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1. Introduction

In this paper, we study the Cauchy problem of the generalized damped multidimensional Boussinesq equation with
double dispersive term

utt − �u − �utt + �2u − k�ut = � f (u), (x, t) ∈ Rn × (0,+∞), (1.1)

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈ Rn, (1.2)

where u(x, t) denotes the unknown function, f (s) is the given nonlinear function, u0(x) and u1(x) are the given initial
value functions, k is a constant, the subscript t indicates the partial derivative with respect to t , n is the dimension of space
variable x, and � denotes the Laplace operator in Rn .

Scott Russell’s study [18] of solitary water waves motivated the development of nonlinear partial differential equations
for the modeling wave phenomena in fluids, plasmas, elastic bodies, etc. It is well known that Boussinesq equation can be
written in two basic forms

utt − uxx + δuxxxx = (
u2)

xx, (1.3)

utt − uxx − uxxtt = (
u2)

xx. (1.4)

Eq. (1.4) is an important model that approximately describes the propagation of long waves on shallow water like the other
Boussinesq equations (with uxxxx , instead of uxxtt ). In the case δ > 0 Eq. (1.3) is linearly stable and governs small nonlinear
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N. Polat, A. Ertaş / J. Math. Anal. Appl. 349 (2009) 10–20 11
transverse oscillations of an elastic beam (see [23] and references therein). It is called the “good” Boussinesq equation,
while this equation with δ < 0 received the name of the “bad” Boussinesq equation since it possesses the linear instability.
Eq. (1.3) was first deduced by Boussinesq [1]. Eq. (1.4) is called improved Boussinesq equation (IBq equation).

There is a considerable mathematical interest in the Boussinesq equations which have been studied from various aspects
(see [7,8,21,22] and references therein). A great deal of efforts has been made to establish sufficient conditions for the
nonexistence of global solutions to various associated boundary value problems [10,21].

Levine and Sleeman [10] studied the global nonexistence of solutions for the equation

utt − uxx − 3uxxxx + 12
(
u2)

xx = 0,

with periodic boundary conditions. Turitsyn [21] proved the blow-up in the Boussinesq equations

utt − uxx + uxxxx + (
u2)

xx = 0

and

utt − uxx − uxxtt + (
u2)

xx = 0

for the case of periodic boundary conditions and obtained exact sufficient criteria of the collapse dynamics.
The generalization of Boussinesq equation was studied in numerous papers [3,4,6,9,12,13,15,16,27,28]. Liu [12,13] studied

the instability of solitary waves for a generalized Boussinesq type equation

utt − uxx + (
f (u) + uxx

)
xx = 0,

and studied existence, both locally and globally in time, and established some blow-up result for a nonlinear Pochhammer–
Chree equation

utt − uxxtt − f (u)xx = 0. (1.5)

Godefroy [3] showed the blow-up of the solutions of Cauchy problem for Eq. (1.5) and he focused on various perturbation
of the equation. Guowang and Shubin [4] proved the existence and nonexistence of global solution for the generalized IMBq
equation

utt − uxx − uxxtt = f (u)xx.

Zhijian [27], Yang and Wang [28] studied respectively the existence and blow-up of solutions to the initial–boundary value
problems for the generalized Boussinesq equations

utt − uxx − buxxxx = σ(u)xx

and

utt − uxx − uxxtt = σ(u)xx.

Makhankov [14] pointed out that the IBq equation

utt − �u − �utt = �
(
u2)

can be obtained by starting with the exact hydro-dynamical set of equations in plasma, and a modification of the IBq
equation analogous to the modified Korteweg–de Vries equation yields

utt − �u − �utt = �
(
u3). (1.6)

Eq. (1.6) is the so-called IMBq (modified IBq) equation.
Wang and Chen [24,25] studied the existence, both locally and globally in time, and nonexistence of solution, and the

global existence of small amplitude solution for the Cauchy problem of the multidimensional generalized IMBq equation

utt − �u − �utt = � f (u). (1.7)

In the Boussinesq equations, the effects of small nonlinearity and dispersion are taken into consideration, but in many real
situations, damping effects are compared in strength to the nonlinear and dispersive one. Therefore the damped Boussinesq
equations is considered as well

utt − 2butxx = −αuxxxx + uxx + β
(
u2)

xx, (1.8)

where utxx is the damping term and α,b = const > 0, β = const ∈ R (see [7,8,11,20,21] and references therein).
Varlamov [22,23] investigated the long-time behavior of solutions to initial value, spatially periodic, and initial–boundary

value problems for Eq. (1.8) in two space dimensions. Polat et al. [15] established the blow-up of the solutions for the
initial–boundary value problem of the damped Boussinesq equation
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utt − buxx + δuxxxx − ruxxt = f (u)xx.

Lai and Wu [7], Lai et al. [8] investigated respectively the global solution of the following generalized damped Boussinesq
equations

utt − auttxx − 2butxx = −cuxxxx + uxx − p2u + β
(
u2)

xx (1.9)

and

utt − auttxx − 2butxx = −cuxxxx + uxx + β
(
u2)

xx.

