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We study orbital normal forms for analytic planar vector fields with nilpotent
singularity. We show that the Takens normal form is analytic. In the case of gen-
eralized cusp we present the complete formal orbital normal form; it contains func-
tional moduli. We interprete the coefficients of these moduli in terms of the hidden
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1. INTRODUCTION

1.1. Around the Takens prenormal form. Our subjects of investigation
are germs at 0 ¥ C2 of analytic vector fields of the form

ẋ=2y+ · · · , ẏ= · · · ,(1.1)

i.e., with nilpotent linear part. (We will also write ẋ=y+ · · · .)
We will pay particular attention to the case when this system is close to

the Hamiltonian system with the Hamilton function

H=y2− x s, s \ 3.(1.2)

It means that

ẋ=2y+ · · · , ẏ=sx s−1+ · · · ,(1.3)
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where the dots mean the terms of higher order. Later we shall specify this
notion.

A special case of the system (1.3) forms the Bogdanov–Takens singular-
ity ẋ=y, ẏ=x2+axy+ · · · , where a ] 0 (see [B1]); here we skip the latter
assumption. In the paper of Moussu [M2] such singularity (i.e., the system
(1.3) with s=3) is called dégénérée transverse. In the work of Elizarov et al.
[EISV] this class is denoted by Jg.

Some work was done on the formal orbital normal forms for the systems
with nilpotent linear part. Takens [T] in 1974 proved that the system (1.1)
can be formally reduced to

ẋ=y+a(x), ẏ=b(x)(1.4)

where a(x)=arx r+ar+1x r+1+ · · · , b(x)=bs−1x s−1+bsx s+ · · · are some
formal power series. Some authors use the following, equivalent to (1.4),
prenormal form

ẋ=y, ẏ=b(x)+yc(x).(1.5)

Since the forms (1.4) and (1.5) are not the complete normal forms, we shall
call them the Takens prenormal forms (similarly, the systems (1.5) and (1.6)
are called the Bogdanov–Takens prenormal forms).

In order to obtain the form (1.4) Takens uses only changes of variables
x, y but not the time. Baider and Sanders [BS] have continued investiga-
tions in this direction and obtained some new results about nonorbital
normal form. They still are not complete; the final (nonorbital) formal
normal form is not known.

We have two possibilities: either s=. (i.e., b(x) — 0) or s <.. If s=.,
then the system (1) has a nonisolated critical point and its phase portrait is
the same as the flow-box foliation. Later we assume that s <..

It is easy to reduce the form (1.4) to

ẋ=y+a(x), ẏ=sx s−1(1.6)

(see Lemma 3 in Section 3 below and [B2]). In the case s < 2r (i.e., the
system (1.3)) an equivalent to (1.6) normal form is

ẋ=2y+2xc(x), ẏ=sx s−1+syc(x)(1.7)

(see [L3] and Lemma 3 in Section 3). The latter form has the property that
the cusp curve y2=x s is invariant.

In the present paper we shall show that the prenormal forms (1.4)–(1.7)
can be chosen analytic (see Theorem 6 in the next section).

The form (1.6) is not the final orbital normal form. Some (infinitely
many) coefficients in the Taylor expansion of c(x) can be reduced to zero.
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However, this reduction cannot be realized by means of analytic change of
variables and time (see Remark 18 in Section 5.1). The analyticity property
reaches its limit in the formula (1.6).

We shall reduce all the terms from c(x) which can be reduced. Therefore
we shall obtain the complete formal orbital normal form in the case
arbs−1 ] 0 and

s < 2r,(1.8)

i.e., for the system (1.3) (see Theorem 7 in the next section). We will call
this case the generalized cusp case.

(The case with s > 2r will be called the generalized saddle–node case and
the case with s=2r we call the generalized saddle case.)

The work of Bogdanov [B2] appeared with formal orbital normal forms
for a large class of singularities including the nilpotent ones. His method
uses some homological machinery (spectral sequences, etc.) and probably
was not understood by other specialists. Moreover, our results contradict
one of his theorems.

Results similar to [B2] with much simpler proofs, were obtained by
Sadovski [S2]. However, in the case (1.8), he repeats the theorem of
Bogdanov (with the same mistake and without proof).

Recently Loray [L3] obtained the same formal orbital normal form as
the our form from Theorem 7. Our proof is different (more algebraic) than
Loray’s, so we present it here.

1.2. Resolution of singularity and hidden holonomy. During the past 20
years a lot of work has been done in the theory of analytic orbital normal
forms (Ecalle–Voronin moduli, Martinet–Ramis moduli, Stokes operators,
etc.). In particular, this theory was applied to the nilpotent cusp singularity,
first by Moussu and Cerveau [CM, M2], next by the group of Il’yashenko
et al. [EISV], and, then by Loray and Meziani [L1, L2, LM].

The geometrical picture is as follows. It is well known that a singular
point of a vector field V from the class Jg is resolved in three elementary
blowing-ups. In the general case the resolution of the vector field (1.1)
satisfying (1.8) depends on the parity of the exponent s. This resolution is
the same as the resolution of the Hamilton function y2− x s (see Fig. 1).

If s=2k+1, then we need k+2 elementary blowing-ups. The last
blowing-up gives the divisor Ek+2 with the three singular points of the
induced foliation near it (see Fig. 1):

p0 with 1: − (4k+2) resonance and with a separatrix C representing an
invariant analytic curve y2− x2k+1+ · · · =0,

p1=Ek+2 5 Ek with 1: − 2 resonance and
p2=Ek+2 5 Ek+1 with k: − (2k+1) resonance.
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FIGURE 1

If s=2k, then we need k blowing-ups. The last blowing-up gives the
divisor Ek with the three singular points:

p0=Ek 5 Ek−1 with (k − 1): − k resonance and
p1, 2 with 1: − 2k resonance and with separatrices C1, 2 representing two

invariant analytic curves y ± xk+ · · · =0.

There is a hidden holonomy group G associated with the germ of vector
field V. It is the monodromy group (or holonomy group) G associated with
the punctured divisor Eg=E0{p0, p1, p2}, where E is the last divisor
appearing in the resolution. It is a subgroup of the group of germs of
holomorphic diffeomorphisms of a holomorphic disk D transverse to Eg

and is defined by lifts to the leaves of the corresponding foliation of loops
in Eg.

This holonomy is called (by Moussu) hidden, in order to distinguish it
from the holonomy maps associated with the separatrix (or separatrices).
Two germs of vector fields may have the same holonomies associated with
separatrices, but not be analytically equivalent. This holds in the case when
G is solvable and s is odd.

The group G is also called the projective monodromy group.
In [CM] and [M2] series of results about the group G were proved. It is

generated by two maps f1 and f2 corresponding to the simple loops around
p1 and p2.
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In the case s=2k+1 we have

f1(z)=e ipz+ · · ·

f2(z)=e2pik/(2k+1)z+ · · ·

f0(z)=f1 p f2(z)=e−ip/(2k+1)z+ · · ·

(1.9)

and there are two relations

f[2]1 =f[2k+1]2 =id,(1.10)

where f[j]=f p f p · · · p f (j times).
In the case s=2k we have

f1, 2(z)=e ip/kz+ · · ·

f0(z)=f1 p f2(z)=e2pi/kz+ · · ·
(1.11)

and there is one relation

f[k]0 =id.(1.12)

The relations (1.10) and (1.12) are consequences of the analytic lineariza-
bility of the corresponding singular points; that linearizability is obtained
from contractibilities of some loops in certain divisors at Fig. 1: E1 and
Ek+1.

In what follows we shall mean by a monodromy group, a subgroup of
the group of germs of analytic diffeomorphisms of (C, 0) with a distin-
guished system of its generators. Therefore we have G=Of1, f2P, where
f1, 2 satisfy (1.9)–(1.10) or (1.11)–(1.12).

The next theorem, which says that the pair (f1, f2) of germs of diffeo-
morphisms (modulo equivalence) constitutes a complete invariant of
orbital classification of generalized cusp singularities, was proved by
Moussu and Cerveau [M2, CM] (see also [EISV]). Before its formulation
we give two definitions.

Definition 1. Two germs V, V − of analytic vector fields in (C2, 0) are
formally (respectively analytically) orbitally equivalent iff there is a formal
(respectively analytic) diffeomorphism G of (C2, 0) transforming the phase
curves of V to the phase curves of V −. This means that there is a formal
(respectively analytic) function k, k(0) ] 0 such that k · V −=G−1g V p G.
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Definition 2. Two groups G=Of1, ..., flP, G −=Of −1, ..., f −lP of germs
of conformal diffeomorphisms of (C, 0) are analytically equivalent iff
there is a germ h of analytic diffeomorphism of (C, 0) conjugating the
corresponding maps from G and G −. Thus

f −i=h p fi p h−1.

G and G − are formally equivalent if the above holds at the level of formal
power series.

Theorem 1. (a) The monodromy group, modulo analytic equivalence,
associated with the generalized cusp singularity constitutes an invariant of the
orbital analytic classification for such germs of vector fields.

(b) Two germs with generalized cusp singularity having analytically
equivalent monodromy groups are orbitally analytically equivalent.

(c) Each groups G=Of1, f2P satisfying (1.9)–(1.10) or (1.11)–(1.12)
is realized as a hidden monodromy group of a generalized cusp singularity.

(d) The same statements hold when we replace the orbital analytical
equivalence of vector fields and the analytic equivalence of monodromy
groups by the corresponding formal equivalences.

1.3. The theory of groups of germs of 1-dimensional diffeomorphisms and
its application to generalized cusps. Here we present results about classifi-
cation of finitely generated groups of germs of analytic diffeomorphism of
a complex line. They are standard for specialists. We present them in full
generality (although we need them in a restricted form), in order to show
their panorama for unexperienced readers. For details we refer the reader
to the survey article by Elizarov et al. [EISV]).

Theorem 2 (Formal classification of groups; [CM]). (a) Any finitely
generated abelian group G of germs of conformal diffeomorphisms of (C, 0)
is formally equivalent either to a group consisting of linear maps

z Q lz, l ¥ Cg

or to a group consisting of maps of the form

z Q lg tw, lp=1, t ¥ C,

where g tw is the flow map generated by the vector field w=wp, m= [zp+1/(1+
mzp)] “z. Here the field wp, m is fixed for the whole group and at least one
t ] 0.
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(b) Any finitely generated solvable nonabelian group G of germs
of conformal diffeomorphisms of (C, 0) is formally equivalent to a group
consisting of maps of the form

z Q lg tzp+1(z), l ¥ Cg, t ¥ C,

where g tzp+1(z)=z(1 − ptzp)−1/p is the flow map generated by the vector field
wp, 0=zp+1“z. Here the integer p is fixed for the whole group and at least one
t ] 0.

From this it follows that any abelian group defined by (1.9)–(1.10) is
formally equivalent to Of11, f12P=O− z, lzP, l=e2pik/(2k+1) or to O− z, lg1wP,
w=wp, m, p=(2k+1) m. Any such solvable nonabelian group is formally
equivalent to O− z, lg1zp+1P.

Analogous groups defined by (1.11)–(1.12) are formally equivalent to
Oe2pi/kz, epi/kzP (abelian); or Oe2pi/kz, epi/kg1wP, p=2km (abelian); or Oe2pi/kz,
epi/kg1zp+1P (solvable nonabelian). We associate with a solvable group G two
other groups: the additive group

TG={t: g tw ¥ G1}, w=wp, m or w=wp, 0

and the multiplicative group (of multipliers if G)

LG={f −(0): f ¥ G}.

Definition 3. (a) An abelian group G of conformal diffeomorphisms
of (C, 0) is called formally linear iff it is formally equivalent to a group
consisting of linear transformations.

If G is abelian but not formally linear, then we call it either exceptional,
if the additive group TG is cyclic, or typical, otherwise.

If G is formally linear and LG is finite then we say that the group is finite;
(it is finite in fact).

(b) A solvable nonabelian group of conformal diffeomorphisms of
(C, 0) is called exceptional iff the additive group TG is cyclic. A nonexcep-
tional solvable group is called typical.

Remark 1. If G is formally linear, then it can be finite or infinite. If G
is finite, then LG consists of roots of unity and G is cyclic and analytically
equivalent to LG.

If G is abelian exceptional, then the additive group TG={t: g tw ¥ G1} is
cyclic and the multiplicative group LG consists of roots of unity of order p,
LpG={1}.
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If G is solvable nonabelian exceptional, then LG is a subgroup of the
group of roots of unity of degree 2p, LpG={ ± 1}.

In the solvable case with p=1 the maps z Q lg tz2=lz/(1 − tz) are
conjugated with the affine automorphisms t Q at+b of the complex line.
In the exceptional case the group TG is identified with a subgroup b0Z … C,
which must be preserved by the group of multipliers LG=(group of a’s).
Thus, either LG={1} and G is abelian or LG={ ± 1} and G is nonabelian.

If p > 1, then one has only semiconjugation with a subgroup of the
group of affine maps.

Theorem 3 (Rigidity of groups; [R, CM]). If two groups G and G − are
either:

(i) finite, or

(ii) abelian typical, or

(iii) solvable typical, or

(iv) non-solvable

and are formally equivalent, then they are also analytically equivalent.

Remark 2. In [CM] and [EISV] an analytic classification of excep-
tional abelian and solvable exceptional groups is given (Theorems 1.3 and
2.4 in [EISV]). In contrast to the typical solvable case they contain a
functional modulus. It is the Ecalle–Voronin modulus of one of the
generators of the group. In the cases of typical (abelian and solvable)
groups the Ecalle–Voronin modulus turns out to be trivial; this is the
reason for their rigidity.

We do not discuss here the problem of rigidity and analytic classification
of groups which are formally linear, but infinite. This problem is related to
the problem of small divisors (theorems of A. Briuno and J.-C. Yoccoz).

Application of the above results to the monodromy group of a general-
ized cusp singularity of vector fields has led the authors to the following
result.

Theorem 4 (Rigidity of generalized cusps; [CM, EISV, L1, LM]). (a)
Let s=2k+1. Any group defined by (1.9)–(1.10) is either finite or solvable
typical or non-solvable (i.e., it is rigid).

(b) Let s=2k. Any group defined by (1.11)–(1.12) is either finite or
abelian exceptional or solvable typical or nonsolvable.

