
A New Algorithm for Partitioned Symbolic

Reachability Analysis

Kai Lampka1

Computer Engineering and Communication Networks Lab.
ETH Zurich, Switzerland

Abstract

Binary Decision Diagrams (BDDs) and their multi-terminal extensions have shown to be very helpful for the
quantitative verification of systems. Many different approaches have been proposed for deriving symbolic
state graph (SG) representations from high-level model descriptions, where compositionality has shown to
be crucial for the efficiency of the schemes. Since the symbolic composition schemes deliver the potential
SG of a high-level model, one must execute a reachability analysis on the level of the symbolic structures.
This step is the main resource of CPU-time and peak memory consumption when it comes to symbolic
SG generation. In this work a new operator for zero-suppressed BDDs and their multi-terminal extensions
for carrying out (partitioned) symbolic reachability analysis is presented. This algorithm not only replaces
standard BDD-based schemes, it even makes symbolic composition as found in contemporary symbolic
model checkers such as Prism and Caspa obsolete.

Keywords: Binary Decision Diagrams and algorithms, symbolic reachability analysis, quantitative
verification of systems

1 Introduction

In our work we focus on the quantitative verification of systems, where symbolic

techniques, i.e. techniques based on Decision Diagrams are still state-of-the-art and

employed in probabilistic model checkers. Decision diagrams (DDs) are directed

acyclic graphs for representing finite functions. Multi-terminal Binary Decision Di-

agrams (MTBDDs) [1] are among the most efficient techniques for the state graph

(SG) based quantitative analysis of large and complex systems. For obtaining a com-

pact and readable description of systems to be analyzed, one commonly employs a

(Markovian) description techniques, such as a Stochastic Process Algebra or Gener-

alized Stochastic Petri Nets, among many others, rather than directly specifying the

system’s behavior by a SG. Many different approaches have been proposed for de-

riving symbolic representations of SGs from their high-level descriptions. Roughly

1 Email: lampka@tik.ee.ethz.ch

Electronic Notes in Theoretical Computer Science 223 (2008) 137–151

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.12.036
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81141823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:lampka@tik.ee.ethz.ch
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

speaking, the proposed schemes can be divided into the classes of monolithic - and

compositional approaches. Applying a compositional scheme means that the SG of

the overall model is constructed from smaller components, commonly from symbolic

representations of the SGs of submodels or partitions (submodel- or partition-local

SGs). Compositionality turned out to be crucial, since (a) it reduces the run-time,

as not all sequences of independent activities have to be extracted explicitly and (b)

it induces regularity on the symbolic structures and thus reduces the peak memory

consumption. However, symbolic composition is commonly based on symbolic cross-

product computation, it therefore delivers the potential SG underlying a high-level

model. For restricting the potential transition system to the set of reachable states

and transitions, ones must execute a (symbolic) reachability analysis, commonly

carried out on the level of the symbolic structures, which represent the potential

transition system of the overall model. These symbolic reachability schemes are

the main source of CPU time - and memory consumption when it comes to the

construction of symbolic SG representations.

1.1 Contribution and related work

Based on Bryant’s well known Apply algorithm [3] different symbolic algorithms

have been proposed. Following these traditions this paper introduces a new opera-

tor for carrying out partitioned symbolic reachability analysis. In its final version

this operator makes symbolic composition as found in contemporary compositional

symbolic SG generation methods obsolete, –at least as far as the insertion of identity

structures is concerned. The presented approach is tailored for compositional SG

generation methods and zero-suppressed BDDs (ZBDDs) and their multi-terminal

extension (ZDDs) [9,12]. But, it can easily be adapted to standard BDDs [2,3] and

their multi-terminal derivatives [1]. In total it might find therefore its application

in tools like the (compositional) symbolic model checkers Caspa [8] and Prism [14].