Polat and Kaya [16] established the blow-up of the solutions for the initial–boundary value problem of Eq. (1.9).
Polat [17] extended the result of [24] to the damped version of the problem (1.7).
Wang and Chen [26] studied the existence and blow-up of the solution for the Cauchy problem of the generalized double

dispersion equation

utt − uxx − uxxtt + uxxxx − αuxxt = g(u)xx. (1.10)

As seen from above explanations, the works on the multidimensional Boussinesq type equation relatively scarce in contrast
to the vast literature on similar results for one dimensional case.

The results in this paper are a development of results obtained in [8,17,26]. First, by using the contraction mapping
principle, we establish the locally well posedness of the Cauchy problem. Then we derive the necessary a priori bounds
that guarantee that every local solution is indeed global in time. Finally, we discuss that the local solution of the Cauchy
problem with negative and nonnegative initial energy blows up in finite time by using the concavity method.

Throughout this paper, we use the following notations and lemmas.
L p denotes the usual space of all L p functions on Rn with norm ‖ f ‖Lp = ‖ f ‖p, Hs denotes the usual Sobolev space on Rn

with norm ‖ f ‖Hs = ‖(I − �)s/2 f ‖2, where 1 � p � ∞, s ∈ R.

Lemma 1.1 (Sobolev’s Lemma). (See [19].) If s > k + n
2 , where k is a nonnegative integer, then

Hs(Rn) ⊂ Ck(Rn) ∩ L∞(
Rn)

,

where the inclusion is continuous. In fact,∑
|α|�k

∥∥∂αu
∥∥

L∞ � Cs‖u‖Hs ,

where Cs is independent of u.

Lemma 1.2. (See [5].) Let q ∈ [1,n] and 1
p = 1

q − 1
n , then for any u ∈ Hq

1(Rn),

‖u‖p � C(n,q)‖∇u‖q.

where C(n,q) is a constant dependent on n and q.

Lemma 1.3. (See [25].) Assume that f (u) ∈ Ck(R), f (0) = 0, u ∈ W s,2 ∩ L∞ and k = [s] + 1, where s � 0. Then we have∥∥ f (u)
∥∥

Hs � K1(M)‖u‖Hs

if ‖u‖∞ � M, where K1(M) is a constant dependent on M.

Lemma 1.4. (See [25].) Assume that f (u) ∈ Ck(R), u, v ∈ W s,2 ∩ L∞ and k = [s] + 1, where s � 0. Then∥∥ f (u) − f (v)
∥∥

Hs � K2(M)‖u − v‖Hs

if ‖u‖∞ � M, ‖v‖∞ � M, where K2(M) is a constant dependent on M.

Lemma 1.5 (Minkowski’s inequality for integrals). (See [2].) If 1 � p � ∞, u(x, t) ∈ L p(Rn) for a.e. t, and function t → ‖u(·, t)‖p is in
L1(I), where I ⊂ [0,∞) is an interval, then∥∥∥∥

∫
I

u(·, t)dt

∥∥∥∥
p

�
∫
I

∥∥u(·, t)
∥∥

p dt.

The plan of this paper is as follows. In Section 2, we study the existence and uniqueness of the local solutions for
problem (1.1), (1.2). The global well posedness of the problem is given in Section 3. In Section 4, we discuss the blow-up of
solution to the problem.
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2. Existence and uniqueness of local solution

In this section, we prove the existence and the uniqueness of the local solution for problem (1.1), (1.2) by the contraction
mapping principle. For this, we construct the solution of the problem as a fixed point of the solution operator associated
with related family of Cauchy problems for linear wave equation.

For this purpose, we can rewrite Eq. (1.1) as follows:

utt − �u = L
[

f (u) + kut
]
, (2.1)

where L = (I − �)−1�. By use of the Fourier transform, it is not difficult to check that

L f = �(G ∗ f ) = G ∗ f − f ,

where G(x) = 1
2 e−|x| , and u ∗ v denotes the convolution of u and v , it is defined by

u ∗ v =
∫
Rn

u(y)v(x − y)dy.

Now, we proceed with the following linear wave equation:

utt − �u = h(x, t), x ∈ Rn, t > 0 (2.2)

with the initial value condition (1.2). Let us give some results which will be used in the following.

Lemma 2.1. (See [19].) Let s ∈ R. Let u0 ∈ Hs, u1 ∈ Hs−1 and h(x, t) ∈ L1([0, T ], Hs−1). Then for every T > 0, there is a unique
solution u ∈ C([0, T ], Hs) ∩ C1([0, T ], Hs−1) of Cauchy problem of (2.2) and (1.2). Moreover, u satisfies

∥∥u(t)
∥∥

Hs + ∥∥ut(t)
∥∥

Hs−1 � C(1 + T )

(
‖u0‖Hs + ‖u1‖Hs−1 +

t∫
0

∥∥h(τ )
∥∥

Hs−1 dτ

)

for all 0 � t � T , where C only depends on s.

Lemma 2.2. The operator L is bounded on Hs for all s � 0 and

‖Lu‖Hs � ‖u‖Hs , ∀u ∈ Hs.

