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Abstract 

We investigate the computational complexity of two closely related classes of combinatorial 
optimization problems for linear systems which arise in various fields such as machine learning, 
operations research and pattern recognition. In the first class (MIN ULR) one wishes, given a 
possibly infeasible system of linear relations, to find a solution that violates as few relations as 
possible while satisfying all the others. In the second class (Mm RVLS) the linear system is 
supposed to be feasible and one looks for a solution with as few nonzero variables as possible. 
For both MIN ULR and MIN RVLS the four basic types of relational operators = , >, > and 
# are considered. While MIN RVLS with equations was mentioned to be NP-hard in (Garey 

and Johnson, 1979) we established in (Amaldi; 1992; Amaldi and Kann, 1995) that MIN ULR 
with equalities and inequalities are NP-hard even when restricted to homogeneous systems with 

bipolar coefficients. The latter problems have been shown hard to approximate in (Arora et al., 
1993). In this paper we determine strong bounds on the approximability of various variants of 
Mm RVLS and MIN ULR, including constrained ones where the variables are restricted to take 
binary values or where some relations are mandatory while others are optional. The various 
NP-hard versions turn out to have different approximability properties depending on the type 

of relations and the additional constraints, but none of them can be approximated within any 
constant factor, unless P =NP. Particular attention is devoted to two interesting special cases 
that occur in discriminant analysis and machine learning. In particular, we disprove a conjecture 
of van Horn and Martinez (1992) regarding the existence of a polynomial-time algorithm to 
design linear classifiers (or perceptrons) that involve a close-to-minimum number of features. 
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1. Introduction 

The first class of problems we consider is that of finding a minimum set of relations 

that must be removed from a given linear system to make it feasible. The basic versions, 

referred to as MIN ULR for minimum Unsatisfied Linear Relations, are defined as 

follows. 

Mm ULR% with W E { =, 2, > , f}: Given a linear system Ax W b with rational 

coefficients and with a p x n matrix A, find a solution x E [w” which violates as 

few relations as possible while satisfying all the others. 

Many variants of these combinatorial optimization problems arise in various fields 

such as operations research [39,31,30], pattern recognition [65,21,49] and machine 

learning [l, 38,521. It is well known that feasible systems with equalities or inequalities 

can be solved in polynomial time using an adequate linear programming method [44]. 

But least-square methods are not appropriate for infeasible systems when the objective 

is to minimize unsatisfied relations. 

A number of algorithms have been proposed for various versions of MIN ULR, 

including the weighted ones in which a weight is associated with each relation and the 

goal is to minimize the total weight of the unsatisfied relations. Johnson and Preparata 

showed that the special cases of MIN ULR’ and MIN ULR> with homogeneous systems 

are NP-hard and devised a complete enumeration method which is also applicable to 

the weighted and mixed variants [39]. Greer developed a tree algorithm for optimizing 

functions of systems of linear relations that is more efficient than complete enumeration 

but still exponential in the worst case [31]. This general procedure can be used to solve 

MIN ULR with any of the four types of relations. 

During the last decade many mathematical programming formulations have been 

studied to design linear discriminant classifiers (see [49,12], as well as the included 

references). When the goal is to determine optimal linear classifiers which misclassify 

the least number of points in the training set, the problem amounts to a special case 

of MIN ULR’ and Mn\r ULRa. Increasingly sophisticated models have been proposed 

in order to try to avoid unacceptable or trivial solutions (see [ 121). 

The same type of problem has also attracted a considerable interest in machine leam- 

ing (artificial neural networks) because it arises when training perceptrons, in particular 

when minimizing the number of misclassifications. While some heuristic algorithms 

were devised in [26,25], Amaldi showed that solving these problems to optimal&y is 

NP-hard even when restricted to perceptrons with fl inputs [l]. In [38] minimizing 

the number of misclassifications was proved at least as hard to approximate as the 

hitting set problem (see [27]). 

In recent years a growing attention has been paid to infeasible linear programs [30]. 

When formulating or modifying very large and complex models, it is hard to prevent 

errors and to guarantee feasibility. Infeasible programs with thousands of constraints 

frequently occur and cannot be repaired by simple inspection. Several methods have 

been proposed in order to try to locate the source of infeasibility. While earlier ones 
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look for minimal infeasible subsystems [28, 151, the latter ones aim at removing as 

few constraints as possible to achieve feasibility [59,56,57, 13,291. The more practical 

approach in which the modeler is allowed to weight the constraints according to their 

importance and flexibility leads to weighted versions of MIN ULR [57,56]. 

The second class of problems we consider pertains to feasible linear systems. The 

goal is then to minimize the number of Relevant Variables in the Linear System. 

MIN RVLSg with W E {=, 2, >, f}: Given a feasible system of linear relations 

Ax BLr with rational coefficients, find a solution satisfying all relations with as 

few nonzero variables as possible. 

MIN RVLS= is known to be NP-hard and was referred to as minimum weight solution 

to linear equations in [27], but nothing is known about its approximability properties. 

A special case of MIN RVLS with strict and nonstrict inequalities is of particular 

interest in discriminant analysis and machine learning. The problem occurs when, given 

a linearly separable set of positive and negative examples, one wants to minimize the 

number of attributes that are required to correctly classify all given examples [48,64]. 

This objective, which is related to the concept of parsimony, is crucial because the 

number of nonzero parameters of a classifier has a strong impact on its performance 

on unknown data [6,46]. In [48] a genetic search strategy has been proposed for 

designing optimal linear classifiers with as few nonzero parameters as possible. 

Since the late 1980s various complexity classes and approximation preserving reduc- 

tions have been introduced and used to investigate the approximability of NP-hard opti- 

mization problems (see [43]). Using a connection with interactive proof systems, strong 

bounds were derived on the approximability of several famous problems like maximum 

independent set, minimum graph coloring and minimum set cover [9,5 1, 11, 10,36,37]. 

For a list of the currently best approximability upper and lower bounds for optimization 

problems, see [ 171. 

In [5] we performed a thorough study of the approximability of the complementary 

problems of MIN ULR, named MAX FLS, where one looks for maximum Feasible sub- 

systems of Linear Systems. In particular, we showed that the basic versions with =, >, 

or > relations are NP-hard even for homogeneous systems with bipolar coefficients. 

While MAX FLS with equations cannot be approximated within p” for some E > 0 where 

p is the number of relations, the variants with strict or nonstrict inequalities can be 

approximated within 2 but not within every constant factor. 

Given the NP-hardness of the basic versions of MIN ULR, we are interested in ap- 

proximation algorithms that are guaranteed to provide near-optimal solutions in poly- 

nomial time. Although complementary pairs of problems such as MIN ULR and MAX 

FLS are equivalent to solve optimally, their approximability properties can differ enor- 

mously (e.g., the minimum node cover and the maximum independent set problems 

~9,271). 
In [7] Arora et al. established that MIN ULR= cannot be approximated within any 

constant, unless P = NP, and within a factor of 2’“g’-‘n for any E > 0 unless NP C 

DTIME ( npoly“‘sn ) (see also [S]). Moreover, they noted that this nonapproximability 



240 E. Amaldi, V. Kannl Theoretical Computer Science 209 (1998) 237-260 

result also holds for systems of inequalities and they suggested a way of extending it 

to the special case which occurs when minimizing the number of misclassifications of 

a perceptron. 