1.1.1 Multi-step reachability schemes

Following [4] earlier work [11,9] (re-) developed a scheme for partitioned symbolic

reachability analysis. Like standard breadth-first-search (bfs) symbolic reachability

analysis, this scheme can be considered as symbolic multi-step approach, which

means that it sequentially executes a number of operators for computing the one-

step reachability set with respect to a transition function. But contrary to the

standard approach, it executes the symbolically represented transition functions in

an activity-wise manner, rather than all at once, This strategy enables one to employ

an early-update strategy on the set of states to be explored in the next step, leading

to a quasi-depth-first-search (q-dfs) scheme rather than implementing a pure bfs -

or dfs scheme. A very similar approach, customized for k-bounded Petri nets and a

fully symbolic SG generation technique 2 has already been introduced as chaining in

[15]. However, contrary to [11,9] and to the approach presented here, the technique

2 Fully symbolic means that the high-level model description technique possesses a symbolic execution
semantics.

K. Lampka / Electronic Notes in Theoretical Computer Science 223 (2008) 137–151138

of [15] is monolithic and therefore most likely to be hampered by large peak memory

requirements.

1.1.2 Single-step approaches

The author of [19] gives a highly detailed overview on techniques related to sym-

bolic reachability analysis and computation of relational products when one employs

BDDs for representing transition relations. The workings [5] and [13] also present

algorithms for computing relational products, where in case of the former BDDs

and in case of the latter ZBDDs are addressed. Similar to these contributions our

new algorithm combines conjunction and existential quantification into a single al-

gorithm. However, the here presented work differs with respect to the state graph

generation method and thus leads to a different algorithm. Like many other sym-

bolic verification tools we also emphasize the usage of high-level modelling methods

for describing systems, thus in our approach we assume compositionally constructed

transition relations. In such a context one commonly inserts identity structures on

the position of the sub-model-independent state variables before combining the in-

dividual transition relations and executing a symbolic reachability analysis. The

algorithm as introduced here, makes this unnecessary, since it advises an identity

semantic when recursing on such variables.

1.2 Organization

Sec. 2 introduces the basic setting and makes the reader familiar with Decision

Diagrams (DDs). Sec. 3 introduces the new symbolic reachability algorithm. Its

practical feasibility is investigated in Sec. 4, where standard benchmarking models

as known from the literature are analyzed. Sec. 5 concludes the paper.

2 Background Theory

2.1 Model world

Powerful methods as known from the functional analysis of systems, have been ex-

tended to the Markovian case. In the following it is assumed that the reader has

basic familiarity with high-level (Markov) model description techniques, such as

Generalized Stochastic Petri Net (GSPNs), or Stochastic Process Algebra (SPA) to

name only few of them. It is assumed that each high-level model M consists of a

finite ordered set of discrete variables commonly denoted as state variables (SVs)

with si ∈ S, and a finite set of activities (Act). Each si records the number of

tokens in a place, the state of the program or process counter, the values of the

process parameters, etc.. By executing activities, one at a time, the model evolves

from one state to another, where each SV si takes an arbitrary value from N, and

each transition is equipped with the activity’s label and its (exponential) execution

rate. This may allow to map a high-level model to a finite transition system or state

graph (SG), where this process is commonly denoted as SG generation. A SG con-

sists of a (finite) set of states (S), and a transition function. A transition function

K. Lampka / Electronic Notes in Theoretical Computer Science 223 (2008) 137–151 139

is a mapping Δ : S �→ 2S, yielding a predecessor/successor relation →⊆ S×S on the

set of states. If each directed edge is labeled with a symbol l ∈ Act one speaks of a

labeled transition system (LTS), yielding the relation → ⊆ S ×Act × S. According

to the above discussion transitions are not only equipped with labels, but also with

rates r ∈ +
0 . This gives one a stochastic LTS (SLTS) →⊆ S×Act× +

0 ×S. From

a SLTS S a Continuous Time Markov Chain (CTMC) can be derived in a straight

forward manner. For exemplification one may refer to part (A) and (B) of Fig. 1

which show a simple SPN and its SLTS.