Proof. For u ∈ Hs , s � 0, we have

‖Lu‖2
Hs =

∫
Rn

(
1 + ξ2)s ξ4

(1 + ξ2)2

∣∣û(ξ)
∣∣2

dξ � ‖u‖2
Hs .

Let us define the function space

X(T ) = C
([0, T ], Hs) ∩ C1([0, T ], Hs−1)

which equipped with the norm defined by

‖u‖X(T ) = max
0�t�T

(∥∥u(t)
∥∥

Hs + ∥∥ut(t)
∥∥

Hs−1

)
, ∀u ∈ X(T ).

It is easy to see that X(T ) is a Banach space. For s > n
2 , and any initial values u0 ∈ Hs, u1 ∈ Hs−1, let A = ‖u0‖Hs +‖u1‖Hs .

Take the set

Y (A, T ) = {
u

∣∣ u ∈ X(T ), ‖u‖X(T ) � 2C A
}
.

Obviously, Y (A, T ) is a nonempty bounded closed convex subset of X(T ) for any fixed M > 0 and T > 0.
From Lemma 1.1, u ∈ C([0, T ], L∞) and ‖u‖L∞ � Cs‖u‖Hs if u ∈ X(T ).
For w ∈ Y (A, T ), we consider the linear wave equation

utt − �u = L
[

f (w) + kwt
]
, (2.3)

and we let H denote the map which carries w into the unique solution (2.3), (1.2). Our object is to show that H has
a unique fixed point in Y (A, T ) for appropriately chosen T . For this purpose we shall employ the contraction mapping
principle and Lemma 2.1. Firstly, we prove the following lemma. �
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Lemma 2.3. Assume that s > n
2 , u0 ∈ Hs, u1 ∈ Hs−1 and f (s) ∈ C[s]+1(R). Then H is contractive mapping from Y (A, T ) into itself for

T sufficiently small relative to M.

Proof. We first prove that H maps Y (M, T ) into itself for T small enough. Let w ∈ Y (A, T ) be given. Let us define h(x, t) by

h(x, t) = L
[

f (w) + kwt
]
.

By use of Lemma 1.3 and 2.2, it is easily obtained that∥∥h(t)
∥∥

Hs−1 � Cs
∥∥ f (w)

∥∥
Hs + |k|‖wt‖Hs−1 � K1(A, s)‖w‖Hs + |k|‖wt‖Hs−1 ,

where K1(A, s) is a constant dependent on A and s. From the above inequality we conclude that h(x, t) ∈ L1([0, T ], Hs−1).
From Lemma 2.1 the solution u = H w of problem (2.3), (1.2) belongs to C([0, T ], Hs) ∩ C1([0, T ], Hs−1) and

∥∥u(t)
∥∥

Hs + ∥∥ut(t)
∥∥

Hs−1 � C(1 + T )

(
‖u0‖Hs + ‖u1‖Hs−1 +

t∫
0

∥∥h(τ )
∥∥

Hs−1 dτ

)

� C A + C
[
1 + 2C

(
K1(A, s) + |k|)(1 + T )

]
AT .

By choosing T small enough, in order to have[
1 + 2C

(
K1(A, s) + |k|)(1 + T )

]
T � 1, (2.4)

then we get

‖H w‖X(T ) � 2C A. (2.5)

Therefore, if condition (2.5) holds, then H maps Y (A, T ) into Y (A, T ).
Now we are going to prove that the map H is strictly contractive. Let T > 0 and w, w̄ ∈ Y (A, T ) be given. For w and w̄

there are the corresponding solutions u = H w and ū = H w̄ for problem (2.3), (1.2). Set U = u − ū, W = w − w̄ , and note
that

Utt − �U = H(x, t), (x, t) ∈ Rn × (0,+∞), (2.6)

U (x,0) = Ut(x,0) = 0, (2.7)

where H(x, t) is defined by

H(x, t) = L
[

f (w) − f (w̄)
] + kL[Wt]. (2.8)

It is observed that H has the smoothness required to apply Lemma 2.1 to (2.6), (2.7). Making use of Lemmas 2.1, 2.2 and 1.4,
we get from (2.8) that

∥∥U (t)
∥∥

Hs + ∥∥Ut(t)
∥∥

Hs−1 � C(1 + T )

t∫
0

∥∥ f
(

w(τ )
) − f

(
w̄(τ )

)∥∥
Hs−1 + |k|‖Wt‖Hs−1 dτ

� C(1 + T )
[

K2(A, s) max
0�t�T

∥∥W (t)
∥∥

Hs + |k| max
0�t�T

∥∥Wt(t)
∥∥

Hs−1

]
T .

Thus, we have∥∥U (t)
∥∥

X(T )
� C(1 + T )

[
K2(A, s) + |k|]T

∥∥W (t)
∥∥

X(T )
.

By choosing T so small enough that (2.4) holds and

(1 + T )
[

K2(A, s) + |k|]T <
1

C
, (2.9)

then

‖H w − H w̄‖X(T ) < ‖w − w̄‖X(T ).

