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We consider the center problem at Hopf points of analytic systems
in R

3 that has a classical solution in the Lyapunov Center Theorem
which is given in terms of an analytic first integral. Here we give
a new solution in terms of an analytic inverse Jacobi multiplier V .
The existence of a smooth and non-flat inverse Jacobi multiplier
around a Hopf point of saddle-focus type is also proved. When
studying these problems, we needed to discuss the relation
between inverse Jacobi multipliers and center manifolds Wc ,
in particular to know under what conditions Wc ⊂ V −1(0). To
illustrate our results, we solve the center problem for the Lü
system.
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1. Introduction and main results

We consider the analytic three-dimensional system

ẋ = −y +F1(x, y, z),

ẏ = x +F2(x, y, z),

ż = λz +F3(x, y, z), (1)
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where λ ∈ R \ {0}, F = (F1,F2,F3) :U → R
3 is real analytic on the neighborhood of the origin U ⊂

R
3 with F(0) = 0 and whose Jacobian matrix DF(0) = 0.

In the sequel X will denote the associated vector field to system (1), that is,

X = (−y +F1(x, y, z)
) ∂

∂x
+ (

x +F2(x, y, z)
) ∂

∂ y
+ (

λz +F3(x, y, z)
) ∂

∂z
.

Any analytic system u̇ = f (u) in R
3 that has the singularity u = u∗ which is a Hopf point (that is,

it possesses two pure imaginary and one nonzero eigenvalues) can be transformed in the form (1)
by a translation, an invertible linear change of coordinates and a rescaling of time. For an interested
reader, we mention [13] as a classical source for the study of Hopf points in R

n .
One of our aims is to study the center problem for (1) at the origin, that is, we wish to decide when

the origin is a center or not.
The origin is a center of (1) if all the orbits on the local center manifold at the origin are periodic,

otherwise the origin is a saddle-focus. In this last case, the orbits on the local center manifold at the
origin spiral around the origin, hence this singularity is a focus for the vector field reduced to the
center manifold.

Note that here center in R
3 means center on the center manifold and, sometimes, in this paper we

will use the term focus instead of saddle-focus singularity. We remind that a local center manifold at
the origin of system (1), denoted Wc , is an invariant surface which is tangent to the (x, y) plane at the
origin. More precise, Wc = {z = h(x, y): for (x, y) in a small neighborhood of (0,0)} with h(0,0) = 0
and Dh(0,0) = 0. For any k � 1 there exists a Ck local center manifold. The local center manifold
need not be unique, but the local flows near the origin on any Ck+1 center manifold are Ck-conjugate
in a neighborhood of the origin. These results can be found in [4,19]. Hence, if the origin is a center
(or a focus) on some center manifold, then on any other center manifold the origin is also a center
(or a focus).

It seems that the center problem for system (1) is, in fact, a two-dimensional problem, since it
coincides with the center problem for the vector field reduced to the center manifold. For this reason
we present now two well-known solutions for the center problem in planar systems. The first one
is the classical Poincaré–Lyapunov Center Theorem and it is given in terms of a first integral. The
second one is the Reeb Criterium and it is given in terms of an inverse integrating factor v (that is,
1/v is an integrating factor), see [17,10]. Through this work we will use the following convention:
the dots mean higher-order terms in a Taylor expansion. For instance, f (x, y, z) = z + · · · denotes
f (x, y, z) = z +O(‖(x, y, z)‖2).

Theorem 1 (Poincaré–Lyapunov Center Theorem). The planar analytic system

ẋ = −y +F1(x, y),

ẏ = x +F2(x, y) (2)

has a center at the origin if and only if it admits a real analytic local first integral of the form H(x, y) =
x2 + y2 + · · · in a neighborhood of the origin in R

2 .

Theorem 2 (Reeb Criterium). The planar analytic system (2) has a center at the origin if and only if it admits a
real analytic local inverse integrating factor of the form v(x, y) = 1+· · · in a neighborhood of the origin in R

2 .

Hence, for those systems (1) for which it is known the existence of an analytic local center mani-
fold at the origin, the center problem has an answer via the Poincaré–Lyapunov Center Theorem or the
Reeb Criterium. The following theorem of Lyapunov (which is proved in Chapter 13 of the book [3])
is a classical solution of the center problem in three dimensions which overcomes the difficulty that
the center manifold need not be analytic.
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Theorem 3 (Lyapunov Center Theorem). The origin is a center for the analytic system (1) if and only if (1)
admits a real analytic local first integral of the form H(x, y, z) = x2 + y2 + · · · in a neighborhood of the origin
in R

3 . Moreover, when there is a center, the local center manifold is unique and analytic.

