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SUMMARY

Stimulation of death receptors by agonists such as
FasL and TNFa activates apoptotic cell death in apo-
ptotic-competent conditions or a type of necrotic cell
death dependent on RIP1 kinase, termed necropto-
sis, in apoptotic-deficient conditions. In a genome-
wide siRNA screen for regulators of necroptosis,
we identify a set of 432 genes that regulate necropto-
sis, a subset of 32 genes that act downstream and/or
as regulators of RIP1 kinase, 32 genes required for
death-receptor-mediated apoptosis, and 7 genes in-
volved in both necroptosis and apoptosis. We show
that the expression of subsets of the 432 genes is
enriched in the immune and nervous systems, and
cellular sensitivity to necroptosis is regulated by an
extensive signaling network mediating innate immu-
nity. Interestingly, Bmf, a BH3-only Bcl-2 family
member, is required for death-receptor-induced nec-
roptosis. Our study defines a cellular signaling net-
work that regulates necroptosis and the molecular
bifurcation that controls apoptosis and necroptosis.

INTRODUCTION

Cell death has been traditionally classified as apoptosis or ne-

crosis. While apoptosis is known as a regulated cellular mecha-

nism, necrosis is known as passive cell death caused by over-

whelming stress. Necrosis is characterized by rapid loss of

plasma membrane integrity, organelle swelling and mitochon-

drial dysfunction, and the lack of typical apoptotic features

such as internucleosomal DNA cleavage and nuclear condensa-

tion. Although necrosis is known to occur under a variety of path-

ological conditions, little effort has been made to study necrosis

due to the belief in its unregulated nature. Support for a regulated

necrosis mechanism came from studies of the death receptors.

Activation of the Fas and TNFR family of death receptors induces
a ‘‘prototypic’’ apoptotic pathway through the recruitment of

adaptor proteins, such as FADD, and upstream caspases,

such as caspase-8. Interestingly, it was discovered that, in cer-

tain cell types, stimulation with FasL or TNFa under apoptosis-

deficient conditions could induce cell death with morphological

features of necrosis (Kawahara et al., 1998; Vercammen et al.,

1997). The fact that the activation of Fas/TNFa receptors may

lead to cell death with features of either apoptosis or necrosis ar-

gues strongly for the existence of a regulated cellular necrosis

mechanism, discrete from apoptosis, which we termed ‘‘necrop-

tosis’’ (Degterev et al., 2005).

RIP1 is a death-domain-containing kinase associated with the

death receptors, but its kinase activity is dispensable for the in-

duction of death-receptor-mediated apoptosis (Grimm et al.,

1996). In apoptosis-deficient conditions, however, RIP1 kinase

activity has been found to be required for the activation of nec-

roptosis by death receptor agonists (Holler et al., 2000). In our

previous studies, we have isolated multiple small molecule inhib-

itors of necroptosis termed necrostatins (Necs) (Degterev et al.,

2005, 2008). Importantly, we have shown that Nec-1 is an allo-

steric inhibitor of RIP1 kinase activity (Degterev et al., 2008). Us-

ing Nec-1 as a tool, necroptosis has since been found to contrib-

ute to a wide range of pathologic cell death paradigms, including

ischemic brain injury, myocardial infarction, excitotoxicity, and

chemotherapy-induced cell death (Degterev et al., 2005; Han

et al., 2007; Smith et al., 2007; Xu et al., 2007). Here, we have

broadly explored the molecular mechanism and functional sig-

nificance of necroptosis by carrying out a genome-wide siRNA

screen for genes required for necroptosis. Our study defines

a genetic profile for a cellular necrotic pathway, elucidates the

connection between apoptosis and necroptosis, and implicates

necroptosis as a critical regulatory pathway for innate immunity

and suggests a potential role of necroptosis in human disease.

RESULTS

A Screen for Genes Required for Necroptosis
The treatment of L929 cells with zVAD.fmk has been shown to

induce necroptosis, which can be inhibited by Nec-1 (Degterev
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Figure 1. siRNA Screen for Genes Required for Necroptosis

(A) A schematic diagram of first and second screens.

(B) L929 cells not transfected (‘‘a’’) or transfected with either nontargeting siRNA (ctrl) or rip1 siRNA at 50 nM for 48 hr (‘‘b’’) were treated with 20 mM zVAD.fmk

with or without 30 mM Nec-1 for 18 hr. (Bottom) Lysates of siRNA-transfected L929 were analyzed by western blotting using anti-RIP1 or anti-Tubulin antibodies.

(C) The morphological change of L929 cells transfected with indicated siRNAs after 18 hr treatment of 20 mM zVAD.fmk were shown by phase-contrast

microscopic pictures.

Scale bars, 100 mm. Cellular viability was evaluated by measuring ATP levels in surviving cells using CellTiter-Glo. Error bars, SD. *p < 0.05; **p < 0.01; ***p < 0.001;

n = 4.
et al., 2005). Using this model, we screened the Dharmacon

siRNA library covering the mouse genome (16,873 genes) for

genes required for necroptosis (Figure 1A). RIP1 siRNA was

used as a positive control as knockdown of RIP1 efficiently

blocked necroptosis induced by zVAD.fmk (Figure 1B). In the

nontargeting siRNA-transfected cells (Dharmacon), the treat-

ment of zVAD.fmk induced �80% cell death. A siRNA was

scored as positive if its ATP level (a surrogate for cell survival)

was > 2 standard deviations (SD) above the mean ATP level of

the plate. Using this criterion, 666 genes were scored as candi-

dates required for zVAD.fmk-induced necroptosis in L929 cells.