Compositionality has turned out to be crucial for the effective employment of sym-

bolic SG generation techniques. Therefore it is assumed that high-level models are

somehow compositionally structured, where analogously to contemporary composi-

tional, symbolic SG generation schemes composition is assumed to be achieved via

activity synchronization, which is the joint execution of dedicated activities among

the model’s partitions or via a joining of SVs, which is the merging of submodels

via the sharing of dedicated SVs. 3 Compositionality allows one to group activities

and SVs, obtaining a set of partition- or submodel-local dependent SVs (SD
P) and

a set of partition- or submodel-local independent SV (SI
P) for each partition or

submodel P of a high-level model M.

2.2 Zero-suppressed MTBDDs (ZDDs)

Let = {0, 1} be the set of Booleans, N = {0, 1, 2, . . .} the set of naturals, and
the set of reals and let be a finite set of function values (here ⊂). Let V be
some global (finite) set of Boolean variables on which a strict total ordering π is
defined. The set of variables F := {v1, . . . , vn} ⊆ V employed in a Boolean function
f is denoted as the set of function or input variables of f . Variable vi is essential
for a Boolean function if and only if at least for one assignment to the variables
of f it holds that f(v1, . . . , vi−1, 0, vi+1, . . . , vn) �= f(v1, . . . , vi−1, 1, vi+1, . . . , vn).
Otherwise the variable vi is not essential. A non-essential variable is also commonly
denoted as don’t-care (dnc) variable. In the following n-ary pseudo-Boolean
functions are considered, i.e. functions of the type f : n �→ .

A reduced ordered ZDD is a tuple Z=(KNT ,KT ,VZ,π,var,then,else,value,root) where

(1) KNT is the set of non-terminal - or inner nodes and KT the set of terminal nodes, where |KT | ≥ 1
and KNT ∩ KT = ∅.

(2) VZ = {x1, x2, . . . , xn}(⊆ V) is a finite (possibly empty) set of Boolean variables, and t �∈ VZ is a
pseudo-variable, labelling the terminal nodes. 4 Since the elements of VZ are ordered, we will also
often employ a vector notation, e.g. �x.

(3) π is a strict total ordering on the elements of VZ ∪ {t}, where ∀xi ∈ VZ : xi < t.

(4) var : KNT ∪ KT
→ VZ ∪ {t} such that ∀k ∈ KNT ∪KT : var(k) = t ⇔ k ∈ KT .

(5) then : KNT
→ KNT ∪ KT such that ∀n ∈ KNT : var(n) < var(then(n)).

(6) else : KNT
→ KNT ∪ KT such that ∀n ∈ KNT : var(n) < var(else(n)).

(7) value : KT
→ , where ⊂ .

(8) root ∈ KNT ∪ KT .

and the following reduction rules apply:

3 We differ between partitions and submodels, since in case of the former the sets of SVs among the modules
are disjoint, where in case of submodels this might not be the case.
4 This (pure technical) extension allows one to include the terminal nodes into the ordering on the elements
of VZ.

K. Lampka / Electronic Notes in Theoretical Computer Science 223 (2008) 137–151140

(1) Isomorphism-free rule: There are no isomorphic nodes; i.e.

∀n, m ∈ KNT :
n �= m → (var(n) �= var(m) ∨ then(n) �= then(m)

∨else(n) �= else(m)) and
∀n, m ∈ KT :
n �= m → (value(n) �= value(m)).

(2) Zero-suppressing (0-sup.) reduction rule:
� ∃n ∈ KNT : then(n) ∈ KT ∧ value(then(n)) = 0.

A combination of the Shannon expansion for Boolean functions [17] and the ap-

plication of the 0-sup. rule gives now that a ZDD’s graph and a set of Boolean

variables (together !) uniquely represents a Boolean function [9,12]. Therefore the

notation Z<VZ, π> will be employed, if sets of function variables and their ordering

is from concern. In case = the ZDD is a ZBDD, where also the notation 0-1

ZDD will be employed.

