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We present an effective-field-theory calculation of the effect of a dimension-six operator involving the 
top quark on precision electroweak data via a top-quark loop. We demonstrate the renormalizability, in 
the modern sense, of the effective field theory. We use the oblique parameter Û to bound the coefficient 
of the operator, and compare with the bound derived from top-quark decay.
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There are two ways to search for physics beyond the Standard 
Model (SM). One way is to search directly for new particles. The 
other is to search for the indirect effects that new particles might 
have on the known SM particles. This could manifest itself as 
nonstandard interactions of the known particles, sometimes called 
anomalous couplings.

The modern approach to nonstandard couplings is effective field 
theory [1]. In the effective-field-theory approach, the SM is re-
garded as the leading approximation at “low” energies, that is, 
at energies much less than the scale of new physics, Λ. The new 
physics enters as a correction to this leading approximation, sup-
pressed by inverse powers of Λ. For most observables, the leading 
correction is suppressed by two inverse powers of Λ. This corre-
sponds to operators in the Lagrangian of dimension-six, in contrast 
to the SM Lagrangian, where all operators are of dimension four or 
less.

The effective-field-theory approach has a number of virtues:

• It is well motivated and provides guidance as to the most
likely place to observe the indirect effect of new physics.

• The known SU(3)C × SU(2)L × U (1)Y gauge symmetry of the
SM is respected.

• It is model independent, and general enough to accommodate
all possible physics beyond the SM.

• Radiative corrections due to SM interactions are calculable and
unambiguous.

• Radiative corrections due to dimension six operators are cal-
culable and unambiguous.

The effective-field-theory approach incorporates everything we 
already know about nature at high energy, and allows us to en-
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tertain the possibility of new physics without disrupting what has 
already been established.

A number of papers have advocated the use of effective field 
theory for top quark physics [2–18]. Those papers have consid-
ered the effect of dimension-six operators on the production and 
decay of the top quark. However, the top quark also plays an im-
portant role as a virtual particle in precision electroweak physics. 
Indeed, the correct range for the top-quark mass was anticipated 
by precision electroweak studies. Now that the top-quark mass is 
accurately known from direct measurements, we can ask what the 
precision electroweak measurements have to say about the pres-
ence of dimension-six operators in loop diagrams involving the top 
quark. Because of the last virtue listed above, this is a well-defined 
question with an unambiguous answer.

In this Letter, we will focus on just one dimension-six operator 
that affects the top quark,

O tW = (
q̄σμντ I t

)
φ̃W I

μν, (1)

where W I
μν is the SU(2)L field-strength tensor, φ is the Higgs dou-

blet, t is the right-chiral top quark, and q is the left-chiral doublet 
containing top and bottom.1 We chose this operator because it is 
the only one which contributes to the leading correction to the 
branching ratio of the top quark to W bosons of zero helicity.2

Thus this operator can already be bounded from present data. We 
calculate the contribution of this operator to precision electroweak 
data via a top-quark loop and compare the resulting bound on 
the coefficient of this operator with the bound obtained from top-
quark decay.

1 σμν = i
2 [γ μ,γ ν ] is a tensor constructed from Dirac matrices, and τ I are the

SU(2)L Pauli matrices. The top-quark fields are mass eigenstates, and φ̃ = εφ∗ .
2 Two other operators contribute to the leading correction to the branching ratio 

of the top quark to W bosons of positive helicity [19,20].
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Fig. 1. The dimension-six operator O tW contributes to the top-quark decay process
through a correction to the W tb vertex.

When the Higgs field acquires a vacuum-expectation value, the
dimension-six operator O tW yields the effective interactions [13]

Leff = LSM + CtW

Λ2

[(
v
(
b̄σμν(1 + γ5)t

)
∂μW −

ν + h.c.
)

+ √
2cW v

(
t̄σμνt

)
∂μ Zν + √

2sW v
(
t̄σμνt

)
∂μ Aν

− √
2igv

(
t̄σμνt

)
W +

μ W −
ν + · · ·] (2)

where CtW is a dimensionless coefficient, v ≈ 246 GeV is the Higgs
vacuum expectation value, and sW , cW are the sine and cosine of
the weak mixing angle. The first term in the effective interactions
modifies the top-quark branching ratios to zero-helicity, negative-
helicity, and positive-helicity W bosons (see Fig. 1) [17],

f0 = m2
t

m2
t + 2m2

W

− 4
√

2CtW v2

Λ2

mtmW (m2
t − m2

W )

(m2
t + 2m2

W )2
, (3)

f− = 2m2
W

m2
t + 2m2

W

+ 4
√

2CtW v2

Λ2

mtmW (m2
t − m2

W )

(m2
t + 2m2

W )2
, (4)

f+ = 0 (5)

where we have neglected the bottom-quark mass throughout,
which is an excellent approximation for the operator O tW (but
not for the other two operators mentioned in a previous footnote
[19,20]).