As expected, rip1 was scored as a hit in this assay, providing

a validation for our approach (Figures 1B and 1C).

To confirm the screening result, we rescreened the 666 pri-

mary siRNA hits using four individual siRNAs for each gene. In or-

der to restrict our analysis to genes that have major impacts on

cellular sensitivity to necroptosis, we required that at least two

out of the four siRNAs increased cell survival for > 3 SD above

that of cells transfected with nontargeting siRNA control and

showed at least 60% of the viability of cells expressing the pos-

itive control rip1 siRNA. Using these criteria, 432 genes were

scored positive. RIP1 was again one of the validated hits, with

all four siRNAs showing a protective effect against necroptosis

induced by zVAD.fmk (data not shown).

We examined the expression of genes identified in the

zVAD.fmk screen across 61 normal mouse tissues using micro-
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array data files from the Novartis GNF mouse expression atlas

resource (Su et al., 2004) and found clusters of hits showing in-

creased expression in immune and neuronal cells/tissues

(FDR-adjusted p < 0.05) (Figure 2A and Tables S1 and S2 avail-

able online). To further define the immune cell types, we also an-

alyzed a larger mouse immune microarray panel comprising

gene expression profiles from 119 mouse cell/tissue samples,

of which 83% represent various types of primary immune cells

(Hijikata et al., 2007). We observed a cluster of genes from the

zVAD.fmk screen exhibiting increased expression in macro-

phages, dendritic cells, and NK cells and another cluster show-

ing enhanced expression in B and T lymphocytes (Figure 2B and

Tables S3 and S4). The enriched expression in cells of the im-

mune system also suggests a role of necroptosis in regulating

immune function.

To further confirm a functional role of necroptosis in the im-

mune system, we tested the sensitivity of primary peritoneal

macrophages to Nec-1. As shown in Figure 2C, spontaneous

as well as zVAD.fmk-induced cell death of macrophages was

inhibited by Nec-1, suggesting that necroptosis plays a role in

regulating the survival of activated primary macrophages, one

of the key cell types involved in innate immunity. On the other

hand, death-receptor-mediated cell death of epithelial cell lines,

such as HeLa cells, 293 cells (Degterev et al., 2005), and

MCF10A (data not shown), is not sensitive to the inhibition of

Nec-1.



Figure 2. Expression Patterns of the zVAD Hits in Mouse Tissues

and Primary Cells

(A) Expression profiles of genes from the zVAD.fmk screen showing signifi-

cantly higher expression in immune cells or neuronal cells (FDR-adjusted p <

0.05) as observed in the Novartis GNF1m microarray data examining expres-

sion across 61 mouse tissues.

(B) Expression profiles of genes from the zVAD.fmk screen exhibiting in-

creased expression in mouse macrophages, dendritic cells, and NK cells or

in B and Tlymphocytes from a large microarray panel of 119 mouse cell/tissue

samples obtained from the RIKEN resource.
CYLD, a tumor suppressor and a deubiquitinating enzyme en-

coded by a gene that is mutated in familial cylindromatosis

(Simonson et al., 2007), was identified in the microarray data

sets as having increased gene expression in immune and neuro-

nal cells/tissues (Tables S1 and S2). CYLD is known to be re-

cruited to the TNFa receptor upon its activation, and, further-

more, RIP1 has been identified as a CYLD substrate (Wright

et al., 2007), suggesting that CYLD may represent a key regula-

tory factor in the necroptotic pathway. To confirm the role of

CYLD in necroptosis, we compared the efficiency of cyld knock-

down with necroptosis inhibition. As shown in Figure 3A, we

found an excellent correlation between the efficiency of cyld

knockdown by individual siRNAs and protection against

zVAD.fmk-induced necroptosis in L929 cells. To further confirm

the role of cyld in necroptosis, we used siRNAs against human

cyld to inhibit its expression in FADD-deficient Jurkat cells. We

found that inhibition of cyld expression in Jurkat cells also atten-

uated necroptosis (Figure 3B). Execution of necroptosis is asso-

ciated with activation of autophagy and increased formation of

its marker, LC3II, which is efficiently inhibited by Nec-1 (Degterev

et al., 2005). Consistently, knockdown of cyld also inhibited LC3II

induction in L929 cells treated with zVAD.fmk (Figure 3C).

Since CYLD regulates TNFa signaling (Wright et al., 2007), the

requirement of cyld suggests that autocrine regulation of TNFa

signaling might be involved in regulating cellular sensitivity to

necroptosis induced by zVAD.fmk. Consistent with this possibil-

ity, TNFR1 (TNFRSF1a) was identified as one of the genes re-

quired for zVAD.fmk-induced necroptosis (Table S6). Since inhi-

bition of caspases by expression of crmA, a caspase inhibitor

encoded by cowpox virus, or by multiple peptide caspase inhib-

itors was found to sensitize L929 cells to TNFa-induced necrosis

(Vercammen et al., 1998), our results indicate that an autocrine

regulation of TNFa contributes to necroptosis induced by

zVAD.fmk.

