-basis 
(rasp. weak basis, basis) X .  Then for any generating set Y of M, IX[ < [Y[. Hence i f Y  is 
another i-basis (resp. weak basis, basis) for M,  then IX[ = ]YI. 

Proof .  Since a basis is a weak basis and a weak basis is an i-basis, it suffices to do the 
case where X is an/-basis. So let X be an/-basis for M and let Y be a generating set for 
M. Suppose that IY[ < IX[. For each y E Y, choose a representation y = rxxa 1 + . . .  q-rnxa. 
where {x~l,. . .  ,x~,} is some finite subset of X. Put y(X)  = {x~l,. . .  ,x~.}. Then Y' = 
Uy~Y y(X)  c_ x .  If Y is finite, then Y' is also finite and hence [Y'[ < IX I. If Y is infinite, 
then [Y'[ <_ [YI since yi  is a union of [Y] finite subsets of X and hence [Y'I < [X[. In either 
case, Y' C X and (Y'} = M, a contradiction. Hence IX[ _< [YI. If Y is actually an/-basis, 
then reversing the roles of X and Y gives ]Y] _< IX] and hence IX[ = [Y[. • 

Note that Theorem 3.3 gives that if an R-module M is isomorphic to a direct sum of a 
nonzero cyclic R-modules where a is infinite, then all i-bases for M also have cardinality a. 
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T h e o r e m  3.4. For a ring R, the following conditions are equivalent. 
(1) R is quasilocaJ. 
(2) R satisfies I iBN.  
(3) R satisfies I w B N .  

Proof .  (1) ~ (2) Suppose that R is quasilocal with maximal ideal A/f. By Theorem 
3.3 it suffices to show that for a finitely generated R-module M, any two i-bases for M have 
the same cardinality. By Nakayama's Lemma ml, .  -. , m~ generate M as an R-module if and 
only if r h l , . . .  , rhn generate ]Y[ = M / A 4 M  as an [~ = R/M-module .  Hence m l , . . .  , m~ is 
an/ -bas is  for M if and only if rh l , . . .  , ~  is a/~-basis for/tT/. So every/-basis for M has 
cardinality dim~ 117/. (This is really just Corollary 2.7) (2) ~ (3) This implication is clear 
since any weak basis for M is also an/-basis  for M. (3) ~ (1) Suppose that  R has more 
than one maximal left idea]; say 3/I and Af are two distinct maximal left ideals of R. Since 
A4 + Af = R, the map R --* R/A4 @ R / H  given by r ~ (r + A4, r + Af) is surjective and 
hence R/Ad MAf ~ R/A4 @ R/JV'. Thus R/A,f N Af has weak bases of cardinalities one and 
two, a contradiction. • 

We next determine the possible different lengths of i-bases (all are finite by Theorem 3.3) 
for a finitely generated R-module. While this has already been done by Ratliff and Robson 
[12], our treatment is different. Our proof uses the Tarski Irredundant Basis Theorem, or 
rather its corollary, given below. The Irredundant Basis Theorem was proved by A. Tarski 
[14]; also, see S. Burris and H. P. Sankappanavar [2, Theorem 4.4] for a very readable account 
of this result. 

T h e o r e m  3.5. (Tarski [14]) Let R be a ring and M a finitely generated R-module. Let 
Irr(M) = {n E No[M has an i-basis with n dements }. Then Irr(M) is a convex subset of 
No. 

Let M be a nonzero finitely generated R-module. Now each proper submodule of M 
is contained in a maximal submodule of M. Recall that the Jacobson radical of M is 
J(M)  = M{N [ N is a maximal submodule of M}. (So J(R) is the Jacobson radical 
of R.) Observe that  m l , ' "  ,m~ E M generate M if and only if r h l , . . .  ,rh~ generate 
l~I = M /  J( M). 

T h e o r e m  3.6. (Ratliff and Robson [12]) Let R be a ring and M a finitely generated R- 
module. Let Irr(M) = {n E N0 ] M has an i-basis of cardinality n} and let #(M) = min{n [ 
n e Irr(M)}. I f M / J ( M )  has finite length A, then Irr(M) = {#(M), #(M) + 1 , . . .  , A} while 
i f M / J ( M )  has infinite length, then Irr(M) = {#(M), #(M) + 1 , . . .  }. 

P roof .  By Theorem 3.5, Irr(M) is a convex subset of N0. Of course, #(M) is its least 
element. First, suppose that M / J ( M )  has a finite length A. Let m l , - - -  ,ms be an/-basis  
for M. Then in l~I = M / J ( M ) ,  () C Rrhl C Rrh I + R#~2 C . . .  C Rml  + ' "  + RrTzs = IVf. 
Hence s < A. But since M has length A, M being semisimple, is a direct sum of ), simple 
R-modules and hence has a weak basis and thus an/-basis  of length A. 