One of our main results is another solution to the center problem in R
3, given in terms of an

inverse Jacobi multiplier, and it can be seen also as an analogous result in R
3 of the Reeb Criterium.

Before writing the statement, we define this key notion for a C1 vector field Y = ∑n
i=1 f i(x)∂xi defined

on an open subset D of Rn . A C1 function V : D → R is said to be an inverse Jacobi last multiplier of Y
if it is not locally null and it satisfies the linear first-order partial differential equation

YV = V divY,

where divY = ∑n
i=1 ∂ f i(x)/∂xi is the divergence of the vector field Y . For a nice survey on inverse

Jacobi multipliers one can see [1].
The solution to the center problem in R

3 given in terms of an inverse Jacobi multiplier is the
following.

Theorem 4. The analytic system (1) has a center at the origin if and only if it admits a local analytic inverse
Jacobi multiplier of the form V (x, y, z) = z +· · · in a neighborhood of the origin in R

3 . Moreover, when such V
exists, the local analytic center manifold Wc ⊂ V −1(0).

In the planar case (n = 2), inverse Jacobi multipliers are called inverse integrating factors. In 1996
the first fundamental result relating their vanishing set and the location of limit cycles was proved
in [11]. Since than many other properties have been discovered, as one can see in [9,8] and the
references therein. In 2009 the problem of existence of inverse integrating factors in a neighborhood
of an elementary singularity (as well as of some other nonwandering sets) of some planar analytic
vector field was solved in [7]. Our Theorem 4 can be seen also as an answer to the existence problem
of an inverse Jacobi multiplier in a neighborhood of a Hopf point of center type in R

3. In the sequel
we address the same problem when the singularity is of focus type. The statement of the theorem
follows.

Theorem 5. Assume that the origin is a saddle-focus for the analytic system (1). Then there exists a local C∞
and non-flat inverse Jacobi multiplier of (1) having the expression V (x, y, z) = z(x2 + y2)k + · · · for some
k � 2. Moreover, there is a local C∞ center manifold Wc such that Wc ⊂ V −1(0).

In the center case the Lyapunov Center Theorem assures the existence of an analytic first integral
H(x, y, z) = x2 + y2 +· · · while Theorem 4 assures the existence of an analytic inverse Jacobi multiplier
V (x, y, z) = z + · · · . It is known that the product between an inverse Jacobi multiplier and a first
integral is another inverse Jacobi multiplier. Hence there are analytic inverse Jacobi multipliers at a
center of the form V (x, y, z) = z(x2 + y2)k + · · · for any k � 0. In Proposition 7 we prove that, in both
the center and the focus cases, any local C∞ and non-flat inverse Jacobi multiplier of (1) must have
this form.

When proving these theorems we discovered new properties of the vanishing set of inverse Jacobi
multipliers of system (1). This set has some nice properties (some of them already noticed in [1]),
though it seems that not as many and surprising as the vanishing set of an inverse integrating factor
(presented for example in [9]). A consequence of our results in this direction is the fact that, given
the expression of a C∞ and non-flat inverse Jacobi multiplier, one can eventually find the expression
of a C∞ center manifold and, moreover, of an inverse integrating factor of the system reduced to this
center manifold. We wrote the word “eventually”, though in the center case this is always true, since
we proved that any C∞ inverse Jacobi multiplier vanishes on the center manifold. But, in the focus
case, the situation can be more complicated, as it is discussed in Section 2.

We end up our paper with an illustration of our results on the center problem for the Lü system.
This is a three-parametric family of quadratic systems in R

3 that has been studied widely recently
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since, despite its simplicity, it has a rich dynamical behavior ranging from stable equilibria to periodic
and even chaotic oscillations [12]. It was stated as a conjecture in [14], when the parameters belong
to some variety L, the two equilibria of the Lü system are of center type. Here we give a surprisingly
simple solution to this problem, since we find the expression of an analytic inverse Jacobi multiplier
and, consequently, of the analytic center manifold. After completion of this work we learned that the
recent work [15] is totally dedicated to solve the same problem.

The paper is organized as follows. In Section 2 we present new properties of inverse Jacobi mul-
tipliers, mainly on their relations with the center manifolds. These properties are interesting for
themselves, but are also used in the proofs of Theorems 4 and 5 which are contained in Section 3.
Section 4 is devoted to the study of the Lü system.

2. Some more properties of inverse Jacobi multipliers

The theory of inverse Jacobi multipliers is presented and developed in [1] from its beginnings
in the formal methods of integration of ordinary differential equations, until modern applications in
dynamical systems theory. In this section we present new properties of inverse Jacobi multipliers,
mainly of their vanishing set.