Canonical Pathways in Necroptosis
To gain insights into the function of genes scored in our siRNA

screen, we used a gene set approach to identify common path-

ways associated with these gene clusters. Using the Molecular

Signatures Database (MSigDB) (Subramanian et al., 2005),

which provides a catalog of some 3000 sets of genes divided

into various annotation groupings, we interrogated human ortho-

logs of the 432 genes involved in zVAD.fmk-induced necroptosis

against curated gene sets (canonical pathways) and motif-based

gene sets (transcription factor targets) from the MSigDB. We

identified canonical pathways that were found to be significantly

enriched (p < 0.05) among zVAD.fmk hits compared to the full set

of genes screened in the siRNA library to which human orthologs

could be mapped. Involvement of the TNFR1 pathway is very

clear, as multiple hits in the zVAD.fmk screen, such as tnfr1

(tnfrsf1a), ripk1, cyld, jun, and grb2, have established roles in

(C) Involvement of necroptosis in primary macrophage cell death induced by

zVAD.fmk. Isolated peritoneal macrophages from mice stimulated by thiogly-

collate were untreated or treated with 100 mM zVAD.fmk with or without 30 mM

Nec-1 for 24 hr, and cell death was measured by Sytox assay (Invitrogen). Error

bars, SD. *p < 0.05; **p < 0.01; ***p < 0.001; n = 4.
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TNF signaling. In addition, the toll-like receptor (TLR) pathway,

which was identified to be significantly enriched in the canonical

pathway analysis, is also likely to be involved in necroptosis, as

several zVAD.fmk hits, such as ripk1, cyld (Meylan et al., 2004;

Yoshida et al., 2005), multiple members of the interferon family

(ifna1, ifna7, and ifna13), and an IFN-induced gene, LRG47/

Irgm1, are also known to have roles in the TLR pathway. Interest-

ingly, our analysis identified that at least 70 out of 432 genes

identified in the zVAD.fmk screen are connected through an ex-

tensive network surrounding innate immune pathways to TNFR1

and TLR signaling using pathway components, ripk1, jun, cd40,

and spp1, which are also zVAD.fmk hits, as anchor points

(Figure 4A). An important role of necroptosis in innate immunity

is consistent with the enriched expression of zVAD.fmk hits in

the immune system. This network provides a framework for fu-

ture explorations into the mechanisms by which cellular sensitiv-

ity to necroptosis is regulated in response to multiple TLR and

death receptor family members.

Although it was not known that the treatment with zVAD.fmk

would lead to the activation of some of the signaling processes

involved in the TNFR1 and TLR pathways, the agonists of

TNFR1 and TLR have been previously shown to induce cas-

pase-independent necrosis that we termed necroptosis (Deg-

terev et al., 2005; Kalai et al., 2002; Temkin et al., 2006; Vercam-

men et al., 1998; Xu et al., 2006). Consistent with a role of TNFR1

in zVAD-induced necroptosis, neutralization of TNFa by antibody

protected L929 cells from necroptosis induced by zVAD.fmk

(Figure 4B). Furthermore, we found that L929 cells can be in-

Figure 3. CYLD Knockdown Inhibits Nec-

roptosis

(A) L929 cells were transfected with three different

siRNAs against cyld (cyld9 and cyld11) and rip1

(50 nM) for 48 hr, treated with 20 mM zVAD.fmk

for an additional 18 hr, and the viability was mea-

sured as in Figure 1. Knockdown efficiency of

cyld was confirmed by western blot using anti-

CYLD, anti-RIP1, or anti-Tubulin antibodies. Error

bars, mean SD. *p < 0.05; **p < 0.01; ***p < 0.001;

n = 4.

(B) Human FADD-deficient Jurkat cells were elec-

troporated with siRNAs against human cyld (cyld6

and cyld7). At 48 hr later, the cells were treated

with 10 ng/ml TNFa for an additional 16 hr, and

the viability was measured as in Figure 1. The

cell lysates were analyzed by western blotting as

in (A).

(C) Inhibition of LC3-II induction in cyld knock-

down cells. L929 cells stably expressing shRNA

for cyld (sh-cyld) or vector alone (vector) were

treated with 20 uM zVAD.fmk for indicated pe-

riods, and the cell lysates were analyzed by west-

ern blotting using anti-LC3-II, anti-CYLD, or anti-

Tubulin antibodies.

duced to die by cotreatment with IFNg

and polyI:C (polyinosinic:polycytidylic

acid), a synthetic double-stranded RNA

agonist of TLR3 commonly used to mimic

viral infection, and the cell death was in-

hibited by Nec-1 (Figure 4C). Thus, consistent with the connec-

tion of necroptosis and innate immunity, the cell death induced

by the activation of TLR3 in L929 cells in the presence of IFNg re-

quires RIP1 kinase activity to induce necroptosis.

The canonical pathway enrichment analysis also uncovered

the involvement of the glutathione metabolic pathway, the glyco-

sylphosphatidylinositol pathway, proteins involved in translation

(including translation initiation factors), and ribosomal proteins

(Table S5). The protection offered by reducing the levels of glu-

tathione peroxidase (gpx4) and glutathione S-transferases

(gsta3 and gsto2), which is expected to increase the availability

of free glutathione, is consistent with the fact that RIP1 activation

leads to increases in the cellular levels of free radical species,

which plays an important role in mediating necroptosis (Xu

et al., 2006; Yu et al., 2006). Similarly, inhibition of glycosylphos-

phatidylinositol (GPI) anchor biosynthesis by knockdown of

pgap1, pigl, and pigm is consistent with the requirement of GPI

in TNFa signaling (Fukushima et al., 2004). Identification of these

canonical pathways provides new insights into the molecular

mechanism of necroptosis induced by zVAD.fmk as well as a val-

idation for our screen.