(c) This implies the following (rigidity property): if two germs of
analytic vector fields with generalized cusp singularity with non-exceptional
monodromy groups are formally equivalent, then they are analytically
equivalent (they are rigid).

In particular, any generalized cusp with s=2k+1 is rigid.
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From Theorem 4 it follows that when the group is nonsolvable or solv-
able typical or finite and the formal orbital normal form of V is polyno-
mial, then the conjugation transformation is always analytic.

Remark 3. Loray and Meziani [L1, LM] obtained analytical classifi-
cation of germs of vector fields with solvable groups in the case of odd s.
The corresponding orbital normal forms are polynomial and are similar to
our formal normal form given in Theorem 7.

Remark 4. Some authors study also the topological rigidity of the
groups defined by (1.9)–(1.10) (or (1.11)–(1.12)) and of generalized cusp
singularities. We do not need them here and we omit formulation of the
corresponding theorems.

We complete this point by presenting a criterion of solvability of the
monodromy in the cases of generalized cusps of small multiplicity. We
thank the referee for detecting a mistake in our previous formulation of
this result (we claimed that an analogous criterion holds for any s).

Theorem 5 (Solvability criterion). (a) If s=3, then a group defined by
(1.9) and (1.10) is solvable iff f[6]0 =id. For vector field this means the
following: its monodromy group is solvable iff the saddle p0 of the resolved
field is linearizable.

(b) If s=4 and G is defined by (1.11) and (1.12), then f[4]1, 2=id iff
either G is solvable nonabelian or G is finite. In terms of the vector field, this
property of its monodromy means that the saddles p1, 2 of the resolved vector
field are linearizable.

1.4. About the results of this paper. At first approach we hoped to
obtain a polynomial formal normal form and then we planned to use the
above analytic machinery to obtain results about analytical classification.
However it turned out conversely; the normal form is not polynomial.

In the present paper we give the complete formal orbital classification in
the case (1.8) (Theorem 7). The proof of this formal orbital form relies on
solution of the homological equations with respect to the monomial com-
ponents of the changes of coordinates and time. The problem is reduced to
the solution of series of linear algebraic equations.

The analyticity of the conjugating diffeomorphism is obtained only
for the preliminary normal form, i.e., the Bogdanov–Takens form (1.6)
(Theorem 6). This is the main result of the paper. It is also the most
technical part of the work.

We show analyticity directly by estimating the coefficients of the Taylor
series of the changes of variables. The key point of the proof is that the
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essential part of the linear operator acting on vector fields in the
homological equation can be decomposed into a sum of a diagonal opera-
tor and a quasinilpotent operator. Next we use a variant of Newton’s
method and techniques from the KAM theory.

Knowing the formal normal form we are able to recognize the type of its
projective holonomy (Theorem 8). In the cases of finite and solvable
nonabelian monodromy group the formal normal forms are polynomial,
which means that these forms are also analytic orbital normal forms.

In the case s=3, we interpret the first coefficient of the Taylor expansion
of the formal functional modulus in terms of the saddle quantities of the
saddle p0 of the resolved field (Theorem 9(a)). In the even s case we
interpret the first terms of the formal normal form in terms of the saddle
quantities of the saddles p1, 2 of the blown-up field (Theorem 9(b)).

2. RESULTS

The first of our theorems is the main result of the work. It solves the old
problem of analyticity of the prenormal form obtained by Takens.

Theorem 6. The Bogdanov–Takens prenormal form ẋ=y+a(x), ẏ=
sx s−1 of the singularity ẋ=y+ · · · , ẏ=sx s−1 · · · (with the only restriction
2 [ s <.) is analytic.

Remark 5. Let s=2. Then the singular point is a saddle with the 1 : − 1
resonance. Theorem 6 says that the Bogdanov–Takens prenormal form
(y“x+x“y)+c(x)(x“x+y“y) holds and is analytic. The first nonzero coef-
ficient in the Taylor expansion of the function c(x) is the saddle quantity
(the analogue of the focus quantity).

The further results concern only the generalized cusp singularities, i.e.,
the vector fields in the form (1.7). Let

XH=2y“x+sx s−1“y

be the Hamiltonian vector field and

EH=2x“x+sy“y

be the quasihomogenous Euler vector field. We shall deal with the vector
fields XH+c(x) EH, where c(x) are germs of analytic function vanishing at
x=0. We can assume that c(x)=xr−1+ · · · (we fix the first coefficient by
rescaling) or that c(x) — 0 (i.e., r=.).
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We introduce also the notation

n0=
r
s

−
1
2

.(2.1)

Theorem 7. Any analytic germ XH+c(x) EH is formally orbitally
equivalent to one of the normal forms J sr, f, indexed by exponents

r ] 0 (mod s) or r=.

and by formal power series

f=f(x)=C − cjx j

(where the summation runs over some subset of integers), defined below:

(i) J s., 0: XH;
(ii)

J sr, f: XH+xr−1(1+f(x)) EH(2.2)

with

C −= C
j ] 0, −r (mod s)

if r <. and n0 ¨ Z;

(iii) the field (2.2) with

f=cn0sx
n0s

if r <. and n0 ¥ Z;

(iv) the field (2.2) with

C −= C
j ¥ {n0s, j0}

+ C
j > j0

j ] 0, −r (mod s)
j ] j0+n0s

if r <., n0 ¥ Z and there exists a nonzero coefficient cj0 with j0 ] 0, −r
(mod s) (we mean that cj0 ] 0 is the first such coefficient).
If two vector fields with the normal forms J sr, f and J s ŒrŒ, fŒ are formally
orbitally equivalent, then r=r −, s=s − and f −(x) — f(ax) for some constant a

which satisfies a2r−s=1 (when r ].).

Remark 6. The normal forms from Theorem 7 need explanations. We
explain them on the examples with s=3 and s=4.
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If s=3, then we have two series of normal forms (with one functional
modulus)

XH+x3m(1+xk(x3)) EH,

XH+x3m+1(1+x2k(x3)) EH

and one exceptional (of infinite codimension) singularity XH.

If s=4, then r can take the values 1, 2, 3 (mod 4). If r=1 (mod 4) or
r=3 (mod 4), then n0 ¨ Z and the normal form has two functional moduli.
This gives two series of normal forms (ii)

XH+x4m(1+xk1(x4)+x2k2(x4)) EH,

XH+x4m+2(1+x2k1(x4)+x3k2(x4)) EH.

If r=2 (mod 4), then n0 ¥ Z, r=4n0+2, and the term c4n0x
4n0 cannot be

eliminated from f(x). We have two possibilities: either the whole f(x)
equals c4n0x

4n0 (iii) or it contains some nonzero term cj̇0x
j0, j0 ] 0, −r (mod 4)

(iv). We assume that j0 is the minimal index with this property.
In case (iii) we get one series (without functional moduli)

XH+x4n0+1(1+mx4n0) EH.

In case (iv) we have two series, (indexed by r=4n0+2 and by
j0=4m+1, or by j0=4m+3 and containing two functional moduli):

XH+x4n0+1[1+c4n0x
4n0+x4m+1k1(x4)+x4m+3k2(x4)] EH,

XH+x4n0+1[1+c4n0x
4n0+x4m+3k1(x4)+x4m+5k2(x4)] EH,

where k1(0) ] 0=k (n0)1 (0). This means that the monomial x4n0+j0 is absent
in f(x).

There remains the exceptional form (of infinite codimension) XH.
Note also that the change (x, y) Q (a2x, a sy) induces the changes

XH Q a s−2XH and x r−1EH Q a2r−2 · x r−1EH. Therefore when a2r−s=1, this
change does not influence the orbital type of the rth jet of the field J sr, f.
This means that the normal forms are unique modulo action of the finite
group Z/(2r − s) Z. We thank the referee for insisting on this point.

The reason for the elimination of xn0s+j0 is the following. All eliminations
(proved in Theorem 7) are made using linear homological equation with
respect to change of variables. This means that, in each step of the reduc-
tion, we solve a system of linear algebraic equations. If n0 is not an integer,
then the corresponding system always has a unique solution.
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If n0 is an integer, then, in a certain step of the reduction, the determi-
nant of the corresponding linear matrix vanishes. There is a term which
cannot be eliminated (it is xn0s in f(x)) and there remains one term in the
transformation which is not used in this step. We use the latter term to
eliminate the additional term x j0+n0s in f(x).

Remark 7. The normal form from Theorem 7 can be written in the
following equivalent way

J sr, f: [y+xr(1+f(x))] “x+x s−1“y.

In the papers [B2] and [S2] Bogdanov and Sadovski present their normal
form as

ẋ=y+xr 11+C gjx j2 , ẏ=x s−1,

where gj=0 for j=sm − r, j=sm, j > 3 (without restrictions onto the first
term x r“x). In our form the case with r=sm is absent and in the case of
integer n0 the normal form is more complicated.

Remark 8. In case (ii) of Theorem 7 an equivalent form is XH+xr−1(1+
; s−1
i=1, i ] s−r x ifi(H)) EH.
In the case (iii) of Theorem 7 the more natural normal form, equivalent

to J sr, f, f=cn0sx
n0s, is

XH+x s/2−1Hn0(1+mHn0)−1EH.(2.3)

Analogously one can rewrite the normal form in case (iv). This kind of
normal form was obtained by Loray in [L3].

Remark 9. The result of Theorems 7 can be extended to the nonnil-
potent case s=2, i.e., 1 : − 1 resonant saddle. It is known that the formal
orbital normal form of such a saddle can be written as XH+(Hm+
mH2m) EH. It coincides case (iii) of Theorem 7 with r=2m+1, n0=m.

Because the complete analytic normal form of a resonant vector field
contains functional moduli and is different from the formal normal form,
we get an explanation of why the form from Theorem 7 is not analytic.

In a previous version of this work we obtained a formal normal form
with the set of exponents only like in case (ii). Consideration of the case
s=2 allowed revealed the mistake. We also strived to show that the formal
normal form is analytic, which cannot be true in the case s=2. A close
examination of the proofs has shown that the proof of analyticity of the
Bogdanov–Takens normal form (1.6) was correct but the reduction of
additional terms from c(x) EH can be divergent.
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In order to obtain a complete analytic normal form one must construct a
sort of Martinet–Ramis moduli: divide a neighborhood of (0, 0) into conic-
like domains and perform analytic reductions in the cones to some stan-
dard systems (e.g., with a solvable monodromy group). The differences
between the reducing transformations in intersections of the cones could
give functional moduli. Probably these moduli will not be flat (contrary to
the Martinet–Ramis moduli) and the coefficients of their Taylor expansion
should correspond to the coefficients cj in the formal functional modulus f.

Something like this is already done with the hidden holonomy group (see
Theorem 1), But we do not think that the story ends here.

In the next theorem we classify the holonomy groups according to the
formal classification from Theorem 7.

Theorem 8. The hidden holonomy group associated with the germ
XH+c(x) EH is:
— non-solvable in cases (ii) with f – 0 and (iv) from Theorem 7;
— typical solvable (nonabelian) in case (ii) with f — 0;
— abelian in the cases (i) (then it is finite) and (iii) (then it is excep-

tional).

In the cases of solvable and finite monodromy groups the formal orbital
normal form is the same as the analytic orbital normal form.

This theorem says that the coefficients in the formal function f=; − cjx j

from Theorem 7 are the obstacles to solvability of the monodromy group.
We see that in a generic case the holonomy group is nonsolvable, the
solvability is the phenomenon of infinite codimension (very rare). More
precisely, the set of germs of type (1.7) with solvable monodromy forms a
pro-algebraic subset (i.e., it is given by algebraic equations in finite jets) of
infinite codimension.

We do not know the full interpretation of the coefficients cj in terms of
known objects. We have only partial results in this direction.

Theorem 9. (a) If s=3, then the first coefficient of the Taylor expan-
sion of the function f plays the role of the saddle quantity of the saddle p0; it
is an obstacle to its linearization.

(b) If n0 ¥ Z, then the term x r−1EH is the first obstacle to the
linearization of the resolved vector field near any of the saddles p1, p2 ¥ Ek. In
case (iii) the coefficient cn0s plays the role of the modulus of formal orbital
classification of the resolved vector field near p1 as well as near p2.

Remark 10. Stróżyna [St] has recently obtained analogous results in
the generalized saddle–node, (i.e. when the inequality (1.8) is reversed).
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After resolution of the singularity, (x, y) Q (x, u=y/xr), one obtains a
1 : − r resonant saddle p0: u=x=0 and a saddle–node p1: x=0, u=1 with
nonzero eigenvalue in the direction of x=0. Two germs of such vector
fields are orbitally analytically (formally) equivalent iff their monodromy
groups are analytically (formally) equivalent.

A natural analogue of the Bogdanov–Takens prenormal form is
(y − x r) “x+yc(x) “y with analytic c(x), c(x)=xs−r−1+ · · · . Denote
EH=x“x+ry“y and n0=s/r − 2.

The final orbital formal normal form is equal to either:

(i) J., 0r : (y − x r) “x, or
(ii)

J s, fr : (y − x r) “x+x s−r−1(1+f(x)) EH

where f(x)=; − cjx j and ; −=;j ] 0 (mod r), if n0 ¨ Z, or
(iii) J s, fr with f=cn0rx

n0r, if n0 ¥ Z, or
(iv) J s, fr with ; −=;j ¥ {n0r, j0}+;j ] 0 (mod r), j ] t0+n0r , if n0 ¥ Z and there

exists a (first) nonzero coefficient cj0 with j0 ] 0 (mod r).

The monodromy group associated with the singularity is nonsolvable in
case (ii) with f – 0 and (iv), solvable nonabelian in case (ii) with f=0 (it
can be typical or exceptional), and abelian in cases (i) (it is finite) and (iii)
(it is exceptional).

The term x s−r−1EH responds for the first term in the normal form near
the saddle–node p1. In case (iii) the coefficient cn0r is a formal invariant of p1.

Remark 11. Theorem 6 has applications in the problem of nilpotent
centers. Recall that the (real) system in the Bogdanov–Takens prenormal
form

ẋ=y+a(x), ẏ=Ex s−1,

a(x)=arx r+ · · · , E= ± 1, has center iff: (a) E=−1, (b) s=2k is even, (c)
r > k or r=k and rar < 4, and (d) a(x) — a(−x) . This result was obtained
independently by Sadovski [S1] and by Moussu [M1].