Having both a Jacobi multiplier and a first integral for a system in R
3, Jacobi found an integrating

factor for the system reduced to some invariant two-dimensional surface given as a level surface of
the former first integral, see also [1]. But this method gives a trivial (identically zero) inverse integrat-
ing factor in the special case that the inverse Jacobi multiplier vanishes on the invariant surface. We
give here a procedure to find a nontrivial inverse integrating factor also in this special case. Only the
next theorem is given for general vector fields, the other results of this section concern system (1).

Theorem 6. Let Y = f1(x, y, z)∂x + f2(x, y, z)∂y + f3(x, y, z)∂z be a smooth vector field defined in an open
set U ⊂ R

3 . Assume that there exists a C∞ inverse Jacobi multiplier of the form

V (x, y, z) = (
z − h(x, y)

)
W (x, y, z) with W

(
x, y,h(x, y)

) �≡ 0. (3)

Then M= {(x, y, z) ∈ U : z = h(x, y)} is an invariant manifold of Y and

v(x, y) = W
(
x, y,h(x, y)

)
is an inverse integrating factor of the reduced vector field Y|M = f1(x, y,h(x, y))∂x + f2(x, y,h(x, y))∂y .

Proof. Since YV = V divY , it is clear that V = 0 defines an invariant surface of Y . Therefore, F =
z − h(x, y) = 0 and W = 0 are also invariant surfaces of Y and, in consequence, they have associated
smooth cofactors K (x, y, z) and L(x, y, z), respectively. Thus we have Y F = K F and YW = LW and
moreover divY = K + L.

Now we define the function v(x, y) = W (x, y,h(x, y)) and compute the derivative

(Y|M)v = f1
∂v

∂x
+ f2

∂v

∂ y
= f1

(
∂W

∂x
+ ∂W

∂z

∂h

∂x

)
+ f2

(
∂W

∂ y
+ ∂W

∂z

∂h

∂ y

)
on M.

Evaluating Y F = K F on M we obtain

f1
∂h

∂x
+ f2

∂h

∂ y
= f3 on M,

and therefore

(Y|M)v = f1
∂W + f2

∂W + f3
∂W

on M.

∂x ∂ y ∂z
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The right-hand side of this expression coincides with the left-hand side of YW = LW evaluated
on M. Therefore we obtain that

(Y|M)v = LW = Lv on M. (4)

Taking derivatives with respect to z in Y F = K F and next evaluating on M we obtain

K = −∂ f1

∂z

∂h

∂x
− ∂ f2

∂z

∂h

∂ y
+ ∂ f3

∂z
on M.

Introducing this expression in the identity L = divY − K we obtain

L = ∂ f1

∂x
+ ∂ f2

∂ y
+ ∂ f1

∂z

∂h

∂x
+ ∂ f2

∂z

∂h

∂ y
= div(Y|M) on M.

In short, Eq. (4) reduces to (Y|M)v = v div(Y|M) and, therefore, v(x, y) is an inverse integrating
factor of the reduced vector field Y|M . �

In the rest of this section we refer to system (1). We prove now that the lower-order non-null
homogeneous polynomial in the Taylor expansion around the origin of some C∞ inverse Jacobi mul-
tiplier cannot be any polynomial.

Proposition 7. Any local C∞ and non-flat inverse Jacobi multiplier of (1) has the expression V (x, y, z) =
z(x2 + y2)k + · · · for some k � 0.

Proof. Denote Vm the lower-order non-null homogeneous polynomial of degree m � 0 in the Taylor
expansion around the origin of some C∞ and non-flat inverse Jacobi multiplier V of (1). Then Vm

satisfies the linear first-order partial differential equation

−y
∂Vm

∂x
+ x

∂Vm

∂ y
+ λz

∂Vm

∂z
= λVm,

whose general solution is F (x2 + y2, zeλarctan x
|y| )e−λarctan x

|y| . Therefore, we must have Vm = z(x2 + y2)k

where m = 2k + 1. �
The special relation between center manifolds and inverse Jacobi multipliers is partially discovered

in the next result and further commented at the end of this section. Practically, when the origin of (1)
is a center, the situation is completely understood: any C∞ inverse Jacobi multiplier must vanish on
the center manifold. In the case that the origin is a focus, the situation is more delicate.

Theorem 8. Let V be a local C∞ inverse Jacobi multiplier of system (1) and Wc = {z = h(x, y)} be a C∞
local center manifold at the origin. Consider the restricted function V |Wc : (x, y) 
→ V (x, y,h(x, y)). Then,
the following holds:

(i) V |Wc is a flat function at the origin.
(ii) When Wc ⊂ V −1(0), that is, V |Wc ≡ 0, there exists a C∞ function W (x, y, z) such that W (x, y,

h(x, y)) �≡ 0 and the following factorization occurs V (x, y, z) = (z − h(x, y))W (x, y, z). Moreover,
v(x, y) = W |Wc = W (x, y,h(x, y)) is an inverse integrating factor of X |Wc .