Role of Transcription and Translation in Necroptosis
Of the 432 genes involved in zVAD.fmk-induced necroptosis,

291 (67%) and 281 (65%) could be classified into broad molec-

ular function (Figure 5A and Table S6) and biological process

(Figure 5B and Table S7) categories for mouse genes, respec-

tively. There appears to be an enrichment trend for nucleic
1314 Cell 135, 1311–1323, December 26, 2008 ª2008 Elsevier Inc.



acid binding (unadjusted hypergeometric p = 0.01) and nucleic

acid metabolism (hypergeometric p = 0.003) categories in the

set of genes involved in zVAD.fmk-induced necroptosis relative

to their representation in the global set of genes examined in

the siRNA screen. None of the functional enrichments were sig-

nificant at the 0.05 level after being adjusted using Benjamini and

Hochberg’s (BH) method, but this may be overly conservative

since the functional categories are not independent. Interest-

Figure 4. Network Extension of the Innate

Immune Toll-Like Receptor Signaling Path-

way and Its Participation in Necroptosis

(A) Network was constructed by anchoring on TLR

pathway components (CD40, RIPK1, JUN, and

SPP1) that are also zVAD.fmk hits using protein-

protein interaction data curated from literature

and high-throughput yeast two-hybrid screens.

(B) Autocrine production of TNFa is involved in

zVAD-induced necroptosis. L929 cells were pre-

treated with indicated concentrations of anti-

mouse TNFa antibody (mg/ml) for 1 hr followed

by treatment with or without 20 mM zVAD.fmk or

30 mM Nec-1 for 16 hr.

(C) Involvement of TLR pathway in necroptosis.

L929 cells were treated with indicated chemicals

for 19 hr. Cellular viability was measured as de-

scribed in Figure 1. polyI:C; 25 mg/ml, interferon

gamma (IFNg); 1000U/ml, Nec-1; 30 mM.

Error bars, SD. *p < 0.05; **p < 0.01; ***p < 0.001;

n = 4.

ingly, 43 genes in the zVAD.fmk hit list en-

code transcription factors (Table S6).

To begin to characterize the regulation

of necroptosis, we explored the promoter

regions of genes identified in our siRNA

screen to see whether we could find

shared transcription factor binding sites

as defined in the TRANSFAC database

(www.gene-regulation.com) and the

MSigDB collection of transcription factor

(TF) targets (i.e., motif-based gene sets)

(Xie et al., 2005). We found an enrichment

of binding sites (unadjusted hypergeo-

metric p < 0.05) for TFs such as myog/

nf1, meisb1/hoxa9, nrf2, hnf4, lef1, ar,

pax4, and pparg in the promoters of

genes involved in zVAD.fmk-induced

necroptosis (Figure 5C), suggesting the

involvement of these cis elements in the

underlying transcriptional regulatory con-

trol of genes involved in zVAD.fmk-in-

duced necroptosis. Consistent with this

proposal, a binding site for the androgen

receptor (AR) was found to be enriched

in the promoters of genes involved in

necroptosis, and AR was also a hit in

the screen for genes involved in zVAD.

fmk-induced necroptosis (Table S6). This

provides further evidence for the importance of transcriptional

control of necroptosis.

In contrast to death-receptor-mediated apoptosis, which is

sensitized by the inhibition of protein synthesis via inhibition of

the NF-kB transcriptional response, inhibition of protein synthe-

sis by CHX has been shown to inhibit necroptosis induced by

zVAD.fmk (Yu et al., 2004), but not by TNFa (Figure S1). Thus,

the protection provided by the inhibition of some of the essential
Cell 135, 1311–1323, December 26, 2008 ª2008 Elsevier Inc. 1315
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Figure 5. Enrichment of Transcription Factor Binding Sites and Nucleic Acid Binding Function of Genes Involved in Necroptosis

(A and B) The 432 hit genes from the secondary screen for zVAD.fmk-induced necroptosis were classified into (A) molecular function and (B) biological process

categories for mouse genes according to the PANTHER classification system. Genes for which no annotations could be assigned were excluded from the anal-

ysis for both the hits and the global set (i.e., genes examined in the siRNA screen). Categories with at least ten genes are displayed in the pie charts. The number of

genes assigned to each category and enrichment p values are shown in brackets. An asterisk denotes categories found enriched (unadjusted hypergeometric

p < 0.05) relative to the global set of genes examined in the screen. Lists of assigned genes grouped by molecular function or biological process categories are

provided in Tables S6 and S7, respectively.

(C) Enrichment analysis of cis regulatory elements, in particular transcription factor (TF) binding sites in the promoters of genes involved in zVAD.fmk-induced

necroptosis (vertical axis of graph), using motif-based gene sets from the MSigDB and TF binding sites defined in the TRANSFAC database. TF binding motifs

were examined for enrichment among human orthologs of zVAD.fmk hits compared to the global set of genes screened in the siRNA library to which human

orthologs could be mapped. The bar chart displays the negative log of the enrichment p values for each pathway using the hypergeometric distribution.

(D) Expression profiles of probes against zVAD.fmk screen hits showing elevated expression in necroptosis-sensitive L929 cells compared to necroptosis-

resistant NIH 3T3 cells were mapped to human orthologs and expression trends examined in four human cell lines: necroptosis-sensitive Jurkat cells, necrop-

tosis-resistant HeLa, HEK293 cells, and HEK293T cells (from the GNF microarray collection). Expression values were z-score-transformed for each probe across

arrays.
cellular machinery involved in protein translation, such as

eif3s10, eif4a1, eif4e, eif4ebp2, eif5b, and pcbp1, as well as mul-

tiple ribosomal proteins and proteins involved in mRNA splicing

(Table S6), is likely due to the inhibition of protein translation.
1316 Cell 135, 1311–1323, December 26, 2008 ª2008 Elsevier Inc.
Consistent with necroptosis being a cellular program of necrotic

cell death, transcription and translation may be essential for the

progression of necroptosis, at least under certain conditions.