We compare with recent data from the CDF [21] and D0 [22]
collaborations, which report a measurement of f0 (with the con-
straint f+ = 0 imposed):

f0 = 0.62 ± 0.11(stat) ± 0.06(syst) (CDF), (6)

f0 = 0.735 ± 0.051(stat) ± 0.051(syst) (D0). (7)

These measurements are consistent with the SM prediction, at
NNLO in QCD [23],

f0 = 0.687(5) (8)

where the uncertainty is primarily from the uncertainty in the
top-quark mass. Because we are using an effective-field-theory ap-
proach, we can consistently include both QCD radiative corrections
and the correction due to the dimension-six operator, which is the
second-to-last virtue listed above. Comparing with data yields the
constraints

CtW

Λ2
= 1.10 ± 2.06 TeV−2 (CDF), (9)

CtW

Λ2
= −0.79 ± 1.19 TeV−2 (D0). (10)

The NLO QCD correction to the second term in Eq. (3) is also
known [24]. It increases the value of CtW /Λ2 by about 1%, much
less than the uncertainty in this quantity.

We now turn to the effect of O tW on precision electroweak
measurements via a top-quark loop, as shown in Fig. 2.3 Since

3 There is also a diagram contributing to the W -boson self energy, with a top-
quark loop, constructed from the contact interaction given by the last term in
Eq. (2). Since this interaction is antisymmetric in μ, ν , this diagram does not con-
tribute to the self energy.
Fig. 2. The dimension-six operator O tW contributes to the electroweak-gauge-boson
self energies via loop diagrams.

this loop only affects the electroweak-gauge-boson self energies,
we may be able to use the well-known S , T , U formalism to char-
acterize it [25–27]. Following Ref. [27], we define these oblique
parameters in terms of self energies and derivatives of self ener-
gies at q2 = 0,

Ŝ = −cW

sW
Π ′

30(0)

= c2
W Π ′

Z Z (0) − cW

sW

(
c2

W − s2
W

)
Π ′

γ Z (0) − c2
W Π ′

γ γ (0), (11)

T̂ = −Π33(0) − Π11(0)

m2
W

= 1

m2
W

[
ΠW W (0) − c2

W ΠZ Z (0)
]
, (12)

Û = Π ′
33(0) − Π ′

11(0)

= −Π ′
W W (0) + c2

W Π ′
Z Z (0)

+ 2cW sW Π ′
γ Z (0) + s2

W Π ′
γ γ (0). (13)

The contribution of the operator O tW to the oblique parameters,
via Fig. 2, is calculated in dimensional regularization to be

Ŝ = Nc
gCtW

4π2

√
2vmt

4Λ2

5

3

(
1

ε
− γ + ln 4π − ln

m2
t

μ2

)
, (14)

T̂ = 0, (15)

Û = Nc
gCtW

4π2

√
2vmt

4Λ2
(16)

where Nc = 3 is the number of colors and μ is the ’t Hooft mass.
The contribution of O tW to the Ŝ parameter is ultraviolet di-

vergent. However, there is another dimension-six operator,

O W B = (
φ†τ Iφ

)
W I

μν Bμν (17)

(Bμν is the U (1)Y field-strength tensor) that contributes to the Ŝ
parameter at tree level, as shown in Fig. 3. This operator must be
included for consistency, since it also contributes to the Ŝ param-
eter at order 1/Λ2. We find

Ŝ = C0
W B v2

Λ2

cW

sW
(18)

where C0
W B is the bare coefficient of the operator. This coefficient

is renormalized by the one-loop contribution of the operator O tW

in Eq. (14). In the MS scheme, the total contribution to the Ŝ pa-
rameter is

Ŝ = CW B(μ)v2

Λ2

cW

sW
− Nc

gCtW

4π2

√
2vmt

4Λ2

5

3
ln

m2
t

μ2
(19)

which is finite and unambiguous. This is an example of the renor-
malizability of an effective field theory in the modern sense. Al-
though an effective field theory is not renormalizable in the old-
fashioned sense, it is renormalizable at any order in 1/Λ2, pro-
vided that all the pertinent operators are included [28].

