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Abstract

We construct a counterexample to Solel’s [B. Solel, Contractive projections onto bimodules of von Neu-
mann algebras, J. London Math. Soc. 45 (2) (1992) 169-179] conjecture that the range of any contractive,
idempotent, MASA bimodule map on B(H) is necessarily a ternary subalgebra. Our construction reduces
this problem to an analogous problem about the ranges of idempotent maps that are equivariant with re-
spect to a group action. Such maps are important to understand Hamana’s theory [M. Hamana, Injective
envelopes of C*-dynamical systems, Tohoku Math. J. 37 (1985) 463-487] of G-injective operator spaces
and G-injective envelopes.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Solel [14] proved that if H is a Hilbert space, M C B(H) is a MASA, and @ : B(H) — B(H)
is a weak™-continuous, (completely) contractive, idempotent M-bimodule map, then the range
R(D) of @ is a ternary subalgebra of B(H), i.e., A, B, C € R(®) implies that AB*C € R(®).
For another proof of this fact see [9]. Solel also conjectured that the same result would hold even
when @ was not weak*-continuous. In this paper, we give a counterexample to this conjecture.

Let T denote the unit circle with arc-length measure, and let L*(T) and L*®(T) denote
the square-integrable functions and essentially bounded functions, respectively. If we identify
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L>(T) € B(L*(T)) as the multiplication operators, then it is a maximal Abelian subalgebra
(MASA). We construct a unital, completely positive, idempotent L°°(T)-bimodule map on
B(LZ('H‘)) whose range is not a subalgebra of B(LZ(’]I‘)), and hence not a ternary subalgebra,
since any ternary algebra that contains the identity is an algebra. Thus, this map will provide a
counterexample to Solel’s conjecture.

As a first step in our construction, we construct a unital, completely positive, idempotent
map, @ : £°(Z) — £°°(Z), that is equivariant with respect to the natural action of Z on £*°(Z)
and whose range is not a C*-subalgebra. The construction of this map uses some results from
Hamana’s theory of G-injective envelopes [5], where G is a discrete group acting on all of the
spaces.

In Section 2, we study Z-equivariant projections on £°°(Z), then in Section 3 we use these
results together with a cross-product construction to build the counterexample.

2. Z-Equivariant projections

In this section we take a careful look at £°°(Z) = C(BZ), where 8Z denotes the Stone—Cech
compactification of the integers [15], and study the Z-equivariant maps on this space that are also
idempotent. The identification of these two spaces comes by identifying a function f € C(8Z)
with the vector v = (f (n)),ez € £°°(Z). The action of Z given by a(m) f (k) = f(k + m) corre-
sponds to multiplication of the vector v by B where B denotes the backwards shift. This action
also corresponds to the unique extension of the map k — k 4+ m to a homeomorphism of 87 and
so we shall denote this homeomorphism by w — m - .

A linear map @ :£%°(Z) — £°°(Z) is Z-equivariant if and only if it commutes with the
backwards shift. Given such a map @ we let ¢,, : £°°(Z) — C denote the linear functional corre-
sponding to the nth component, so that @ (v) = (¢, (v)).

Note that @ commutes with B if and only if ¢, (v) = ¢o(B"v). Thus there is a one-to-
one correspondence between linear functionals ¢ : £*°(Z) — C and Z-equivariant linear maps
@ :£%°(Z) — £°°(Z). We shall denote the corresponding linear map by @ = Py.

Also, it is worth noting that @4 is a completely positive map if and only if ¢ is a positive
linear functional, @ is unital if and only if ¢ is unital and @ is completely contractive if and
only if ¢ is contractive.

In this section we give some characterizations of idempotent Z-equivariant maps. Note that
this reduces to a question of which linear functionals will give rise to idempotents. We shall con-
struct a positive, unital, Z-equivariant idempotent, such that the range of @ not a C*-subalgebra.

It is well known that the range of such a map is completely isometrically isomorphic to a
C*-algebra, but what we are interested in is whether or not it is actually a C*-subalgebra. These
questions are the analogues of Solel’s results that the ranges of weak*-continuous MASA bi-
module idempotents on B(H) are necessarily ternary subalgebras, since any ternary subalgebra
containing the unit is a C*-subalgebra.

We let ¢g(Z) C £°°(Z) denote the functions that vanish at infinity.

Proposition 2.1. Let @ :£°°(Z) — (°°(Z) be a Z-equivariant linear map and decompose
¢o = ¢ + ¢° into its weak™-continuous and singular parts. If we define @*°(v) = (¢*°(B"v))
and ®@5(v) = (¢5(B"v)), then both these maps are Z-equivariant, ®*° is weak™*-continuous,
D% (co(Z)) C co(Z), P3(co(Z)) =0, @ = P + @3, and this decomposition is the unique de-
composition of @ into a weak™-continuous part and singular part.
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Proof. We only prove that ®*(co(Z)) C co(Z). There is a vector a = (a,) € £'(Z) such that
¢*W)=a-v=7_,.7a,v,. Hence, ¢ (B*v) = Y nez@nVpk — 0ask — oo, O

Note that if we set a(e'?) = ZneZ ane'™  then since a € £1(Z) this series converges to give
a continuous function on the circle. Identifying, v € £°°(Z) with the formal series, 1(¢'?) =

> ez vne"®, we have that D (0)(e/?) = a(e'?) D (el?).