Within shared BDD-environments ZDD-nodes lose their uniqueness as soon as the

represented functions are defined on different sets of input variables. To solve this

problem, [9,12] introduced the concept of partially shared ZDDs (pZDDs) and algo-

rithms for manipulating them. The basic idea of this approach is as follows: When

working with pZDDs, i.e. with ZDDs having different set of input variables, one also

iterates over the input variables of the operand pZDDs. This allows one to assign

a specific semantics to each visited but skipped variable on the current path. The

most important algorithms as far as it is from concern here are the followings:

(1) Relabeling: The operation Z{�x ← �y} constructs a pZDD Y representing the

function fZ in case variable xi is substituted by variable yi, where ∀yi ∈ Y :

yi /∈ Z must hold.

(2) The generic pZApply-algorithm: A symbolic representation of a function f :=

g op h for op being a binary operator, e.g. op ∈ {∧,∨, ∗,×, . . .} and for two

functions g and h, not necessarily defined on the same set of function variables,

can be computed by executing the generic pZApply-algorithm. This algorithm

takes the binary operator op, the respective operand pZDDs (i.e. their root

nodes) and their sets of function variables G and H as input. The basic idea

of the pZApply-algorithm is that for a given pair of ZDDs and their sets of

variables G and H, a recursion for each variable v ∈ (G ∪ H) is executed. The

recursive behavior depends on the type of the current variable, i.e. whether the

current variable is a 0-sup. input variable or a (skipped) non-function variable.

(3) The Abstract-algorithm: This algorithm implements the abstraction of a func-

tion from a variable v, i.e. the algorithm constructs a representation of the

function h := f |v=0op f |v=1, so that v is not a function variable for function

h anymore. For op = ∨ the Abstract-algorithm implements the existential

-, and for op = ∧ it implements the universal quantification. It is straight

forward to extend the Abstract-algorithm to the case of abstracting from sets

of variables.

For simplicity we also allow Boolean operators to be applied to pZDDs, where 0-1

pZDDs are deliver as results.

K. Lampka / Electronic Notes in Theoretical Computer Science 223 (2008) 137–151 141

(A) A stochastic Petri net

2

d, μ

p4p3

p1 p2 p5

c, λ

e, ρ

a, λ
b, μ

(B) The corresponding SLTS
10 10 0

00 10 1 01 01 0 10 00 1

00 01 1

10 01 0

01 00 1

01 10 0

00 00 2

c, λ

c, λ

c, λ

d, μ

d, μ

d, μ

b, μ

b, μ

a, λ

a, λ

a, λ

e, ρb, μ

(C) Binary encodings of the SLTS

�a �s �t
l

a1a2a3 s1s2s3s4s5s6 t1t2t3t4t5t6
fM

101000 011000

a 000 100100 010100 λ

100001 010001

101000 100100

c 001 011000 010100 λ

001001 000101

011000 001001

b 010 010100 000101 μ

010001 000010

100100 100001

d 011 010100 010001 μ

000101 000010

e 100 000010 101000 ρ

a1

a2

a3

s1

s2

s3

s4

s5

s6

t1

t2

t3

t4

t5

t6

λ μ ρ

(D) MTBDD representing the SG

Figure 1. From a SPN to the symbolic representation of its underlying SLTS

2.3 Symbolic SG representation

For symbolically representing a transition system T by a ZDD ZT <�a,�s,�t > the

following setting is defined: The variables of �a (a-variables) of the ZDD hold the

values of the binary encoded activity labels, variables of �s (s-variables) the ones of

the binary encoded source states, and variables of �t (t-variables) the ones of the

binary encoded target states of the transitions.

As common we define the following interleaved order on the variables: am ≺

. . . ≺ a1 ≺ s1 ≺ t1 ≺ . . . ≺ sn ≺ tn. For exemplification the reader may please

refer to Fig. 1. The Boolean encodings of the transitions of the SLTS are given

in table C. The 5 integer SVs are encoded by 6 pairs of Boolean variables (si, ti).

Part (D) shows the corresponding ZDD M, where the 0-sup.-nodes are printed in

dotted lines, –we did this for illustration purpose, in the actual graph of the ZDD

these nodes are not present!– The rates of the transitions are stored in the terminal

nodes. In the ZDD, a dashed (solid) line indicates the value assignment 0 (1) to the

corresponding Boolean variable on the respective path.