Although the result for the Ŝ parameter is finite and unambigu-
ous, it cannot be used to constrain the coefficient CtW , because
of the tree-level contribution from the operator O W B . A measure-
ment of the Ŝ parameter constrains only the linear combination
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Fig. 3. The operator O W B contributes to the electroweak-gauge-boson self energies
at tree level.

of CW B and CtW contained in Eq. (19). For the choice μ = mt , a
measurement of the Ŝ parameter constrains only CW B(mt).

There is no contribution to the T̂ parameter from the op-
erator O tW [see Eq. (15)]. Even if there were a contribution,
there is also a tree-level contribution from the operator O (3)

φ =
(φ† Dμφ)[(Dμφ)†φ] that would mask the one-loop contribution
from O tW . A top-quark model that gives a nonvanishing contri-
bution to the T̂ parameter is discussed in Ref. [29].

There is no tree-level contribution to the Û parameter, defined
by Eq. (13), at order 1/Λ2, so the one-loop contribution from the
operator O tW , Eq. (16), is the sole contribution at this order. The
one-loop result is finite, as guaranteed by the renormalizability of
the effective field theory in the modern sense.

The value of the Û parameter may be obtained from Ref. [30].
In Ref. [30], the U parameter is defined as

αU = 4s2
W

[
Π11(m2

W ) − Π11(0)

m2
W

− Π33(m2
Z ) − Π33(0)

m2
Z

]

= 4s2
W

[
ΠW W (m2

W ) − ΠW W (0)

m2
W

− (
c2

W

(
ΠZ Z

(
m2

Z

) − ΠZ Z (0)
) + 2sW cW Πγ Z

(
m2

Z

)

+ s2
W Πγγ

(
m2

Z

))
/
(
m2

Z

)]
(20)

(α is the fine structure constant) which apparently differs from
the definition of Û in Eq. (13). However, Ref. [30] tacitly assumes
that the gauge boson self energies are linear in q2, in which
case the two definitions of U are equivalent up to normalization:
Û = −αU/4s2

W . Nevertheless, we must also check whether our cal-
culation of the contribution to the self-energy function from O tW

is approximately linear in q2. Since the constraint on the U pa-
rameter comes dominantly from the measurement of the W -boson
mass [30], it suffices to show that the linear approximation is valid
in predicting the value of W -boson mass.

In the Ŝ , T̂ , Û formalism, the W -boson mass can be expressed
as [26]

m2
W = m2

W (SM)

(
1 − 2s2

W

c2
W − s2

W

Ŝ + c2
W

c2
W − s2

W

T̂ − Û

)

= m2
W (SM) + c2

W

c2
W − s2

W

ΠW W (0) + m2
W Π ′

W W (0)

− c4
W

c2
W − s2

W

[
ΠZ Z (0) + m2

Z Π ′
Z Z (0)

]

+ s2
W c2

W

c2
W − s2

W

m2
Z Π ′

γ γ (0), (21)

where the definitions of Ŝ , T̂ , Û in Eqs. (11)–(13) are used, and
mW (SM) is the value of the W -boson mass calculated as accurately
as possible in the SM.

The exact formula for mW , without assuming a linear depen-
dence of the self energies on q2, is

m2
W = m2

W (SM) + ΠW W
(
m2

W

) + s2
W

c2 − s2
ΠW W (0)
W W
− c4
W

c2
W − s2

W

ΠZ Z
(
m2

Z

) + s2
W c2

W

c2
W − s2

W

m2
Z Π ′

γ γ (0). (22)

Comparing Eqs. (21) and (22), we find that the error introduced by
the linear approximation is

δm2
W = −[

ΠW W
(
m2

W

) − ΠW W (0) − m2
W Π ′

W W (0)
]

+ c4
W

c2
W − s2

W

[
ΠZ Z

(
m2

Z

) − ΠZ Z (0) − m2
Z Π ′

Z Z (0)
]
. (23)

For the operator O tW , we find

δm2
W = −Nc

gCtW

4π2

√
2vmt

Λ2
m2

W

{
3 − 8s2

W

3(1 − 2s2
W )