Proposition 2.2. Let @ :£>*°(Z) — (°°(Z) be a Z-equivariant linear map. If @ is weak*-
continuous and idempotent, then @ is either the identity map or 0.

Proof. We have that @ = @ and so @ is given as “multiplication” by the continuous function 4.
It is easily checked that @ o & is also weak*-continuous and is given as multiplication by a°.
Since @ is idempotent, @> = @ and since this function is continuous it must be either constantly 0
or constantly 1, from which the result follows. O

Theorem 2.3. Let @ :£°(Z) — £>°(Z) be a Z-equivariant linear map and let T denote the
identity map. If @ is idempotent, then either @ = @° or ® =71 — W where V¥ is singular and
idempotent.

Proof. Write ® = @* 4+ @5. Then ® =P o P = P o0 @* 4 P* o0 @5+ P50 P 4 P50 @S and
the first term in this sum is easily seen to be weak*-continuous and each of the last three terms
annihilate c¢o(Z) and hence are singular. Thus, by uniqueness of the decomposition, we have that
Q¥ = @ o @, Hence, either @ is 0 or the identity. If @2 =0, then @ = @5. If @ is
the identity, then equating the singular parts of the above equation yields, @° =2®5 + @5 o @5.
Thus, @° o @5 = —@*5 and so ¥ = —@? is singular and idempotent. O

Thus, we see that to construct all the idempotent maps, it is sufficient to construct all of the
singular idempotents and the singular part of an idempotent is either idempotent or the negative
of an idempotent.

Corollary 2.4. Let @ :£°°(Z) — £°°(Z) be a Z-equivariant linear map and let T denote the
identity map. If @ is idempotent and contractive, then either ® = @5 or & =1.

Proof. We must show that if @ =7 — ¥ with ¥ idempotent and @ is contractive, then ¥ = 0.
Assume that ¥ is not 0, and choose v = (v,,) with ||v]| = 1 and ¥ (v) = v. Pick a component k
such that |vi| > 1/2 and let e; denote the canonical basis vector that is 1 in the kth entry and O
elsewhere. Then ||2vier — v|| < 1, but @ Qugex — v) = Qurer — v) — (—v) = 2vgex which has
norm greater than 1. O

We would now like to define a spectrum for idempotent maps. To this end, for each A € T,
where T denotes the unit circle in the complex plane, let x; = (1) € £°°(Z). Note that these
vectors satisfy, B(x;) = Ax; and that the eigenspace of B corresponding to the eigenvalue A
is one-dimensional. Hence, if @ is any Z-equivariant linear map, then @ (x;) = ¢, x; for some
scalar c; . Moreover, if @ is idempotent then ci =¢; and hence, ¢; is O or 1.

Definition 2.5. Let @ :¢°°(Z) — £°°(Z) be a Z-equivariant linear map, then we set o (®) =
{L € T: ¢, # 0} and we call this set the spectrum of ®.
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Remark 2.6. Recall that every character on Z is of the form, p; (n) = A", for some A € T. Thus,
under the identification between bounded functions on Z and vectors in £°°(Z), the vector x;, is
just the character, p;, . Note that since @ is Z-equivariant, the range of @, R(®) is a Z-invariant
subspace and A € o (@) if and only if x;, € R(P), i.e., if and only if p) € R(P). With these
identifications, the set o (@) is the same as the “spectrum” of the subspace, sp(R(P)) studied
in the theory of spectral synthesis, although the latter definition is usually only made for weak™*-
closed subspaces. See, for example, [1, Definition 1.4.1].

We will show later that o (@) is not always a closed subset of T. The difficulty is that if
Ap — A in T, then x;, — x, only in the wk*-topology of £°°(Z), but the map @ is generally
singular.

Proposition 2.7. Let @ :£°(Z) — £L>*°(Z) be a Z-equivariant linear map, then o(®) =
{A: @po(x;) # 0} If @ is also idempotent, then ¢o(x,) is always either O or 1 and o (®) =
{A: go(xn) =1}

The following result is fairly well known. In particular, it can be deduced from Kadison’s
results on isometries of C*-algebras [8]. We present a different proof that uses Choi’s theory of
multiplicative domains [3] and our off-diagonalization method.

Lemma 2.8. Let A be a C*-algebra and let @ : A — A be completely contractive. If Uy, U, U
are unitaries and @ (U;) = U;, then & (U U5 U3) = U U5 Us.

Proof. We may regard A as a C*-subalgebra of B() for some Hilbert space, H. By [12, The-
orem 8.3], there exist unital completely positive maps, @; : A — B(H),i = 1,2, such that the
map ¥ : Mr(A) - M>(B(H)) defined by

s(a b\_( ®@ o)
¢ d) \P(x)x Dr(d)
is completely positive.

Now consider the elements, X; = (8 lé" )EM>(A),i=1,2,3. Since, ¥ (X;)=X;, (X} X;) =
X*Xi, W(X;X}) = X; X}, the elements X;,i = 1,2, 3, belong to Choi’s multiplicative domain
[12, Theorem 3.18 and Corollary 3.19] of ¥.