K. Lampka / Electronic Notes in Theoretical Computer Science 223 (2008) 137–151142

3 New operator fo symbolic image computation

3.1 Preliminaries

Compositionality is crucial for the efficiency of a symbolic SG generation scheme.

This is not only because it influences the efficiency of generating and encoding

transitions, but also because it significantly influences the speed and memory con-

sumption of symbolic reachability analysis. A compositional procedure, as found in

tools like Caspa [8], Prism [14] or Möbius and its symbolic engine [11,9], one either

directly exploits the hierarchic structure of compositionally constructed overall mod-

els or somehow decompose the latter. In any case one ends up with a set of symbolic

representations (BDDs or ZBDDs), each representing a set of (submodel/partition-)

local transitions. What follows next is the application of a (symbolic) composition

scheme, which implements a synchronization over activity labels in a process algebra

like style and/or implements the merging of state variables in the style of stochas-

tic activity networks [16]. Details on the symbolic realization of these composition

methods can be found in [6,18,7,10] among others. Independent of the employed

procedure one may reveal the following similarities of the different schemes:

• The symbolic representation of a (submodel/partition-) local transition function

takes only those SVs as input variables, which are in the dependency set of the

activities encapsulated in the resp. submodel or partition, i.e. one solely encodes

here the values of submodel- or partition-local (dependent) SVs S
D
P .

• The symbolic structure Z̃T <�s,�t, π>, representing the potential transition system

of the overall model is commonly obtained by cross-product computation of some

local transition systems and some identity structures. The identity structures

model the behavior on the positions of those SVs S
I
P which are not effected

(independent) of the resp. submodel or partition.

• For restricting Z̃T to the set of reachable transitions one commonly executes a

symbolic reachability analysis. As known from the literature (cf. Sec. 1.1) this

step should be organized in a partitioned manner.

To enforce a compositional setting the overall model is now assumed to be par-

titioned in an activity-wise manner, i.e. each of the high-level model’s activities

(l ∈ Act) is encapsulated in its own submodel, –any other partitioning would also

be acceptable. This allows one to construct an individual (activity-)local transition

function for each of these (activity-local) submodels, represented by a ZDD Zl <VD

l >

(see [11,9] for details on this construction step). In such a setting VD

l and V I

l are

those sets of Boolean variables, which encode the dependent or independent SVs of

submodel l. The cross-product Z̃l := Zl<VD

l , π> × 1⊥(V I

l) delivers than the potential

transition system as induced by submodel l, where 1⊥(V I

l) encodes the identity struc-

tures as mentioned above. 5 For carrying out symbolic reachability activity-labels

5 Alternatively one could derive Z̃l from Z̃T as follows: Z̃l := Z̃T × A <�a>, where in the above setting
A <�a> encodes activity label l, –or in case of a coarser partitioning all activity labels of a submodel l.
Consequently the activity-wise partitioning as employed here is not mandatory, any other fragmentation is
suitable, as long as one ends up with local transition functions and their sets of dependent and independent
SVs, their Boolean counterparts resp..

K. Lampka / Electronic Notes in Theoretical Computer Science 223 (2008) 137–151 143

are irrelevant, so that they can safely be removed. This is achieved by computing an

existential quantification over all a-variables and over all local symbolic structures

Z̃l. In such a setting and if the set of (unexplored) states is represented by a ZDD

Zunex<�s, π> the one-step reachability set with respect to activity l can be computed

by the following code fragment:

(0) Ztmp := pZApply(∧,Zunex, Z̃l)

(1) Ztmp := ZAbstract(Ztmp,�s,∨)

(2) Zunex := Ztmp{�s ←�t}

In the above pseudo-code one extracts at first all transitions emanating from states

contained in Zunex (line (0)). Subsequently one eliminates the source states (line

(1)) and re-labels the t-variables with t-variables (line (2)), which delivers the newly

reached states encoded as source states. The first version of our new operator

ExecuteActivity() implements these steps in a single operator.