In [63,64] the variant of MIN RVLS with inequalities which arises in discriminant 

analysis and machine learning was proved to be at least as hard to approximate as 

the minimum set cover problem. Furthermore, it was shown that an approximation 

algorithm minimizing the number of nonzero parameters within a factor of O(logp), 

where p is the number of examples, would require far fewer examples to achieve a 

given level of accuracy than any algorithm which does not minimize this quantity. 

Finally, it was left as an open question whether this number could be approximated 

within a factor of O(logp) 1631. 

This paper is organized as follows. Section 2 briefly mentions the facts about the 

approximation of minimization problems used in the sequel. In Section 3 we recall 

the known approximability results for the basic versions of Mm ULR and determine 

alternative upper and lower bounds on their approximability. Two important variants 

of Mm ULR are also studied: the weighted ones where a different importance may be 

assigned to each relation and the constrained ones where some relations are mandatory 

while others are optional. We show that the weighted versions of Mm ULR are equally 

hard to approximate as the basic versions, and the constrained versions are about as 

hard to approximate as the basic versions. In Section 4 we discuss the approximability 

of MIN RVLS and its close relationship with MIN ULR. Interestingly we find that 

MIN RVLSf is hard to approximate even though MIN ULR# is trivially solvable. 

Section 5 is devoted to MIN ULR and MIN RVLS versions where the variables are 

restricted to take a finite number of discrete values, in particular binary values. These 

problems are shown to be among the hardest to approximate. In Section 6 we discuss 

two interesting special cases of MIN ULR and MIN RVLS with inequalities that have 

been extensively studied in discriminant analysis and machine learning. In particular, 

we show that no polynomial-time algorithm is guaranteed to minimize the number 

of nonzero parameters of a linear classifier (perceptron) within a logarithmic factor, 

hereby disproving a conjecture in [63]. Section 7 contains a summary of the main 

results and some concluding remarks. 

An earlier version of this paper appeared as a technical report [4]. 

2. Approximability of minimization problems 

An NP optimization (NPO) problem over an alphabet C is a four-tuple IZ = (Yn, 

Sn, fn, opt=) where $n C C* is the set of instances, &(I) c C* is the set of feasi- 
ble solutions for the instance I E Yn, fn : 9” x C* + N, the objective function, is a 

polynomial-time computable function and opt” E {max, min} tells if 17 is a maximiza- 

tion or a minimization problem. See [19] for a formal definition. 

For any instance I and for any feasible solution x E &I(Z) of a minimization prob- 

lem, the performance ratio of x with respect to the optimum is denoted by gn(Z,x) = 
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fn(Z,x)/optn(Z). A problem ZZ can be approximated within p(n), for a function 

p: Z+ + W, if there exists a polynomial-time algorithm ,& such that for every n E Z+ 

and for all instances Z E yn with 111 = n we have that &(I) E&(Z) and Rn(Z,.&(Z)) 

d p(n). 
Although various reductions preserving approximability within constants have been 

proposed (see [40]), we will use the S-reduction which is suited to relate problems 

that cannot be approximated within any constant. 

Definition 1 ([41]). Given two NPO problems ZI and ZZ’, an S-reduction with size 

amplijkation a(n) from Zl to ZZ’ is a four-tuple t = (tl, t2, a(n), c) such that 

(i) tl, t2 are polynomial-time computable functions, a(n) is a monotonically increasing 

positive function and c is a positive constant. 

(ii) tj :Yfl i .YHJ and VZ E 3~ and KX E Snt(tl(Z)), tz(Z,x) E&(Z). 

(iii) VZ E 9$ and ‘&x ESnt(t,(Z)), Rn(Z, tz(Z,x)) d c. &(t,(Z),x). 

(iv) VZEYfl, Itl(Z)I d a(lZl>. 

The composition of S-reductions is an S-reduction. If n S-reduces to ZI’ with size 

amplification a(n) and ZI’ can be approximated within some monotonically increasing 

function u(n) in the size of the input instance, then Zl can be approximated within 

c . u(a(n)). For constant and polylogarithmic approximable problems, the S-reduction 

preserves approximability within a constant for any polynomial size amplification. For 

nc approximable problems, the S-reduction preserves approximability within a constant 

just for linear size amplification. 

An NPO problem Zl is polynomially bounded if there is a polynomial p such that 

fn(Z,x) d P(lZl). ‘d/ E J?z~x E &(Z), 

The class of all polynomially bounded NPO problems is called NPO PB. Clearly, MIN 

ULR and MIN RVLS are in NPO PB since their objective functions are bounded by 

the total number of relations and, respectively, the total number of variables. 

The range of approximability of NP-hard optimization problems stretches from prob- 

lems which can be approximated within every constant in polynomial time, i.e. that 

have a polynomial-time approximation scheme like the knapsack problem, to problems 

that cannot be approximated within n ‘-’ for every r:>O, where n is the size of the 

input instance, unless P = NP. 

In [51] Lund and Yannakakis established a lower bound on the approximability of 

MIN SET COVIIR and of several closely related problems such as MIN DOMINATING SET. 

In [l l] Bellare et al. improved this result by showing, among others, that Mm SET 

COVER cannot be approximated within any constant factor unless P = NP. A stronger 

lower bound obtained under a stronger assumption was further improved by Feige [24] 

who recently showed that approximating MIN SET COVER within (1 - E) Inn, for any 

E > 0, would imply NP C DTIME (n“‘gl”gn ), where n is the number of elements in the 

ground set. Since DTIME(T(n)) denotes the class of problems which can be solved 

in time T(n), the above inclusion is widely believed to be unlikely. If there is an 
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approximation preserving reduction from Mm DOMINATING SET to an NPO problem ZZ 

we say that II is Mm DOMINATING k-hard, which means that it is at least as hard to 

approximate as the former problem. 

If we require the dominating set in MIN DOMINATING SET to be independent, we get 

the minimum independent dominating set problem or MIN IND DOM SET. Halldorsson 

established in [34] that, assuming P #NP, Mm IND DOM SET cannot be approximated 

within a factor of n’-’ for any E > 0, where n is the number of nodes in the graph. 

Inspection of the proof shows that the result is still valid if n is the input size, i.e., the 

sum of the number of nodes and edges in the graph. Furthermore, Kann proved that Mm 

IND DOM SET is complete NPO PB in the sense that every polynomially bounded NPO 

problem can be reduced to it using an approximation preserving reduction [41, 181. 