Consequently,
0 & U;U3) 0 U USU3
(0 0’ =¥ (X1 X3X3) =X1¥(X3)X3 = ¢ ,

and the result follows. O

Theorem 2.9. Let @ :EOO(Z_) — L>®(Z) be a Z-equivariant contractive, idempotent map. If
A, A2, A3 € 0 (D), then MAd3 € a(D). For any A € (D), the set A - o (D) is a subgroup
of T. If, in addition, @ is unital, then o (D) is a subgroup of T.

Proof. The first statement is obvious from the above theorem and the fact that x; is a unitary
element of £°°(Z). To see the second claim let A € 0(®P), and set G =X -0(P). Then 1 € G
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gnd, vyhenevera =AA, w= XAz € G, we have that « - "= A A A eGand (@) l=a=
A(A - A1 - A) € G. The final claim comes from choosing A =1. O

We will show later that o (@) does not determine @. In fact, we will give an example of
a Z-equivariant, unital completely positive idempotent that is not the identity map for which
o(@)=T.

The following result is an analogue of Solel’s ternary subalgebra result. We let Z, =
{x € T: A" =1} denote the cyclic subgroups of order n, and let C, = span{x,: A" =1} denote
the corresponding finite-dimensional C*-subalgebras of £°°(Z).

Corollary 2.10. Let @ :£°°(Z) — €°°(Z) be a Z-equivariant contractive, idempotent map. If
R(P) is weak™-closed, then either o (®) =T and @ is the identity map or there exist n and
A € T such that o (@) = A - Z,, and R(®) = x;, - Cy. In all of these cases, R(P) is a ternary
subalgebra of £*°(Z).

Proof. Let M C £*°(Z) be a weak*-closed, Z-invariant subspace and let sp(M) = {A: x) € M},
then M is the weak*-closed span of {x;: A € sp(M)}. To see this, recall that if we identify ¢!(Z)
with the Wiener algebra, A(T), then the predual, M, is a norm closed ideal in A(T). If we let
k(-) denote the kernel of an ideal and 4 (-) the hull of a set, then h(E)* = wk*-span{x,: A € E}.
Now sp(M) =k(M_1) and M) = h(sp(M)) since A(T) is regular and semisimple. Hence, M =
(M) = h(sp(M))* = wk*-span{x;: A € sp(M)}.

Thus, if 6 (@) =T, then R(P) = £°°(Z) and so @ is the identity map.

Note that since R(QP) is weak*-closed, o (®) is a closed subset of the circle. Thus, if A €
o (®), then 1 -0 (®) = G is a closed subgroup of T and hence, G = Z, for some n and it follows
that R(®) =x; -C,. O

In spite of the above result we will later give an example of a Z-equivariant, contractive,
unital, idempotent map whose range is not a C*-subalgebra.

We begin with one set of examples that is easy to describe, although as we will see their
existence is a bit subtle. Let G denote a (discrete) group. By a G-space, we mean a compact,
Hausdorff space, X, together with a homomorphism of G into the group of homeomorphisms
of X. Given a G-space P and a closed G-invariant subset Y C P, a continuous, G-equivariant
function y : P — Y is called a G-retraction provided that y(P) =Y and y(y) =y forall y € Y.
In this case we also call Y a G-retract of P.

Also, recall that the corona set of a discrete group G, is the set C(G) = B(G)\G.

Proposition 2.11. The following are equivalent:

(1) there exists a proper subset Y that is a Z-retract of B(Z),
(ii) there exists an idempotent, Z-equivariant, *-homomorphism,  : C(B(Z)) — C(B(Z)), that
is not the identity map,
(iii) there exists a point w € C(Z), such that the closure of the orbit of w is a Z-retract of B(Z)
that is contained in C(Z).

Moreover, in this case, o () =T.
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Proof. Clearly, (iii) implies (i). Assuming (i), let y : 8(Z) — Y be the retraction map and set
T =y* ie, n(f) = f oy, and note that the fact that y is a Z-retraction implies that 7 is a
Z-equivariant, idempotent homomorphism.

Conversely, assuming (ii), there exists a continuous function, y : 8(Z) — B(Z) such that
7w = y*, and the fact that 7 is a Z-equivariant, idempotent map, implies that y is a Z-retraction.
Thus, (i) and (ii) are equivalent.

Finally, assuming (ii), we have that = = y* with y a Z-retraction onto some set Y. Since 7 is
Z-equivariant, there exists, p : C(8(Z)) — C, such that 7 = @,,. Since 7 is a homomorphism,
p must be a homomorphism and hence there exists @ € 8(Z) such that p(f) = f ().

Since, for any f € C(B(Z)), we have f(m - w) = (f)(m) = f(y(m)), we see that y (m) =
m - w and hence the range of ¥ must be the closure of the orbit of w. Thus, the closure of the orbit
of w is the Z-retract, Y, and y is a Z-retraction onto the orbit. Moreover, since 7 is idempotent
and not the identity, it must be singular and so, 7 (co(Z)) = (0), but this implies that ¥ N Z is
empty and so the closure of the orbit of w is contained in C(Z)).