3.2 The new scheme

When traversing the symbolic structures representing the unexplored states (Zunex)

and the potential, local transition functions (Z̃l) the new algorithm Execute-

Activity executes a recursion for each variable ∈ V(=�s∪�t). Let vc be the variable

of the current recursion: if vc is not skipped within the ZDDs Zunex and Z̃l, the stan-

dard Apply-recursion rule is executed [3], otherwise the following case distinctions

apply:

(1) Handling of structure Zunex: Let variable vc be a s-variable, i.e. it encodes a bit

position of the source state. Since vc is skipped, it must be a 0-assigned vari-

able, due to the 0-sup.-reduction rule. Concerning the recursive behavior the

else-child to recurse on in the next step is the current node within Zunex itself,

whereas the then-child to recurse further with must be the terminal 0-node

(= semantics of a 0-sup. node). In case the current variable vc is a t-variable,

it is non-decisive for ZDD Zunex, since it holds a bit value of the binary

encoded target state. In such cases a don’t-care semantics must be applied,

i.e. one recurses with the current node of Zunex into the else- and then-branch.

(2) The handling of Z̃l is straight-forward: in case vc is skipped it must be 0-sup.

and the 0-sup. recursion rule applies.

Part A of Fig. 2 shows ZDD Zunex which represents the initial state of the SPN

of Fig. 1.A, and ZDD Z̃l representing the potential and local transition function

as induced by high-level activity a of the SPN. In part C we depicted ZDD Z′
unex

which represents the image of Zunex with respect to transition function Z̃l. –One may

already note that within Z̃l positions referring to variables which are independent

of the execution of activity a, here {s3, .., t6} , are filled with identity structures.–

Fig. 2.B depicts the call tree of the new operator when recursing on the first 5

variables, where the parameter-lists of the individual function calls are also given.

This parameter list contains the current node of the structure representing the set

K. Lampka / Electronic Notes in Theoretical Computer Science 223 (2008) 137–151144

a

fg

b

Return Return b

Return a Return

Return a
Return

Return a

aAllocate + ReturnReturn

n

n, l, {s3,...s6},{s3,..,t6}

n, k, {s2,...s6},{s2,..,t6}

n, k, {s2,...s6},{t1,..,t6}
0, 0, {s2,...s6},{t1,..,t6}

g, f, {s1,...s6},{s1,..,t6}

n, 0, {s3,...s6},{s3,..,t6}

n, 0, {s2,...s6},{s2,..,t6}

0, 0, {s3,...s6},{t2,..,t6} n, k, {s3,...s6},{t2,..,t6}

l

k

(A) Operand ZDDs (B) Call tree (arguments only) (C) Result

Zunex Z′
unexZ̃l := Zl<VD

l , π> × 1⊥(V I

l)

00 0

0

0

0

0
11

s1s1 s1

s2

s2 s2

s3

s3 s3

s4 s4

s5 s5

s6 s6

t1

t1 t1

t2

t2 t2

t3 t3

t4 t4

t5 t5

t6 t6

λ

Figure 2. ZDD-traversal for computing the one-step reachability set

of source states (Zunex), the current node of the ZDD representing the potential

transition function (Z̃l) as well as the individual sets of function variables of these

ZDDs. The first else-branch recursion is than called with the terminal 0-node,

whereas the then-branch is executed with node n and k (cf. Fig. 2.A and B).

The next variable to be visited within this then-branch is variable t1, where a

dnc-semantics in case of Zunex and a 0-sup.-semantics in case of Z̃l applies. I.e.

within the new else-branch one recurses with n and k, whereas in case of the new

then-branch a recursion with node n and the terminal 0-node is started. In cases

where a terminal 0-node is encountered the recursion can terminate by returning

the terminal 0-node as result. In all other cases the recursion basically continues

until the terminal non-zero nodes of Zunex and Z̃l are reached (see line 1 - 5 of

Algo. ExecuteActivity, Fig. 3). When returning from the recursion one either

allocates a node or abstracts from the (current) variable. I.e. when the recursion

returns at a s-variable the 1- and 0-successor of the potential node must be merged,

since the operator must abstract from source states. In case the recursion returns

at a t-level a node for the preceding s-variable is allocated. This behavior can

be found in the call-tree of Fig. 2.B at level 4, i.e. at the level of variable t2:

There node a is allocated (labelled with variable s2) and past back as result of

the computation. The caller of this recursive step computes then pZApply(+, 0, a)

(= a) and returns it as result to its own caller. This functionality is encoded

within line 55-60 of algorithm ExecuteActivity as illustrated in Fig. 3. However

before we go into detail of its pseudo-code, another recursion-rule shall be covered.