This shows that H : Y (A, T ) → Y (A, T ) is strictly contractive. The lemma is proved. �
Theorem 2.1. Assume that the conditions of Lemma 2.3 hold, then problem (1.1), (1.2) admits a unique local solution u(x, t) defined
on a maximal time interval [0, T0) with u(x, t) ∈ C([0, T0), Hs) ∩ C1([0, T0), Hs−1). Moreover, if

sup
t∈[0,T0)

(∥∥u(t)
∥∥

Hs + ∥∥ut(t)
∥∥

Hs−1

)
< ∞, (2.10)

then T0 = ∞.
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Proof. From Lemma 2.3 and the contraction mapping principle, it follows that for appropriately chosen T > 0, H has
a unique fixed point u(x, t) ∈ Y (A, T ), which is a strong solution of problem (1.1), (1.2). It is not difficult to prove the
uniqueness of the solution which belongs to X(T ′) for each T ′ > 0.

In fact, let u1, u2 ∈ X(T ′) be two solutions of problem (1.1), (1.2). Let u = u1 − u2; then

utt − �u − �utt + �2u − k�ut = �
[

f (u1) − f (u2)
]
.

Multiplying the above equation by (−�)−1ut and integrating the product with respect to x, we obtain that

1

2

d

dt

[∥∥(−�)−1/2ut
∥∥2

2 + ‖u‖2
2 + ‖ut‖2

2 + ‖∇u‖2
2

] + k‖ut‖2
2 =

∫
Rn

[
f (u1) − f (u2)

]
ut dx. (2.11)

From the definition of the space X(T ′), s > n
2 and Sobolev imbedding theorem we have ‖ui(t)‖∞ � C1(T ′) for i = 1,2 and

0 � t � T ′ < T , where C1(T ′) is a constant dependent on T ′ . Thus, we get from Cauchy inequality that∣∣∣∣
∫
Rn

[
f (u1) − f (u2)

]
ut dx

∣∣∣∣ �
∥∥ f (u1) − f (u2)

∥∥
2‖ut‖2 � C2(T ′)‖u‖2‖ut‖2,

where C2(T ′) is a constant dependent on C1(T ′). From Young inequality it follows that

[∥∥(−�)−1/2ut
∥∥2

2 + ‖u‖2
2 + ‖ut‖2

2 + ‖∇u‖2
2

] + k

t∫
0

‖uτ ‖2
2 dτ � C2(T ′)

t∫
0

[‖u‖2
2 + ‖ut‖2

2

]
dτ .

From the above inequality we have

‖u‖2
2 + ‖ut‖2

2 �
[
C2(T ′) + 2|k|]

t∫
0

[‖u‖2
2 + ‖ut‖2

2

]
dτ . (2.12)

By Gronwall’s inequality, we get from (2.12) that ‖u‖2
2 + ‖ut‖2

2 ≡ 0 for 0 � t � T ′ . Hence u ≡ 0 for 0 � t � T ′ , i.e., problem
(1.1), (1.2) has at most one solution which belongs to X(T ′).

Now, let [0, T0) be the maximal time interval of existence for u ∈ X(T0). We want to show that if (2.10) is satisfied, then
T0 = ∞.

Suppose that (2.10) holds and T0 < ∞. For each T ′ ∈ [0, T0), we consider the Cauchy problem

vtt − �v = L
[

f (v) + kvt
]
, (2.13)

v(x,0) = u(x, T ′), vt(x,0) = ut(x, T ′). (2.14)

By (2.10),∥∥u(·, t)
∥∥

2,p + ∥∥ut(·, t)
∥∥

2,p + ∥∥u(·, t)
∥∥∞ + ∥∥ut(·, t)

∥∥∞ � K ,

where K is a positive constant independent of T ′ ∈ [0, T0). From Lemma 2.3 and the contraction mapping principle we
see that there exists a constant T1 ∈ (0, T0) such that for each T ′ ∈ [0, T0), problem (2.13), (2.14) has a unique solution
v(x, t) ∈ X(T1). In particular, (2.4) and (2.9) reveal that T1 can be selected independently of T ′ ∈ [0, T0). Take T ′ = T0 − T1/2
and define

ũ(x, t) =
{

u(x, t), t ∈ [0, T ′],
v(x, t − T ′), t ∈ [T ′, T0 + T1/2],

then ũ(x, t) is a solution of Eqs. (1.1), (1.2) on interval [0, T0 + T1/2], and by the uniqueness, ũ extends u, which violates
the maximality of [0, T0). Therefore, if (2.10) holds, then T0 = ∞. Theorem 2.1 is proved. �
3. Existence and uniqueness of global solution

In this section, we prove the existence and the uniqueness of the global solutions for problem (1.1). (1.2). For this purpose
we are going to make a priori estimates of the local solutions for problem (1.1), (1.2).