To see the final claim, note that since x, is a unitary element of C(8(Z)), we have that
(x;) # 0, and hence, 7 (x;) = x;, forevery A€ T. O

We will now prove that such points and homomorphisms exist and consequently provide an
example of a homomorphism such that 7 is not uniquely determined by o (7).

We will show that the existence of such a point can be deduced, essentially, from the existence
of idempotent ultrafilters [2,10]. We are grateful to Gideon Schechtman for introducing us to this
theory. The usual proof of the existence of idempotent ultrafilters is done for the semigroup N.
Since we need to modify this to the case of Z, we present a slightly different version of this
theory that avoids any reference to ultrafilters. The following construction applies to any discrete
group, but we shall stick to Z for simplicity.

Note that the homeomorphism k — k + 1 of Z extends to a unique homeomorphism of 8(Z)
which we shall denote by ¢. Note that ¢™ is the unique homeomorphic extension of k — k + n.
Also, note that ¢(C(Z)) € C(Z).

Given w € B(Z) the map k — (p(k) (w) extends uniquely to a continuous function, p,, : B(Z) —
B(Z). Given g € B(Z) we set p,,(q) = wxq. Note thatif w € C(Z), then ¢ (w) € C(Z) for all n.
Hence when w, g € C(Z), then w * g € C(Z).

The following result, with Z replaced by N, is contained in [2].

Proposition 2.12. We have that (C(Z), %) is a compact left-continuous, associative semigroup
and there exists a point w € C(Z) such that v * v = .

Proof. Left continuity means that if g, — ¢ then w * g, — o * g, which follows from the
continuity of p,,. Since C(Z) is compact all that remains is to show that the product is associative,
i.e., that w| * (w2 * q) = (w * wy) * q for all wy, w2, q € C(Z).

Associativity is equivalent to proving that, py,, (Pw,(q)) = Pw,+w, (¢). Since Z is dense it will
suffice to prove this equality for all g = n € Z. To this end choose a net of integers, {m,} that
converges to wy.

We have that, pu, (P, (1) = P, (0% (@2)) = litg o, (9 (me)) = limg po, (2 + me) =
limy @"«) (). On the other hand, pu ww, () = ¢ (w1 * @) = ¢ (py, (w2)) =
limg @™ (P, (M) = limg ™ (p"e) (w))) = limg ") () and so associativity follows.

The existence of the point w now follows by [2, Theorem 3.3]. O
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A point w satisfying o * w = w is called an idempotent point or an idempotent ultrafilter.

Theorem 2.13. Let w € C(Z) be an idempotent point, then the map, p,:B(Z) — R(py) is a
Z-retraction onto a proper subset. Consequently, the map, 7, : C(B(Z)) — C(B(Z)) defined by,
o (f) = f o py is a Z-equivariant idempotent *-homomorphism onto a proper subalgebra with
o(my,)=T.

Proof. Since, R(py,) € C(Z) it is a proper subset. Note that (p, 0 py,)(g) = w % (w *x q) =
(w*w) *q =w*xq = py(q), and so the map p,, is idempotent.

Finally, to see that it is Z-equivariant it is enough to show that p, o ¢ = ¢ o p,,. To this
end, it is enough to consider a dense set. We have that p,(¢(n)) = po(n + 1) = (p(”+1)(w) =
@ 0 ™ (w) = @(pw(n)). The rest of the proof follows from Proposition 2.11. O

We now present an example of a completely positive, Z-equivariant projection, @ such that
o (@) is a dense subgroup of T that is not closed. A modification of this example will lead to the
counterexample to Solel’s conjecture.

The construction of this example uses Hamana’s theory [6] of the G-injective envelope, I (A)
of a C*-algebra A which we will outline below.

Recall that maps between two spaces equipped with a G-action are called G-equivariant if
they satisfy, ¢(g - a) = g - ¢(a). A C*-algebra equipped with an action by a discrete group G
is called G-injective provided that it has the property that G-equivariant completely positive
maps into it have G-equivariant completely positive extensions. The G-injective envelope I (A)
of a C*-algebra A (or operator system) equipped with a G-action is a “minimal” G-injective
C*-algebra B containing A. To obtain /5(A), Hamana first shows that .4 can always be
G-equivariantly embedded into a C*-algebra that is G-injective and then constructs a minimal,
G-equivariant idempotent map that fixes 4. It is easy to see, and is pointed out in Hamana [6],
that £°°(G) is always G-injective. When A is contained in a G-injective object, the key differ-
ence between I (A) and I (A), is that to obtain the latter object, one must restrict to maps that
fix A and are G-equivariant. Thus, generally, I (A) can be a smaller object than I (A), since
one has a larger family of idempotents to minimize over.

In [4] it is shown that if A is an Abelian C*-algebra, then I (A) is also an Abelian C*-algebra.
We give an ad hoc argument of this fact for the case that we are interested in.

Let T denote the unit circle in the complex plane, fix an irrational number, 6y, with 0 < 6y < 1
and let Lo = €27% g0 that the set {lg}nez is dense in T. We regard T as a Z-space with the action
given by n - z = Ajz. There exists a Z-equivariant *-monomorphism 7 : C(T) — £°°(Z) given
by I1(f) = (f(Ay)). Dually, this *-monomorphism is induced by the continuous Z-equivariant
function y : B(Z) — T that is given uniquely by y (n) = Ag.