(iii) In the case that system (1) has a center at the origin we must have that Wc ⊂ V −1(0).
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Proof. (i) Since Wc = {z = h(x, y)} is an invariant surface for the vector field X , the following relation
holds

∂h

∂x
(−y +F1) + ∂h

∂ y
(x +F2) = λh +F3 on Wc.

This identity, together with X V = V divX is used to show that the function u(x, y) = V (x, y,h(x, y))

satisfies the first-order partial differential equation

∂u

∂x
(−y +F1) + ∂u

∂ y
(x +F2) = u(λ + divF) on Wc, (5)

where we wrote that divX = λ + divF .
Replacing in (5) x = y = 0 and taking into account that λ �= 0 we obtain that u(0,0) = 0. Assume,

by contradiction, that u(x, y) is non-flat, and denote by Pm(x, y) the lower-order non-null homoge-
neous polynomial of degree m � 1 in its Taylor series around the origin. We replace this Taylor series
in (5) and, after equating the lower-order terms we obtain that Pm satisfies

−y
∂ Pm

∂x
+ x

∂ Pm

∂ y
= λPm. (6)

Taking into account that Pm is a homogeneous polynomial of degree m, we have that it is also a
solution of the Euler equation

x
∂ Pm

∂x
+ y

∂ Pm

∂ y
= mPm. (7)

From (6) and (7) we deduce that Pm satisfies

(λx + my)
∂ Pm

∂x
+ (−mx + λy)

∂ Pm

∂ y
= 0. (8)

This means that Pm must be a nontrivial polynomial first integral of the planar linear system ẋ =
λx + my, ẏ = −mx + λy which has a focus at the origin. It is known that this is not possible, hence
we reached the contradiction and we proved that the function u = V |Wc is flat at the origin.

(ii) First we prove (ii) in the case that the given local center manifold at the origin is Wc =
{z = 0}. From the hypothesis we have that V (x, y,0) ≡ 0. Then there exist an integer m � 1 and a
smooth and non-flat function W such that W (x, y,0) �≡ 0 and V (x, y, z) = zm W (x, y, z). We proved
in Proposition 7 that the lower-order non-null homogeneous polynomial in the Taylor series of V is
z(x2 + y2)k , hence we must have m = 1.

In order to prove the general case, notice that, performing the near identity change of variables
(x, y, z) 
→ (x, y, Z) defined as Z = z − h(x, y), system (1) becomes

ẋ = −y + F̃1(x, y, Z),

ẏ = x + F̃2(x, y, Z),

Ż = λZ + F̃3(x, y, Z), (9)

where F̃i are nonlinear terms and F̃3(x, y,0) ≡ 0. In this way, the given center manifold of system (1)
is transformed into {Z = 0}, some center manifold of (9).

Given a vector field X possessing an inverse Jacobi multiplier V and a diffeomorphism ψ such
that X̃ = ψ∗X , we have that Ṽ = J−1

ψ V ◦ ψ−1 is an inverse Jacobi multiplier of X̃ where Jψ denotes
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the Jacobian determinant of ψ (see [1]). In our particular case we have ψ(x, y, z) = (x, y, Z) with
Z = z − h(x, y) so that

Jψ = ∂(x, y, Z)

∂(x, y, z)
=

∣∣∣∣∣
1 0 0
0 1 0

−hx −hy 1

∣∣∣∣∣ = 1.

Hence, the relation between V and the inverse Jacobi multiplier Ṽ (x, y, Z) of (9) is Ṽ (x, y, z −
h(x, y)) = V (x, y, z), and the conclusion follows.

The fact that W (x, y,h(x, y)) is an inverse integrating factor of X |Wc is obtained applying Theo-
rem 6.

(iii) Define the curve C = (x,0,h(x,0)) ⊂Wc with x ∈ (0, ε] and ε > 0 sufficiently small. We claim
that the curve C is a transversal section to the flow of system (1) restricted to Wc . To see that, let
u(x) = (1,0, ∂h

∂x (x,0)) be a tangent vector to C at (x,0,h(x,0)). The third component of the cross
product u(x) ×X (x,0,h(x,0)) is x +F2(x,0,h(x,0)) = x +O(x2) and therefore never vanishes along
the curve C . Hence u(x) is not parallel to X (x,0,h(x,0)), proving the claim.

An interesting property of inverse Jacobi multipliers is that they can be computed along the orbits
of X . More concretely, let φt(x, y, z) be the flow of system (1) such that φ0(x, y, z) = (x, y, z). Using
the characteristics method applied to the linear first-order partial differential equation X V = V divX
we obtain that

V
(
φt

(
x,0,h(x,0)

)) = V
(
x,0,h(x,0)

)
exp

( t∫
0

divX
(
φs

(
x,0,h(x,0)

))
ds

)
. (10)

Recall that divX = ∂F1
∂x + ∂F2

∂ y + ∂F3
∂z + λ.