Berthier and Moussu [BM] have proven the following results about
such centers:

(1) It is analytically reversible, which means that there is an analytic
vector field V − in (R2, 0) and a local holomorphic map F: (R2, 0) Q (R2, 0) of
the fold type, (x, y) Q (x2+ · · · , y+ · · · ), such that V=F · F−1

g V − p F for
some holomorphic function F.
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(2) Two vector fields V1, V2 with nilpotent centers are analytically
orbitally equivalent iff the corresponding vector fields V −1, V −2 are analytically
orbitally equivalent.

The first result follows from Theorem 6, because the function a(x) is
analytic and the existence of center means that a(x)=A(x2). Thus we can
apply the map F(x, y)=(x2, y). The proof of (1) in [BM] is different. It
relies on a subtle analysis of the monodromy maps.

Sadovski in [S3] investigated the problem of the existence of an analytic
first integral for nilpotent centers. He has shown that there is such an
integral iff the system is formally equivalent to the case J s., 0. Using
Theorems 7 and 8 we can assert the following.

Corollary 1. The system ẋ=y+ · · · , ẏ= · · · with center has local
analytic first integral iff it is analytically orbitally equivalent to theHamiltonian
system

ẋ=y, ẏ=−x2k−1.

Sadovski informed the authors that the problem of the analytic first
integral for nilpotent centers was stated by Lyapunov.

The plan of the remainder of the paper is following. In the next section
we recall the proofs of the Takens and Bogdanov–Takens prenormal
forms. In Section 4 we prove Theorem 6. In Section 5 we prove Theorem 7.
Section 6 contains the proof of Theorem 8 and Theorem 9 is proved in
Section 7.

3. THE TAKENS HOMOLOGICAL EQUATION

Here we prove the formulas (1.4)–(1.7) at the level of formal power
series. In Section 4 we shall prove that they are analytic. We also present an
expansion formula for dependence of a transformed vector field on the
change of variables; this formula will be next used in Section 4.

Lemma 1 [T]. There is a formal change of the variables (x, y) which
reduces the vector field y“x+ · · · to the Takens prenormal form

[y+a(x)] “x+b(x) “y.(3.1)

Proof. We use a composition of infinite series of transformations of the
form id+Z(k), i.e.,

(x, y) Q (x1, y1)=(x, y)+Z(k)(x, y),
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x1=x+z1(x, y), y1=y+z2(x, y), where z1(x, y) and z2(x, y) are homo-
geneous polynomials of degree k. We shall treat also Z (k) as a vector field,
Z (k)=z1“x+z2“y.

Let V=y“x+;j > 1 V (j)(X), where V (j) are homogeneous summands of
the vector field V. Comparing the terms of degree k in the transformed
vector field

(id+Z(k))g V=(id+Z(k))−1g V p (id+Z(k))

we obtain the homological equation

[Z(k), y“x]+V(k)=(V(k))Takens,(3.2)

where (V (k))Takens is a term from the Takens prenormal form, (V(k))Takens=
akxk“x+bkxk“y.

The operator [ · , y“x], written in the components, acts on z1“x+z2“y as
follows

z1“x+z2“y Q 1z2 −
“z1
“x

y2 “x −
“z2
“x

y“y.(3.3)

Equation (3.2) is the Takens homological equation and the operator (3.3) is
the Takens homological operator.

Applying the formula (3.3) to Eq. (3.2), we see that we can cancel all the
terms in the y-component of V (k) divisible by y and, when z2 is fixed, we
can also cancel the terms divisible by y in the x-component. In this way we
obtain the formal Takens prenormal form (3.1). L

From the proof of Lemma 1 it follows that the components z1(x, y) and
z2(x, y) can be chosen as divisible by x, and with this choice they are
determined uniquely. Let us formulate this property in a separate lemma.

Lemma 2. For any homogeneous vector field V (k), k \ 2, the homological
equation (3.2) has unique solution Z (k) in the class of (homogeneous) vector
fields of the form

Z (k)=xZ2 (k−1).

This means that the homological operator (3.3) defines an isomorphism
between the space (xC[[x, y]])2 of formal vector fields of the form Z=xZ2
and the space (yC[[x, y]])2 of formal vector fields of the form W=yW2
(complementary to the space of Takens prenormal forms).
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Remark 12. The equivalent to (3.1) preliminary normal forms are

ẋ=y, ẏ=b(x)+yc(x)

and, if the condition s < 2r holds,

ẋ=y+mxc(x), ẏ=b1(x)+yc(x), m > 0.(3.4)

Proof. In the first case we make the substitution y1=y+a(x). (Note
that here we do not need any restrictions).

In the second case we make the substitution y1=y+d(x) with d(x)
satisfying the equation mxd −=−d+a(x). We have

d(x)=m−1x−1/m F
x

0
s1/m−1a(s) ds

We see that, if m > 0, then d(x) is well defined as a formal power series if
a(x) is formal, and as an analytic function if a(x) is analytic.

We see also that d(x)=const · x r+ · · · if a(x)=const · x r+ · · · . L

Lemma 3 [B2]. (a) Let s <.. There exists a change of the variables
(x, y) and of time which reduces the vector field (3.1) to the Bogdanov–
Takens prenormal form

[y+a(x)] “x+sx s−1“y.

(b) Let s < 2r <., i.e., the generalized cusp case. There exists a
change of the variables (x, y) and of time which reduces the vector field (3.1)
to the Bogdanov–Takens prenormal form

(2y“x+sx s−1“y)+c(x)(2x“x+sy“y),(3.5)

which has the property that the cusp curve y2=x s is invariant.
(c) The changes from the points (a) and (b) are analytic when the field

(3.1) is analytic and are formal when (3.1) is formal.

Proof. (a) Assume that b(x)=sxs−1b1(x), b1(0) ] 0. Our aim is to
reduce b1(x) to 1.

We apply the change x1=xl(x), dt/dt1=g(x), which should satisfy the
equations dx1/dt1=y+a1(x1), dy/dt1=sx s−11 . Comparing the terms
sx s−11 “y and y“x1 we get the conditions

g(x) · (xl(x)) −=1, g(x) b1(x)=sl s−1(x),
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or the Bernoulli equation xl −+l=1
s b1(x) l1−s. It has the solution

l(x)=x−1 5Fx
0

y s−1b1(y) dy6
1/s

.

This solution is an analytic function when b1(x) is analytic.
(b) We apply the change x1=xl(x), y1=y+d(x1), dt/dt1=g(x)=

(dx1/dx)−1 (from the point (a) and Remark 12) to the vector field
[2y+a(x)] “x+x s−1b1(x) “y. We write a(x)=a2(x1), g(x)=g2(x1).

We obtain the system

dx1
dt1

=2y1+[a2(x1) − 2d(x1)]

dy1
dt1

=g(x)[b(x)+d −(x1)(a2(x1) − 2d(x1))]+y1 · 2g2(x1) d −(x1).

Following the proof of the formula (3.4), we choose d(x1) such that
a2(x1) − 2d(x1)=2x1c(x1) and y1 · 2g2(x1) d −(x1)=sy1c(x1).

By the assumption s < 2r we have d −(x1)(a2(x1) − 2d(x1))=O(x2r−1)=
o(x s−1) and we can write b(x)+d −(x1)(a2(x1) − 2d(x1)) as x s−1 · [b1(0)+
xb2(x, l(x))]. We obtain the following differential equation for l(x): xl −+
l=1

s l1−s[b1(0)+xb2(x, l)].
Introduce the variable t=l s. Then the latter equation changes to

xt −+st=b1(0)+xb22(x, t).(3.6)

The initial condition (i.e., the limit as x Q 0) is t(0)=b1(0)/s.
The graphic C={(x, t(x))} of the solution t(x) to the latter problem

forms a phase curve of the analytic vector field ẋ=x, t
·
=b1(u) − st+xb22.

We see that C forms a separatrix of the singular point (0, t(0)) of this
vector field. This singular point is a saddle, which means that C is a unique
analytic invariant curve through (0, t(0)). Therefore the function t(x) (as
well as l(x)) is analytic if the function b22 is analytic, i.e., if the system (3.1)
is analytic.

If (3.1) is only formal, then Eq. (3.6) admits a solution in the form of a
power series, which is unique. L

We finish this section by deriving the expansion of the changed vector
field (id+Z)g V=((I+DZ)−1 V) p (id+Z) with respect to Z.

Lemma 4. We have the following formula
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(id+Z)g V=V(3.7)

+[Z, V]

+1
2 O(D2V p (id+zZ)) · Z, ZP

− (DZ · DV) p (id+z −Z) · Z

−OD2Z p (id+z −Z) · V p (id+z −Z), ZP

+((DZ)2 (I+DZ)−1 · V) p (id+Z).

Here DU and D2U mean the first and second derivatives of a vector field
U=(u1, u2) with respect to x, y. The expressions like U p (id+zZ),
z=(z1, z2) ¥ [0, 1] × [0, 1], mean that both components of the field U take
the form u1(x+z1z1, y+z1z2), u2(x+z2z1, y+z2z2) (the same index in z as
in u).

Proof. Formula (3.7) is a consequence of the mean value theorem,
which states that if f(x), x ¥ Ck is an analytic scalar function and m is
natural, then f(x+h)=f(x)+Df(x) · h+1

2 OD2f(x) h, hP+ · · · + 1
m! ODmf(x

+zh), (h, ..., h)P for some z ¥ [0, 1].
The first row in the right–hand side of (3.7) contains the term constant

with respect to Z. The second row contains the linear terms. The last row
arises from the expansion (I+DZ)−1=;(−DZ)n and takes into account
only the summands with n \ 2, ;n \ 2(−DZ)n=(DZ)2 (I+DZ)−1.

The mean value theorem is applied to the expressions V p (id+Z)=
V+DV · Z+1

2 ODV p (id+zZ) · Z, ZP and − (DZ · V) p (id+Z)=−DZ ·
V − D(DZ · V) p (id+z −Z) · Z (in fact, it is applied independently to each
component).

The reader should note that in (3.7) the argument is shifted in V as well
as in Z (and in their derivatives). L

4. THE ANALYTIC TAKENS PRENORMAL FORM

4.1. Preliminaries. In this section we prove Theorem 6. In order to
show analyticity of the Takens prenormal form, we must prove conver-
gence of the series of transformations described in Section 3.

There are two general methods of the proof of analyticity: estimation of
the coefficients of the fields Z or reduction of the problem to a fixed point
equation for some contractible operator in some space of analytic vector-
valued functions. The first method is used in the linearization theorems in
the Siegel domain, when there are no resonances (see [A]), while the
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second method was used by N. Brushlinskaya [Br] in the Poincaré
domain. Our method is a combination of both.

The main ingredients of the proof are Newton’s method of solution of
nonlinear equations and a certain modification of the norm of nonlinear
terms.

Let us make the problem more precise. Lemma 2 (from Section 3) says
that the formal reduction of terms outside the Takens form, i.e., the terms
W (k)=yW2 (k−1), is obtained by means of compositions of transformations
id+Z(k), where Z (k)=xZ2 (k) are homogeneous of degree k. Moreover the
Takens homological operator Z Q [Z, y“x] is an isomorphism between the
spaces (xC[[x, y]])2 and (yC[[x, y]])2 of formal vector fields. Therefore
we shall apply formal changes in the form id+Z, Z=xZ2 and try to show
that the power series for Z2 is convergent.

Denote

pU(x, y)=U(x, y) − U(x, 0),(4.1)

the projection onto the space of formal vector fields divisible by y (i.e.,
p: (C[[x, y]])2Q (yC[[x, y]])2) and by

1
y

,(4.2)

the operator of division by y.
The condition that the nonlinear terms in the field (id+Z)g V=y“x+ · · ·

depend only on x reads as p[(id+Z)g V − y“x]=0. We rewrite it in the
(homogeneous) form

1
y
p p{(I+Z)g V − y“x}=0, Z=xZ2 .(4.3)

It is an equation for Z2 .
Equation (4.3) contains the linear part

1
y
p p[xZ2 , V],

a constant part (which has to be reduced), and a nonlinear part (see
Lemma 4). The linear part strongly depends on the vector field V. This
means that during iterations we shall deal with varying problems. In order
to impose some stability, we distinguish the part of the latter expression
associated with the Takens prenormal form part of VTakens.
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We have

V=VTakens+W,

VTakens=[y+a(x)] “x+b(x) “y,

W=yW2=p(V − y“x).

(4.4)

Define the linear operator

L: Z2 Q
1
y
p p[xZ2 , VTakens].(4.5)

The operator L is invertible in the space (C[[x, y]])2 of formal vector
fields (by Lemma 2). It will vary during iterations, but it stabilizes with the
number of iterations going to infinity. Moreover, the operator L is simpler
than the commutator operator with the whole V and we will be able to
estimate its inverse in a suitable Banach space.

By formula (3.7) from Lemma 4, Eq. (4.3) can be rewritten in the form

LZ2+W2+
1
y
p p[Z, W]+(nonlinear terms in Z2)=0.(4.6)

We shall solve Eq (4.6) successively, in each step getting better approxi-
mation to the normal form. In each step we solve it approximately. We put

Z2=−L−1W2 .(4.7)

Therefore W2 is of the same order as Z2 .
The transformed vector field V −=(id+Z)gV again has the form V −=

V −Takens+W −, W −=p(V −− y“x)=yW2 −. From the formula (3.7) we have

V −Takens=VTakens+[Z, V]Takens+(nonlin. terms)Takens,

W −=p[Z, W]+p(nonlin. terms),
(4.8)

where p is the projection operator defined in (4.1) and (nonlin. terms)
denote the terms nonlinear in Z in (3.7). We see that W − is of second order
with respect to W and V −Takens− VTakens is of first order with respect to W.

Moreover, the stabilization of the Taylor expansions of V and VTakens

takes place. Namely, if W begins with terms of order m, then W − begins
with terms of order \ m+1. It follows from Lemma 1.

In the further stages of the proof of Theorem 1 we shall assume that

s=3,(4.9)
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i.e., b(x)=x2+b3x3+ · · · . The general case (s=2 or s > 3) is proved in the
same way. Our restriction serves to simplify the exposition.