Since C(T) has been embedded into ¢°°(Z) in a Z-equivariant manner, we may obtain
I7(C(T)) as the range of a minimal Z-equivariant idempotent map, ¢, that fixes the image of
C(T). A priori, we only know that this range is an operator subsystem of £°°(Z), but we can give
it a necessarily unique product via the Choi-Effros construction, i.e., for ¢(a) and ¢ () in the
range of ¢, we set ¢ (a) o ¢(b) = ¢ (ab). Note that since £°°(Z) is Abelian, this product will be
Abelian.

Thus, I7(C(T)) is an Abelian C*-algebra and if we identify I7(C(T)) = C(Y) then there is
a homeomorphism, 7:Y — Y, which gives the Z-actionon ¥, n - y =y (y), and on C(Y) by
(n- f)(y) = f(n-y). The inclusion of C(T) into C(Y) is given by a Z-equivariant onto map
h:Y —T.
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Choose any point, yp € Y with h(yg) = 1 and set y,, = n - yp. By the universal properties of
B(Z), there is a unique continuous function, I": B(Z) — Y, with I"(n) = y,. Since, I (¢(n)) =
Irn+1)=yu4+1 =nQp) =n"(n)), we see that I" is Z-equivariant. Also, since h(I"(n)) =
y(n), wesee that ho I' =y, i.e., I' is a Z-equivariant lifting of . Hence, I'*: C(Y) — £°(Z)
is a Z-equivariant *-homomorphism, with I7(f) = I'*(f o h), that is, the restriction of I"* to
the image of C(T) is I1.

Since IT is a Z-equivariant *-monomorphism, I'* must also be a *-monomorphism by
Hamana’s [5] Z-essential property of the Z-injective envelope. Hence, even though C(Y) was
only assumed to be an operator subsystem of £°°(Z), it can always be embedded Z-equivariantly
as a C*-subalgebra.

The difficult problem, as we shall see shortly, is proving that C(Y) can be embedded in such
a way that it is not a C*-subalgebra!

Since I''* is a *-monomorphism, I" must be an onto map. Since I"(n) = n(”)(yo), we see that
the range of I" is just the closure of the set {y,: n € Z}, and hence, the orbit of yj is dense
in Y. Recall that yg was just an arbitrary point in Y satisfying h(yg) = 1. Thus, every point
in Y that is a pre-image of 1 has a dense orbit. Moreover, the *-monomorphism of C(Y) into
L2(Z) = C(B(2)) is given by I'*(f) = (f (yn)) € L>(Z).

Since C(Y) is Z-injective there will exist a completely positive Z-equivariant idempotent
map @ on £°°(Z) whose range is the image of C(Y), I'*(C(Y)). By the above results, @ is
either the identity map or singular.

We now argue that @ cannot be the identity map. To see this note that I7(C(T)) Nco(Z) = (0).
Hence, if we compose IT with the quotient map into £°°(Z)/co(Z), then this composition will
still be a *-monomorphism on C(T) and hence will also be a *-monomorphism on C(Y). Hence,
the image of C(Y) cannot be onto and hence @ cannot be the identity map and thus is singular.

We claim that for this map, —1 ¢ o (®). First note that if we let f,,(z) = z™, then [T( f,;,) (n) =
fm ()»8) = kg'". Hence, I1(fy,) = X, and so Xy is in the range of @. Thus, by definition,
)»81 € o (@) for all n € Z and we have that o (@) contains this dense subgroup of T.

Now assume that —1 € 6 (®). Let p; € £°(Z), i =0, 1, be the projections onto the even and
odd integers, i.e., p;, i =0, 1, are the characteristic functions of these sets. Since =1 € (D),
then po = (x_1 + x4+1)/2 is in the range of @, and hence, p; is also in the range of @. Conse-
quently, there exists disjoint, cl-open sets Y;, i =0, 1, with ¥ = Yy U Y1 such that p; = I'*(xy,),
i=0,1.

Thus, po(n) = xy,(y»), and we see that, y, € Yo, for n even and y, € Y1, for n odd.

Note that since I" is a lifting of y, we have that 2(yp) =1 € T and since I" is equivariant,
h(yn) = h(n - yo) = Ag.

Since 6y was irrational, there exists a sequence of odd integers ng, such that Agk converges
to 1. Since Y is compact, some subnet of y,, € Y1 will converge to a point zg € Y1, and (zp) = 1.

Now let, z, = 1™ (z¢), so that h(z,) = Ao and define another Z-equivariant lifting of y,
It :B(Z) — Y by I'i(n) = z,. The homomorphism I also extends /T and so it too must be a
*-monomorphism and the orbit of zo must also be dense.

Note that, since zg is a limit of odd y,,’s, we have that z,, € Yy for n odd and z, € Y7 for n
even. Thus, I'7"(xy,) = p1-

Finally, let ¥ : C(Y) — £°°(Z) be defined by ¥ = (I'* + I')") /2. Then ¥ is completely posi-
tive, Z-equivariant, and its restriction to C(T) is I1, so again by the properties of the Z-injective
envelope, ¥ must be a complete order injection onto its range.

But, 2¥ (xy, — xv,;) = po — p1 + p1 — po =0, a contradiction. Thus, —1 ¢ o (®).