Furthermore, these data suggest an intriguing possibility that



availability of the translational machinery might represent an-

other factor determining cellular choice in executing cell death.

Gene Expression Profile of Cells Sensitive
to Necroptosis
To examine the transcriptional profile associated with cellular

sensitivity to necroptosis, we performed microarray analysis on

L929 cells, which are sensitive to necroptosis, and NIH 3T3 cells,

which we have shown previously to be unable to undergo necrop-

tosis (Degterev et al., 2005). By comparing the expression profiles

of the 432 hit genes from the zVAD.fmk screen in these two cell

types, we identified 60 zVAD.fmk hits that were expressed at sig-

nificantly higher levels in L929 cells relative to NIH 3T3 cells (FDR-

adjusted p < 0.05; fold-change > 1.5) (Table S8).

To determine whether this transcriptional profile is preserved

in other cell lines known to be sensitive or resistant to necropto-

sis, we next examined gene expression data for four human cell

lines (Jurkat, HeLa, HEK293, and HEK293T) from the Genomics

Institute of the Novartis Foundation (GNF) cell line collection. The

trend appears to be consistent for the nine genes that we exam-

ined (edd1, mpg, ca9, slc25a15, sirt5, npepl1, dcc1, cd40, and

col4a3bp) (Figure 5D). These genes exhibited elevated expres-

sion in necroptosis-sensitive Jurkat cells relative to HeLa,

HEK293, and HEK293T cells, which are resistant. These results

suggest that increased expression of a subset of zVAD hit genes

might convey cellular sensitivity to necroptosis.

Core Components of the Necroptotic Pathway
Treatment of L929 cells with TNFa strongly induces necroptosis

(Fiers et al., 1995). TNFa, however, also induces the activation of

NF-kB, which requires the intermediate domain of RIP1 (Ting

et al., 1996). Since activation of NF-kB is prosurvival, necroptosis

of L929 cells induced by TNFa cannot be inhibited by RIP1 siRNA

(Figure 6A). On the other hand, since Nec-1 targets RIP1 kinase

activity specifically and does not affect the activation of NF-kB,

Nec-1 inhibits TNFa-induced necroptosis of L929 cells (Degterev

et al., 2005, 2008) (Figure 6A). Since RIP1 is specifically recruited

to the TNFa receptor in the activation of necroptosis (Zheng

et al., 2006), the genes required for TNFa-induced necroptosis

are predicted to be specifically downstream and/or regulators

of RIP1 kinase activity.

We screened the 666 primary siRNA hits from the zVAD.fmk

screen for genes required for necroptosis induced by TNFa

(Figure 1A). In nontargeting siRNA-transfected cells, TNFa

caused �80% cell death. tnfr1 siRNA, which provided a strong

protection against necroptosis induced by TNFa, was used as

a positive control. A gene was scored as positive if at least two

out of four of its siRNAs increased cell survival to at least 50%

of the level provided by tnfr1 siRNA. This screen identified 32

genes required for necroptosis induced by TNFa (Table 1). Since

these 32 genes are also required for zVAD.fmk-induced necrop-

tosis, we hypothesize that these 32 genes represent potential

core components of the necroptotic pathway. Consistent with

this proposal, CYLD, which has been shown previously to inter-

act with RIP1 and regulate RIP1 ubiquitination (Wright et al.,

2007), is required for necroptosis induced by either zVAD.fmk

or TNFa. Importantly, PARP-2, a member of poly-ADP ribose

polymerase family (Menissier de Murcia et al., 2003), and Bmf,
a member of the Bcl-2 family, is also required for necroptosis in-

duced by either zVAD.fmk or TNFa (Figures 6B and 6C). In addi-

tion, TIPE1 is also required for both zVAD.fmk and TNFa-induced

necroptosis (Figure 6D). TIPE1 is a close homolog of TIPE2 that

has been shown to play an important role in mediating death-re-

ceptor-mediated apoptosis and innate immunity (Sun et al.,

2008).

Common Regulators of Apoptosis and Necroptosis
Because multiple hits in our screen, such as cyld and bmf, have

been previously shown to contribute to apoptosis, we hypothe-

sized that apoptosis and necroptosis may share certain common

regulators. To ask whether any of the hits from the zVAD.fmk

screen may also be required for apoptosis, we screened 666

primary hits from the zVAD.fmk screen against apoptosis in-

duced by TNFa and CHX in NIH 3T3 cells (Figure 1A). We chose

this system because we have previously found that cell death in-

duced by TNFa and CHX in NIH 3T3 cells cannot be inhibited by

Nec-1 but is efficiently prevented by zVAD.fmk, as is character-

istic for apoptosis (Degterev et al., 2005). In control nontargeting

siRNA-transfected cells, the treatment with TNFa induced at

least 60%–70% cell death, which is blocked by knockdown of

cyld and tnfr1, but not by that of rip1 (Figure 6E). tnfr1 siRNA

was again used as a positive control. A gene was scored as pos-

itive if at least two out of four of its siRNAs increased cell survival

to at least 80% of that of positive control cells expressing tnfr1

siRNA on the same plate. This screen identified 32 genes re-

quired for both apoptosis of NIH 3T3 cells induced by TNFa

and CHX and necroptosis of L929 cells induced by zVAD.fmk

(Table 1). The expression of these 32 genes may have a general

impact on cellular sensitivity to multiple cell death stimuli.

Overall, comparing the lists of genes required for necroptosis

of L929 cells induced by zVAD.fmk and TNFa and apoptosis of

NIH 3T3 cells induced by TNFa and CHX, we identified seven

genes that are involved in all three cell death paradigms (Table 1).