3. Approximability of MIN ULR variants 

In this section we discuss lower and upper bounds on the approximability of the 

basic versions of Mm ULR with the different types of relations and then focus on 

the weighted as well as constrained variants. To try to find the simplest versions of 

these problems that are still hard, we restrict the range of the coefficients and of the 

right-hand side components. 

For homogeneous systems, which have the simplest right-hand sides, we are obvi- 

ously not interested in trivial solutions where all variables occurring in the satisfied 

equalities or nonstrict inequalities are zero (see [39] for an example). Even if we forbid 

the solution x = 0, there might be other undesirable solutions where almost all vari- 

ables occurring in the set of satisfied relations are zero except a few that only occur 

in a few satisfied relations. In order to rule out such meaningless solutions, we only 

consider solutions of maximal (with respect to inclusion) feasible subsystems in which 

at least a small fraction 0 < f < l/2 of the variables occurring in the satisfied relations 

are nonzero and these nonzero variables occur in at least a fraction f of the satisfied 

relations. As we shall see, our results do not depend on the specific value off, so long 

as it is fixed a priori. 

3.1. Basic versions 

In [2,5] we proved that Mm ULRg with .!%Y E {=, 2, >} is NP-hard even when re- 

stricted to homogeneous systems with bipolar coefficients in { - 1,l). Sankaran showed 

in [59] that the NP-complete problem Mm FEEDBACK ARC SET [27], in which one wishes 

to remove a smallest set of arcs from a directed graph to make it acyclic, reduces to 

Mm ULR” with exactly one 1 and one -1 in each row of A and all right-hand 

sides equal to 1. Unlike the other problems, Mm ULRZ is trivially solvable because 

any such system is feasible. Indeed, for any finite set of hyperplanes associated with 

a set of linear relations there exists a vector x E Iw” that does not belong to any of 

them. 
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Note that if the number of variables n is constant these three basic versions of 

MIN ULR can be solved in polynomial time using Greer’s algorithm which has an 

O(n. p”/2”-‘) time-complexity, where p denotes the number of relations [31]. These 

problems are trivial when the number of relations p is constant because all subsystems 

can be checked in O(n) time. Furthermore, they are easy when all maximal feasible 

subsystems contain a maximum number of relations because a greedy procedure is 

guaranteed to give a solution that minimizes the number of unsatisfied relations. A 

polynomial-time solvable special case of Mm ULR” involving total unimodularity is 

also mentioned in [59]. 

Before turning to lower and upper bounds on the approximability of MIN ULR, we 

point out a few straightforward facts. 

Fact 1. MINULR~ is at least as hard to approximate as MIN ULR= but not harder 

than MIN ULR= with nonnegatioe variables. Mn\r ULR” and MIN ULR’ with integer 

(rational) coeficients are equivalent. 

Minimizing the number of unsatisfied equations in an arbitrary MIN ULR= instance 

is obviously equivalent to minimizing the number of violated inequalities in the corre- 

sponding instance of MIN ULR> where each equation is replaced by the two comple- 

mentary inequalities. Given an arbitrary instance of MIN ULR> , replacing each variable 

x, unrestricted in sign by the difference xl - xr of two nonnegative variables xi, xi’ > 0 

and adding a slack variable for each inequality leads to an equivalent system with p 

equations and 2n + p nonnegative variables. Finally, any system Ax < b has a solution 

if and only if the system Ax <b + ~1 has a solution, where E = 2-2L and L is the size 

(in bits) of the binary encoded input instance [.55]. 

As previously mentioned, Arora et al. showed in [7] (see also [S]) that MIN ULR= 

cannot be approximated within any constant, unless P=NP, and within a factor of 
21&” n , for any E > 0, unless NP C DTIME (np”‘y“‘sn ), where n is the number of vari- 

ables. Of course, this also holds for MIYJ ULR with strict and nonstrict inequalities. 

The following nonapproximability result for MIN ULR with inequalities is more likely 

to be true but the bound is not as strong. 

Theorem 2. Mm ULR> and MIN ULR’ are MIN DOMINATING SET-hard euen when re- 

stricted to homogeneous systems with ternary coejjicients in { -l,O, l}. They cannot 
be approximated within any constant, unless P = NP, and within (1 - E) Inn, for any 
E > 0, unless NP g DTIME (&‘g“‘gn ), where n is the number of variables. 

Proof. We proceed by cost preserving reduction from MIN DOMINATING SET [27] similar 

to [38]. Given an undirected graph G = ( V,E), one seeks a minimum cardinality set 

V’ C V that dominates all nodes of G, i.e. for all u E V\V’ there exists u’ E V’ such 

that [u, u’] E E. Let G = (V, E) be an arbitrary instance of MIN DOMINATING SET. For 

each node Vi E V, 1 d i < n, we consider the homogeneous inequality xi b 0 and the 
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inhomogeneous inequality 

Xjf c XjG-1 
jENV) 

where N(vi) is the set of indices of the nodes adjacent to vi. Thus we have a system 

with 2n inequalities and rr variables 

It is easily verified that there exists a dominating set in G of size at most s if and 

only if there exists a solution x that violates at most s inequalities of the corresponding 

system. Given a dominating set I” C V of size s, the solution x defined by 

1 

-1 
xj = 

if Vi E V’, 

0 otherwise, 

satisfies all inhomogeneous inequalities and II - s homogeneous ones. Conversely, given 

a solution vector x that violates s inequalities, we can always satisfy every inhomoge- 

neous inequality that is not already satisfied by making one variable Xi in the inequality 

negative enough. This operation yields a solution that satisfies at least as many inequal- 

ities as x. Consider the set of nodes V’ C V containing all nodes Vi such that xi # 0. 

V’ is clearly a dominating set of size s, because xi + ci E,,,(V,)~j d - 1 only when at 

least one of the variables is negative, which corresponds to the case where at least one 

of the nodes is in the dominating set. 

By replacing > by > and -1 in the right-hand side of the second type of inequal- 

ities by 0, this reduction can be adapted to homogeneous MIN ULR’. 

There is a standard way to transform any inhomogeneous instance of MIN ULR” into 

a homogeneous one. Given an arbitrary inhomogeneous instance with p inequalities in 

y1 variables and given any value of the fraction f in the meaningful solution criterion, 

we first multiply all constant right-hand sides by a new variable x0. The resulting 

homogeneous system is obviously equivalent to the original one if x0 is restricted to 

be strictly positive. To enforce this constraint, it suffices to add the 3L inequalities 

x0 >~a[, x0 <x0{ and x0/ 2 0 involving the new variables xsl with 1 E [ l..L], where L 

is a large enough integer such that p/(3L + p) < f and (3L)/(3L + n) 2 f. These 3L 

new inequalities can be clearly satisfied by assigning to x0 and to all xsl the same 

nonnegative value. Due to the choice of L, this value cannot be zero because, if 

x0 =x01 = 0 for all I E [ l..L], at most a fraction p/(3L + p) <f of the inequalities of 

the homogeneous system are satisfied. Moreover, when x0 =x0/ > 0 for all I at least a 

fraction f of all variables are nonzero. Thus the homogeneous system admits a solution 

that violates at most s inequalities with s 6 p if and only if the original inhomogeneous 

system admits such a solution. 