A similar argument can be used to show that no root of unity can be in o ().

*
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We summarize some of these results below.

Theorem 2.14. There exists a Z-equivariant, unital completely positive, idempotent,
@ LX(Z) — £2°(Z) with R(®P) a C*-subalgebra, such that & is not a homomorphism,
D (co(Z)) =0 and o (D) is a dense, proper subgroup of T.

Proof. Let @ be the projection onto I"(C(Y)), as above. Then we have shown that @ has the last
two properties. But we have also seen that the spectrum of a homomorphism must be the entire
circle. Thus, @ cannot be a homomorphism. O

We now present an example to show that the analogue of Solel’s theorem is not true in this
setting.

Theorem 2.15. There exists a Z-equivariant, unital completely positive, idempotent @ :
£2°(Z) — £°°(Z) whose range is not a C*-subalgebra.

Proof. We retain the notation of the above discussion. Let C(Y) = Iz(C(T)), h:Y — T, and
n:Y — Y be as above. It is easy to see that if Rl ({1}) was a singleton, then necessarily, 4 is
one-to-one. But this is impossible since C(T) is not Z-injective. So let yp # wq be points in ¥
with A(yo) = h(wo) = 1 and let y, = 1" (y0), wy =0 (wo).

These points yield two continuous Z-equivariant maps, I, I>:8(Z) — Y by setting,
I'i(n) = yn, I2(n) = w, and corresponding Z-equivariant *-homomorphisms I"*:C(Y) —
£°(Z), i = 1, 2. Since both of these *-homomorphisms extend, IT = y*: C(T) — £°°(Z) which
is a *-monomorphism, then by the properties of the injective envelope I, i = 1, 2, will both be
*-monomorphisms.

Consider the unital, Z-equivariant, completely positive map, ¥ = # Since I;,i=1,2,
are both extensions of /7, we have that the restriction of ¥ to C(T) is a *-monomorphism. Again
using Hamana’s property [5] that C(Y) is a Z-essential extension of C(T), we have that ¥ will
be a complete order isomorphism of C(Y) into £°°(Z).

If R(¥) was a C*-subalgebra of £°°(Z), then by the Banach—Stone theorem [8] ¥ would be
a *-isomorphism onto its range. We now argue that ¥ cannot be a *-homomorphism.

Since, C(Y) is injective, it is generated by its projections. Now let, p € C(Y) be any projec-
tion, then I“l* (p) = xE;» i =1,2, and ¥(p) = xg, must be the characteristic functions of three

. + . . . . .
sets. But since xg, = %, examining points where both sides are 0 or 1, it follows that

E3; = E; N E; and E{ = (E1 U E») and hence, E| = E» = E3. Thus, ¥ = I')" = I, which
contradicts the choice of Iy and I'>.

Thus, R(¥) is not a C*-subalgebra, but since it is completely order isomorphic to C(Y) it is
a Z-injective operator subsystem of £°°(Z) and so we may construct a Z-equivariant, completely
positive, idempotent projection @ of £°°(Z) onto it. O

We are grateful to W.B. Arveson for the following argument.

Recall that T is the set of characters of Z and that for each u € T the corresponding character
is the function, f,,(n) = ", i.e., f,, = x,, under the identification of functions with vectors. Thus,
the C*-subalgebra generated by the set {x,: u € T} is nothing more than the C*-subalgebra
generated by the characters, which is the C*-algebra, AP(Z) of almost periodic functions on Z.
By [1]AP(Z) = C(bZ), where bZ is the Bohr compactification of Z. Recall, bZ = T, the group
of characters of the Abelian group, Ty where T; denotes T with the discrete topology.
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Recall that a topological space, X, is called 0-dimensional if it is Hausdorff and the cl-open
sets are a basis for the topology of X. It is fairly easy to show that every extremally disconnected,
compact Hausdorff space is O-dimensional. For a proof, see the text [10, Proposition 10.69].

If C(bZ) was injective, then bZ would be extremally disconnected and, consequently,
0-dimensional. Hence, by [7, Theorem 24.26], the character group of bZ would be a torsion
group. But [7, Theorem 26.12] Ty is the character group of bZ which is not a torsion group,
contradiction.

Therefore, AP(Z) is not an injective C*-subalgebra of £°°(Z). This leads to the following
observation.

Theorem 2.16. The Z-injective envelope of AP(Z) is strictly contained in £°°(Z). There is a
Z-equivariant, unital completely positive projection, @ : £°°(Z) — £°°(Z) that fixes AP(Z), anni-
hilates co(Z), whose range is a C*-subalgebra that is *-isomorphic to I7(AP(Z)) and o (®) = T.

Proof. Since AP(Z) N co(Z) = 0, the quotient map into £°°(Z)/co(Z) is Z-equivariant and a
complete isometry on AP(Z). Hence, again using the Z-essential property, the quotient map
must be a complete isometry on the Z-injective envelope.

Thus, I7(AP(Z)) must be properly contained in £°°(Z) and we may choose a unital com-
pletely positive, Z-equivariant projection onto it that annihilates co(Z). Because x, € AP(Z), we
will have that @ (x;) = x;, forevery A€ T. O

We remark that the same proof yields the following result.