Denote by T (x) the time that takes the orbit of (1) starting at the initial point (x,0,h(x,0)) to
come back to the transversal section C . It is known that T (x) = 2π + O(x). This assertion is proved
performing the polar change of coordinates to the reduced vector field X |Wc that brings the differ-
ential equation of the orbits of X |Wc to some equation of the form

dr

dθ
= rR(r, θ)

1 + Θ(r, θ)
. (11)

Then, denoting by r(θ; x) the solution of Eq. (11) such that r(0; x) = x, the period function T (x) is
given by

T (x) =
2π∫
0

dθ

1 + Θ(r(θ; x), θ)
=

2π∫
0

(
1 +O(x)

)
dθ = 2π +O(x).

Taking into account that φt is a diffeomorphism and using the hypotheses on our field, we obtain that

T (x)∫
0

divX
(
φs

(
x,0,h(x,0)

))
ds = λT (x) +O(x) = 2πλ +O(x). (12)

The orbit of (1) through the point (x,0,h(x,0)) of C is closed, that is,

φT (x)
(
x,0,h(x,0)

) = (
x,0,h(x,0)

)
for all x ∈ (0, ε).
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We evaluate (10) at t = T (x) and, using (12) we obtain

V
(
x,0,h(x,0)

) = V
(
x,0,h(x,0)

)(
2πλ +O(x)

)
.

This gives that V (x,0,h(x,0)) ≡ 0 that further, by (10) and using that C is a transversal section to the
flow of system (1), gives that V (x, y,h(x, y)) ≡ 0. �

We end this section with further comments on the relation between inverse Jacobi multipliers and
center manifolds. We start with an example, the system

ẋ = −y − x
(
x2 + y2), ẏ = x − y

(
x2 + y2), ż = −z

which has a focus at the origin. This system has the analytic center manifold

Wc
0 = {z = 0}

and the C∞ flat center manifolds (for all a ∈ R
∗)

Wc
a =

{
z = a exp

(
− 1

2(x2 + y2)

)}
.

The system also possesses the analytic inverse Jacobi multiplier

V 0(x, y, z) = z
(
x2 + y2)2

and the C∞ and non-flat inverse Jacobi multipliers (for all a ∈R
∗)

Va(x, y, z) =
(

z − a exp

(
− 1

2(x2 + y2)

))(
x2 + y2)2

.

It is not difficult to check the validity of Theorem 8(i) for each couple of center manifold and inverse
Jacobi multiplier of this system. Moreover, we notice that the null set of each of the inverse Jacobi
multipliers described above contains one and only one center manifold. Since any linear combination
of inverse Jacobi multipliers is again an inverse Jacobi multiplier, it is possible to construct one whose
null set does not contain any center manifold. For example,

V̂ (x, y, z) = V 0(x, y, z) − V 1(x, y, z) = exp

(
− 1

2(x2 + y2)

)(
x2 + y2)2

is an inverse Jacobi multiplier of our system, but V̂ −1(0) = {(0,0,0)}. However, note that V̂ is a flat
function at the origin and that each non-flat inverse Jacobi multiplier listed above vanishes on some
center manifold. Moreover, note that any center manifold listed above is included in the null set of
some inverse Jacobi multiplier. Another remark is that the lower-order homogeneous polynomial in
the Taylor expansion around the origin of each inverse Jacobi multiplier listed above is indeed of the
form (x2 + y2)k , according to Proposition 7, but k = 2 is the same constant for all the V ’s. Of course,
it would be interesting to know which of these features maintains in the general case.
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3. Proofs of Theorems 4 and 5

We briefly recall some known techniques and results from normal form theory that we will need
later.

The book [18] treats in detail what we report below in the special case of the planar center prob-
lem. The higher-dimensional context is explained in detail in [3], see also [6] for the 3-dimensional
case that we are interested. We use the complex variable X = x + iy and its complex conjugate
Y = X̄ = x − iy to get the following complexification of family (1):

Ẋ = i X + P (X, Y , z), Ẏ = −iY + Q (X, Y , z), ż = λz + R(X, Y , z). (13)