Since the reduction is cost preserving and without amplification, we have exactly 

the same nonapproximability bounds for MIN ULR> and MIN ULR’ as for MIN 

DOMINATING SET. 0 

Clearly, for large n and small F >O, a factor of 2’“s’m’n is larger than Inn, but 

NP C DTIME(np”‘y’osn) is more likely to be true than NP c DTIME(&s I”sn). Further- 

more, the above proof is much simpler than that given in [7]. 
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Unlike for MAX FLS” [5], for MIN ULR’ we can guarantee in polynomial time 

a performance ratio that is linear in the number of variables. This fact is mentioned 

without proof in 17, S]. 

Proposition 3. MIN ULR% with &Y E {=, 2, > } is approximahle within n -t 1, where 

n is the number of variables. 

Proof. When applied to linear systems, Helly’s theorem (see [ 161) implies that, for 

any infeasible system of inequalities or equations in n variables, all minimal infeasible 

subsystems contain at most n + 1 relations. Such a HelZy obstruction can be found using 

any polynomial time method for linear programming (LP) [22]. According to Farkas’ 

lemma (see [60]), a system Axdb with p inequalities and n variables is infeasible 

if and only if there exists a nonnegative vector y 80 such that y’A = 0 and y’b ~0. 

In fact, the result is still valid if the vector y 20 is required to have at most n + 1 

nonzero components. For infeasible systems, a polynomial-time LP algorithm produces 

a y satisfying Farkas’ lemma. If y has more than n + 1 nonzero components, some of 

them can be driven to zero. Therefore it suffices to find a nontrivial solution z of the 

auxiliary system z’[Alb] = [O’jO] such that z is zero for every component where y is 

zero. This simply amounts to determining a nontrivial solution to n + 1 homogeneous 

equations in more than n + 1 variables. Subtracting a multiple of z from y leads to 

a new y with fewer nonzero components. By repeating this process, we obtain in 

polynomial time a y with at most n + 1 nonzero components that correspond to the 

inequalities in a Helly obstruction. 

Thus, starting with an infeasible system, we can identify an obstruction and delete it 

iteratively until the resulting system is feasible, that is at most p/(n + 1) times. Clearly, 

we remove at most n + 1 times more inequalities than needed because at each step we 

delete at most II + 1 relations corresponding to a Helly obstruction while a single one 

may suffice. El 

The question of whether it is NP-hard to guarantee a polylogarithmic performance 

ratio in iz is still open in the general case. 

The answer is negative for a particular class of inequality systems with totally uni- 

modular matrices. More precisely, we consider node-arc incidence matrices of directed 

graphs, i.e. which contain exactly one 1 and one -1 in each row (all other com- 

ponents being 0). For this type of matrices, MIN ULRa with all second hand sides 

equal to 1 and homogeneous MIN ULR’ cannot be approximated within every con- 

stant, unless P = NP, but are approximable within a factor of O(log n log log n), where 

n is the number of variables. This follows using a straightforward modification of the 

polynomial-time reduction from Mm FEEDBACK ARC SET to MIN ULR with d relations 

given in [59]. For each arc (t.i,qi) in a given instance of Mm FEEDBACK ARC SET, 

we consider the nonstrict inequality xi -x, 3 1 or, respectively, the strict inequality 

xi - xj > 0. In fact, it is readily verified that the two special cases of MIN ULR with 

inequalities are equivalent to MIN FEEDBACK ARC SET. Since MIN FEEDBACK ARC SET is 
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Arx-hard (see for example [40]), it cannot be approximated within every constant un- 
less P = NP. However, it is known to be approximabl~ within O(log n log log n), where 
fz is the number of nodes in the graph 1231. 

3.2. Weighted and constrained versions 

In many practical situations, all relations do not have the same importance. This can 
be taken into account by assigning a weight to each one of them and by looking for 
a solution that minimizes the total weight of the unsatisfied relations [31,56]. 

Proposition 4. Weighted MIN ULR” with C2? E {=, 3, > } and positive integer 
(rational) weights is equally hard to approximate as the corresponding basic version. 

Proof. Basic MIN ULR8 is clearly a special case of weighted MIN ULR@ where all 
weights are equal to one. 

For proving the other direction, we first use the following result from [20]: For any 
“nice subset problem” with polynomially bounded weights that is approximable within 
a polynomial r(n) in the size of the input, the unrestricted version of the same problem 
where the weights are not pol~omially bounded is approximable within r(n) + l/n. 

Since it is easily verified that Mm ULR with equalities or inequalities are nice subset 
problems, only instances with polynomially bounded weights need to be considered. 
Thus, it suffices to show that any such instance can be associated with an equivalent un- 
weighted one. This is simply achieved by making for each relation a number of copies 
equal to the co~esponding weight. The number of relations will still be pol~omial 
since the weights are potynomially bounded. 0 

Interesting special cases of weighted MIN ULR include the constrained versions 
where some relations are mandatory while the others are optional (see [3 1 ] for an 
example from the field of linear numeric editing). C Mm ULR8L;@2 with 91, R2 E {=, 

2, >, #} denotes the variant where the mandatory relations are of type gr and the 
optional ones of type 92. When 91 = gz the problem can be seen as a weighted MIN 
ULRgl problem in which the weight of every mandatory relation is larger than the 
total weight of all optional ones. In this case, the constrained versions of MIN ULR 
are equally hard to approximate as the corresponding basic versions. 

It is worth noting that no such relation exists between constrained and ~w~ighted 
versions of the complementary problems MAX FLS. As we proved in [5], enforcing 
some mandatory relations makes MAX FLS with inequalities harder to approximate. 
While Mnx FLS” and MAX FLS’ can be approximated within a factor 2, the con- 
strained variants are at least as hard as the maximum independent set problem and 
hence cannot be approximated within a factor of nl-’ for any E > 0 unless NP C co-RP, 
where n is the number of nodes [36]. 

Any instance of a constrained problem C MIN ULR=;% with 9 E { =, >, > , # ) can 
be transformed into an equivalent instance of MIN ULR”. Indeed, by applying 
Gaussian elimination to the mandatory equations, each variable is expressed in terms 
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of other possibly free variables and it then suffices to substitute the variables in the 

optional relations accordingly. Since C MAxFL## with W E { =, 3, > , f} is solvable 

in polynomial time [5], all the problems CMIN ULRde;f are solvable in polynomial 

time. 

Fact 5. CMIN ULR>;= is equally hard to approximate as MIN ULR>. 