Theorem 2.17. The injective envelope of AP(Z) is strictly contained in £°°(Z). There is a uni-
tal completely positive projection @ :£°°(Z) — £°°(Z) that fixes AP(Z) and whose range is a
C*-subalgebra, that is, *-isomorphic to 1(AP(Z)).

Problem 2.18.Is 1 (AP(Z)) = I7(AP(Z))?

Note that if @ € C(Z) is an idempotent point, then the induced idempotent, Z-equivariant
*-homomorphism, 7, given by Theorem 2.13 has o (7,,) = T. Thus, 7, is a projection that fixes
AP(Z).

Problem 2.19. If  is an idempotent point, then is the range of 7, a copy of I7(AP(Z)), that
is, is the range completely isometrically isomorphic to I7(AP(Z)) via a Z-equivariant map that
fixes AP(Z)?

This problem is equivalent to asking if 7, is a minimal element in the set of all Z-equivariant
idempotent maps that fix AP(Z).

3. MASA bimodule projections

A subspace 7 C B(K) is called a ternary subalgebra provided that, A, B, C € T implies
that AB*C € 7. It is known that if @ : B(H) — B(H) is a completely contractive, idempotent
map, then the range R of @ is completely isometrically isomorphic to a ternary subalgebra of
operators on some Hilbert space.

Let M € B(H) be a maximal Abelian subalgebra (MASA). It is also known that if
@ : B(H) — B(H) is a MASA bimodule map, then || @ || = || D |-



V.I. Paulsen / Journal of Functional Analysis 240 (2006) 495-507 505

Solel [14] proves that if @ : B(H) — B(H) is a weak™-continuous, contractive, idempotent
M-bimodule map, then the range of @ is a ternary subalgebra of B(H). Thus, under these
stronger hypotheses, the completely isometric isomorphism can be taken to be the identity.

In particular, Solel’s result implies that the range of any weak™-continuous, unital, completely
positive MASA bimodule idempotent, must be a C*-subalgebra of B(H).

We will prove that the analogue of Solel’s result is false in the non-weak*-continuous case.
When the MASA is discrete, then MASA bimodule maps are known to be automatically weak*-
continuous, so the main case of interest is when the MASA is, for example, L°°(T) represented
as multiplication operators on B(Lz(']T)). This subalgebra is maximal.

In this section, we show how Z-equivariant idempotent maps on £°°(Z) can be used to con-
struct L°°-bimodule idempotent maps on B(L%(T)). The idea of the construction can be traced
back to Arveson’s construction of a concrete projection of B(L%(T)) onto L*°(T).

Let 7" = ¢, n € Z, denote the standard orthonormal basis for LZ(']I‘). This basis defines a
Hilbert space isomorphism between L?(T) and £2(Z). We identify bounded operators on ¢2(Z)
with the infinite matrices (a; ;), i, j € Z, and using this isomorphism, the multiplication operator
for a function f is identified with the bounded, Laurent matrix, (a;,j), where a; j = f @i—7j), the
Fourier coefficient. In particular, the operator of multiplication by z corresponds to the bilateral
shift operator B.

We further identify ¢°°(Z) with the bounded, diagonal operators D C B(£%(Z)). Note that
under this identification, the action of Z on £°°(Z) induced by translation is implemented by
conjugation by B. We define «(n):D — D by a(n)(D) = B"DB™". Thus, amap ®:D — D
is Z-equivariant if and only if @(B"DB™") = B"®(D)B™", for all D and all n, which is if and
only if ®(BDB~') = B®(D)B~!, for all D.

We define, E: B((2(Z)) — D, by letting E((a;,;)) be the diagonal operator, with diagonal
entries, a; ;. It is well known that, E is a completely positive projection from B(¢2(Z)) onto D.
Given A € B({*(Z)) we set A(n) =E(AB ") eDandwecall ), _, A(n)B" the formal Fourier
series for A.

We should remark that just as with L°°-functions, the formal Fourier series uniquely deter-
mines A, but does not need to converge to A in any reasonable sense. In fact, it need not converge
to A in even the weak operator topology.

The key fact, whose proof we defer until later, is the following theorem.

Theorem 3.1. Let @ : D — D be a Z-equivariant, unital completely positive map. Then there is a
well-defined unital completely positive, L™ -bimodule map, I" : B(¢*(Z)) — B({*(Z)) satisfying
I'(Q ez DaB™) =) ,c7 P (Dy)B". Moreover, if @ is idempotent, then I' is idempotent.

Corollary 3.2. There exists a unital, completely positive, idempotent L°°(T)-bimodule map
I": B(L3(T)) — B(L*(T)) whose range is not a C*-subalgebra.

Proof. Let @ : D — D be the Z-equivariant, unital completely positive, idempotent map given
by Theorem 2.15 whose range is not a C*-subalgebra and let I": B(t%(Z)) — B({%(Z)) be the
map given by the above theorem. If R(I") was a C*-subalgebra, then R(I") N D = R(P) would
also be a C*-subalgebra. Hence, R(I") is not a C*-subalgebra. The proof is completed by making
the identification of ¢2(Z) with L*(T) which carries the Laurent matrices to the multiplication
operators. O
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Note that when @ is singular, I" will also not be weak*-continuous. Thus, using the exam-
ple from the previous section, we see that there exists a unital, completely positive, idempotent
L*-bimodule map I", such that not only is I"(K) = 0 for every compact operator K, but
I'(A) =0, whenever A(n) € co(2Z) for all n.