4.2. The operator L. The operator Z2 Q LZ2 (see (4.5)) written in the
basis (x iy j“x, x iy j“y) is divided into two parts, diagonal and quasinilpotent.
The latter means that for each element of the above basis some power of
the operator nullifies this element. (In functional analysis by a quasinilpo-
tent operator people mean an operator in a Banach space whose whole
spectrum is concentrated at 0).

Let Z2=z̃1“x+z̃2“y=(z̃1, z̃2). We have

LZ2=
1
y
p p[ − y(xZ2) −x+xz̃2“x+xz̃1a −“x − a(xZ2) −x+xz̃1b −“y − xbZ2 −y].

The diagonal part is

L0Z2=−
1
y

p[y(Z2) −x]=−(xZ2) −x

or

L0x iy j“x, y=−(i+1) x iy j“x, y.(4.10)

The operator L − L0 is divided into three parts

L1Z2=
1
y

p[xz̃2“x],

L2Z2=
1
y

p[xa −z̃1“x − a(xZ2) −x+z̃1b −“y],

L3Z2=
1
y

p[ − xbZ2 −y].

We have

L=L0(I+L−10 L1+L−10 L2+L−10 L2).

Lemma 5. The expressions of the operators L−10 Lj in the monomial basis
are the following

L−10 L1x iy j“y=
− 1

i+2
x i+1y j−1“x

L−10 L1x iy j“y=0
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L−10 L2x iy j“x=
i − 1
i+3

a2x i+2y j−1“x+
i

i+4
a3x i+3y j−1“x+ · · ·(4.11)

−
2

i+3
b2x i+2y j−1“y −

3
i+4

b3x i+3y j−1“y+ · · ·

L−10 L2x iy j“y=
i+1
i+3

a2x i+2y j−1“y+
i+2
i+4

a3x i+3y j−1“y+ · · ·

L−10 L3x iy j“x, y=
j

i+4
b2x i+3y j−2“x, y+

j
i+5

b3x i+4y j−2“x, y+ · · ·

Here we put zero whenever we get a negative power of y in the above
formulas and b2=1.

Figure 2 shows how the operators L−10 Lj act.

4.3. The weighted norm. From Lemma 5 we see that the operators L1, 2
are bounded relatively to L0. L3 is not relatively bounded. However the fact
that it is quasinilpotent allows us to treat it as bounded with respect to L0.
As in the finite–dimensional case, an operator of the form semisimple plus
quasinilpotent is invertible. In the finite–dimensional case it is used to
introduce a new norm such that the nilpotent part is small relatively to the
semisimple part.

The natural norm in the space of vector–valued power series, giving the
Banach space of series representing analytic vector fields, is ||U||r=
;ij(|u1, ij |+|u2, ij |) r i+j for some r > 0 (representing the radius of conver-
gence of the series U=;i, j(u1, ij“x+u2, ij“y) x iy j); so ||x iy j“x, y ||r=r i+j.

We modify this norm in the following way. We put ||x iy j“x, y ||w, r=
wi, jr i+j, where wi, j are weights defined below.

FIGURE 2
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Definition 4. Define rational numbers w̃i, j, (i, j) ¥ Z2+ as follows:

w̃i, 0=1,

w̃i, 1=1,

w̃i, j=max 31,
j − 2
i+3
4 w̃i+3, j−2, for j \ 2.

(4.12)

The weight wi, j is equal to

wi, j=L j ·`j+1 · w̃i, j,(4.13)

where L > 1 is some constant which will be fixed later.
We denote by Xw, r the Banach space of series U=;i, j(u1, ij“x+

u2, ij“y) x iy j with the norm

||U||w, r=C
ij

(|u1, ij |+|u2, ij |) wijr i+j.

Let us comment on this definition. The choice of the numbers w̃i, j is
motivated by the requirement that the operator L−10 L3 be bounded. The
leading matrix elements of this operator (corresponding to x iy j“x, y Q
x i+3y j−2“x, y) equal j

i+4 . It is almost the same as j−2
i+3=w̃i, j/w̃i+3, j−2.

However, the ratio j−2
i+3 has the geometrical interpretation as the slope coef-

ficient of the radius vector of the endpoint of the segment S, joining the
point (i, j) with (i+3, j − 2) and presented in Fig. 2.

Note also that the numbers w̃i, j are chosen such that they are equal to 1
whenever j [ i+5, i.e., below the shifted diagonal; (but above this shifted
diagonal they are strictly increasing as we move along the lines with the
slope − 2/3 in the left direction). The reason for this is that the matrix
elements of the operators L−10 L1, 2 are of order O(1) and we cannot use the
ratios j−2i+3 , which are smaller than 1.

The factor L j allows us to control the norm of the operator L−10 L1; the
greater L is, the smaller the norm ||L−10 L1 ||w, r is. The constant L will be
determined in Lemma 6 below. In fact, we will fix L=2.

The factor `j+1 is responsible for the estimate from Lemma 8(e)
(which is needed for estimation of norms of products of series); so it is
introduced for technical reasons.

If the integer s from b(x)=sxs−1+ · · · is different than 3 (i.e., (4.9) does
not hold), then the inductive definition of the numbers w̃i, j is modified as
follows: w̃i, j=max {1, j−2i+s }w̃i+s, j−2.

Remark 13. The idea of changing the norm was used in [Br]. There
the Lyapunov metric was introduced.
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4.4. The weighted norm at work. In this point we demonstrate how
useful our weighted norms are. Namely, we prove that the operator L is
invertible in the Banach space Xw, r with bounded inverse and that the
elements from Xw, r represent the Taylor series of analytic vector fields.

We will use the notation

U \ m= C
i+j \ m

(u1, ij“x+u2, ij“y) x iy j

for a vector field U=;i, j(u1, ij“x+u2, ij“y) x iy j.

Lemma 6 (Bound for L−1). Assume that VTakens=[y+a(x)] “x+
b(x) “y=y“x+V \ 2 is an analytic vector field such that

||V \ 2||w, r= C
n \ 2

(|an |+|bn |) rn [ C1r2(4.14)

for small r’s, where the constant C1 does not depend on r.
If the constant L (from Definition 4) is sufficiently large and r is suffi-
ciently small, then the operator L−1 is bounded in Xw, r with the norm [ 4.

Proof. We use the formula L−1=(I+L−10 L1+L−10 L2+L−10 L3)−1L
−1
0 .

Because L0 is diagonal with the eigenvalues − (i+1) (see (4.10)) then
||L−10 ||w, r=1.

We use the following properties of weights:

(i) wi+1, j [ wi, j,
(ii) wi+1, j−1 [ L−1wi, j.

Inequality (i) is equivalent to the inequality w̃i+1, j [ w̃i, j and follows
from formula (4.12) (see also the point (a) of Lemma 8). Inequality (ii)
constitutes the point (b) of Lemma 8 and will be proved later.

Note that (i) implies wi+k, j [ wi, j for any k > 0 and the both inequalities
imply wi+k, j− l [ L−lwi, j for k > l \ 0.

Let e=ei, j=x iy j“x, y. By Lemma 5, inequality (ii), and Definition 4 of
weights, we have

||L−10 L1e||w, r
||e||w, r

[
1

i+2
·
||ei+1, j−1 ||

||ei, j ||

=
1

i+2
·
wi+1, j−1

wi, j

[
1

i+2
L−1.

We choose the constant L such that ||L−10 L1 ||w, r [ 1/4; i.e., we put L=2.
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Next, by Lemma 5, inequalities (i) and (ii), Definition 4, and formula
(4.14), we have

||L−10 L2e||
||e||

[ |a2 | r
wi+2, j−1

wi, j
+|a3 | r2

wi+3, j−1
wi, j

+ · · ·

+|b2 | r
wi+2, j−1

wi, j
+|b3 | r2

wi+3, j−1
wi, j

+ · · ·

[
1
r

·
wi+2, j−1

wi, j
·C (|an |+|bn |) rn

[
1

rL
||V \ 2||w, r

[ C1r/L.

For small r we get ||L−10 L2 || [ 1/4.
Finally, we have

||L−10 L3e||
||e||

[
j

i+4
|b2 | r

wi+3, j−2
wi, j

+
j

i+5
|b3 | r2

wi+4, j−2
wi, j

+ · · ·

[
j

i+4
·
1
r

· L−2 ·
w̃i+3, j−2

w̃i, j
·C |bn | rn

[ 1 j
i+4

min 31,
i+3
j − 2
42 · 1

rL2
· ||V \ 2||w, r

[ 3
1

rL2
||V \ 2||

[ 3C1r/L2.

(we have used j
i+4 · min {1, i+3j−2 } [ 3). We get ||L−10 L3 || [ 1/4 for small r.

The reader can see that the same estimates hold in the case when s=3 is
replaced by arbitrary integer \ 2. The estimates for L0, L−10 L1, and L−10 L2
are the same. There are only minor differences in the estimate for
L−10 L3. L

Lemma 7 (Analyticity). We have

r i+j [ ||x iy j“x, y ||w, r [ (C1r) i+j

for some constant C1 which does not depend on i, j, r.
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This implies that any element U of Xw, r represents an analytic vector field
in the ball Br with center at 0 and radius r and that

sup
(x, y) ¥ Br

|U(x, y)| [ ||U||w, r.(4.15)

Moreover:

(a) If a series U(x, y) is such that ||U \ k||w, r < const · (r/r0)k, k=
1, 2, ..., then U represents an analytic function in the ball Br0 .

(b) Conversely, if a series U(x, y) represents an analytic function con-
vergent in an open set containing the ball Br0 , r0 > C1r, then U ¥Xw, r and
||U \ k||w, r [ K · lk, ||DU \ k||w, r < K · (2l)k, where

l=C1r/r0(4.16)

and K is a constant depending on f.

Proof. This lemma follows directly from the inequality

1 [ wi, j [ C i+j
1

which is proved in point (c) of Lemma 8 from the next section. L

4.5. Estimates for the weights and the weighted norms. This section is
devoted to the formulation of additional technical lemmas necessary to
obtain recursive estimates in the proof of Theorem 1. These lemmas are
formulated in the same way for s=3 and for other s. In fact only in the
proof of Lemma 8 are there minor differences for different s. The proofs
are put off to the last part of this section.

Lemma 8 (Properties of weights). The weights wi, j satisfy the following
properties:

(a) wi+k, j [ wi, j for k > 0,
(b) wi+k, j−k [ L−kwi, j [ wi, j for k > 0,
(c) 1 [ wi, j [ C i+j

1 ,

(d) wi, j [ C1(i+j+1)k+l wi+k, j+l for k, l \ 0, 0 [ k+l [ 2,
(e) wi+k, j+l [ C1wi, jwk, l,

where C1 is a constant not depending on the indices.

Inequalities (a), (b), and (c) from Lemma 8 have been used in the pre-
vious section. Estimates (b), (d), and (e) are successively used in the proofs
of the Lemmas 9–11.
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The further lemmas will deal with functions rather than with vector
fields. Namely we introduce the Banach space Fw, r of scalar power series
f(x, y)=;i, j fijx iy j, fij ¥ C with the norm

||f||w, r=C |fij | wi, jr i+j.

The estimates will be formulated in terms of elements from Fw, r, but they
are also true for vector–valued (and for matrix–valued) series. This
approach was suggested by the referee and its aim is to simplify the
exposition.

Lemma 9 (Estimate of derivatives). If f ¥Fw, r, r −/r=1 − d ¥ (12 , 1),
and k+l [ 2, then

||“kx“
l
yf||w, r− [

C3
(rd2)k+l

· ||f||w, r,

where C3 is a constant not depending on f, k, l, r, d.

The proof, which uses the estimate (d) of Lemma 8, will be given later.

Lemma 10 (Estimate of products). Let f be a series inFw, r.

(a) If g is a function fromFw, r, then fg is inFw, r and

||fg||w, r [ C2 · ||f||w, r · ||g||w, r.

(b) The series 1y p p(f) ¥Fw, r (see (4.1) and (4.2)) and

:: 1
y
p p(f)::

w, r
[

C2
r

· ||f||w, r.

Here the constant C2 does not depend on f, g, r.

The proof uses estimate (e) of Lemma 8 and is put off to the last section.

Lemma 11 (Estimate of compositions). Let Z ¥Xw, r be a vector field of
the form xZ2 and let r −/r=1 − d ¥ (12 , 1) be such that ||Z2 ||w, r [ d/(2C2),
where C2 is the constant from Lemma 8. If a function f ¥Fw, r, then
f p (id+Z) ¥Fw, rŒ and

||f p (id+Z)||w, rŒ [ 11+
C4 ||Z2 ||w, r

d3
2 ||f||w, r,

where C4 is some constant not depending on f, Z, r, d.
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In particular, if we assume that ||Z2 ||w, r [ d3/C4 (what will take place in
applications), then

||f p (id+Z)||w, r− [ 2 ||f||w, r.(4.17)

The proof uses point (b) of Lemma 8 and will be given in the end of this
section. We remark only here that the thesis of Lemma 11 ceases to be true
when we remove the restriction onto the form of Z (i.e., for Z ] xZ2 ). The
reason is that when we expand f p (id+Z) into series, then we obtain the
terms Dmf · Zm where the norms ||Dmf|| behave badly for large m. When
Z=xZ2 , then Zm=(xm) · Z2 m and the large power of x gives small norm of
Zm (see Definition 4). This compensates the growth of ||Dmf||.

4.6. Description of the iterative procedure. We begin with an application
of the Lemmas 9–11 to the transformed vector field (id+Z)g V. There we
must replace scalar series by vector–valued or by matrix–valued series; this
is not a problem.

Corollary 2. There exists a constant C5 not depending on V, Z, r, d

such that for 0 < r − < r < < 1 satisfying r −/r=1 − d ¥ (12 , 1), any V ¥Xw, r,
and any Z=xZ2 such that ||Z2 ||w, r [ d3/C4 (see Lemma 11) the following
inequalities hold

||[Z, V]||w, r− [
C5
d2

||V||w, r · ||Z2 ||w, r,

||(id+Z)g V − V − [Z, V]||w, r− [
C5
d6

||V||w, r · (||Z2 ||w, r)2.