According to Fact 1, MIN ULR> can be reduced to Mm ULR= with nonnegative 

variables. The latter problem is a particular case of C MIN ULR>;= where the manda- 

tory inequalities are just nonnegativity constraints. Conversely, CMIN ULR”;= can be 

reduced to CMIN ULR”;> by substituting each optional equation by two complemen- 

tary inequalites. We can then use the standard reduction from CMIN ULRaia to MIN 

ULR>. Similarly we can show that C MIN ULR ‘;= is at least as hard to approximate 

as MIN ULR’ 

Proposition 6. CMIN ULR#;f is MIN DOMINATING SET-hard even when restricted to 
homogeneous systems with binary coeficients. 

Proof. By reduction from MIN DOMINATING SET as in Theorem 2. For each node vi E Y, 

1 <i <n, of an arbitrary instance G = (V,E), we consider the optional equation xi = 0 

and the mandatory relation 

Xi + C Xj #O. (2) 
iEN(c, 1 

Then there exists a dominating set in G of size at most s if and only if there exists a 

solution that violates at most s optional equations. 17 

4. Approximability of MIN RVLS 

In this section we discuss the approximability of the basic MIN RVLS,’ variants 

with 93 E { =, 2, > , f}, Although MIN RVLS and MIN ULR deal with different types 

of systems (feasible versus infeasible), we shall see that they are very closely related. 

Theorem 7. Assuming NP g DTIME(np”‘y“‘sn ), MIN RVLS” with 3? E {=, 2, >, f} is 

not approximable within a factor of 2’“~1-En , for any E > 0, where n is the number of 

variables. 

Proof. For MIN RVLS’, we show that there exists a simple cost preserving reduction 

from MIN ULR’ and use the fact that the latter problem cannot be approximated within 

a factor of 2’+‘” [81. 
Let (A, 6) be an arbitrary instance of MIN ULR= and s E [WP be the vector of slack 

variables. Looking for a solution of Ax = b with as few unsatisfied equations as possible 
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is equivalent to looking for x E [w” and s E [WJ’ such that 

Ax+s=b (3) 

with as few nonzero slacks si, 1 <i < p, as possible. Obviously s # 0 whenever the 

system is infeasible. Now consider a matrix D whose rows form a basis for the subspace 

orthogonal to the column space of A, i.e. D satisfies DA=0 and has the largest rank 

among all such matrices, namely rank(D) = p-rank(A). Since (3) is equivalent to 

DAx + Ds = Db, the instance of MIN ULR= is equivalent to finding a solution s E [WJ’ 

of the feasible system 

Ds=Db (4) 

with a minimum number of nonzero components. Note that, if Ax = b is infeasible, 

Db # 0. Clearly, there exists an s satisfying (4) with k nonzero components if and only 

if there exists an x satisfying all but k equations of Ax = b. The simple connection is 

given by (3). 

The same bound is also valid for systems with strict and nonstrict inequalities be- 

cause, according to Fact 1, each equation can be replaced by an appropriate pair of 

inequalities. 

For Mm RVLSf, we first proceed by cost preserving reduction from MIN DOMI- 

NATING SET as in Theorem 2. For each node Vi E < 1 < i <n, of an arbitrary instance 

G = (V,E), we consider the relation 

Xi + C Xj # 0 (5) 
iEN 

where N(vi) is the set of indices of the nodes adjacent to ai. Thus we have a system 

with IZ relations and n variables. 

Clearly, there exists a dominating set in G of size at most s if and only if the cor- 

responding system (5) has a solution x with at most s nonzero components. Given the 

lower bounds for MIN DOMINATING SET, MIN RVLSf cannot be approximated within 

any constant factor c> 1 unless P =NP. In other words, assuming P #NP, any poly- 

nomial time algorithm would provide a solution with more than [c.Y~ nonzero variables 

for some “bad” MIN RVLSf instances corresponding to MIN DOMINATING SET instances 

with a dominating set of size s. 

To obtain the 2’“s’-En factor, we proceed by self-improvement as in [8]. The idea is to 

show that any gap c > 1 can be increased recursively. For an arbitrary MIN DOMINATING 

SET instance, we start with the corresponding system (5) (Ax # 0) whose coefficients 

are 0 or 1 and we construct the squared system 

A’x # 0’ (6) 

obtained by replacing each element of A equal to 1 by the whole matrix A and each 

element equal to 0 by the p x n matrix with all zeroes. Thus A’ is a matrix of size 

p2 x n2 and 0’ is a vector with p2 components all equal to 0. Clearly, if the original 

MIN DOMINATING SET instance has a dominating set V’ c V of size s, there is a solution 
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x of (6) with s2 nonzero variables. However, any polynomial-time algorithm would 

provide solutions with more than [c’.s’j nonzero variables for its “bad” instances. 

By applying the above construction t times recursively, we obtain a system with 

p2’ equations and n2’ variables. Let t = log(logb n), where n is the number of vari- 

ables in the MIN RVLS# instance corresponding to the considered MIN DOMINATING 

SET instance and /I is a positive real number. The construction requires O(np”‘ylosn) 

time because the system has p’ = p logfl n equations and n’ = &‘g” n = 2”g 
Ptl n 

variables. 

Since log n’ = logB+’ n, an initial gap of, say, c = 2 implies a total gap of c2’ = c’ogPn = 
210g/J’W I In’ 

The bound follows by contradiction. Suppose there exists a polynomial-time algo- 

rithm that approximates MIN RVLS # instances with IZ variables within a factor of 
2log’ -I n for any e> l/(fi + 1). By applying it to the resulting instance of MIN RVLS#, 

one could approximate within a factor of 2 and in O(np”‘y’ogn) time any given instance 

of MIN DOMINATING SET. But this would imply NP C DTIME(nPO’Y’O”“). 0 

As we shall see in Section 6, this nonapproximability bound also holds for a special 

case of MIN RVLS with inequalities that arises in discriminant analysis and machine 

learning. The same is true for homogeneous MIN RVLS” with 2 E {=, a}. Indeed, 

the reduction for MIN ULR’ given in [8] (cf. also the proof of Theorem 12) can be 

easily extended to the case of homogeneous systems in which the trivial solution with 

all zero variables is discarded. 

Note that the shortest codeword problem in coding theory (see MS7 entry in [27]) 

is the same problem as MIN RVLS’ over GF(2). By similar methods as above this 

problem can be shown to have the same nonapproximability bound as ordinary MIN 

RVLS’. This result can also be shown directly by using the recent structural results 

by Khanna et al. [47]. 

In fact, not only MIN ULR= is a special case of MIN RVLS’ but we also have: 

Proposition 8. MIN ULR& with B E {=, 2, > } is tzt leust us hard to approximate 

as MIN RVLS.@ with the same type of relations. 

Proof. For any instance of MIN RVLS’, one can construct an equivalent instance of 

MIN ULR= by considering, for each variable xi with 1 d i dn, the equation xi = 0. By 

applying Gaussian elimination to the original MIN RVLS’ instance, each variable xi 

is expressed in terms of some possibly free variables. It then suffices to replace each 

variable in x = 0 by the corresponding expression. 