Lemma 3.1. Suppose that f (u) ∈ C(R), F (u) = ∫ u
0 f (s)ds, u0 ∈ H1 , (−�)−1/2u1 ∈ L2 , u1 ∈ L2 , and F (u0) ∈ L1 . Then for the solution

u(x, t) of problem (1.1), (1.2), we have the energy identity

E(t) = ∥∥(−�)−1/2ut
∥∥2

2 + ‖ut‖2
2 + ‖u‖2

2 + ‖∇u‖2
2 + 2k

t∫
‖uτ ‖2

2 dτ + 2
∫

n

F (u)dx = E(0), (3.1)
0 R
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here and in the sequel (−�)−αu(x) = F −1[|x|−2α F u(x)], F and F −1 denote respectively Fourier transformation and inverse Fourier
transformation in Rn (see [20]).

Proof. Multiplying Eq. (1.1) by (−�)−1ut and integrating the product with respect to x, we obtain that(
utt − �u − �utt + �2u − k�ut − � f (u), (−�)−1ut

) = 0,(
(−�)−1utt + u + utt − �u + kut + f (u), ut

) = 0,(
(−�)−1/2utt , (−�)−1/2ut

) + (u, ut) + (utt , ut) − (�u, ut) + k(ut , ut) + (
f (u), ut

) = 0,

1

2

d

dt

[∥∥(−�)−1/2ut
∥∥2

2 + ‖ut‖2
2 + ‖u‖2

2 + ‖∇u‖2
2 + 2

∫
Rn

F (u)dx

]
+ k‖ut‖2

2 = 0,

where (·, ·) denotes the inner product of L2 space. Integrating the above equality with respect to t over [0, t], we get (3.1).
The lemma is proved. �
Lemma 3.2. Suppose that the assumptions of Lemma 3.1 hold and F (u) � 0 or f ′(u) is bounded below, i.e. there is a constant A0 such
that f ′(u) � A0 for any u ∈ R, then the solution u(x, t) of problem (1.1), (1.2) has the estimation

E1(t) = ∥∥(−�)−1/2ut
∥∥2

2 + ‖ut‖2
2 + ‖u‖2

2 + ‖∇u‖2
2 � M1(t), ∀t ∈ [0, T ], (3.2)

here and in the sequel Mi(T ) (i = 1,2, . . .) are constants dependent on T .

Proof. If F (u) � 0, then from energy identity (3.1) we get

E1(t) � E(0) + 2|k|
t∫

0

‖uτ ‖2
2 dτ .

It follows from Gronwall’s inequality and the above inequality that

E1(t) � E(0)e2|k|T . (3.3)

If f ′(u) is bounded below, let f0(u) = f (u) − k0u, where k0 = min{A0,0} (� 0), then f0(0) = 0, f ′
0(u) = f ′(u) − k0 � 0

and f0(u) is a monotonically increasing function. Then F0(u) = ∫ u
0 f0(s)ds � 0 and F (u) = ∫ u

0 f (s)ds = ∫ u
0 ( f0(s) + k0s)ds =

F0(u) + k0
2 u2. From (3.1)

E1(t) + 2
∫
Rn

F0(u)dx = E(0) − 2k

t∫
0

‖uτ ‖2
2 dτ − k0‖u‖2

2

= E(0) − 2k

t∫
0

‖uτ ‖2
2 dτ − k0‖u0‖2

2 +
t∫

0

(
k2

0‖u‖2
2 + ‖uτ ‖2

2

)
dτ

� E(0) − k0‖u0‖2
2 + (

2|k| + 1 + k2
0

) t∫
0

(‖u‖2
2 + ‖uτ ‖2

2

)
dτ .

It follows from Gronwall’s inequality and the above inequality that

E1(t) �
(

E(0) − k0‖u0‖2
2

)
exp

[(
2|k| + 1 + k2

0

)
T
]
. (3.4)

We get (3.2) from inequalities (3.3) and (3.4). The lemma is proved. �
Lemma 3.3. Under the conditions of Lemma 3.2, assume that 1 � n � 4, f (u) ∈ C2(R) and | f ′(u)| � A|u|ρ + B, 0 < ρ � ∞ for
2 � n � 4, u0 ∈ H2 and u1 ∈ H1 , then the solution u(x, t) of problem (1.1), (1.2) has the estimation

E2(t) = ‖ut‖2
2 + ‖∇u‖2

2 + ‖∇ut‖2
2 + ‖�u‖2

2 � M2(T ), ∀t ∈ [0, T ]. (3.5)

Proof. Multiplying Eq. (1.1) by ut and integrating the product over Rn , we obtain that

d

dt
E2(t) + 2k‖∇ut‖2

2 + 2
(∇ f (u),∇ut

) = 0. (3.6)

When n = 1, we conclude from Lemmas 1.1 and 3.2 that u ∈ L∞ . Therefore, from (3.6), Hölder inequality, Cauchy inequality,
Lemma 1.3 and (3.2), we get



N. Polat, A. Ertaş / J. Math. Anal. Appl. 349 (2009) 10–20 17
d

dt
E2(t) � 2|k|‖∇ut‖2

2 + 2
∣∣(∇ f (u),∇ut

)∣∣
� 2|k|‖∇ut‖2

2 + 2
∥∥∇ f (u)

∥∥
2‖∇ut‖2

� 2|k|‖∇ut‖2
2 + 2K1

(‖u‖∞
)(‖u‖2 + ‖∇u‖2

)‖∇ut‖2

� C1
(
M1(t)

)(‖∇u‖2
2 + ‖∇ut‖2

2

)
, (3.7)

where, and in the sequel Ci(M j(t)) (i = 1,2, . . . , j = 1,2, . . .) are constants dependent on M j(t). Integrating (3.7) with
respect to t and using the Gronwall’s inequality, we obtain (3.5).