Proof. The commutator [Z, V] equals DZ · V − DV · Z. The expression
(id+Z)g V − V − [Z, V] consists of the nonlinear terms from (3.7), i.e.,
=(1/2)OD2V p (id+zZ) · Z, ZP− (DZ · DV) p (id+z −Z) · Z −OD2Z p (id+
z −Z) · V p (id+z −Z), ZP+((DZ)2 (I+DZ)−1 · V) p (id+Z). We shall use
also the notion

(nonlin.terms)=(id+Z)g V − V − [Z, V].(4.18)

We introduce the intermediate norm || · ||w, rœ, where r'=1
2 (r+r −). First

we estimate the derivatives with nonshifted argument in this new norm
using Lemma 9. Each derivative gives the factor (1 − r'/r)−2 < const · d−2.
Next, we apply Lemma 11 (the formula 4.17) to estimate the corresponding
factors in summands with shifted argument (like D2V p (id+zZ)) using the
norm || · ||w, rŒ. Finally, we estimate the products in the norm || · ||w, rŒ using
Lemma 10(a).
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Recall that one summand takes the form [(DZ)2 (I+DZ)−1 · V] p
(id+Z). Due to the assumptions d ° 1 and ||Z2 ||w, r=O(d3) the 2 × 2-
matrix valued function DZ is small and the term (I+DZ)−1 is bounded.

Since the nonlinear terms contain expressions where the derivative
appears at most three times in each summand, we get the factor 1/r6. The
linear terms acquire only the factor 1/r2. L

We pass to the description of iterations. Assume that we begin with the
vector field V=V1 which is analytic in a ball Br0 . We have the splitting
V1=VTakens1 +W1, W1=yW21. We can assume that W1 has order 4 at the
origin.

Choose a radius r1 in such a way that the parameter

l=C1r1/r0

from Lemma 7 (the formula (4.16)) is small. We obtain the starting
estimates (see Lemma 7)

||V1 ||w, r1 [ Kl,

||VTakens1 − y“x ||w, r1 [ Kl2,

||W1 ||w, r1 [ Kl4,

(4.19)

where the constant K does not depend on r1 (only on V).
Introduce the radii

rk=11 −
1
k2
2 rk−1, k \ 2.(4.20)

We have lim rk=r.=const · r1 > 0. r. will be the radius of the ball Br.
of analyticity of the Takens prenormal form.

Define inductively the vector fields Zk, Vk, VTakensk , Wk=yW2k and dif-
feomorphisms Gk:

Zk=xZ2k,

Z2k= − L−1W2k,

Vk+1=(id+Zk)g Vk=VTakensk+1 +Wk+1,

Gk=(id+Z1) p · · · p (id+Zk).

Recall that the operator L equals Z2 Q 1
y p p[xZ2 , VTakensk ]. Therefore L also

depends on k, L=Lk.
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The Taylor expansion of Zk starts from terms of degree \ 3+k. Hence
the terms of degrees [ k+3 in Gk are fixed. In this sense Gk tend to some
formal map. The same holds for Vk. We have to show that Gk and Vk
converge in the ball Br. .

4.7. Proof of Theorem 6. This proof relies on the following proposition.

Main proposition. For any k \ 1 and l small enough one has

||VTakensk − VTakensk−1 ||w, rk [ K(2l)k,

||Wk ||w, rk [ Klk+3,

||Zk ||w, rk [ Klk+2,

(4.21)

so that

||Vk ||w, rk [
4Kl

1 − 2l
[ 8Kl,

||VTakensk − y“x ||w, rk [ 6Kl2,

(4.22)

where K is the constant from (4.19).

If the estimates (4.21) for Zk hold, then by the bound (4.15) from Lemma
7 |Zk(x, y)| [ Klk+2 as (x, y) ¥ Brk . Moreover Zk has small derivative in
a slightly smaller ball B(rk+rk+1)/2, |DZk(x, y)| [ ||DZk ||w, (rk+rk+1)/2 [
const · k−4 · lk+2 for (x, y) ¥ B(rk+rk+1)/2.

Therefore the map id+Zk represents a holomorphic diffeomorphism of
the ball B(rk+rk+1)/2 to a domain containing the ball Brk+1 . Indeed, |G (k)| ’ lk

is much smaller than the difference of the radii (rk+rk+1)/2 − rk+1=
O(k−2) and then (id+Zk)(B(rk+rk+1)/2) ‡ Brk+1 .

The infinite composition of the maps id+Zk is convergent in the ball Br.
and represents an analytic diffeomorphism G.=lim Gk : B(rk+rk+1)/2 Q
G.(B(rk+rk+1)/2).

The limit of Vk’s defines a vector field V. holomorphic in the ball Br. . It
is in the Takens prenormal form and the diffeomorphism G. conjugates V
with V..

This completes the proof of Theorem 6. L

Remark 14. The convergence of the successive approximations is very
rapid. If the perturbation is of order e, then after n steps we would obtain
error of order e2

n
. Such convergence is characteristic for Newton’s method

of finding approximate zero of a differentiable functions. It was used in
KAM theory (see also [A]). In our proof we generally have followed the
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Newton’s method but we did not use as good estimates as in [A] (Section
3, 12). We have used also some ideas from [P].

4.8. Proof of main proposition. The inequalities (4.22) are rather
obvious.

The estimate for Zk in (4.21) follows from the estimate for Wk. Indeed,
we have Wk=yW2k, Zk=xZ2k, and Z2k=−L−1W2k. Using Lemma 10(b) we
estimate ||W2 ||w, rk=||1y p p(W)|| by C2r

−1
k ||Wk ||w, rk . The assumption of

Lemma 7, i.e. that the nonlinear part of VTakensk is small enough, holds,
||VTakensk − y“x ||w, rk [ 6Kl2 [ 6K

r2o
r21 [ C1r2k, where C1=const · K/r20. There-

fore ||L−1|| [ 4 and ||Z2k ||w, rk [ 4 ||W2 ||w, rk . Next, we use Lemma 10(a) to
estimate the product x · Z2k. We obtain

||Zk ||w, rk [ 4C2
2 ||Wk ||w, rk [ (4C22Kl) · lk+2.

For small l we have 4C2
2Kl [ K and the third estimate from (4.21) holds.

The first two estimates in (4.21) for k=1 hold by (4.19): we have ||VTakens1 −
VTakens0 ||=||VTakens1 ||w, r1 [ Kl [ K(2l)1 and ||W1 ||w, r1 [ Kl1+3.

The inductive estimates forVTakensk+1 − VTakensk and Wk+1 follow from for-
mulas (4.8) and Corollary 2. Indeed, we have Vk+1=(id+Zk)g Vk=
VTakensk+1 +Wk+1, where by (4.8)

VTakensk+1 =VTakensk +[Zk, Vk]Takens+(nonlin. terms)Takens,

Wk+1=p[Zk, Wk]+p(nonlin. terms).

Here p is the projection operator (4.1) and the notion (nonlin. terms)
is defined in (4.18). We use Corollary 2 with V=Vk, Z=Zk, r=rk, r −=
rk+1, d=(k+1)−2 and with the inductive assumptions ||Vk ||w, rk [ 8Kl,
||Zk ||w, rk [ Klk+2. We get

||VTakensk+1 − VTakensk ||w, rk+1 [ C5(k+1)4 · 8Kl · Klk+2 [ K(2l)k+1,

||Wk+1 ||w, rk+1 [ C5(k+1)12 · 8Kl · (Klk+2)2 [ Kl (k+1)+3

for l small.
The proof of the Main proposition is complete. L

4.9. Proof of the technical lemmas.

(A) Proof of Lemma 8. Thorough the proof we shall use the notion of
asymptotic equivalence of functions if f(t) and g(t) are positive functions
of t \ 0, then f(t) ’ g(t) iff there exists a constant C > 0 such that
1
C g(t) [ f(t) [ Cg(t) and f(t)=O(g(t)) when f(t) [ Cg(t) for some
constant C.

For example, the Stirling formula says that C(t+1) ’ t te−t`t+1 and
implies the formula C(t+a+1) ’ (t+1)a C(t+1) for a fixed or bounded.
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FIGURE 3

Recall the definition of weights,

wi, j=L j`j+1 w̃i, j,

where L > 1 and

w̃i, 0=w̃i, 1=1, w̃i, j=max 31,
j − 2
i+3
4 w̃i+3, j−2.

We obtain that

w̃i, j=D
N

n=1

j − 2n
i+3n

,(4.23)

where N is the integer defined by N < j− i
5 [ N+1 if j − i > 5 and the

product is void, i.e., w̃i, j=1, if j − i [ 5. Hence N=j− i
5 − d, where 0 < d [ 1.

The factors j−2n
i+3n have the interpretation of slopes w̃(Sn) of the radius

vectors from the origin to the right endpoints of the segments S=Sn
joining the points (i+3n − 3, j − 2n+2) and (i+3n, j − 2n). The product in
(4.23) is the product < w̃(Sn) along the chain c=(S1, ..., SN) joining the
point (i, j) with the ‘‘target’’ set D={j − i=5} (see Fig. 3).
Point (a) of Lemma 8 states that wi+k, j [ wi, j for k > 0. This inequality is

equivalent to the inequality w̃i+k, j [ w̃i, j, which easily follows from the
above recurrent formula.
Point (b) of Lemma 8 states that wi+k, j−k [ L−kwi, j for k > 0. Since
`

j+1
j−k+1 > 1, this inequality follows from the inequality

w̃i+k, j−k [ w̃i, j.
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The latter inequality becomes evident when we use the slope interpreta-
tion of the quantities w̃i, j. This situation is presented in Fig. 3a. We asso-
ciate with each segment S from the chain c starting at (i, j) the segments
S −=S+(k, −k) from the chain starting at (i+k, j − k). We see that
w(S −) < w(S).
Point (c) of Lemma 8 is the estimate 1 [ wij [ C i+j

1 . Of course, it is
enough to show that 1 [ w̃i, j [ C2 i+j for some constant C2 . This is a conse-
quence of the following representation of the quantities w̃i, j.

Lemma 12. Let a= i
i+j [

1
2 , b=1 − a= j

i+j . We have

w̃i, j ’=
i+1
j+1

F(a) i+j,

where F(a) \ 1 is uniformly bounded from the above continuous function.
This means that wi, j ’`i+1 L jF(a) i+j.

Proof. We use the formula (4.23) for j > i+5, which can be rewritten as

w̃i, j=1
2
3
2N ·

j/2 − 1
i/3+1

· · · · ·
j/2 − N
i/3+N

=12
3
2N ·

C(j/2)
C(j/2 − N)

·
C(i/3+1)

C(i/3+N+1)

’ 12
3
2 (j− i)/5 C(i/3+1) C(j/2+1)

C((2i+3j)/10+1) C((2i+3j)/15+1)
·
i+j+1

j+1
.

(4.24)

We use the Stirling formula. Putting i=a(i+j) and j=b(i+j), after
some calculation, we get w̃ij ’`

i+1
j+1 · F(a) i+j where

F(a)=aa/3bb/2 1 5
2a+3b
2 (2a+3b)/6, 0 [ a [

1
2

.(4.25)

The function F(a), a ¥ [0, 12] is continuous and bounded: 1=F(12 ) [
F(a) [ F(0)=`53 . It is Lipschitz continuous away from the point a=0;
at a=0 the derivative is equal to −..

In the case of general nilpotent singularity, not just s=3, Lemma 12
is also true, but the function F(a) takes the form aa/sbb/2((s+2)/
(2a+sb)) (2a+sb)/2s. L

Point (e) of Lemma 8 says that the ratios

wi, j
wi+k, j+l

(4.26)
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are bounded by const · (i+j+1)k+l for 0 [ k+l [ 2. We have wi, j/wi+k, j+l ’
w̃i, j/w̃i+k, j+l. When j − i [ 5 and/or j+l − i − k [ 5 the numerator and the
denominator of the latter ratio are uniformly bounded and the estimate is
true. Otherwise we use the formulas (4.24) and C(m+a+1) ’ (m+1)a

C(m). We obtain that (4.26) is [ const · (i+j+1i+1 )k/3 (i+j+1j+1 ) l/2 [
const · (i+j+1i+1 )k/3 (since i [ O(j)). This is [ const · (i+j+1)k/3 [ const · (i+
j+1)k+l.
Point (d) of Lemma 8 states that the ratio

Rijkl=
wi+k, j+l
wi, jwk, l

is uniformly bounded. Due to the inequality ` j+l+1
(j+1)(l+1)

[ 1, the problem
reduces to the problem of estimating the ratio

w̃i+k, j+l
w̃i, jw̃k, l

uniformly with respect to the indices.
We distinguish three cases:

(i) j [ i+5 and j+l [ i+k+5;
(ii) j [ i+5 and j+l > i+k+5;

(iii) j > i+5, l > k+5; here we assume ji [
l
k .

In case (i) we have w̃i, j=w̃i+k, j+l=1, w̃k, l \ 1 and the inequality from
Lemma 8(e) is obvious.

In case (ii) we have w̃i, j=1 and the problem is to estimate the ratio
R2=w̃i+k, j+l/w̃k, l. Recall that w̃i+k, j+l is the product of slopes w(S)=n−2

m+3

over segments S=[(m, n), (m+3, n − 2)] from the chain c joining the
point (i+k, j+l) with the diagonal.

The situation is presented in Fig. 3b. With each segment S=
[(i+m, j+n), (i+m+3, j+n − 2)] from the chain c we associate the
unique segment S −=[(m, n), (m+3, n − 2)]=S − (i, j) from the chain c −

starting at (k, l). Because w(S) < w(S −) and w(S') \ 1 for other segments
from the chain c −, we get w̃i+k, j+l [ w̃k, l.

The situation from case (iii) is presented in Fig. 3c. With the segments S
from the chain c, which lie above the line y=(j/i) x, we associate the
segment S −=S − (i, j) from the chain c −. We have w(S) < w(S −).

This shows that it is enough to prove the estimate from Lemma 8(e)
in the case when a= i

i+j % a −= k
k+l % a'= i+k

i+j+k+l . We get wi, j ’`i+1
L jF(a) i+j,wk, l ’`k+1 L lF(a)k+l,wi+k, j+l ’`i+k+1 L j+lF(a) i+j+k+land
hence Rijkl ’ `

i+k+1
(i+1)(k+1) =O(1).
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Unfortunately this is not the end of the proof of this point. It is correct
when the equalities a=a −=a' are exact. However, they can be not exact
and the function F(a) from Lemma 12 is not Lipschitz continuous at 0. So
we have to perform more estimates.