Consistent with the role of TNFa in all three cell death para-

digms, three out of seven factors have been previously shown

to regulate TNFa signaling: TNFR1, CYLD, which directly inter-

acts with the TNFR1 complex, and TIPE1, which is also very

likely to be a component of the apical death receptor signaling

complexes.

Potential Roles of Necroptosis in Human Disease
To further explore the significance of necroptosis in human dis-

ease, we analyzed the 432 genes from zVAD.fmk screen against

a database of known human disease genes. Interestingly, we

found 33 genes from the zVAD.fmk screen that are also

implicated in human diseases (Table S9). For example, juncto-

philin-3 (jph3) has been implicated in Huntington’s disease-like

2 (HDL2). HDL2 is an autosomal-dominant, progressive, adult-

onset neurodegenerative disorder similar to Huntington’s

disease pathologically. Although the mechanism of neurodegen-

eration of HDL2 is still not yet clear, a CAG/CTG expansion

mutation was found in a variably spliced exon of jph3 that is

responsible for the disease (Holmes et al., 2001). Such connec-

tions of genes involved in necroptosis and human diseases sug-

gest the possible involvement of necroptosis in these human

diseases that needs to be examined in future.
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Figure 6. The Genes Regulate Necroptosis and Apoptosis

(A) L929 cells were treated with 40 ng/ml TNFa for 20 hr with or without treatment of 30 mM Nec-1. L929 cells, transfected with indicated siRNAs (tnfr, tnf receptor;

ctrl, nontargeting siRNA), were treated with 10 ng/ml TNFa for 18 hr. Knockdown efficiency of tnfr in L929 cells was determined by RT-PCR (right bottom

panel).

(B) Knockdown of parp-2 inhibits necroptosis. L929 cells transfected with indicated siRNAs treated with 20 mM zVAD.fmk (left) for 18 hr or with 10 ng/ml TNFa for

20 hr (right). The knockdown efficiency was determined by RT-PCR using Parp-1 as a control (left bottom).

(C) Knockdown of bmf inhibits necroptosis. L929 cells transfected with indicated siRNAs (bmf, ctrl, cyld, and rip1) were treated as in (B). Knockdown efficiency of

bmf was determined by RT-PCR (left bottom panel).

(D) Knockdown of tipe1 inhibits necroptosis and apoptosis. L929 cells transfected with indicated siRNAs (tipe1, tnfr, cyld, and rip1) were treated as in (B).

(E) NIH 3T3 cells transfected with indicated siRNAs (tipe1, tnfr, rip1, and cyld) (40 nM) were treated with 10 ng/ml TNFa + 1.0 mg/ml CHX for 12 hr with or without

treatment of 100 mM zVAD.fmk (upper panels). Knockdown efficiency was determined by RT-PCR for tipe1 using tipe2 as a control (right bottom panels) or west-

ern blotting for RIP1 and CYLD (left bottom panel). Cellular viability was measured as described in Figure 1.

Error bars, SD. *p < 0.05; **p < 0.01; ***p < 0.001; n = 4.
DISCUSSION

In this study, we show an extensive signaling network that regu-

lates necroptosis, a cellular caspase-independent necrotic cell

death pathway. The enriched expression of the genes required

for necroptosis in the immune and nervous systems suggests

that necroptosis may function as a physiological cell death
1318 Cell 135, 1311–1323, December 26, 2008 ª2008 Elsevier Inc.
mechanism in these two compartments. Interestingly, cell death

with necrotic features, termed ‘‘type III cell death,’’ has been de-

scribed to occur during normal development of the nervous sys-

tem (Clarke, 1990). We propose that necroptosis may represent

a type of type III cell death. On the other hand, the ability of Nec-1

to extend the life span of activated primary macrophages sug-

gests that necroptosis could function as a cellular mechanism



Table 1. The Genes that Regulate Necroptosis and Apoptosis

A siRNA library against 16,873 genes in the mouse genome was screened for ability to protect against zVAD.fmk-induced necroptosis in L929 cells.

The 666 primary hits were selected for having achieved viability more than 2 SD above the mean plate viability. A total of 432 genes were scored

positive in secondary confirmatory screen with zVAD.fmk-induced necroptosis. The siRNAs against 666 genes were screened against TNFa-induced

necroptosis in L929 cells and TNFa-CHX-induced apoptosis in NIH 3T3 cells, respectively. A set of 32 genes was scored positive (zVAD/TNF box) in

TNFa-induced necroptosis. Another set of 32 genes was scored positive (zVAD/apoptosis box) in TNFa + CHX-induced apoptosis. A set of seven

genes (in both boxes) was scored positive in all three screens (zVAD.fmk- or TNFa-induced necroptosis and TNFa/CHX-induced apoptosis).
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to limit and regulate the numbers of active macrophages during

infection. The sensitivity of cells involved in innate immunity to

treatment with zVAD.fmk suggests that caspase inhibition might

represent a cellular signal of being invaded by virus, and, there-

fore, such cells must be destroyed by activating a cellular suicide

mechanism such as necroptosis. Thus, necroptosis might serve

as a cellular defense mechanism in protecting mammals against

the invasion of foreign organisms.

Core Regulators of Necroptosis
Our analysis identified a group of 25 genes, including parp2, bmf,

pvr, rab25, jph3, mag, and foxi1 (Table 1), that are required for

necroptosis induced by both zVAD.fmk and TNFa, but not for ap-

optosis. These results provide a first insight into the composition

of the ‘‘core’’ necroptotic machinery downstream and/or regula-

tors of RIP1. Regulation of necrotic cell death is a new function

for these genes, emphasizing the notion that necroptosis is

a separate mechanism of regulated cell death distinct from apo-

ptosis.