System (13) is analytic in C
3 with P (X, Y , z) = ∑

p+q+r�2 apqr X p Y q zr , Q (X, Y , z) =∑
p+q+r�2 bpqr X p Y q zr and R(X, Y , z) = ∑

p+q+r�2 cpqr X p Y q zr . Of course, since Y = X̄ we must have

Q (w, w̄, z) = P (w, w̄, z) all (w, z) ∈ C×R, that is, bqpr = āpqr . Moreover, cpqr are such that R(w, w̄, z)
is real for all (w, z) ∈ C × R. By using normal form theory (see for instance [3]), we can perform a
near identity formal change of variables (X, Y , z) 
→ (u, v, w) that eliminates all nonresonant terms
and brings system (13) into the Poincaré formal normal form

u̇ = iu + uA(uv), v̇ = −iv + vB(uv), ẇ = λw + wC(uv), (14)

where A, B and C are formal series without independent term. We recall that the monomial xp yq zr

in the jth equation of system (13) is resonant if (p,q, r) with nonnegative integer components sat-
isfying p + q + r � 2 is a solution of the equation (p − q)i + λr = κ j where (κ1, κ2, κ3) = (i,−i, λ).
Usually, a normalizing transformation is not unique. In what follows, we call such a transformation
distinguished normalization if the transformation only contains non-resonant terms. The distinguished
normalization is unique.

The next result appears in [6] and gives several characterizations of centers for system (1).

Theorem 9. The origin is a center for (1) if and only if one of the following equivalent statements is verified.

(i) System (1) admits a formal first integral.
(ii) System (1) admits a local analytic first integral.

(iii) Any normal form (14) of system (1) satisfies A+B ≡ 0.

Statement (iii) of Theorem 9 can be drawn from various parts of [3] or in compact form from [6].
The statement (ii) is just the Lyapunov Center Theorem.

Proof of Theorem 4. Assume that (1) has an analytic local inverse Jacobi multiplier at the origin of
the form V (x, y, z) = z + · · · . Using the Implicit Function Theorem for the equation V (x, y, z) = 0 we
obtain the existence of a unique analytic function h(x, y) defined in a neighborhood of the origin
such that h(0,0) = 0 and V (x, y,h(x, y)) ≡ 0. Additionally, one has Dh(0,0) = 0. Hence, from the
invariance of V = 0 under the flow, the definition of the center manifold and Theorem 8 we conclude
that Wc = {z = h(x, y)} is an analytic local center manifold at the origin and there exists an analytic
function W with W (x, y,h(x, y)) �≡ 0 such that V (x, y, z) = (z − h(x, y))W (x, y, z). Since V (x, y, z) =
z + · · · we must have W (0,0,0) = 1. Further we have that v(x, y) = W (x, y,h(x, y)) is an analytic
inverse integrating factor of X |Wc that satisfies v(0,0) = 1. The Reeb Criterium (Theorem 2) assures
that the origin is a center for X |Wc .

Conversely, assume now that (1) has a center at the origin. Then, from Theorem 9, it can be put
into the complex normal form (14) with A+B ≡ 0. In Chapter 5 of [3] it is shown that the condition
A+B ≡ 0 implies that the distinguished normalizing transformation (X, Y , z) 
→ (u, v, w) that brings
system (13) into the normal form (14) is convergent. Moreover, the analytic distinguished normal
form (14) is the complexification of a real system, which implies in the center case that A (and
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of course B) have only purely imaginary coefficients. This real system can be recovered by making
the substitution u = ξ + iη and v = ū = ξ − iη in (14) and applying them to ξ̇ = 1

2 (u̇ + v̇) and
η̇ = 1

2i (u̇ − v̇). Direct computation gives the real analytic center normal form

ξ̇ = −ηF
(
ξ2 + η2), η̇ = ξ F

(
ξ2 + η2), ẇ = λw + wG

(
ξ2 + η2), (15)

where F (s) = 1 − iA(s) is a real analytic function near the origin such that F (0) = 1 and G = C . We
emphasize that in the transcendental case of Chapter 13 of the book [3], which corresponds with our
center case, it is proved that the diffeomorphism (x, y, z) 
→ Φ(x, y, z) = (Re(u), Im(u), w) = (ξ,η, w)

is real analytic. Thus, it possesses an analytic local real inverse. In short we have that systems (1)
and (15) are analytically conjugated.

On the other hand, it is straightforward to check that V̂ (ξ,η, w) = w is an inverse Jacobi multi-
plier of system (15). Hence, going back to the original real variables (x, y, z) and taking into account
how inverse Jacobi multipliers change under changes of variables, we have that system (1) has a
local analytic inverse Jacobi multiplier of the form V (x, y, z) = z + · · · . Step by step we have that
Ṽ (u, v, w) = w is an inverse Jacobi multiplier of (14), V ∗(X, Y , z) = (z + · · ·)/(1 + · · ·) = z + · · ·
is an inverse Jacobi multiplier of (13) where the numerator and denominator of V ∗ are the third
component of the near identity analytic change (u, v, w) 
→ (X, Y , z) and its Jacobian determinant,
respectively. Finally, V (x, y, z) = V ∗(x + iy, x − iy, z) = z + · · · is the real analytic local inverse Jacobi
multiplier of system (1) at the origin.