The differences between a’s are of the form

a −− a=
a

k+l
, a'− a=

a
i+j+k+l

,

where |a| [ 3. This can be seen from Fig. 3c: a is the difference between the
x-coordinates of the points (i+k, j+l) and the point of intersection of the
line y=j

i x with the line y+x=i+j+k+l. We can assume that
i+j [ k+l. We have either i > 0 (and then a \ 1

i+j ) or i=0 (and then
a=0, 0 ] k=a and aŒ

aœ ’
j+l
l ).

By (4.25) we have F(a)=aa/3F2(a), where the function F2 is differentiable
and hence Lipschitz continuous. Thus we have to estimate the two expres-
sions:

5 (a')aœ(i+j+k+l)

aa(i+j)(a −)aŒ(k+l)
6
1
3

and
F2(a') i+j+k+l

F2(a) i+j F2(a −)k+l
.(4.27)

The logarithm of the first equals 13 times

(i+j+k+l)[a' log a'− a log a] − (k+l)[a − log a −− a log a].(4.28)

For a > 0 we represent a' log a'− a log a as

a' log
a'

a
+(a'− a) log a=

a
i+j+k+l

(1+log a)+O 1 1
a(i+j+k+l)2

2 .

Similarly we have a − log a −− a log a= a
k+l

(1+log a)+O( 1
a(k+l)2

). Therefore
(4.28) is bounded by O(i+jk+l)=O(1), as i+j [ k+l.

If a=0, then (4.28) equals a log aœaŒ ’ log j+ll ’ O(1), since j [ k+l=O(l).
Using the function Y(a)=log F2(a) we represent the second ratio in

(4.27) as the difference of two terms (i+j+k+l)[Y(a') − Y(a)] and
(k+l)[Y(a −) − Y(a)]. Both are bounded by La, where L is the Lipschitz
constant of Y.

(Another proof of the bound for Rijkl uses the asymptotic formula
wij=O(1) · C(i3+1) · j1/2−i/3 · (LF(0)) j for i ° j. Under the assumption
i
k %

j
l we get Rijkl ’ O(1) · (i+1)−3/2 · j−1/2.) L
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Remark 15. The reader can notice here that the choice of definition of
weights is not very rigid. For example, instead of the product < w(S) in
(4.23) one could use the formula (4.24) or its modification with N=j− i

5 .
Nevertheless, the requirements of finiteness of the norm ||L−10 L3 || says that
they should take the form of product of terms ’

j
i . Another restriction is

imposed by the just proven property (e) of Lemma 8.
(B) Proof of Lemma 9. Let f=; fijx iy j. We have to estimate the

derivatives “kx“
l
yf for k+l [ 2.

We have

||“kx“
l
yf||w, rŒ [C

i, j
ikj l · |vij | · wi−k, j− l(r −) i+j−k−l

[ ||V||w, r · (r −)−k−l max
ij

1 ikj l · wi−k, j− l
wij

· (r −/r) i+j2 .

By point (e) of Lemma 8 wi−k, j− l/wi, j < const · (i+j+1)k+l. Thus

ikj l ·
wi−k, j− l

wij
· (1 − d) i+j [ const · (i+j+1)2(k+l) (1 − d) i+j+1

[ const · d−2(k+l).

(We have used the inequality tN(1 − d) t [ (N/ed)N for small d.)
Now the estimate of the norm of the derivative by const · ||V||/(rd2)k+l

follows. L

(C) Proof of Lemma 10. (a) Let f=; fijx iy j, g=; gijx iy j,
f · g=; hijx iy j, ||f||w, r=; |fij | wijr i+j <., ||g||w, r=; |gij | wijr i+j <..
Then we have

||fg||w, r [C
k, l

C
i, j

wkl
wij · wk−i, l− j

(|fij | wijr i+j) · (|gk−i, l−j | wk−i, l−jrk−i+l−j).

By Lemma 8(d) wkl [ C1 · wij · wk−i, l− j for 0 [ i [ k, 0 [ j [ l. From this
the first estimate from Lemma 10 follows.

(b) The second estimate is proved in the same way, using the
inequality wi, j−1 < wi, j. The latter is a consequence of the inequalities
wi, j−1 [ wi+1, j−1 and wi+1, j−1 [ L−1wi, j < wi, j given in Lemma 8 (the points
(a) and (b)). L

(D) Proof of Lemma 11. Let f=; fijx iy j. We estimate f p (id+Z)
− f for Z=xZ2=(xz̃1, xz̃2).
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Expanding this expression we get

||f p (id+Z) − f||w, r− [C
i, j

|fij | C
k+l \ 1

1 i
k
2 1 j

l
2 ||(xz̃1)k (xz̃2) l x i−ky j− l||w, rŒ

[C
i, j

|fij | C
k+l \ 1

1 i
k
2 1 j

l
2 ||(x i+ly j− l) z̃ k1 z̃ l2 ||rŒ.

Because f ¥Fw, r, we have |fij | [ ||f||w, r/(wijr i+j). By definition of the
weighted norm, ||x i+ly j− l||w, rŒ [ wi+l, j− l(r −) i+j, where wi+l, j− l < wi, j by
Lemma 8(b). Using the estimate for products from Lemma 10(a), we get

||f p (id+Z) − f||w, rŒ [ ||f|| C
i, j

(r −/r) i+j C
k+l \ 1

1 i
k
2 1 j

l
2 (C2 ||Z2 ||)k+l

[ ||f|| C
i, j

(1 − d) i+j [(1+C2 ||Z2 ||) i+j− 1]

[ const · ||f|| · ||Z2 || C
i, j

(i+j)[(1 − d)(1+C2 ||Z2 ||] i+j−1

[ const · ||f|| · ||Z2 || C
i, j

(i+j)[1 − d/2] i+j−1

[ const · ||f|| · ||Z2 || C
n

(n+1) n[1 − d/2]n−1

[ const · ||f|| · ||Z2 || · (2/d)3

[
C4
d3

· ||f|| · ||Z2 ||.

Here we have used the inequalities (1+t)n− 1 [ nt(1+t)n−1, (1 − d)(1+
C2 ||Z2 ||) [ 1 − d/2 ( following from the assumption ||Z2 || [ d/(2C2)) and
;n > 0(n+1) ntn−1=2(1 − t)−3. L

5. THE FORMAL NORMAL FORM

5.1. Reduction of additional terms using the Hamiltonian part and solvable
monodromy. In Section 3 we obtained the Bogdanov–Takens prenormal
form [2y+a(x)] “x+sx s−1“y (where, according to Theorem 6, the function
a(x) is analytic). In this section we assume the following restrictions.

We have a(x)=arx r+ · · · , ar ] 0, b(x)=sxs−1 with the condition

s < 2r.
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Lemma 13. The system

ẋ=2y+asmx sm+O(xsm+1), ẏ=sx s−1

can be transformed to

ẋ=2y+O(xsm+1), ẏ=sx s−1.

Proof. The smth order jet of this system can be transformed, via the
change (x, y) Q (h=y2− x s, y), to

ḣ=−asm(y2− h)m, ẏ=1.

This is a nonsingular system with an analytic first integral H=
h+ · · · =y2− x s+ · · · . The function H(x, y) has the As−1 type singularity
and is equivalent (by an analytic change of coordinates) to Y2− X s (see
[AVG]). L

Lemma 14. If r ] 0 (mod s), then the terms of order r of the system

ẋ=2y+2arx r, ẏ=sx s−1+sarx r−1y

cannot be cancelled by means of any orbital transformation preserving the
form XH+c(x) EH.

Proof. We can assume that ar=1 and we can consider only the rth jet
of the vector field. We shall find a rational change of variables reducing it
to some integrable vector field. This change is the same as the composition
of the blowing-up maps described in the Introduction and the transformed
system describes the resolved field of directions in some affine chart near
the final divisor E of the resolution (see Introduction). The cases with odd
and even s are treated separately.

(a) The case s=2k+1. Here the change is the following

u=
x2k+1

y2
, v=

y
xk

(5.1)

(then x=uv2, y=ukv2k+1). We obtain the system

u̇=2(2k+1) u(1 − u), v̇=[(2k+1) u − 2k] v+ur−kv2(r−k).(5.2)

The line v=0 represents the affine line E0p1 (punctured divisor). The
other singular points are p2=(0, 0), p0=(1, 0) and the separatrix C is
given by u=1; (., 0) represents the point p1.
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System (5.2) can be integrated. The equation for the phase curves is the
Bernoulli equation with the first integral of the Darboux–Schwartz–
Christoffel type

F=v2k−2r+1ua(1 − u)b− b F
u

0
ya+r−k−1(1 − y)b−1 dy,(5.3)

where a=k(2k−2r+1)
(2k+1) , b=(2k−2r+1)

(4k+2) .

Remark 16. Loray in his thesis calls the function (5.3) a hypergeo-
metric function. We think that our notion is more suitable. The hyper-
geometric functions are given in certain integral form with the argument
playing role of the parameter of the subintegral function. Their monodro-
mies are usually nonsolvable. The argument in the integral in (5.3) stays in
the limit and the function (5.3) can serve as a model example of a function
with solvable monodromy.

By the assumption of Lemma 14, r ] 0 (mod s) and, as we shall see, the
integral (5.3) is not of the Darboux type. This means that its monodromy
group is solvable and nonabelian.

(By the monodromy group of a multivalued holomorphic function F on
Cn, with ramifications along some algebraic hypersurface S, we mean a
certain group of permutations of a typical fiber Ma=p−1(a) of the cover-
ing M0S Q Cn0S, where M is the Riemann surface of F with the natural
projection p. These permutations are induced by analytic continuation of
analytic elements (above a neighborhood of a) along loops in Cn0S which
start at a. In the case of solvable monodromy this group coincides with the
group of deck automorphisms of the covering M0S Q Cn0S).

The ramification curves of F are u=0, u=1, and u=.. The
monodromy maps associated to loops around u=0 and u=1 are

h Q m0h, h Q m1h+c,

where m0=e2pia, m1=e2pib, c=b(1 − m1) >10 ya+r−k−1(1 − y)b−1 dy. The latter
integral diverges at y=1 (because b < 0). Therefore its value is given by a
suitable regularization. Here we use the analytic continuation of the
Euler betafunction B(a, b)=>10 ya−1(1 − y)b−1 dy=C(a) C(b)/C(a+b) as a
function of (a, b). If r ] 0 (mod s), then c ] 0.

Of course, the monodromy group of the first integral is associated with
the monodromy group of the divisor E0{p0, p1, p2}; one needs to parame-
trize the disk D transversal to E (at a point q) by F. Here the transition
from the natural parametrization of the disk D by v=v|D to the parame-
trization h=F|D=Av2k−2r+1+B is not one-to-one; it is semiconjugation of
the monodromy group with a subgroup of the group of affine maps (see
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Remark 1 in Section1). Nevertheless the fundamental properties of the
groups (like solvability) are preserved under such semiconjugation.

The map f1 (i.e., holonomy around p1) corresponds to a loop around u=
., f[2]1 =id, the map f2 corresponds to a loop around u=0, f[2k+1]2 =id,
and f0=f1 p f2 corresponds to a loop around u=1. Applying the above
semi-conjugation we get that fj(v)=ljv(1 − Cjvp)−1/p, p=2r − 2k − 1.

We have f[4k+2]0 =id, because the map f0 in the chart h is a rotation
around its fixed point. Thus by Theorem 5a (Section 1) the monodromy
group is solvable. On the other hand it is nonabelian.

If there were a transformation reducing the rth order terms, then the
monodromy group of this jet should be abelian. This shows the thesis of
our lemma.

(b) The case s=2k. The change is of the form

u=
y
xk

, v=x

and we obtain the system

u̇=k(1 − u2), v̇=uv+vr−k+1.(5.4)

The line v=0 represents the affine line E0{.}, p0=(., 0), p1, 2=
( ± 1, 0) and the separatrices C1, 2 are u= ± 1. The corresponding first
integral equals

F=[v(1 − u2)1/2k]k−r+
r − k

k
F
u
(1 − y2)−(k+r)/2k dy.

As in the previous case, we check that, for r ] 0 (mod k), the
monodromy group of F is solvable nonabelian. (This case corresponds to
the situation with n0 ¨ Z in Theorem 7). Indeed, we get the situation exactly
as in the case of odd s: F has ramifications at u=., u= ± 1 and the
monodromy maps are of the form

h Q epi(k−r)/kh+c1, 2,

where c1, 2 ] 0.
If r=(2m+1) k, then

F=v−2mk(1 − u2)−m+2m F
u
(1 − y2)−m−1 dy
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contains logarithmic singularities d1, 2 ln(1 ± u). The monodromy maps of F
are h Q h+c1, 2 and generate an abelian group. The initial parametrization
of the transversal D to the divisor E is given by v with the relation
h=F|D=Av−2mk+B and, after applying this semiconjugation, we obtain
again the abelian group:

v Q epi/kv(1 − C1, 2vp)−1/p, p=2mk

We see that this group consists of maps lg tvp+1, lp=1, like the exceptio-
nal abelian group from Theorem 2(a) and Definition 3(a) from the
Introduction (with the vector field w=wp, 0). Theorem 2(a) says that this
group cannot be formally reduced to a finite abelian group. This is the case
with n0 ¥ Z from Theorem 7; we have m=n0.

Lemma 14 is complete. L

Corollary 3. The monodromy group of system (5.2) or (5.4) (i.e., J sr, 0)
is solvable nonabelian for n0 ¨ Z and exceptional abelian for n0 ¥ Z. The
generators take the forms

f0(v)=l0 g t0vp+1, f2(v)=l2v, p=2(r − k) − 1

for s=2k+1 and

f1, 2(v)=l1, 2 g t1, 2vp+1, p=r − k

for s=2k.
In particular, the monodromy group associated with any vector field J sr, f
cannot be formally linear.
Moreover, if n0 ¥ Z, then the monodromy group of the initial germ ẋ=

2y+ · · · , ẏ=sx s−1 · · · cannot be solvable nonabelian.

Remark 17. Consider the cases which are excluded from the assump-
tion of Lemma 14.

Let s=2k+1. If r is of the form (2k+1) m, then the exponent a in the
integral (5.3) is an integer, a=k(2k − 2r+1)/(2k+1)=k(1− m), b=
1/2 − m. The integral >u y (k+1) m−1(1 − y)b−1 dy in (5.3) can be expressed as
(1 − u)b× (polynomial). Because b is a half-integer, the square of the first
integral F is a rational first integral for the system (5.2).