Problem 3.3. Does there exist a unital, completely positive, idempotent, Z-equivariant map
@ :D — D, whose range is a C*-subalgebra, but such that the range of I':B(%(2)) —
B(¢%(Z)) is not a C*-subalgebra?

Before proving the above theorem, we will need a few results about cross-products. Re-
call that in general we can form two crossed-products, a full and reduced crossed-product, but
when the group is amenable, then these crossed-products agree [13, Theorem 7.7.7]. Since Z is
amenable, we let Z x, D be this C*-algebra, where « is the action defined earlier. A dense set
of elements of the crossed product is given by finitely supported functions, f:Z — D. Given
any pair consisting of a *-homomorphism 7 :D — B(H) and a unitary U € B(H) such that
U'n(D)U™" = m(a(n)(D)) (such a pair is called a covariant pair), there exists a *-homo-
morphism I7:7Z xo D — B(H), satisfying IT(f) =), f(n)U".

Lemma 3.4. Let 7 : D — B({%(Z)) be the identity inclusion and let B € B({*(Z)) denote the
bilateral shift. Then these are a covariant pair and the map, I1 : 7. x o D — B({*(Z)) is a *-mono-
morphism.

Proof. By [13, Theorem 7.7.5],if A :Z — B(£%(Z)) denotes the left regular representation, then
A=n®id:D— BU*(Z)QL*(Z)) and k = id @1 :Z — B(*(Z) ® £*(Z)) are a covariant pairs
and the induced representation 7 X A:Z Xq D — B(t%(Z) ® €%(Z)) is faithful, i.e., a *-mono-
morphism.

Let H, = e, ® £2(Z) so that (2(Z) ® (2(Z) = > nez @ Hn. Each of these subspaces is a
reducing subspace for the image of Z x,, D and the restrictions to any pair of them are unitarily
equivalent. Moreover, the restriction to Hy is I7. Hence, IT must be a *-monomorphism. O

Thus, we may identify Z x, D with the norm closure in B(£2(Z)) of the operators that are
finite sums of the form ) D, B" with D, € D.

Theorem 3.5. Let G be a discrete group, let A be a C*-algebra and let o : G — Aut(A) be a
group action. If ® : A — B(H) is a completely positive map, p: G — B(H) is a unitary rep-
resentation, such that p(g)®(a)p(g~") = ®(a(g)(a)), i.e., a covariant pair, then there is a

completely positive map p X @ : G xq A — B(H), satisfying p X @(f) = deG D(f(2)p(g),
for any finitely supported function f:G — A.

Proof. This is a restatement of the covariant version of Stinespring’s theorem [11, Theorem 2.1].
Let7r:A — B(K), p:G — B(K) and V :H — K be the covariant pair that dilates @, p, then
(o x D)(f)=V*((p x m)(f))V and the result follows. O

We now turn our attention to the proof of Theorem 3.1. By the above results, given any
@ :D — D, that is, completely positive and Z-equivariant, we have a well-defined completely
positive map I, satisfying for any finite sum I"(}_ D, B") =Y &(D,)B" whose domain is the
norm closure of such finite sums and we wish to extend it to all of B(¢2(Z)).



V.I. Paulsen / Journal of Functional Analysis 240 (2006) 495-507 507

Consider for any 0 < r < 1, the matrix, P, = ("' =T —rB) "'+ (I —rB*)"' —1>0,
since it is the “operator Poisson kernel” [12, Exercise 2.15]. Thus, the corresponding Schur prod-
uct map S, : B(ZZ(Z)) — B(EZ(Z)) given by S (a;,;) = (r"'_j‘ai,j) is completely positive and
unital. Writing A = (a;,j) ~ Y _ D, B" in its formal Fourier series, we see that A, = S,(4) =
> rI"' D, B", where in the latter case we have absolute norm convergence of the partial sums.
Hence, for any A, S,(A) € Z x4 D.

This shows that I'(S,(A)) = 3_r"l®(D,)B".

Note that, for any A € B(£*(Z)) we have that A > 0 if and onlyif A, >0forall0<r <1,
and [|All = supp<, 1 |A/|l. Finally, given any formal matrix A = (4, ;) it is easily checked that
A defines a bounded operator if and only if supyc, i [IA-| is finite and that this supremum
equals the norm.

Hence, if A ~ )" D, B" is bounded, then || Zr'"'q)(Dn)B" I <||@|||A] forall 0 <r < 1 and
hence, > ®(D,)B" is bounded. This shows that we may extend I" to all of B (¢2(Z)) and the
norm of the extended map will be at most || @ ||. Using the positivity properties of A, we see that
the extended map I” will be positive. Complete positivity of the extended map follows similarly.

Finally, since in Theorem 3.1, we are assuming that @ is unital, I" will fix every Laurent
matrix. Since the Laurent matrices form a C*-subalgebra, by Choi’s theory of multiplicative
domains [3] (see also [12]), we have that I" is a bimodule map over the Laurent matrices.

This completes the proof of Theorem 3.1.
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