This rule will make the insertion of identity structures as found in contemporary

K. Lampka / Electronic Notes in Theoretical Computer Science 223 (2008) 137–151 145

ExecuteActivity
Parameters: Node : g, f, V arSet : G, F,V, Bool : skipF lag

(0) Node res;

/∗ Check terminal condition ∗\
(1) if g = 0-node ∨ f = 0-node

then return 0-node;
(2) else if vc = ∅

then return 1-node;
(3) else if skipF lag then

(4) if g, f ∈ KT
then return 1-node;

(5) else if g = f ∧ F = V
then return 1-node;

/∗ Check for pre-computed results ∗\
(6) if vc ∈�s ∨ vc ∈ F then

(7) res := CacheLookup(f,F, g, G);
(8) if res �= ε return res;

/∗ Prepare recursive step ∗\
(9) Node f1, f0, g1, g0, T, E;
(10) var vg := min(G),

vf := min(F), vc := min(V);

/∗ Obvious both variables contained ∗\
(11) if vf = vc ∧ vg = vc then

(12) (f1 := then(f);
(13) f0 := else(f);
(14) g1 := then(g);
(15) g0 := else(g);

/∗ only var skipped in g, ∗\
/∗ thus vc is func.var for f ∗\
(16) else if vf = vc then

(17) f1 := then(f);
(18) f0 := else(f);
(19) g0 := g;

/∗ is t-var and dnc in g or s-var and 0-sup. ∗\
(20) if vc ∈�t then

(21) g1 := g;
(22) else g1 := 0-node:

/∗ var skipped within f => must be s-var ∗\
(23) else if vg = vc then

(24) g1 := then(g);
(25) g0 := else(g);
(26) f0 := f ;

/∗ skipped but non-func. s-var ∗\
(27) if vf �∈ F then

(28) f1 := f ;

/∗ fast fwd in else-branch, ∗\
/∗ disabled for then-branch ∗\
(29) vk := succ(vc);
(30) skipF lag := false

/∗ skipped var is assumed to be 0-sup. ∗\
/∗ and func. var ∗\
(31) else f1 := 0-node;

/∗ obviously level skipped in both graphs ∗\
(32) else

/∗ Fast Fwd to node with smallest var ∗\
(33) if skipF lag then

(34) vc := min(vg , vf);
(35) while vc < max(V) do V := V \ max(V); end

(36) while vc < max(F) do F := F \ max(F); end

(37) while vc < max(G) do G := G \ max(G); end

(38) return ExecuteActivity(g,G, f, F, V, true);

/∗ default: skipped var is non-func. s-var ∗\
(39) f0 := f ;
(40) f1 := f ;
(41) g0 := g;

/∗ default: skipped level in g is 0-assigned ∗\
(42) g1 := 0-node;

/∗ is t-var thus dnc in g ∗\
/∗ and assume 0-sup. t-var in f ∗\
(43) if vc ∈�t then

(44) g1 := g;
(45) f0 := 0-node;

/∗ fast fwd in else-branch if non-func. s-var ∗\
(46) else

(47) vk := succ(vc);

/∗ skipped but func. var ∗\
(48) if vc ∈�s then

(49) f1 := 0-node;
(50) f0 := f ;
(51) vk := vc;

/∗ Remove variables from sets ∗\
(52) F′ := F \ {vc}),F

′′ := F \ {vc, vk});
(53) G′ := G \ {vc}),G

′′ := G \ {vc, vk});
(54) V′ := V \ {vc}),V

′′ := V \ {vc, vk});