The final part of the theorem, Wc ⊂ V −1(0), is a simple consequence of the Implicit Function
Theorem applied to the analytic function V (x, y, z) = z + · · · near the origin and of the uniqueness of
the center manifold in the center situation. �
Proof of Theorem 5. Let the origin be a focus for system (1). Then we do a formal normalizing trans-
formation (X, Y , z) 
→ (u, v, w) that brings system (13) into the formal normal form (14) which is the
complexification of the real formal system

ξ̇ = −η + 1

2

[
(ξ + iη)A

(
ξ2 + η2) + (ξ − iη)B

(
ξ2 + η2)],

η̇ = ξ + 1

2

[
(η − iξ)A

(
ξ2 + η2) + (η + iξ)B

(
ξ2 + η2)],

ẇ = λw + wC
(
ξ2 + η2), (16)

where u = ξ + iη and v = ū = ξ − iη. Notice that, since the symmetry conjugation B(s) =A(s) holds,
system (16) is real formal. In short, systems (1) and (16) are formally conjugated.

In addition, system (16) possesses the following real formal inverse Jacobi multiplier

V ∗(ξ,η, w) = w
(
ξ2 + η2)(A(

ξ2 + η2) + B
(
ξ2 + η2)),

with A(ξ2 + η2) + B(ξ2 + η2) �≡ 0. Hence, A(s) + B(s) = αmsm + O (sm+1) with αm �= 0 and m � 1 a
positive integer. Undoing the formal change of coordinates we recover that

V (x, y, z) = (z + · · ·)(x2 + y2 + · · ·)(αm(x2 + y2)m + · · ·)
1 + · · · . (17)

Thus, up to multiplicative constants, we get that V (x, y, z) = z(x2 + y2)m+1 + · · · is a formal inverse
Jacobi multiplier of system (1).

Now, we can use Borel’s Theorem, see for instance [16], to ensure the existence of a smooth
function whose Taylor expansion at the origin is just the above formal series representing V (x, y, z).
Of course this smooth function is not unique due to the possible addition of flat terms and need
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not be an inverse Jacobi multiplier (a solution of the partial differential equation X V = V divX ).
Moreover, it is clear that C∞-conjugacy between vector fields implies formal conjugacy but the con-
trary is not always satisfied (one exception are the hyperbolic singularities from the Sternberg–Chen
Theorem, see [5]). The question to clarify in what cases, aside from hyperbolic, formal conjugacy im-
plies C∞-conjugacy is very important and depends on the nature of the flow restricted to the center
manifold Wc . In [2], it is studied the case that interests us: dimWc = 2 due to a nonzero pair of
purely imaginary eigenvalues. The conclusion of [2] is that only the focus case (Re(A) �≡ 0) satisfies
that any vector field which is formally conjugate to it is necessarily C∞-conjugate to it. Hence, we
can ensure the existence of a C∞ and non-flat inverse Jacobi multiplier of system (1) of the form
V (x, y, z) = z(x2 + y2)k + · · · for some k � 2.

Looking at the form (17) of V , we notice that it contains a factor of the form (z+· · ·). Applying the
Implicit Function Theorem around the origin to this factor, we obtain the existence of a C∞ invariant
surface z = h(x, y) which is tangent to the origin. Hence, this must be a C∞ local center manifold
Wc ⊂ V −1(0). �
Remark 10. Observe that the proof of Theorem 5 depends crucially on theorems proved in [2] and [3].
We remark that there are more recent and much stronger results in normal form theory, see for
instance the excellent survey of Stolovitch [20]. In essence, instead of the formal normal form (16)
one can use a quasi-analytic normal form of some Gevrey type, thus avoiding the use of Sternberg-like
type arguments.

4. The Lü system

For practical reasons, we give the following theorem as a direct consequence of Theorem 4. We
denote by ∇V (u) the line vector of first-order partial derivatives of V calculated in u.

Corollary 11. Consider the analytic three-dimensional system u̇ = f (u) which has a Hopf point at u =
u∗ ∈ R

3 . This system has a center at u = u∗ if and only if it admits a local analytic inverse Jacobi multiplier V
at u∗ with ∇V (u∗) �= 0.