Let s=2k. If r=2mk, then the Schwartz–Christoffel integral in the
expression for F takes the form

F
u

(1 − y2)−m−1/2 dy.

We claim that it is also of the form (1 − u2)−m+1/2× polynomial.
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Indeed, calculation of the regularized integral P >1−1 (1 − y2)−m−1/2 (with
the substitution i=1 − y2 and using the Beta–function) gives − >10 1/
(im+1/2(1 − i)1/2)=−C(1/2) C(1/2 − m)/C(−m)=0. Thus the regularized
’’values’’ of the Schwarz–Christoffel integral at the branching points are
equal. Putting this value equal to zero we extract from the Schwarz–
Christoffel integral the factor (1 − u2)1/2−m. The other factor must be a
polynomial P(u).

In fact we can find this polynomial explicitly as P(u)=u(a0+a2u2+ · · · +
am−1u2(m−1)), where the coefficients satisfy the recurrent relations
a0=1, aj=−2 m−j

2j+1 aj−1. For example, >u (1 − y2)−3/2=u(1 − u2)−1/2,
>u(1 − y2)−5/2=(u − 2u3/3)(1 − u2)−3/2. However >u (1 − y2)−1/2=sin−1(u).

This gives another explanation why the monodromy is abelian in the
case r=0 (mod s).

Notice that by repeating the proof of Lemma 13 we can reduce all the
terms asmx sm“x. To be precise, we should take into account not the homo-
geneous filtration of the space of germs generated by the degree, but rather
the quasi-homogeneous filtration given by the exponents

d(x)=2, d(y)=s, d(“x)=−2, d(“y)=−s.

Then the part of the vector field of the lowest quasihomogeneous degree
(equal to s − 2) is XH=2y“x+sx s−1“y. Because we can reduce x sm“x using
XH, the same holds when we replace XH by XH+(higher order terms).

We see that the terms x sm“x are the only terms which can be reduced
when one uses the first part of the vector field, XH.

Conclusion. Using the Hamiltonian part, we can reduce the system
either to

ẋ=2y, ẏ=sx s−1

(the case J s., 0) or to

ẋ=2y+xr+ C
j ] sm

ajx j, ẏ=sx s−1, r ] 0 (mod s).

In the second case the rth order part of the system, i.e., ẋ=2y+
x r, ẏ=sx s−1, does not determine the coordinate system uniquely. Namely,
the changes (x, y, t) Q (a2x, a sy, a s−2t) give the system ẋ=2y+a2r−sx r,
ẏ=sx s−1. So the linear coordinates are fixed modulo action of the group
Z/(2r − s) Z. This group acts on the remaining terms ajx j, and also after
further reductions of some of them.

Further we assume the second possibility.
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Remark 18. Here we explain why the method of the proof of analyti-
city of the Bogdanov–Takens prenormal form cannot be adapted in some
way to get analyticity of the whole formal normal form.

Consider the reduction of the terms xms“x by means of LXH , the commu-
tator with XH. One can introduce the spaces of orbital changes (id+Z, q)
(where q is a function) and of cancelled vector fields yW2+a(x s) “x. It is
possible to introduce a certain weighted norm in these spaces such that the
operator L−1XH would be bounded and the series bounded in that norm
would represent analytic functions.

Unfortunately, the operators Lxj“x are neither bounded relatively to LXH
nor quasinilpotent in this setting.

5.2. The final formal reduction

(A) The general scheme of the reduction. We use a formal orbital
change

(X, dt) Q (exp Z1(X), (1+q̂) dt),

where X=(x, y), Z1=z11“x+z12“y is a formal vector field, exp Z1=g1Z1 is the
phase flow diffeomorphism, and q̂(X) is a formal nonzero function.
Applying it to a vector field V we obtain the field

PV(Z1 , q̂)=(Adexp Z1 )g (1+q̂) V.

The nonlinear map (Z1 , q̂) QPV(Z1 , q̂) is clearly noninjective. For
example, if Z1=ô · V (ô – a formal function), then the map exp Z1 preserves
the phase portrait of V and the field PV(ôV, 0) is parallel to V and equals
to ĝV. In order to avoid this ambiguity, one uses the notion of a bivector
field introduced by Bogdanov in [B2].

If Z1=z11“x+z12“y and V=P“x+Q“y, then we define the bivector field

Z1 NV=W1 dxNdy,(5.5)

where W1=WV(Z1)=Qz11 − Pz12. One can say that W1 measures the compo-
nent of Z1 transversal to V. If WV(Z1)=0 and V has isolated singularity,
then Z1=ôV for some series ô.

This shows that the problem of formal reduction of V is equivalent to
the problem of formal reduction of terms transversal to V by means of W1 .
One has the (non-linear) map from C[[x, y]] to C[[x, y]]

W1 QPV(Z1 , 0)NV/dxNdy=LVW1+ · · · ,(5.6)

where LV denotes the linear part (the bivector homological operator) and Z1
satisfies the identity WV(Z1)=W1 . LVW1 is linear in V (for fixed W1 ).
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Next, one solves the corresponding (nonlinear) equation for W1 . Using the
quasi-homogeneous filtration one reduces the nonlinear problem to the
linear one, i.e., the description of the action of LV.

We begin with the operator LXH . One describes a linear space NXH (of
preliminary bivector normal forms) which is complementary to Im LXH .
This analysis repeats in a sense the calculations from the previous sections.

It turns out that LXH has a nontrivial kernel (infinite dimensional). This
indicates that NXH may not be a good candidate for the space of bivector
normal forms. Some W1 ’s from Ker LXH may give contribution to the image
of the non-linear operator (5.6) This contribution can be linear (from
higher terms of V) or nonlinear.

For the next approximation of the homological operator we use
LXH+xr“/“x. We define a linear space NXH+xr“/“x, complementary to
Im LXH+xr“/“x. It turns out that in one case, when the number n0 from
Theorem 7 is not an integer, Ker LXH+xr“/“x=0. The standard arguments,
involving the quasi-homogeneous filtration, show that NXH+xr“/“x is a good
space for bivector normal forms. It is transversal to the image of the
operator (5.6).

If the number n0 is an integer, then Ker LXH+xr“/“x is 1–dimensional. In
that case one uses the operator LXH+xr“/“x+atxr+t“/“x for some index t.

(B) The formula for LV and the bivector homological equation in the
Bogdanov–Takens case. The linear part of PV(Z1 , 0), V=P“x+Q“y,
Z1=z11“x+z12“y is

(z1̇1 − P −xz11 − P −yz12) “x+(z1̇2 − Q −

xz11 − Q −

yz12) “y,

where the dot denotes the derivative in the direction of V. From this, (5.5),
and (5.6) one easily obtains that

LVW1=W1̇ − div V · W1 .(5.7)

If W=w1“x+w2“y is the part of the vector field V devoted to killing,
then we have the bivector homological equation

LVW1+h=0, h=WNV/dxNdy.(5.8)

In the Bogdanov–Takens case we have

V=[2y+a(x)] “x+sx s−1“y,

W1=sx s−1z11 − [2y+a(x)] z12,

h=sx s−1w1 − [2y+a(x)] w2,
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and the bivector homological equation takes the form

W1̇ − a −(x) W1+h=0.(5.9)

What we are looking for is a bivector normal form spaceNV … C[[x, y]]
complementary to the image of the linear map W1 Q W1̇ − a −(x) W1 . Because
we expect the normal form for V as (2y+xr(1+;j ¥ J ajx j)) “x+sx s−1“y,
the space NV is identified with the space {x r+s−1;j ¥ Jaj x j} of series. Here
the summation runs over the restricted set J of indices. Our problem is to
describe the set J. We formulate this statement in a separate lemma.

Lemma 15. AssumethatV=[2y+a(x)] “x+sx s−1“y, a(x)=xr+ · · · has
the property ker LV=0.
Then the space NV can be chosen in the form {x r+s−1;j ¥ J ajx j}. In this
case the formal orbital normal form for V is (2y+xr(1+;j ¥ J ajx j))
“x+sx s−1“y.

(C) The image and the kernel ofLXH . We have

LXHW1=W1̇=2yW1 −x+sx s−1W1 −y(5.10)

and Eq. (5.8) is replaced by

2yW1 −x+sx s−1W1 −y+h=0.(5.11)

Because LXH acts quasihomogeneously, we investigate its restrictions to
the finite dimensional spaces of W1=W with fixed quasihomogeneous
degree.

Let this degree be 2(ms+i), i=0, 1, ... s − 1; i.e.,

W=w0x sm+i+w1x s(m−1)+iy2+ · · · +wmx iy2m.

The function h in (5.11) is of degree 2(ms+i)+s − 2; i.e.,

h=h0xms+i−1y+ · · · +hmx i−1y2m+1

if i ] 0 and

h=h0x s(m−1)+s−1y+ · · · +hm−1x s−1y2m−1

if i=0.
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The matrix of LXH expressed in these bases is equal to 2 times

|
ms+i s 0 ... 0 0 0

0 ms − s+i 2s ... 0 0 0
0 0 ms − s+i ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... 2s+i ms − s 0
0 0 0 ... 0 s+i ms
0 0 0 ... 0 0 i

} ,(5.12)

where there is no last row in the above matrix for i=0.
We see that if i ] 0, then it is an invertible matrix. If i=0, then we get m

rows and m+1 columns; so, it has a 1-dimensional kernel. This kernel
equals (x s− y2) C (because then Ẇ=0).

If the quasihomogeneous degree of W is 2(ms+i)+s with

W=w0xms+iy+ · · · +wmx iy2m+1

h =h0x (m+1) s+i−1+ · · · , i ] 0

h =h0xms+s−1+ · · · , i=0

then the corresponding matrix is

|
s 0 0 ... 0 0

2(ms+i) 3s 0 ... 0 0
0 2(ms − s+i) 5s ... 0 0
... ... ... ... ... ...
0 0 0 ... (2m − 1) s 0
0 0 0 ... 2(s+i) (2m+1) s
0 0 0 ... 0 2i

} ,(5.13)

where again the last row is absent for i=0.
We see that if i ] 0, then we have an (m+1) × m matrix and the image of

the corresponding operator is m-dimensional (and of codimension one). We
project it to the space generated by the monomials xayb+1.

If i=0, then the matrix (5.13) (without the last row) is invertible.

Remark 19. Sadovski in [S2] considered the case r=2s and wrote
down an equation analogous to (5.11).

We have proven the following lemma, whose first part repeats the result
of the previous section.
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Lemma 16. (i) Equation (5.11) has solution W for any h of the form
yh̃(x, y)+x s−1h̃̃(x s). This means that the spaceNXH={x s−1;j ] o (mod s) ajx j}
is complementary to ImLXH .

(ii) ker LXH=C[[y2− x s]]. This means that for any two solutions
W1, W2 of (5.11) the difference W1 − W2 is a function of H.

(D) Reduction by means of LXH+xr“/“x. As in the previous point the
problem reduces itself to a solution of the equation

(w̃+W̃̃) −̇ div V · (w̃+W̃̃)+h=0,

where w̃, W̃̃, h are quasihomogeneous, “w̃/“XH — 0, and V=XH+xr“x.
Thus W=w̃+W̃̃=w−1(x s− y2)n+w0x sm+iy+ · · · +wmx iy2m+1 and the

quasihomogeneous part of LXH+xr“/“x W equals

[x rw̃ −x − rx r−1w̃]+[2yW̃̃ −

x+sx s−1W̃̃ −

y].(5.14)

The quasihomogeneity implies

sn+r − 1=s(m+1)+i− 1

and h=h0x s(m+1)+i−1+ · · · . The corresponding matrix takes the form

A=R
A B

0 D
S ,(5.15)

where A and D are equal to respectively

|
(ns − r) 1n

0
2 s 0 ... 0 0

− (ns − s − r) 1n
1
2 2(ms+i) 3s ... 0 0

(ns − 2s − r) 1n
2
2 0 2((m − 1) s+i) ... 0 0

... ... ... ... ... ...

... ... ... ... 2(r+s) (2n − 1) s

± r 1n
n
2 0 0 ... 0 2r

}
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|2((m − n) s+i) (2n+3) s 0 ... 0 0

0 2((m − n − 1) s+i) (2n+5) s ... 0 0

... ... ... ... ... ...

0 0 0 ... 2(s+i) (2m+1) s

0 0 0 ... 0 2i

} .
Lemma 17. The determinant of the matrixA equals

(−2s)m−n+1 1−i
s
2
1

m−n+1

× s(−2s)n(−r − 1) 1−r
s

−
3
2
2
1

n−1 5n −
r
s

−
1
2
6 ,

(5.16)

where (a)01=1, (a)k1=a(a − 1) · · · (a − k+1).

Proof. The first factor in the above formula is det D. The second
factor, i.e., det A, is calculated using the expansion with respect to the first
column (like in the calculation of the determinant of the characteristic
polynomial for a higher order differential linear equation.) We have used
the formulas

C
n

k=0

1n
k
2 (a)k1(b)n−k1 =(a+b)n1, C

n

k=0
k 1n

k
2 (a)k1 (b)n−k1 =na(a+b − 1)n−11

following from the identity

C
n

k=0

1 n
k
2 mk(a)k1 (b)n−k1 :

m=1
=1m “

“y
+
“

“n
2n yanb :

y=n=m=1

=1 “
“a
2n(a+b)a(a − b)b :

a=1, b=0

=(a+b)n1

and its derivative with respect to m, equal to n(m “
“y+

“

“n )n−1 “
“y yanb. We have

applied them with a=−(r+1)/s, b=−1/2. L
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(E) The final step. Lemma 17 shows that det A=0 iff n=n0+1,
where

n0=
r
s

−
1
2

is the number defined in Theorem 7.
If n0 is not an integer, then ker LXH+xr“/“x=0 and all the terms

x r+s−1 · x (n−1) s are in Im LXH+xr“/“x; these terms correspond to x r+(n−1) s“x in
V. Thus NXH+xr“/“x={x r+s−1;j ] 0, −r (mod s) ajx j}. By Lemma 15 we have
case (ii) of Theorem 7.