In the case 2 � n � 4, from Hölder inequality, Lemma 1.2, Cauchy inequality and (3.2) we have

∫
Rn

∇ f (u)∇ut dx � A‖uρ‖∞‖∇u‖2‖∇ut‖2 + B‖∇u‖2‖∇ut‖2

� A

2

(
C2‖�u‖2

2‖∇u‖2
2 + ‖∇ut‖2

2

) + B

2

(‖∇u‖2
2 + ‖∇ut‖2

2

)
� A

2

(
C2

(
M1(t)

)‖�u‖2
2 + ‖∇ut‖2

2

) + B

2

(
M1(t) + ‖∇ut‖2

2

)
.

Substitute the above inequality into (3.6) to get

d

dt
E2(t) � 2|k|‖∇ut‖2

2 + 2
∣∣(∇ f (u),∇ut

)∣∣ � BM1(t) + C3
(
M1(t)

)(‖�u‖2
2 + ‖∇ut‖2

2

)
. (3.8)

Integrating (3.8) with respect to t and using the Gronwall’s inequality, we obtain (3.5). The lemma is proved. �
Lemma 3.4. Under the conditions of Lemma 3.3, assume that s � 2, f (u) ∈ C [s](R), u0 ∈ Hs, u1 ∈ Hs−1 , then the solution u(x, t) of
problem (1.1), (1.2) has the estimation

E3(t) = ∥∥∇s−2ut
∥∥2

2 + ∥∥∇s−1u
∥∥2

2 + ∥∥∇s−1ut
∥∥2

2 + ∥∥∇su
∥∥2

2 � M3(T ), ∀t ∈ [0, T ]. (3.9)

Proof. Multiplying Eq. (1.1) by �s−2ut and integrating the product over Rn , we obtain that

d

dt
E3(t) + 2k

∥∥∇s−1ut
∥∥2

2 + 2
(∇s−1 f (u),∇s−1ut

) = 0. (3.10)

From Lemmas 1.2 and 3.3, we know that u ∈ L∞ . we get from Hölder inequality, Cauchy inequality, Lemma 1.3 and (3.2)
that

d

dt
E3(t) � 2|k|∥∥∇s−1ut

∥∥2
2 + 2

∣∣(∇s−1 f (u),∇s−1ut
)∣∣

� 2|k|∥∥∇s−1ut
∥∥2

2 + 2K2
(‖u‖∞

)(‖u‖2 + ‖∇s−1u‖2
)∥∥∇s−1ut

∥∥
2

� C4
(
M1(t)

)(∥∥∇s−1u
∥∥2

2 + ∥∥∇s−1ut
∥∥2

2

)
.

Integrating the above inequality with respect to t and using the Gronwall’s inequality, we obtain (3.9). The lemma is
proved. �
Theorem 3.1. Assume that 1 � n � 4, s � n+1

2 , f (u) ∈ C [s]+1(R), F (u) = ∫ u
0 f (s)ds, F (u) � 0 or f ′(u) is bounded below, i.e. there

is a constant A0 such that f ′(u) � A0 for any u ∈ R, | f ′(u)| � A|u|ρ + B, 0 < ρ � ∞ for 2 � n � 4, (−�)−1/2u1 ∈ L2 , u0 ∈ Hs+1

and u1 ∈ Hs, F (u0) ∈ L1 . Then problem (1.1), (1.2) admits a unique global solution u(x, t) ∈ C([0,∞), Hs) ∩ C1([0,∞), Hs−1) and
(−�)−1/2ut ∈ L2 .

Proof. By virtue of Theorem 2.1, it is enough to show that supt∈[0,T0)(‖u(t)‖Hs + ‖ut(t)‖Hs−1 ) < ∞. From Lemmas 3.2–3.4,
we know that

∥∥u(t)
∥∥

Hs + ∥∥ut(t)
∥∥

Hs−1 < M4(T ), ∀t ∈ [0, T ),

where M4(T ) is a constant dependent on T . Therefore, we see from the above inequality that problem (1.1), (1.2) has a
unique global solution u(x, t) ∈ C([0,∞), Hs) ∩ C1([0,∞), Hs−1) and (−�)−1/2ut ∈ L2. The theorem is proved. �
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4. Blow-up of solution

In this section, we are going to consider the blow-up of the solution for problem (1.1), (1.2) by the concavity method.
For this purpose, we give the following lemma [6] which is a generalization of Levine’s result [9].