Since each equation xi = 0 can be replaced by the two complementary inequalities 

x, > 0 and xi CO, MIN ULR> is at least as hard to approximate as MIN RVLS3. Also 

MIN ULR’ is at least as hard because it is equivalent to MIN ULRa for systems with 

integer (rational) coefficients. 0 

The same reduction implies that the complementary maximization problem MAX 

IVLS’ (maximum number of Irrelevant Variables in Linear Systems) restricted to 
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homogeneous systems is equally hard to approximate as homogeneous MAX FLS’, i.e. 
not approximable within pE for some s>O unless P =NP [S]. 

Interestingly, MAX IVLS”“’ and MAX IVLS’ are much harder to approximate than 
MAX FLSa and MAX FLS’ , respectively. It is easy to show that the former problems 
are harder than the maximum independent set problem (which is not approximable 
within nl-’ for any E>O unless NP C co-RP, where 12 is the number of nodes [36]), 
while the latter ones can be approximated within 2 [S]. It suffices to construct, for each 
edge e = [Vi, Uj], the inequality xi +xj 3 1 or Xi +xj > 0 and to observe that there is a 
correspondence between the independent sets of cardinal@ at least s and the solutions 
with at least s zero components. 

5. Hardness of variants with bounded discrete variables 

In this section we consider the MIN ULR and Mw RVLS variants in which the 
variables are restricted to take a finite number of discrete values. See [ 14,331 for the 
problem of analyzing mixed-integer and integer linear programs. Since systems with 
bounded discrete variables can be reduced to systems with binary variables in (0, 1 }, 

we study the latter class of problems that is referred to as BIN MIN ULR. 

Theorem 9. BIN MIN ULR@ and CBIN MIN ULR”‘;“2 are NPO PB-complete for 
every combination of %!1,82 E { =, >, > , #}. Assuming P # NP, C BIN Mm ULR’“el;Y2 
and BIN MIN ULRgl cannot be approximated within sl+ and, respectively, within 

s”.5-z f Y or an E>O, where s is the sum of the number of uar~ables and relations. 

Proof. We show the result for CBIN MIN ULR>;> and then extend it to the other 
variants. We proceed by reduction from MIN IND DOM SET in which, given an undi- 
rected graph G = (Y,E), one seeks a minimum cardinality independent set Y’ C Y that 
dominates all nodes of G [27]. For each node vj E Y, 1 <i <n, of an arbitrary instance 
G = (Y, E), we consider the optional inequality 

Xi<0 

and the mandatory one 

Xi + C Xj> 1 
jEWv,> 

(7) 

(8) 

where N(Q) is defined as above. Furthermore, we construct for each edge [ui, uj] E E 
the mandatory inequality 

Xi+Xj<l. (9) 

Thus we have a system with n variables, n optional inequalities and n + [El mandatory 
ones. 

It is easily verified that there exists an independent dominating set in G of size at 
most s if and only if there exists a solution x E (0, 1)” that violates s optional relations 
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Table 1 

type (7) 

we (8) 

We (9) 

operator > 

GO 

21 

<1 

operator > 

<l 

>o 

<2 

operator # 

#I 

#O 

f2 

operator = 

= 0 
lN(l,, )I - I 

= IN( - c w, 
,‘I 

= 1 - Zij 

of the corresponding system. The mandatory relations (8) enforce the dominance con- 

straint while the relations (9) enforce the independence constraint. The result follows 

because MIN IND DOM SET is NPO PB-complete and cannot be approximated within 

n’-” for any E >O, where n is the sum of the number of nodes and edges in the 

graph. 
For the other constrained problems C BIN MIN ULR”1;“2, we use the same reduction 

as above but the right-hand side of the three types of relations must be substituted ac- 

cording to Table 1. In the case of mandatory equations we need to introduce 21E - n 

additional slack variables yij and IEl additional slack variables z;j. Thus the total num- 

ber of variables will be 3 IEl, that is, still a linear number in n and IEl. 

For the unconstrained problems, we add I VI + 1 copies of each mandatory relation 

so that they are more valuable than the optional ones. Since such a reduction has a 

quadratic size amplification, we get a weaker nonapproximability bound than for MIN 

IND DOM SET. 0 

It is worth noting that BIN MIN ULR&I and C BIN MIN ULR”l;“Z with gt,%!z E 

{ =, 2, > , #} remain NPO PB-complete for homogeneous systems. In the above re- 

duction, we multiply each nonzero constant in the right-hand side of a relation by a 

new variable x0. In order to prevent x0 from being zero we add the new mandatory 

relations x0 > 0, x0 # 0, x0 =x01, or x0 <x01 and xol 30 involving a new variable x01, 

depending on the type of relations. In the case of nonstrict inequalities and equalities, 

we add (as in the proof of Theorem 2) a large enough number of copies of those 

relations. 

Similar bounds also hold for MTN RVLS with binary variables that is referred to as 

BIN MIN RVLS. 

Proposition 10. BIN Mn\l RVLS” with %! E {=, 2, >, #} is NPO PB-complete. As- 

suming P #NP, BIN MIN RVLS= and BIN MIN RVLS” with .g E { 2, >, #} ure not 

upproximable within n”.5-r: and, respectively, within n’-” for uny E > 0, where n is the 

number of vmiables. 

Proof. The reduction is very similar to the one used in Theorem 9 for C BIN MIN 

ULR&;.@ with W E { =, 2, > , #}. The BIN MIN RVLS’ instance is simply composed 

of the mandatory relations (8) and (9). Since the number of violated optional relations 
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exactly corresponds to the number of nonzero variables, BIN MIN RVLS” with &! E 

{ 2, >, f} are NPO PB-hard and not approximable within n’-‘. 

For BIN MIN RVLS’, we have to deal with the slack variables vij and zij that have 

been added. Suppose there is a total number of N slack variables. In order to make the 

x variables more valuable than all the N slack ones, we introduce, for each variable xi, 

N new variables xii,. . . ,XiN and the N additional equations xi -Xii = 0 for j E [ 1 ..N]. 

In any solution x of the resulting instance we will have, for each variable xi, that 
&Xxi,= . . . =xjN. Consider the set of nodes V’ C V containing all nodes vi such that 

Xi = 1. V’ is clearly independent and dominating. If t variables in x are equal to 1, the 

size of this set will be [t/(N + 1 )J , 
Conversely, an independent dominating set containing s nodes corresponds to a solu- 

tion of the BIN MIN RVLS= instance with between s(N + 1) and s(N + 1) + N variables 

equal to 1. Thus the reduction is an S-reduction with size amplification O(nN) and we 

get the nonapproximability bound no.‘-‘, where n is the number of variables. 0 

Note that BIN MIN RVLS3 is equivalent to MIN POLYNOMIALLY BOUNDED O-l 

PROGRAMMING, which was shown to be NPO PB-complete in [41]. Moreover, the cor- 

responding maximization problem BIN MAX IVLS8 with %! E {=, 2, >, f} is NPO 

PB-complete and cannot be approximated within s~/~-’ for any E > 0, where s is the 

sum of the number of variables and relations, unless P = NP [42]. 