Interestingly, this screen identified Grb2, an SH2 and SH3 do-

main-containing adaptor molecule that has been known to bind

to TNFR1-mediating TNFa-dependent activation of c-Raf-1 ki-

nase (Hildt and Oess, 1999), as required for both zVAD.fmk and

TNFa-induced necroptosis. The involvement of Grb2 suggests

a role of MAP kinases in the signaling of necroptosis. The identi-

fication of multiple known targets of MAP kinase, such as edd,

sp1, slc9a1, and rgs19, is consistent with this possibility.

Our screen uncovered a role of PARP-2 as required for

zVAD.fmk and TNFa-induced necroptosis. PARP-2 is the closest

homolog of PARP-1 in the PARP family, sharing 60% identity in

the catalytic domain. Previous studies have implicated PARP-1

in necrosis induced by alkylating agent MNNG (N-methyl-N0-

nitrosoguanidine), which requires RIP1 (Xu et al., 2006). PARP-2

and PARP-1 can heterodimerize and have partially redundant

functions, as indicated by the embryonic lethality of parp1�/�;

parp2�/� double, but not singly, mutant mice (Menissier de Mur-

cia et al., 2003). Oligomerization of PARP1 and PARP2 has been

shown to stimulate PARP catalytic activity in assisting the base

excision repair after DNA nicks. PARP-2 is also cleaved in apo-

ptosis, albeit with a delayed time course compared to that of

PARP-1, suggesting that PARP-2 is not an ideal substrate for

caspases as is PARP-1. Interestingly, expression of a caspase-

cleavage-resistant form of PARP-1 (D214A) has been shown to

lead to necrosis (Kim et al., 2000). The activation of PARP1

that catalyzes the hydrolysis of NAD+ into nicotinamide and

poly-ADP ribose has been proposed to cause depletion of

NAD+, which, in turn, may contribute to the energy failure in ne-

crosis (Zong et al., 2004). Thus, it is possible that persistent ele-

vated levels of PARP-2 activity resistant to caspase cleavage

may contribute to the execution of necroptosis.

Transcriptional factor FOXI1 is also required for both

zVAD.fmk- and TNFa-induced necroptosis. Mutant mice with

a targeted disruption of FOXI1 display tubular acidosis resulting

from a defect in cell differentiation characterized by the absence

of vacuolar H(+)-ATPase expression (Kurth et al., 2006). Interest-

ingly, an H(+)-ATPase, atp6v1g2, was also a hit required for nec-

roptosis induced by both zVAD.fmk and TNFa. The vacuolar

H(+)-ATPase (V-ATPase) is a ubiquitous multisubunit pump re-
1320 Cell 135, 1311–1323, December 26, 2008 ª2008 Elsevier Inc.
sponsible for the acidification of intracellular organelles. Inhibi-

tion of V-ATPase is expected to increase the pH in acidic intra-

cellular organelles such as lysosomes, which, in turn, obligates

the activities of lysosomal hydrolytic enzymes.

Role of Bmf in Necroptosis
We identified a member of the bcl-2 family, bmf, to be required

for necroptosis induced by either zVAD.fmk or TNFa. Bmf is

a member of the prodeath BH3-only subgroup of Bcl-2 family

proteins (Puthalakath et al., 2001). BH3-only proteins serve as

integrators of upstream signaling in both apoptosis and autoph-

agy. Our result suggests that Bmf might play a similar role in nec-

roptotic signaling. Overexpression of Bmf has been shown to re-

duce the colony formation of L929 cells (Puthalakath et al., 2001);

however, the mechanism by which Bmf induces the death of

L929 cells has not been directly examined. Bmf�/�mice develop

a B-cell-restricted lymphadenopathy caused by the abnormal

resistance of these cells to a range of apoptotic stimuli and

have accelerated development of g-irradiation-induced thymic

lymphomas (Labi et al., 2008). The phenotype of Bmf�/� mice

is consistent with a role of necroptosis in mediating homeostasis

of the immune system. We propose that Bmf may function as

a tumor suppressor by mediating the execution of both apopto-

sis and necroptosis.

Interestingly, knockdown of Bmf blocked necroptosis induced

by zVAD.fmk and TNFa, but not apoptosis of TNFa/CHX-treated

NIH 3T3 cells. Although Bmf has been implicated as a proapop-

totic molecule, this result suggests that, at least in the death re-

ceptor signaling pathway, Bmf is primarily involved in mediating

necroptosis, but not apoptosis. It is possible that the activation

of Bmf may induce either apoptosis or necroptosis in a stimulus

and cellular context-dependent manner.

Necroptosis in Tumorigenesis?
The role of two tumor suppressor genes including cyld and edd1

and four Ras-related proteins—rab25, rasa4, rassf7, and

rassf8—in regulating necroptosis suggests a possible function

of necroptosis in tumorigenesis. The Rab proteins are involved

in regulating intracellular membrane trafficking (Pfeffer, 2007).