× c2
W

(
1 −

√
4m2

t − m2
Z

mZ
arctan

mZ√
4m2

t − m2
Z

)

+ 1

2

[
m2

t

m2
W

+
(

m2
t

m2
W

− 1

)2

ln

(
1 − m2

W

m2
t

)]
− 3

4

}

= 0.47 GeV2 CtW

Λ2
TeV2. (24)

Using the world-average W -boson mass, mW = 80.399 ±
0.023 GeV, the uncertainty in m2

W is δm2
W ≈ 4 GeV2. As we will

see shortly, the value of CtW /Λ2 extracted from precision elec-
troweak data is of order 1 TeV−2, so the error introduced by
the linear approximation, Eq. (24), is an order of magnitude less
than the experimental uncertainty in m2

W . Thus the linear approx-
imation is excellent, and we may use the U parameter to bound
CtW /Λ2. The linear approximation is valid because the expansion
parameter for the contribution of the operator O tW to the self en-
ergies (Fig. 2) is q2/m2

t , and this parameter is sufficiently small for
the values q2 = m2

W ,m2
Z needed in Eq. (23).

The value of the U parameter is [30]

U = 0.06 ± 0.10 (25)

for mt = 173.0 GeV and mh = 117 GeV, although there is very little
dependence on the Higgs mass. This corresponds to

Û = (−5.0 ± 8.4) × 10−4. (26)

Using Eq. (16), we find the constraint

CtW

Λ2
= −0.7 ± 1.1 TeV−2 (27)

which is slightly stronger than the constraint from the measure-
ment of top-quark decay, Eqs. (9) and (10).

Thus far we have assumed that O tW , O W B , and O (3)
φ are the

only nonvanishing dimension-six operators. We can relax this as-
sumption by including, along with O tW , all dimension-six opera-
tors that contribute to the gauge-boson self energies at tree level,
which includes O W B and O (3)

φ . These are [31]

O W B = (
φ†τ Iφ

)
W I

μν Bμν,

O (3)
φ = (

φ† Dμφ
)[

(Dμφ)†φ
]
, (28)

O D B = 1

2
(∂ρ Bμν)

(
∂ρ Bμν

)
,

O DW = 1

2

(
Dρ W I

μν

)(
Dρ W Iμν

)
. (29)

Such operators originate whenever heavy fields directly couple
only to the SM gauge fields and the Higgs doublet. Such opera-
tors are sometimes referred to as “universal”.
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Once these operators are included, the self energies are no
longer approximately linear functions of q2, since O D B and O DW

generate terms proportional to q4. Therefore we need four addi-
tional oblique parameters, which correspond to the second order
derivatives of the four self energies with respect to q2. Along with
Ŝ , T̂ , Û , we will use the four additional oblique parameters defined
in Ref. [27]:

V = −m2
W

2

(
Π ′′

33(0) − Π ′′
11(0)

)

= m2
W

2

[
Π ′′

W W (0) − c2
W Π ′′

Z Z (0) − 2cW sW Π ′′
γ Z (0)

− s2
W Π ′′

γ γ (0)
]
, (30)

W = −m2
W

2
Π ′′

33(0)

= −m2
W

2

[
c2

W Π ′′
Z Z (0) + 2cW sW Π ′′

γ Z (0) + s2
W Π ′′

γ γ (0)
]
, (31)

X = −m2
W

2
Π ′′

30(0)

= m2
W

2

[
cW sW Π ′′

Z Z (0) − (
c2

W − s2
W

)
Π ′′

γ Z (0)

− cW sW Π ′′
γ γ (0)

]
, (32)

Y = −m2
W

2
Π ′′

00(0)

= −m2
W

2

[
s2

W Π ′′
Z Z (0) − 2cW sW Π ′′

γ Z (0) + c2
W Π ′′

γ γ (0)
]
. (33)

At tree level, four of the seven oblique parameters receive a
contribution from a dimension-six operator:

Ŝ = CW B
cW

sW

v2

Λ2
, (34)

T̂ = −C (3)
φ

v2

2Λ2
, (35)

W = −2C DW
m2

W

Λ2
, (36)

Y = −2C D B
m2

W

Λ2
. (37)

The other three oblique parameters, Û , V , and X , are zero at tree
level. Thus the contribution to these parameters from O tW at one
loop (Fig. 2) must be finite, as guaranteed by the renormalizability
of the effective field theory in the modern sense. We find

Û = Nc
gCtW

4π2

√
2vmt

4Λ2
, (38)

V = −Nc
gCtW

4π2

√
2vmt

Λ2

m2
W

12m2
t

, (39)

X = Nc
gCtW

4π2

√
2vmt

Λ2

5m2
Z

72m2
t

sW cW , (40)

where the result for Û was already given in Eq. (16). The one-
loop contribution to the parameter Y vanishes, and the one-loop
contribution to the W parameter is −V [Eq. (39)].