Proof. Using a linear invertible change of coordinates ξ = P (u − u∗) and a time scaling, system u̇ =
f (u) is transformed in a system of the form (1) whose linear part is in Jordan form. If we denote
by V an inverse Jacobi multiplier of system u̇ = f (u), then

Ṽ (ξ) = (det P )V
(

P−1ξ + u∗)
is an inverse Jacobi multiplier of the transformed system. The converse is also true. In particular, we
deduce that

∇ Ṽ (0) = (det P )∇V
(
u∗)P−1. (18)

We have the following equivalences. System u̇ = f (u) has a center at u = u∗ ⇔ the transformed
system of the form (1) has a center at ξ = 0 ⇔ it admits a local analytic inverse Jacobi multiplier Ṽ
such that ∇ Ṽ (0) �= 0 ⇔ system u̇ = f (u) admits a local analytic inverse Jacobi multiplier V such that
∇V (u∗) �= 0. In order to establish these equivalences we used Theorem 4 and relation (18). �
Theorem 12. Consider the 3-parametric Lü family given by the following quadratic system in R

3

ẋ = a(y − x), ẏ = cy − xz, ż = −bz + xy, (19)

with parameters (a,b, c) ∈ R
3 . The singularities (±√

bc,±√
bc, c) are centers if and only if (a,b, c) ∈ L where

the center variety L is the straight line L = {(a,b, c) ∈R
3: a �= 0, b = 2a, c = a} of the parameter space.
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Moreover, when (a,b, c) ∈ L, V (x, y, z) = x2 − 2az is a global inverse Jacobi multiplier, {V (x, y, z) = 0} is
a global center manifold for both singularities and the system reduced to the center manifold is Hamiltonian
with Hamiltonian function H(x, y) = axy − a

2 y2 − 1
8a x4 .

Theorem 12 is just an application of Corollary 11 and gives a positive answer to a conjecture
formulated in the paper [14] about the classification of centers in the Lü system. Before proving The-
orem 12, we summarize the known results on the Lü system (19). Despite its simplicity, in [12] it is
showed that system (19) has a rich dynamical behavior, ranging from stable equilibrium points to pe-
riodic and even chaotic oscillations, depending on the parameter values (a,b, c). System (19) has the
equilibrium point (0,0,0), which exists for any parameter values and, for bc > 0 it also has the sym-
metric equilibria Q ± = (±√

bc,±√
bc, c). The stability and degenerate Hopf bifurcation which occur

at the equilibria Q ± up to codimension three of the Lü system are studied in the article [14]. Notice
that system (19) is invariant under the discrete symmetry (x, y, z) → (−x,−y, z). So the stability of
the equilibrium Q − can be obtained from the stability of Q + .

When c = (a + b)/3 and ab > 0, Q + is a Hopf point of system (19) because it possesses one
real nonzero eigenvalue and a pair of purely imaginary eigenvalues. In this case, the first Poincaré–
Lyapunov constant of Q + is different from zero if and only if (a − 5b)(2a − b) �= 0. When a − 5b = 0,
in [14] it is proved that the second Poincaré–Lyapunov constant is different from zero. Finally, when
2a − b = 0, it is showed that the second and third Poincaré–Lyapunov constants vanish. Based on this
last result, in [14] the following conjecture is given: In the straight line L = {(a,b, c) ∈ R

3: a �= 0, b =
2a, c = a} of the parameter space, the equilibria Q ± are centers of the Lü system.

Proof of Theorem 12. Taking into account the above discussion, it remained to prove that when
(a,b, c) ∈ L each equilibrium point Q ± = (±|a|√2,±|a|√2,a) is a center. So, let (a,b, c) ∈ L. It is
easy to check that the polynomial function V (x, y, z) = x2 − 2az is a solution of the first-order partial
differential equation

a(y − x)
∂V

∂x
+ (ay − xz)

∂V

∂ y
+ (−2az + xy)

∂V

∂z
= −2aV ,

hence indeed it is an inverse Jacobi multiplier of (19). We have that ∇V (Q ±) = (±2|a|√2,0,−2a)

which is not the null vector. Applying Corollary 11 we deduce that Q ± are both centers.
We denote by Wc the center manifold at Q + (or Q −). Based on Theorem 8 we must have that

Wc ⊂ V −1(0). Since this is a geometric property, it does not depend on whether the system is in
the Jordan form or not. Hence Wc = x2 − 2az = 0 is indeed a global center manifold for both singu-
larities Q ± . Applying Theorem 6 we deduce that v(x, y) = 1 is an inverse integrating factor for the
Lü system reduced to Wc , hence this planar system is Hamiltonian. Of course, these calculations are
simple enough to be checked directly, without using the theoretical results that are, in fact, validated
in this way.

The reduced system is ẋ = a(y − x), ẏ = ay − 1
2a x3 with the Hamiltonian given in the statement of

the theorem. �
Remark 13. We notice that the authors of [15] performed two successive changes of coordinates to
the Lü system. For the final system they found an algebraic center manifold and proved that the
system reduced to this center manifold has a polynomial Hamiltonian.
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