Dysregulation of Rab25 gene expression has been noted in mul-

tiple cancers, including ovarian and breast cancers (Cheng et al.,

2004). On the other hand, RASA4/CAPRI (RAS p21 protein acti-

vator 4), a suppressor of epithelial cell transformation (West-

brook et al., 2005), functions as a Ca(2+)-dependent Ras

GTPase-activating protein (GAP) to inactivate the Ras-MAPK

pathway following a stimulus that elevates intracellular calcium

(Lockyer et al., 2001). A common role of RASA4 in regulating

both necroptosis and apoptosis may provide a potential mecha-

nism for its proposed role as a tumor suppressor. DAB2IP/AIP1,

another Ras-GAP and an ASK1-interacting protein, has been

previously shown to bind to RIP1 to mediate the activation of

ASK1-JNK/p38 signaling in endothelial cells (EC) (Zhang et al.,

2007). We found that knockdown of DAB2IP partially inhibited

apoptosis but had no effect on necroptosis (data not shown).

Since two GAPs, DAB2IP and RASA4, have been found to medi-

ate the signaling of RIP1, it is possible that multiple Ras-GAP

proteins may be involved in mediating downstream signaling of

RIP1 in different cell types to regulate cell death. Finally, Rassf7



and Rassf8 are members of the Ras association domain family

(RASSF) that are Ras effectors characterized by a conserved

motif (the RalGDS/AF6 Ras association [RA] domain) and are

known as putative tumor suppressors that modulate some of

the growth inhibitory responses mediated by Ras. Overexpres-

sion of some members of RASSF family, such as Rassf6, has

been shown to trigger both caspase-dependent and caspase-

independent cell death. Rassf family has also been implicated

in regulating death-receptor-mediated cell death (Ikeda et al.,

2007).

We propose that necroptosis may be selectively activated

when there is a failure of caspase activation, which may occur

under pathological conditions such as viral infection or onco-

genic mutations. Since deficiency in apoptosis has been noted

as one of the hallmarks of cancers (Hanahan and Weinberg,

2000), necroptosis may play a very important role in tumorigen-

esis as a backup cell death mechanism in apoptosis-deficient

cancer cells.

EXPERIMENTAL PROCEDURES

siRNA Screen

siRNA screen was performed using 16,873 siRNA pools covering most of the

mouse genome (Dharmacon mouse kinase and phosphatase, G-protein-

coupled receptor, druggable genome, and remaining genome libraries [Thermo

Fisher Scientific]). Mouse fibrosacroma cell line L929 cells cultured in 384-well

white plates (Corning) were robotically transfected with 50 nM siRNA by reverse

transfection method using HiPerFect transfection reagent according to a proto-

col from the manufacturer (QIAGEN). At 48 hr after the transfection, the cells

were treated with 20 mM pan-caspase inhibitor zVAD.fmk and cultured for an

additional 18 hr to induce necroptosis. Viability was measured using lumines-

cence-based ATP levels as a surrogate marker in surviving cells using CellTiter-

Glo ATP assay (Promega). Positive controls (ripk1, Dharmacon) and negative

controls (nontargeting control siRNA: siCONTROL nontargeting no. 2, Dharma-

con) were present in every plate. The screen was performed in duplicate.

siRNAs for each gene were classified as hits if their viability showed > 2 SD

above the mean ATP value of the plate on duplicate plates.

In the confirmation screen, four siRNAs of each pool were individually trans-

fected into cells and screened using the same procedure as in the primary

screen. In the TNFa tertiary screen, L929 cells were transfected with individual

siRNAs and, 48 hr later, treated with 40 ng/ml TNFa for an additional 72 hr. In

the apoptosis tertiary screen, NIH 3T3 cells were transfected with individual

siRNA and, 48 hr later, treated with 10 ng/ml TNFa + 1.0 mg/ml cycloheximide

(CHX) for an additional 12 hr to induce apoptosis.

Enrichment Analyses

Sets of hit genes were classified into functional categories such as biological

process, molecular function (PANTHER classification system) (Mi et al.,

2005), canonical pathways (MSigDB) (Subramanian et al., 2005), and tran-

scription factor (TF)-binding sites (MSigDB and TRANSFAC v7.4 [www.

gene-regulation.com]. Enrichment analyses of canonical pathways and

TF-binding motifs were performed on gene sets that were mapped to human

orthologs (Homologene) (Wheeler et al., 2008). To assess the statistical enrich-

ment or overrepresentation of these categories for the hit genes relative to their

representation in the global set of genes examined in the siRNA screen,

p values were computed using the hypergeometric test (Rivals et al., 2007)

as described in the GOHyperGAll module (Horan et al., 2008) implemented

in the R programming language. Comprehensive background information

about the hypergeometric distribution can be found here: http://mathworld.

wolfram.com/hypergeometricdistribution.html.

Briefly, the hypergeometric distribution describes the probability of finding

at least S genes associated with a particular category in a set of g genes

involved in zVAD.fmk-induced necroptosis, given that there are S genes asso-

ciated with that same category in the global set of G genes examined in the
genome-wide siRNA screen. For each category, c, and the list of genes, l,

the p value was calculated as:

Pðc; lÞ=
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represents the binomial coefficient. An unadjusted p value < 0.05 was consid-

ered significant. Categories assigned with at least ten genes are displayed in

Figures 5A and 5B.

Human Protein Interaction Network

The network was constructed by iteratively connecting interacting proteins,

with data extracted from a collection of genome-wide interactome screens

and curated literature entries in HPRD (Mishra et al., 2006). For the network

analysis, mouse components were mapped to human orthologs (Homologene)

(Wheeler et al., 2008). The network uses graph theoretic representations,

which abstract components (gene products) as nodes and relationships

(e.g., interactions) between components as edges, implemented in the Perl

programming language.

SUPPLEMENTAL DATA

The Supplemental Data article include Supplemental Experimental Proce-

dures, one figure, and nine tables and can be found with this article at http://

www.cell.com/supplemental/S0092-8674(08)01382-2.
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