Lemma 4.1. Suppose that a positive, twice differentiable function ψ(t) satisfies on t � 0 the inequality

ψ ′′(t)ψ(t) − (1 + υ)
(
ψ ′(t)

)2 � −2M1ψ(t)ψ ′(t) − M2
(
ψ(t)

)2

where υ > 0 and M1, M2 � 0 are constants. If ψ(0) > 0, and ψ ′(0) > −γ2υ
−1ψ(0), and M1 + M2 > 0, then ψ(t) tends to infinity

as

t → t1 � t2 = 1

2
√

M2
1 + υM2

ln
γ1ψ(0) + υψ ′(0)

γ2ψ(0) + υψ ′(0)
,

where γ1,2 = −M1 ∓
√

M2
1 + υM2 . If ψ(0) > 0 and ψ ′(0) > 0, and M1 = M2 = 0, then ψ(t) → ∞ as t → t1 � t2 = ψ(0)/υψ ′(0).

Theorem 4.1. Assume that k � 0, f (u) ∈ C(R), u0 ∈ H1 , u1 ∈ L2 , (−�)−1/2u0, (−�)−1/2u1 ∈ L2 , F (u) = ∫ u
0 f (s)ds, F (u0) ∈ L1 ,

and there exists a constant α > 0 such that

f (u)u � (α + k + 2)F (u) + α

2
u2, ∀u ∈ R. (4.1)

Then the solution u(x, t) of problem (1.1), (1.2) blows up in finite time if one of the following conditions is valid:

(i) E(0) = ‖(−�)−1/2u1‖2
2 + ‖u1‖2

2 + ‖u0‖2
2 + ‖∇u0‖2

2 + 2
∫

Rn F (u0)dx < 0,

(ii) E(0) = 0 and ((−�)−1/2u0, (−�)−1/2u1) + (u0, u1) > 0,

(iii) E(0) > 0 and ((−�)−1/2u0, (−�)−1/2u1) + (u0, u1) >

√
2 4α+k+2

α+2 E(0)(‖(−�)−1/2u0‖2
2 + ‖u0‖2

2).

Proof. Suppose that the maximal time of existence of the solution for problem (1.1), (1.2) is infinite. A contradiction will be
obtained by Lemma 4.1. Let

ψ(t) = ∥∥(−�)−1/2u
∥∥2

2 + ‖u‖2
2 + β(t + τ )2, (4.2)

where β and τ are nonnegative constants to be specified later. Obviously we have

ψ ′(t) = 2
[(

(−�)−1/2u, (−�)−1/2ut
) + (u, ut) + β(t + τ )

]
. (4.3)

Using the Schwarz inequality and the inequality,

(a1b1 + · · · + anbn)2 �
(
a2

1 + · · · + a2
n

)(
b2

1 + · · · + b2
n

)
,

where ai,bi � 0, i = 1, . . . ,n we have

(
ψ ′(t)

)2 � 4
[∥∥(−�)−1/2u

∥∥2
2 + ‖u‖2

2 + β(t + τ )2][∥∥(−�)−1/2ut
∥∥2

2 + ‖ut‖2
2 + β

]
= 4ψ(t)

[∥∥(−�)−1/2ut
∥∥2

2 + ‖ut‖2
2 + β

]
. (4.4)

We get from Eq. (1.1)

ψ ′′(t) = 2
∥∥(−�)−1/2ut

∥∥2
2 + 2‖ut‖2

2 + 2
(
(−�)−1/2u, (−�)−1/2utt

) + 2(u, utt) + 2β

= 2
∥∥(−�)−1/2ut

∥∥2
2 + 2‖ut‖2

2 + 2β + 2
(
u, (−�)−1utt + utt

)
= 2

∥∥(−�)−1/2ut
∥∥2

2 + 2‖ut‖2
2 + 2β − 2

(
u, u − �u + kut + f (u)

)
= 2

∥∥(−�)−1/2ut
∥∥2

2 + 2‖ut‖2
2 + 2β − 2‖u‖2

2 − 2‖∇u‖2
2 − 2k(u, ut) − 2

∫
Rn

u f (u)dx. (4.5)

By the aid of the Cauchy inequality and equality (3.1) we have

2k(u, ut) � k
(‖u‖2

2 + ‖ut‖2
2

) = k

[
E(0) − ∥∥(−�)−1/2ut

∥∥2
2 − ‖∇u‖2

2 − 2k

t∫
‖uτ ‖2

2 dτ − 2
∫

n

F (u)dx

]
. (4.6)
0 R
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From (4.2)–(4.6) we obtain that

ψ(t)ψ ′′(t) −
(

1 + α

4

)(
ψ ′(t)

)2 � ψ(t)ψ ′′(t) − (4 + α)ψ(t)
[∥∥(−�)−1/2ut

∥∥2
2 + ‖ut‖2

2 + β
]

� ψ(t)

{
(k − α − 2)

∥∥(−�)−1/2ut
∥∥2

2 + (−2 − α)‖ut‖2
2 + (−4 − α)β + (k − 2)‖∇u‖2

2

+
∫
Rn

[
2kF (u) − 2u f (u) − 2u2]dx + 2k2

t∫
0

‖uτ ‖2
2 dτ − kE(0)

}
. (4.7)

From equality (3.1) we have

(k − α − 2)
∥∥(−�)−1/2ut

∥∥2
2 + (−2 − α)‖ut‖2

2 + (k − 2)‖∇u‖2
2 � (−α − 2)

(∥∥(−�)−1/2ut
∥∥2

2 + ‖ut‖2
2 + ‖∇u‖2

2

)

= (α + 2)

(
‖u‖2

2 + 2k

t∫
0

‖uτ ‖2
2 dτ + 2

∫
Rn

F (u)dx − E(0)

)
.