In order to obtain constraints on Û , V and X , we did a global
fit using most major precision electroweak measurements. These
include the Z -pole data, the W -boson mass and width, DIS and
atomic parity violation, and fermion pair production at LEP 2. The
data and corresponding SM predictions can be found in [30,32,33].
The corrections to these observables from the seven oblique pa-
rameters can be derived from the “star” formalism described in
Ref. [26]. We calculated the total χ2 as a function of the oblique
parameters. The central value for the fit is given by minimizing χ2,
and the one-sigma bound is given by χ2 − χ2

min = 1. We let Ŝ , T̂ ,

W and Y freely float and put constraints on the Û , V and X pa-
rameters. We find three statistically independent combinations:

0.46Û − 0.46V + 0.76X = −0.0013 ± 0.0007, (41)

0.54Û − 0.54V − 0.65X = 0.0000 ± 0.0017, (42)

0.71Û + 0.71V = −0.009 ± 0.030. (43)

The most stringent constrain, Eq. (41), corresponds to Û − V +
2sW cW

c2
W −s2

W
X , which appears in the theoretical value of the W -boson

mass:

m2
W = m2

W (SM)

[
1 − 1

c2
W − s2

W

(
2s2

W Ŝ − c2
W T̂ − s2

W W − s2
W Y

)

−
(

Û − V + 2sW cW

c2
W − s2

W

X

)]
. (44)

Combining Eqs. (38)–(41) yields the constraint

CtW

Λ2
= −3.4 ± 2.0 TeV−2. (45)

Including Eqs. (42) and (43) gives a slightly better constraint,

CtW

Λ2
= −2.8 ± 1.8 TeV−2. (46)

This constraint is weaker than the one given in Eq. (27), but it is
still comparable in precision to the constraints from direct mea-
surements, Eqs. (9) and (10). It applies in more general situations
than Eq. (27), as we only assume that the new physics is oblique
(aside from O tW ). If this assumption were not valid, and additional
operators were present at low energies, our analysis could be ex-
tended to include them. The central value of CtW in Eq. (46) is
nonzero at 1.5σ , which indicates that the precision electroweak
data have a slight preference for the presence of physics beyond
the standard model.

Constraints on the operator O tW may also be gleaned from B
physics. This operator affects the branching ratio for B̄ → Xsγ ,
which is a loop-induced process. It was found in Ref. [34] that the
contribution from O tW is ultraviolet divergent. Thus there must
be a tree-level contribution from another dimension-six opera-
tor, which masks the contribution from O tW . The operator O tW

also affects B − B̄ mixing, and it was found in Ref. [35] that the
contribution is ultraviolet finite, despite the fact that there are
other dimension-six operators that contribute to this process at
tree level. Focusing only on O tW , the constraint

CtW

Λ2
= −0.06 ± 1.57 TeV−2. (47)

was obtained, which is comparable with the bounds from precision
electroweak data [Eq. (27)] and top-quark decay [Eqs. (9) and (10)].

We found that the indirect measurement of the coefficient of
the operator O tW from precision electroweak data is comparable
in precision to the direct measurement from the branching ratio
of top quarks to W bosons of zero helicity. The indirect measure-
ment will become more accurate with more precise electroweak
measurements, in particular of the W -boson mass. The direct mea-
surement will become more accurate with more data from the
Tevatron and the Large Hadron Collider. The direct measurement
has the advantage that is affected, at order 1/Λ2, only by the op-
erator O tW . In contrast, there are four operators (in the limit of
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mb → 0) that contribute to the Û parameter at order 1/Λ2, of
which O tW is just one. We will discuss this in a companion pa-
per on a global analysis of constraints on dimension-six operators
involving the top quark from precision electroweak data.
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