Next suppose that l~I = M / J ( M )  does not have finite length. Then J(M)  cannot be a 
finite intersection of maximal submodules of M. (For if J(M)  = M1 M... M Mn where Mi is a 
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maximal submodule of M, then .~I = M/M1N...NM,~ embeds into the finite length R-module 
M/M1 ~ . . .  ~ M/Mn and hence has finite length, a contradiction.) Thus there is a countably 

M. oo infinite collection { ~}~=1 of maximal submodules of M with M +D M1 D M1 N M2 D 
.. .  +D M1 n . . .  n M~ ~ . . . .  Now M/M1 n . . .  n M~ has finite length n, so from the previous 
paragraph M = M/M1N..-nMn has an/-basis (~1, "" " , ~ }  where ~1,"  " , /~  E M. Choose 
a generating set {a~} for MIN...NM~. Then ( { ~ 1 , ' " ,  fl~} U {a~}) = M. Since M is finitely 
generated, M = (~1,"" ,fin, a ~ , . . .  , a ~ /  for some finite subset { a ~ , . . .  ,a~,} C_ {a~}. 

Note that (/~1,"" ,~ i , " "  ,/~n,a~,~,'" ,a,~) C M. For if not, then (~1 , " "  ,~ ,  " "  , ~ )  = 

/I)/. But this is a contradiction since ( ~ 1 , ' "  , /~} is an/-basis for M. Thus for some subset 
{ % , . . -  , a~}, {/~1,"", ~3~, % , . . . ,  a~,} is an/-basis for M. But then n + s e Irr(M). Since 
Irr(M) is convex and contains arbitrarily large integers, Irr(M) = {#(M), #(M) + 1,. . .  }. • 

The following example is an applicaton of Theorem 3.6. 

Example  3.7. 
(1) Let R be a ring such that R/J(R)  is not Ieft Artinian (e.g., Z). Then for each n _ 1, 
nR has an i-basis of length n. 
(2) Let I be a nonzero finitely generated ideal oE K[{X~}], K a field. Then I has i-bases of 
arbitrarily long finite length. 

For a finitely generated R-module M we can also ask what is the minimum cardinality of 
an/-basis for M. The following result from [12] gives the answer when M has finite length. 

T h e o r e m  3.8. (Ratliff and Robson [12]) Let R be a ring and M a finite length nonzero R- 
module. For each isomorphism cIass of simple R-module S appearing in composition series 
for M, let e(S) denote the number of copies of S in the composition series and let f (S)  be 
the length oE R/  ann( S). Then #( M) is the least integer >_ sup(I,  e( S) / f ( S) }. (IE R /  ann( S) 
has infinite length, then e(S)/ f (S)  = 0.) 

For a finitely generated R-module M, we can also consider the sets Bas(M) = {n E N0 I 
M has a basis of length n} and w Sas(M) = {n e N0 ] M has a weak basis of length n}. 
So Bas(M) C w Bas(M) C Irr(M). Of course, Bas(M) = O (resp. w Bas(M) = O) unless 
M is free (resp. M is a direct sum of cyclic modules). Now Bas(M) need not be a convex 
subset of N0. In fact, the subsets of N0 that can be a Bas(M) for some finitely generated 
free module M have been characterized by W. G. Leavitt [9, 10]; also see [5]. 

For a finite abelian group M, it is easy to see that w Bas(M) = Irr(M) = (m, m + 
1,.-.  , n} where M has an invariant factor decomposition with m summands and M has an 
elementary divisor decomposition with n summands. For a finitely generated abelian group 
with free part of rankr > 0, wBas(M) = {r + m, . . .  , r  + n} and Irr(M) = {r + m, . . - }  
where m and n are as above. 

4. S t r o n g l y / - g e n e r a t e d  Rings  

After discussing modules that have a basis, weak basis, or/-basis, it is natural to ask which 
rings have the property that every module has a basis, has a weak basis, or has an/-basis. 
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The rings for which every module has a basis (or equivalently, is free) are of course just 
the division rings. We have already noted this in Theorem 2.3. It is perhaps worth noting 
that  every (left) R-module has a basis if and only if every right R-module has a basis. 

The rings for which every module has a weak basis are just the rings with the property 
that every module is a direct sum of cyclic modules. KSthe [8] proved that  a left Artinian 
principal ideal ring has this property and that a commutative Artinian ring for which all 
modules are a direct sum of cyclics is a principal ideal ring. Cohen and Kaplansky [4] showed 
that  a commutative ring R has every R-module a direct sum of cyclics if and only if R is 
an Artinian principal ideal ring. The question of what rings have the property that every 
module is a direct sum of cyclics appears to be open. Nakayama [11] showed that such a 
ring need not be a principal ideal ring, but Chase [3] showed that  such a ring is left Artinian. 
More precisely, Chase showed that  a ring with the property that  every module is a direct 
sum of finitely generated modules must be left Artinian. 

We next ask what rings have the property that every module has an i-basis. This leads 
us to the following definition. 

Def in i t ion  4.1. A ring R is strongly/-generated if every R-module has an i-basis. 