Thus, from the above inequality, inequality (4.7) and (4.1), we get

ψ(t)ψ ′′(t) −
(

1 + α

4

)(
ψ ′(t)

)2 � ψ(t)

{
−(4 + α)β − (2 + α + k)E(0)

+
∫
Rn

[
2(2 + α + k)F (u) + αu2 − 2u f (u)

]
dx + (

2k(2 + α) + 2k2) t∫
0

‖uτ ‖2
2 dτ

}
.

� −[
(4 + α)β + (2 + α + k)E(0)

]
ψ(t). (4.8)

If E(0) < 0, taking β = − 2+α+k
4+α E(0) > 0, then

ψ(t)ψ ′′(t) −
(

1 + α

4

)(
ψ ′(t)

)2 � 0.

We may now choose τ so large that ψ ′(0) > 0. From Lemma 4.1 we know that ψ(t) becomes infinite at a time T1 at
most equal to

T2 = 4ψ(0)

αψ ′(0)
< ∞.

If E(0) = 0, taking β = 0, then we get from (4.8)

ψ(t)ψ ′′(t) −
(

1 + α

4

)(
ψ ′(t)

)2 � 0.

Also ψ ′(0) > 0 by assumption (ii). Thus, we obtain from Lemma 4.1 that ψ(t) becomes infinite at a time T1 at most
equal to

T2 = 4ψ(0)

αψ ′(0)
< ∞.

If E(0) > 0, then taking β = 0, inequality (4.8) becomes

ψ(t)ψ ′′(t) −
(

1 + α

4

)(
ψ ′(t)

)2 � −(2 + α + k)E(0)ψ(t). (4.9)

Define J (t) = (ψ(t))−υ , where υ = α/4. Then

J ′(t) = −υ
(
ψ(t)

)−υ−1
ψ ′(t),

J ′′(t) = −υ
(
ψ(t)

)−υ−2[
ψ(t)ψ ′′(t) − (1 + υ)

(
ψ ′(t)

)2] � υ(2 + k + 4υ)E(0)
(
ψ(t)

)−υ−1
, (4.10)

where inequality (4.9) is used. Assumption (iii) implies J ′(0) < 0. Let

t∗ = sup
{

t
∣∣ J ′(τ ) < 0, τ ∈ (0, t)

}
. (4.11)

By the continuity of J ′(t), t∗ is positive. Multiplying (4.10) by 2 J ′(t) yields
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[(
J ′(t)

)2]′ � −2υ2(2 + k + 4υ)E(0)
(
ψ(t)

)−2υ−2
ψ ′(t) = 2υ2 (2 + k + 4υ)

2υ + 1
E(0)

[(
ψ(t)

)−2υ−1]′
, ∀t ∈ [0, t∗). (4.12)

Integrate (4.12) with respect to t over [0, t) to get

(
J ′(t)

)2 � 2υ2 (2 + k + 4υ)

2υ + 1
E(0)

(
ψ(t)

)−2υ−1 + (
J ′(0)

)2 − 2υ2 (2 + k + 4υ)

2υ + 1
E(0)

(
ψ(0)

)−2υ−1

�
(

J ′(0)
)2 − 2υ2 (2 + k + 4υ)

2υ + 1
E(0)

(
ψ(0)

)−2υ−1
.

By assumption (iii)

(
J ′(0)

)2 − 2υ2 (3 + 4υ)

2υ + 1
E(0)

(
ψ(0)

)−2υ−1
> 0.

Hence by continuity of J ′(t), we obtain

J ′(t) � −
[(

J ′(0)
)2 − 2υ2 (2 + k + 4υ)

2υ + 1
E(0)

(
ψ(0)

)−2υ−1
]1/2

(4.13)

for 0 � t < t∗ . By the continuity of t∗ , it follows that inequality (4.13) holds for all t � 0. Therefore

J (t) � J (0) −
[(

J ′(0)
)2 − 2υ2 (2 + k + 4υ)

2υ + 1
E(0)

(
ψ(0)

)−2υ−1
]1/2

t, ∀t > 0.

So J (T1) = 0 for some T1 and

0 < T1 � T2 = J (0)/
[(

J ′(0)
)2 − [

α2(2 + α + k)/(4α + 8)
]

E(0)
(
ψ(0)

)−(α+2)/2]1/2
.

Thus, ψ(t) becomes infinite at a time T1.
Therefore, ψ(t) becomes infinite at a time T1 under either assumptions (i), (ii) or (iii). We have a contradiction with

the fact that the maximal time of existence is infinite. Hence the maximal time of existence is finite. This completes the
proof. �
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