If n0 is an integer, then the term cn0sx
r+n0s“x remains in the normal form

for V. Here we have two possibilities: either all the further terms vanish or
there is a term cj0x

r+j0“x ] 0, j0 ] 0, −r (mod s).
In the first possibility we have

(2y+xr(1+lxn0s)) “x+sx s−1“y,

i.e., case (iii) of Theorem 7.
In the second case we use the bivector field w̃=w−1(x s− y2)n0+1, applied

to x r+j0“x, to reduce the term

x r+j0+n0s“x.

This gives case (iv) from Theorem 7.
Because there are no more possibilities of reductions, Theorem 7 is

complete. L

Remark 20. From Loray’s proof in [L3] it follows that the reductions
performed in points (D) and (E) can be made analytic (provided that we
start from an analytic form from Lemma 16). Therefore the only place
where the analyticity fails is the reduction by means of LXH .

6. PROOF OF THEOREM 8

(A) Theorem 8 says how to recognize the type of monodromy group
from the formal orbital normal form. On the basis of this classification the
cases when the formal normal form is the same as the analytic one are
extracted. Below we successively associate to given classes of groups the
corresponding formal normal forms and at the end of this section we
discuss the problem of analyticity of these forms.

The projective monodromy group G associated with a germ of a nilpo-
tent analytic vector field is either finite, exceptional abelian, solvable
nonabelian, or non-solvable.
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(B) From Corollary 3 (in Section 5.1) it follows that, if G is finite,
then we have case (i) of Theorem 7. Here G is analytically isomorphic to a
finite subgroup of the group of rotations.

(C) If G is exceptional abelian, then Corollary 3 implies that n0 ¥ Z
(and hence s=2k). By Theorem 2(a) (Section 1) the generators of G are
simultaneously formally equivalent to

f1, 2=lg t1, 2w ,

where l=epi/k and w=wp, m. One can see also from the proof of Lemma 14
that p=2n0k and lp=1 (see Corollary 3).

Lemma 18. The exceptional abelian monodromy group corresponds to
case (iii) from Theorem 7.

Proof. We have to calculate the monodromy group associated with the
normal form from case (iii) of Theorem 7. However, for this purpose that
normal form is not the best choice. We shall choose the form from Remark
8 (Section 2); i.e., XH+xk−1Hn0(1+mHn0)−1 EH.

Here we can integrate the analogue of system (5.4), describing the phase
portrait after resolution of the singularity. In the variables u=
y/xk, H=y2− x2k=(u2− 1) v2k we have

dH
du

=
2Hn0+1

(1+mHn0)(1 − u2)
.(6.1)

Now it is clear that, when we parametrize the disk transversal to the
exceptional divisor E by H, then the monodromy maps are the flow maps
of the vector field Ḣ=Hn0+1/(1+mHn0). L

Remark 21. Equation (6.1) can be integrated. Its first integral takes the
so-called generalized Darboux form

F=−H−n0+mn0 ln H − 2n0 ln[(1+u)/(1 − u)].

(D) If G is solvable nonabelian, then it is formally conjugated to

f1(z)=e ip, f2(z)=e2pik/(2k+1)z/p`1 − pzp ,(6.2)

s=2k+1, or to

f0(z)=e2pi/kz, f1(z)=epi/kz/p`1 − pzp ,(6.3)
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s=2k (see Theorem 2(b) in Section 1 and [CM]). It is also known that in
the case s=2k+1 this group is typical (see Theorem 3 in Section 1).

Let s=2k+1. The typicality of G means that p ] 0 (mod s): LG=
{epil/2s: l=0, 1, ...} and LpG ] { ± 1} (see Remark 1 in Section 1).

This group is the holonomy group of the singularity J2k+1r, 0 ; i.e., case (ii)
of Theorem 7 with the formal functional invariant f — 0. We have
p=2(r − k) − 1 (see Corollary 3 in Section 5.1) and the condition
r ] 0 (mod s) from Theorem 7 is equivalent to the condition p ] 0 (mod s)
(i.e., typicality of G).

Let s=2k. The case p=0 (mod s) is excluded because then G is abelian:
LG={epil/k: l=0, 1, ...} and LpG={1} (see Remark 1). Moreover, because
G is typical, we have p ] 0 (mod k).

This group is the holonomy group of the singularity J2kr, 0. We have
p=r − k (see Corollary 3) and n0=r/s − 1/2 ¨ 12 Z (for p ] 0 (mod k)).
Therefore, we have case (ii) of Theorem 7 with the formal functional
modulus f — 0. The conditions r ] 0 (mod s), n0 ¨ Z from Theorem 7 are
equivalent to the typicality of solvable G.

(E) Because all solvable groups defined by (1.9)–(1.10) and by
(1.11)–(1.12) are formally equivalent to the above ones, the other normal
forms J sr, f, f – 0 or f ] cn0sx

n0s have nonsolvable holonomy group.

(F) In this point we prove analyticity of the normal form from
Theorem 7 in the cases of solvable nonabelian and finite holonomy group.

Take a germ of analytic vector field V with solvable nonabelian
monodromy group G. Because G is typical, it is analytically conjugated
with its standard form (6.2) or (6.3) (see Theorem 3(iii) in the Introduc-
tion). On the other hand the polynomial field J sr, 0 has the monodromy
equal to (6.2) or (6.3) and is analytic. By Theorem 1(b) the analytic
conjugation of the holonomies of V and J sr, 0 implies analytic orbital
conjugation of these vector fields.

The analyticity of the formal normal form J s., 0 (i.e., the Hamiltonian
field) can be proven in three ways.

One way uses the rigidity of a finite group (Theorems 3(i) and 1(b)). This
proof is the same as in the solvable case.

One can also use the following theorem of Mattei and Moussu [MM]: if
a singular point of a planar holomorphic foliation has only finite number
of separatrices (i.e., analytic invariant curves through the singularity) and
any other leaf does not accumulate at the singular point, then the foliation
has a local analytic first integral.

In the generalized cusp case we have only finite number of separatrices
(one or two) and the finiteness of the holonomy group implies that the
leaves are separated from the singular point. So, the assumptions of
Mattei–Moussu’s theorem hold and there is an analytic first integral. It has
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the form y2=x s+ · · · . This function is equal to Y2− X s with analytic
X=x+ · · · , Y=y+ · · · (see [AVG]).

Below we propose another proof based on the following lemma.

Lemma 19. The case with a finite monodromy group occurs only when
the Bogdanov–Takens normal form contains only powers of x s; i.e.,
XH+(; bmx sm−1) EH.

Proof. Indeed, repeating the arguments from Section 5.1, we can show
that any vector field of the form

XH+1 C
m <M

csm−1x sm−1+cr−1x r−12 EH, Ms < r < (M+1) s

with cr−1 ] 0 has either nonabelian or exceptional abelian monodromy
group.

If s=2k+1 is odd, then in the coordinates (5.1) we get

dv
du

=A1(u) v+C csm−1Asm−1(u) v2(sm−k)+cr−1Ar−1(u) v2(r−k).

The fact that the terms x sm−1EH can be removed means that, after apply-
ing certain change of the form v Q v1=v+;m <M Bm(u) v2(sm−k), the
2(sM − k)th part of the latter equation disappears. There remains the term
cr−1Ar−1(u) v2(r−k) and other terms which depend on the coefficients csm−1.
However, the latter terms arise only from the action of the change v Q v1
on the term with v2(r−k) and are of higher degree.

Therefore, dv1/du=A1(u) v1+cr−1Ar−1(u) v2(r−k)1 + · · · and the 2(r − k)th
jet of the monodromy group contains the map v Q m1v+const · crv2(r−k)+ · · · ,
where const ] 0. This shows that the monodromy group is nonabelian.

The case with even s is analogous. L

If the (analytic) Bogdanov–Takens normal form is equal to
XH+xf(xs) EH, then repeating the proof of Lemma 13 (from Section 5.1)
we see that it has analytic first integral y2− x s+ · · · , which is analytically
equivalent to Y2− X s. Therefore the form J s., 0 is analytic.

This completes the proof of Theorem 8. L

7. PROOF OF THEOREM 9

In Theorem 8 we have given an interpretation of the first part of the
formal orbital normal form in terms of the holonomy group. Theorem 9 is
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about the interpretation of certain higher order terms from the formal
orbital normal form in terms of singularities of the resolved vector field
and in terms of the holonomy. First we interpret the first coefficient of
the formal functional modulus f(x) for s=3 and then we interpret the
coefficient cn0s in the exceptional abelian case.

(A) In the case s=3 we can prove the nonsolvability in a way other
than in Section 6. Note that solvability of G means that the resolved vector
field near the singular point p0: u=1, v=0 is formally (and analytically)
linearizable (see Theorem 5(a) in the introduction). Here we show that we
can express the obstacles to the linearization in terms of the coefficients of
the expansion of the functional modulus f from Theorem 7.

Recall that by Theorem 7 the formal normal form is one of the two
types: either (r=3m+1)

ẋ=2[y+x3m+1(1+c1x+c4x4+c7x7+ · · · )],

ẏ=3[x2+x3my(1+c1x+c4x4+c7x7+ · · · )],

or (r=3m+2)

ẋ=2[y+x3m+2(1+c2x2+c5x5+c8x8+ · · · )],

ẏ=3[x2+x3m+1y(1+c2x2+c5x5+c8x8+ · · · )].

In the coordinates (5.1), when we additionally perform the change
u=1+z, we get the equation

dv
dz

=A1(z) v+Ar(z) v2r−2+dtAt(z) v2t−2+ · · · ,

where A1=− 1+3z
6z(1+z) , Ar=

(1+z)r−2

−6z , At=
(1+z)t−2

−6z , and dt, t ] 0, r (mod 6) is
the first non-zero coefficient of the Taylor expansion of f (dt is the first
of cj’s).

Recall also that the formal orbital normal form of a 1 : − 6 resonant
saddle is the following

dṽ
dz̃

=−
ṽ
6z̃

(1+e1(ṽ 6z̃)+e2(ṽ 6z̃)2+ · · · ).

Here z̃=z(1+ · · · ), ṽ=v(1+ · · · ).

Remark 22. The formal orbital normal form is simpler. There remain
only two coefficients ej, namely ek=1 and e2k, where the latter plays a role
of the formal invariant. In our situation the range of changes is smaller. So,
we get the richer normal form near p0.
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We know that if dt=dt+3= · · · =0, then all the coefficients ej vanish.
So, firstly we should apply a change which cancels the term Arv2r−2.

Denote q=2r − 2. The change is the following

v=w[1+B(z) wq−1]−1/(q−1),

where the function B satisfies the equation B −+(q − 1) A1B+(q − 1) Ar=0
with the solution

B=
q − 1

6
z (q−1)/6(1+z)(q−1)/3 F

z
y−(q+5)/6(1+y) (q−4)/6 dy=1+O(z).

The transformed equation becomes equal to

dw
dz

=A1w+dtAtw2t−2[1+Bw2r−3]2(r−t)/(2r−3)+ · · · .

(Note that if q=6p+1, then the expansion of B(z) contains the
logarithmic term

Mzn log z.

Namely the coefficients M before such logarithms will play a role of the
saddle quantities. Above we have q ] 6p+1, but we will use the coefficient
M below.)

Expanding the last expression in the equation for w, we get the term
dtAtw2t−2 (which we reduce in the same way as Arv2r−2) and the next term
of the form

AtBw2r+2t−5.

It turns out that, in our situation, 2r+2t − 5=1 (mod 6) always either
r=3m+1, t=3n+2 in the case J33m+1, f, or r=3m+2, t=3n+1 in the
case J33m+2, f.

Repeating the proof of cancelling the Ar, with q=2r+2t − 5, we get a
new B(z), i.e.,

B1=const · z (r+t−3)/3(1+z)2(r+t−3)/3 F
z

y (3−r−t)/3(1+y)2(3−r−t)/3At(y) B(y) dy.

We are interested in the coefficient before y−1 in the expansion of the
subintegral function.

Lemma 20. This coefficient is nonzero.
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Proof. Let us write this subintegral function explicitly (up to a constant)

y−(2t+3)/6(1+y) (t−3)/3 F
y

s−(2r+3)/6(1+s) (r−3)/3 ds.

In the case J33m+1, f, t=3n+2, the expansion of (1+y)a and the integration
give

y−m−n−1 5 C
.

k=0

1 n − 1/3
k
2 yk6 ·5C

.

l=0

1m − 2/3
l
2 y l

l − m+1/6
6

and its residuum at y=0 is

C
m+n

l=0

1 n − 1/3
m+n − l
2 1m − 2/3

l
2 1

l − m+1/6
.

It can be rewritten in the form

1n − 1/3
m+n
2 5 C

m+n

l=0

1m+n
l
2 (−1) l

l − m+1/6
6

=1n − 1/3
m+n
2 P F

1

0
t−m−5/6(1 − t)m+n dt

=1n − 1/3
m+n
2 B(−m+1/6, m+n+1) ] 0.

The latter integral is divergent and P> means its regularization. One uses
the analytic continuation of the beta function B(a, b).

In the case J33m+2, f, the calculations are quite similar and one obtains the
coefficient

1 n − 2/3
m+n+1
2 B(−m − 1/6, m+n+1) ] 0. L

Remark 23. In the proof of Proposition 1 we have applied two local
(near p0) changes and detected the resonant term. Unfortunately, this
works only in the case s=3. If s > 3, then we need many more local
changes and the calculations become very complicated. We were not able
to complete them.
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Remark 24. Note that if the formal functional modulus f – 0, then
only the first nonvanishing coefficient al of the expansion of f is important
in nonsolvability

f[6]0 (z)=z+alz6q+1+ · · · .

Maybe the other coefficients of the expansion of f are responsible for new
relations in group G. Something like this: f1 p f2 p f1 p f2 · · · p f−12 (z)=
z+anz r(n)+ · · · .

(B) Let n0 ¥ Z, s=2k. Then we can take the vector field in the form
XH+xk−1Hn0EH+ · · · . Its (2n0+1) s–jet is integrable: dH/du=2Hn0+1/
(1 − u2) in the separating variables from the proof of Lemma 18. It is clear
that the saddle u=1, v=0 in the divisor of resolution is not linearizable.

In case (iii) we get dH/du=2Hn0+1/[(1+mHn0)(1 − u2)]. Here m=
const · cn0s. It is clear that cn0s plays a role of the formal invariant of the
saddle u=1, v=0.

Theorem 9 is complete. L
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