6. Special cases from discriminant analysis and machine learning 

In this section we discuss two interesting special cases of MIN ULR and MIN RVLS 

with inequalities which arise in discriminant analysis and machine learning, more 

precisely, when designing two-class linear classifiers [21] and when training percep- 

trons [54]. 

Given a set of vectors T = {ak} 1 Qk G p c R” labeled as positive or negative exam- 

ples, we look for a hyperplane H, specified by a normal vector w E Iw” and a bias 

w. E [w, such that all the positive vectors lie on the positive side of H while all the 

negative ones lie on the negative side. A hyperplane H is said to be consistent with an 

example ak if ak w > wo or ak w < wg depending on whether ak is positive or negative. 

In other words, we seek a discriminant hyperplane separating the examples in the first 

class from those in the second class. In the artificial neural network literature, such a 

linear threshold unit is known as a preceptron and its parameters wj, 1 < j<n as its 

weights [35]. 

In the general situation where T is nonlinearly separable, a natural objective is to 

minimize the number of vectors ak that are misclassified (see [49,25] and the included 

references). This problem is referred to as MIN MISCLASSIFICATIONS. Note that we have 

studied in [5] the approximability of the complementary problem where one looks for 

a hyperplane which is consistent with as many ak E T as possible. 
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In [7] a way of extending the nonapproximability bounds for Mw ULR” to the 

symme~c version of MIN MISCLASSIFICATIONS where we ask &W two for negative 

examples is suggested. Although the argument used does not suffice to complete the 

proof, it can easily be fixed. 

The problem is related to the fact that starting with any instance of Mm ULR’ we 

must construct a system with strict inequalities with a particular variable playing the 

role of the bias ~0. As mentioned in [7], one can easily associate to any considered 

instance of Mm ULR= an equivalent inhomogeneous instance of MTN ULR’. It s&ices 

to replace each equation by two nonstrict inequalities, and then to add a new slack 

variable 6 so as to turn each nonstrict inequality into a strict one. More precisely, 

every relation aw>O is replaced by aw + 6 > 0. Now, in order to make sure that 

the two systems are equivalent we must have S < l/L with L = ic . K] , where c and 

K are constants as in the proof of Theorem 12. This can of course be guaranteed 

by introducing a large enough number of copies of this strict inequality, but then the 

resulting system is not an instance of symmetric MIN MISCLASSIFICATIONS. Indeed, if 6 

is considered as the threshold the inequalities ensuring 6 < I/L are not homogeneous. 

Fortunately, there exists a simple and general technique to construct, for any instance 

of inhomogeneous Mm ULR’ , an equivalent instance of Symmet~C MIN ~~CLASSI- 

FICATIONS. 

Observation 11. Suppose we have a system ukw > hk with 1 G k < p where all bk are 

nonzero. Multiply each inequality by an appropriate constant so that all right-hand sides 

are equal to 1. By replacing all right-hand sides constants 1 by a variable ~0, we get 

a system with either ak w > wo type or ak w < wo type inequalities. Clearly, any solution 

of this new system such that wo > 0 gives a solution of the original system. Thus by 

adding a large enough number of copies of wg > 0 the two problems are guaranteed to 

be equivalent. 

In order to complete the reduction in 171, we just apply this technique to the system 

consisting of uw + 6> 1/(2L) inequalities and a large enough number of copies of 

6< l/L. 

It is worth noting that the same argument can be used to show that (nonsymmetric) 

MIN MISCLASSIFICATIONS cannot be approximated within 2”a’-‘@, for any t: > 0, unless 

NP 2 DTIME( nPO”“Oa ’ ). 

A special case of Mm RVLS with inequalities is also of particular interest in dis- 

criminant analysis and machine learning. The problem occurs when, given a linearly 

separable training set T, we want to minimize the number of parameters wj, 1 Q’ <n, 

that are required to correctly classify all examples in T [48,50,64]. This objective 

plays a crucial role because it has been shown theoretically and expe~mentally that 

the number of nonzero parameters has a strong impact on the performance of the clas- 

sifier (perceptron) for unseen data. According to Occam’s principle, among all models 

that account for a given set of data, the simplest ones - with the smallest number 

of free parameters - are more likely to exhibit good generalization (see for instance 
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[6,46]). The problem of identifying a subset of most relevant features is well known 

in the statistical discriminant analysis literature under the name of variable selection 

P31. 
In practice, when a linear classifier (perceptron) cannot satisfactorily classify the 

training set based on the original n, features, new features derived from the original 

ones are added. For instance, the O(nf) higher-order products of the original features 

may be included for several values of d > 2 [35]. Other simple functions of the original 

features such as radial basis functions are also frequently introduced [35]. Since any 

training set can be correctly classified given enough additional features, the objective 

is to minimize the overall number of features that are actually used. 

Mm RELEVANT FEATURES: Given a training set T = {&}I 4k Qp c II? containing p 
labeled examples, find a hyperplane defined by (w, wg ) E lWnfl that is consistent with 

T and has as few nonzero parameters wj, 1 d j Gn, as possible. 

While Lin and Vitter showed that MIN RELEVANT FEATURES with binary inputs is 

NP-hard [50], van Horn and Martinez established that the symmetric variant with strict 

inequalities is at least as hard to approximate as Mw SET COVER [63,64]. Further- 

more, they showed that an approximation algorithm that also minimizes the number of 

nonzero parameters within a factor of O(log p) would require far fewer examples to 

achieve a given level of accuracy than any algorithm that does not minimize the num- 

ber of relevant features. More precisely, for such an Occam algorithm the number of 

training examples needed to learn in Valiant’s Probably Approximately Correct (PAC) 

sense [62] would be almost linear in the minimum number of nonzero parameters s. 

If s<n this is much less than the O(n) examples required by a simplistic training 

procedure without feature minimization. 

The following result provides strong evidence that no such approximation algorithm 

exists. 

Theorem 12. MIN RELEVANT FEATURES cannot be approximated within any constant, 
unless P =NP, and within a factor of 2’“s’-Ep, for any E>O, unless NP C DTIME 

(pP”‘Y’OgJ’), where p is the number of examples. 

Proof. To show nonapproximability within any constant factor, we adapt the reduc- 

tion from MIN SET COVER used for MIN ULR= in [8]. In MIN SET COVER, given a 

collection v = {Cl,. . . , Cn} of subsets of a finite set S, one seeks a sub-collection 

%’ = { Cj, 9 t . . , Cj,} C: $9 of minimum cardinality such that UE, C, = S with m <n. Any 

such %?I is a cover of S. If all the sets in $9’ are pairwise disjoint, it is an exact cover. 