Of course we could also define a strongly r ight/-generated ring. Recall that  a ring R is 
left perfect if every R-module has a projective cover. A number of conditions equivalent to 
being left perfect are known. For example [1, Theorem 28.4], the following conditions are 
equivalent: (1) R is left perfect, (2) R / J ( R )  is left Artinian semisimple and every nonzero 
R-module has a maximal submodule, and (3) R / J ( R )  is left Artinian semisimple and J(R) 
is left t-nilpotent (i.e., given a sequence al, a2, . - ,  in J(R) there is an n with ala2"" a~ = 0). 
We show that  a left perfect ring is strongly/-generated and conversely that  a commutative 
coherent strongly/-generated ring is perfect. 

T h e o r e m  4.2. A left perfect ring is strongly i-generated. 

Proof .  Suppose that  R is left perfect. Let A be an R-module. Since R = R / J ( R )  is 
left Artinian semisimple, A = A / J ( R ) A  is a semisimple/~-module. Hence .4 has an i-basis 
{ ~ }  where a~ e A. Now A = ({a~}) + J(R)A, so J(R) (A / ( (an} ) )  = A~ ({a~}). Since 
J(R)  is t-nilpotent, A~ ({a~}) = 0 and hence A = ({a~}) [1, Lemma 28.3]. But {a~} is 
irredundant since { ~ }  is (Proposition 2.13). Thus {a~} is an i-basis for A. • 

To establish the partial converse for the commutative case we need several lemmas. Note 
that  Lemma 4.3 does not require R to be commutative. 

L e m m a  4.3. I f  R is strongly i-generated, then so is each factor ring R / I .  

Proof .  Each R/I-module A is an R-module and hence has an i-basis {a~} when 
considered as an R-module. But {a~} is then also an i-basis for A considered as an R/ I -  
module. • 

L e m m a  4.4. Let R be a strongly i-generated commutative ring. Then R has Krull dimen- 
sion zero. 



Bases for Modules 295 

Proof .  Let P be a prime ideal of R. By Lemma 4.3 the integral domain [~ = R/P  is 
strongly/-generated. Let K be the quotient field of/~. Then K has an i-basis X. Suppose 
that IXI > 1. Let A = (X - {x0}) for some fixed x0 • X. Then K/A is a cyclic divisible 
/~-module, say K/A ~ R / I  for some ideal I of -~. For (} ~ r • I, r(I4/A) = K/A, so 
r(R/I) = R/I.  Hence I = 0. So/~ is a divisible/~-module; i.e.,/~ = K is a field. Hence P 
is a maximal ideal of R. • 

Recall that a ring R is left coherent if every finitely generated R-module is finitely related. 

T h e o r e m  4.5. Let R be a coherent (e.g. Noetherian) commutative strongly i-generated 
ring. Then R is perfect. 

Proof .  By Lemma 4.4, dim R = 0. Hence/~ = R/J(R) is yon Neumann regular. We 
show that /~ is Artinian. Now by Proposition 2.4 every nonzero R-module has a maximal 
submodule. Hence by the previously mentioned [1, Theorem 28.4], R is (left) perfect. 

We claim that /~  is Artinian. Let [ = I /J(R) be an ideal of/~. Now R/I  is a finitely 
generated R-module and hence is a finitely related R-module since R is coherent. Thus /~ / i  
is a finitely related/~-module. Since/~ is von Newmann regular, /~/i  is a flat/~-module [13, 
Theorem 4.16] and hence is projective since R/[  is finitely related [13, Theorem 3.58]. Thus 
the short exact sequence 0 ~ [ ~ /~ ~ /~/T ~ 0 splits; so [ is finitely generated (even 
generated by an idempotent). Thus every ideal of/~ is finitely generated; so/~ is Noetherian 
and hence Artinian being zero-dimensional. • 

We end with the following result. 

T h e o r e m  4.6. Let R be a ring. 
(1) Let M be an i-generated R-module. Suppose that IM---M where I C J(R). Then 
M=O. 
(2) R is strongly i-generated if and only if J(R) is left t-nilpotent and R/J(R) is strongly 
i-generated. 

Proof .  (1) This is just Nakayama's Lemma. Suppose M ~ O, Let {ms} :~ 0 be 
an i-basis for M. For m0 e {ms}, m0 -- E i s m ~  where e a c h i ,  • I;  so ( 1 - i 0 ) m 0  • 
({ms} - {m0}) and hence m0 e ({ms} - {m0}) since io • J(R) gives that 1 - i0 is a unit. 
(2) ( ~ )  Suppose that R is strongly/-generated. By Lemma 4.3, R/J(R) is strongly i- 
generated. Since R is strongly/-generated, for each R-module M, J(R)M = M implies 
M = 0. By [1, Lemma 28.3], J(R) is left t-nilpotent. (¢==) Let A be an R-module. Now 
R/J(R) is strongly/-generated, so A/J(R)A is/-generated as an R/J(R)-module and hence 
as an R-module. Choose (as} _ A so that {a~} is an i-basis for A/J(R)A. By Proposition 
2.13, {as} is irredundant. Also ({a~}) + J(R)A = A; so ({as}) = d since J(R) is left 
t-nilpotent. Thus {a(,} is an i-basis for A. • 
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