According to [ 111, for every c > 1, there exists a polynomial-time reduction that 

transforms any instance 4 of the satisfiability problem SAT (see [27]) into an instance 

of Mm SET COVER with a positive integer K such that 

l if 4 is satisfiable there exists an exact cover $7’ of size K, 
l if 4 is unsatisfiable no set cover has size less than [c. K]. 
By construction, the size of the ground set S and the number of subsets are polyno- 

mially related. 
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For any such instance (S,W) of MEN SET COVER, we construct ISI positive examples 

with IZ components corresponding to the system 

AW>W()l, (10) 

where aij = 1 if the ith element of S belongs to C’ and 0 otherwise. Furthermore, we 

include the negative example 0 ensuring that wo 3 0. Hence we have a training set with 

p = ISI + 1 examples. 

Clearly, the nonzero components of any parameter vector w E R” that correctly clas- 

sifies all examples define a cover. Conversely, given any cover %” of cardinal&y K, 

the parameter vector w given by 

1 
w/ = 

if Cj E V’, 
0 otherwise, 

together with the bias wo = 0 correctly classifies all examples and has K nonzero com- 

ponents. Therefore the minimum number of nonzero parameters is either K or at least 

Lc. K] depending on whether the corresponding SAT instance is satisfiable or unsatis- 

fiable. 

The constant gap between the satisfiable and unsatisfiable cases can then be increased 

by self-improvement like in the proof of Theorem 7. Since in the reduction the num- 

ber of examples p is polynomially related to the size of the examples iz, the same 

nonapproximability bound is also valid with respect to p. q 

Note that, while this paper was being reviewed, Grigni et al. [32] addressed the 

parameterized complexity of designing linear classifiers with a number of nonzero 

parameters smaller or equal to a given bound. 

The consequences of Theorem 12 on the hardness of designing compact feedforward 

networks are discussed in detail in [3]. From an artificial neural network perspective, 

Theorem 12 shows that designing close-to-minimum size networks in terms of nonzero 

weights is very hard even for linearly separable training sets that are performable by 

the simplest type of networks, namely perceptrons. Clearly, the general problem for 

multilayer networks is at least as hard as MIN RELEVANT FEATURES. Since our result 

holds for perceptrons, i.e. single units, the problem of designing compact networks 

does not become easier even if we know in advance the number of units in each layer 

of a minimum size network and we only need to find an appropriate set of values for 

the weights. 

It is worth noting that Kearns and Valiant established in [45] a stronger nonap- 

proximability bound but under a stronger cryptographic assumption. In particular, they 

showed that if trapdoor functions ’ exist it is intractable to find a feedforward network 

with a bounded number of layers that performs a given training set and that is at most 

polynomially larger than the minimum possible one. The size is there measured in terms 

‘A trapdoor function I is a one-to-one function such that 9 and its inverse 

given ,T, the inverse .T- ’ cannot be constructed in polynomial time [58]. 
are easy to evaluate but, 
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of the number of bits needed to describe the network. Although their result indicates 

that even approximating minimum networks within polynomial ratios is intractable, it 

leaves open the possibility that this strong nonapproximability bound depends on the 

fact that intricate networks with a large number of hidden layers may be considered. 

Indeed, the target functions that Kearns and Valiant proved hard to learn are the very 

special inverses of trapdoor functions. 

From a practical point of view, our lower bound implies that the best we can do 

even for the simplest type of networks and of tasks is to devise efficient heuristics with 

good average-case behavior. 

7. Conclusions 

The various versions of MIN ULRB and MIN RVLS? with B E {=, >, >, f} that 

we have considered are obtained by restricting the range of the variables and of the 

coefficients or by assigning a weight to each relation. 

Table 2 summarizes the nonapproximability results that hold for MIN ULR variants 

unless P =NP. The results are valid for inhomogeneous systems with integer coeffi- 

cients and no pairs of identical relations, and some of them are still valid for homo- 

geneous systems with ternary, and even binary, coefficients. In order to avoid trivial 

solutions in the equality and nonstrict inequality cases, we require that at least a small 

Table 2 

Main approximability results for MDI ULR variants with 93 E {=, 2, >, f} that hold assuming P # NP 

MM ULR’ 

MB4 ULR” 

Real variables 

Not within any constant [7] 

Binary variables 

MIN ULRf 

c MIN ULR”:* 

c MIN ULR”:’ 

C MIN ULR>:= 

C MIN ULR+> 

Trivial 

As hard as MIN ULR” 

At least as hard as MIN ULR’ 

At least as hard as MM ULR” 

NPO PB-compete 

C MIN ULR+= MIN DOMINATING SET-hard 

c MIN ULR”+ Polynomial time 

Note: The constrained versions C MIN ULR’.sc with real variables and mandatory equations are equivalent 

to the corresponding MIN ULR”. The table is still valid when nonstrict inequalities are substituted by strict 
inequalities and vice versa. The only difference is that C MIN ULR >.= is as hard as MM ULR” while 
C MR\I ULR”:’ is only at least as hard as MIN ULR’. 
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fraction of the variables occurring in at least a small fraction of the satisfied relations 

are nonzero. 

Arora et al. showed that MIN ULR with equalities or inequalities is not approximable 

within any constant, unless P = NP, and within a factor of 2’0s’-“n, for any E > 0, unless 

NP C DTIME(nP”‘Y1”sn) [7,8]. Using a simple reduction from MIN DOMINATING SET, we 

have obtained a weaker but more likely logarithmic lower bound for MIN ULR with 

strict and nonstrict inequalities. 

The weighted and constrained variants of MIN ULR turn out to be equally hard 

and, respectively, about as hard to approximate as the unweighted ones. Restricting 

the variables to binary values makes all versions of MIN ULR NPO PB-complete. 

Although the basic version of Mm ULRf is trivial, various constrained variants are 

hard to approximate. The nonapproximability bounds such as n’-” for any E > 0 makes 

the existence of any nontrivial approximation algorithm extremely unlikely. 

It is worth noting that the overall situation for MIN ULR differs considerably from that 

for the complementary class of problems MAX FLS (see [3,5]). Unlike for MAX FLS, 

MIN ULR with equations and (nonstrict) inequalities are equivalent to approximate. 

Moreover, while all basic versions of MIN ULR can be approximated within a factor 

of n + 1, MAX FLS cannot be approximated within p” for some E>O, where p is the 

number of equations. 

As to MIN RVLS8 with 99 E {=, b, >, f}, we have shown that they cannot be 

approximated within a constant factor and within 2’“s’-‘n under the usual assumption. 

Note that, in spite of the close relationship between MIN RVLS and MIN ULR, MIN 

RVLSf is hard to approximate while MIN ULRf is trivially solvable. When the vari- 

ables are restricted to take binary values, MIN RVLS turns out to be NPO PB-complete 

for any type of relational operator. 

Finally, we have shown that the interesting special case MIN RELEVANT FEATURES, 

arising when designing linear classifiers and compact perceptrons, is not approximable 

within a logarithmic factor as conjectured in [63], unless all problems in NP are solv- 

able in quasi-polynomial time. 
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