/∗ go into recursion ∗\
(55) T := ExecuteActivity(g1,G′′, f1, F′′, V′′, skipF lag));
(56) E := ExecuteActivity(g0,G′, f0,F′,V′, skipF lag));

/∗ allocate node if t-var, abstract if s var ∗\
(57) if vc ∈�t then

(58) res := getZMTBDDNode(pred(vc), T, E)));
(59) else

(60) res := pZApply(+, T, E);

/∗ Cache pre-computes ∗\
(61) if vc ∈�s ∨ vc ∈ F then

(62) CacheInsert(res, f, F, g,G);

(63) return res;

Figure 3. New algorithm for computing one-step reachability set

composition schemes and as illustrated above unnecessary. Instead of operating

on Z̃l this new rule allows one to directly employ the local transition systems, their

symbolic counterparts resp., when computing the one-step reachability set of a set of

source states and with respect to a submodel l. The main idea of doing so is straight-

forward: when traversing Zl, its non-function variables are handled according to an

identity-semantics. –In the example of Fig. 2 this is the case for Z̃l when hitting

variables {s3, . . . , t6}.

Let V be the set of all function variables for encoding the overall model’s transition

system (V := �s ∪�t). Let G := �s and F ⊆ V be the set of function variables for

the symbolic structures Zunex and Zl (not Z̃l !). Let the variable of the current

recursion be denoted vc, the one-step reachability operator must cover the following

additional case when accessing a non-function variable (vc �∈ F) within the symbolic

K. Lampka / Electronic Notes in Theoretical Computer Science 223 (2008) 137–151146

encoded transition function Zl:

If vc is a s-variable one simply recurse with the current node into the else-

and then-branch, where a node must be allocated for vc only if there is a node

allocated within Zunex, which gives way for skipping variables (see discussion

below). In case vc is a t-variable a more complex behavior depending on the

current recursion applies: (i) Within the then-branch of the recursion the else-

child of the current node is the terminal 0-node and the then-child is the current

node itself. (ii) Within the else-branch of the recursion one is enabled to skip

one recursive call, since the node to be allocated here would be eliminated due to

the 0-sup.-reduction rule anyway.

The whole functionality of the new operator is implemented by algorithm Execute-

Activity as illustrated in Fig. 3. This algorithm takes the root nodes of the sym-

bolic structure Zunex and Zl as arguments (here g and f), their sets of function vari-

ables (here G and F) and the set of all function variables V, –the Boolean parameter

skipF lag is irrelevant for the time being. In line 11 - 51 the different recursions are

prepared by setting the parameters of future function calls accordingly, where the

recursion is actually executed in line 55 and 56. Once the algorithm returns from a

recursion one allocates a node or abstracts from the current variable vc (line 57 -60,

as discussed above). One may also note that the caching of pre-computed results

is intricate, since in case of non-function variables solely results for s-variables can

be stored or fetched, otherwise one terminates with wrong results (line 61 together

with line 6). Another important feature of the algorithm is the skipping of vari-

ables of V, if on the current path no node labelled with the current variable appears.

Such variables can be ignored as long as the last visited variable was �∈ �s, was not

a non-function variable for Zl (vc �∈ F) and did not refer to the last node visited

in Zunex. Otherwise the recursion must stop at the resp. variable, so that a node

can be allocate on the respective path. The status bit for handling such cases is

set in line 30, where the skipping of the variables is implemented in line 33-38. For

computing now the set of all reachable states algorithm ExecuteActivity must be

repetitively executed until a fixed point is reached. This can be done by replacing

the three steps of multiplication, abstraction and relabelling (see code fragment

above) as found in symbolic reachability algorithms by our new algorithm, where

the commonly executed insertion of identity structures is also obsolete.

Finally it is also worth noting that in order to implement algorithm Execute-

Activity for BDDs and standard Multi-terminal Binary Decision Diagrams [1] one

need to adapt the terminal conditions, the conditions for cache look-ups and in-

sertion, and assign the current node g (f) resp., to the then-child g1 (f1) instead

of the 0-node (line 22,31,42,45). Also it must be taken care of the node allocating

function, so that it implements the correct node elimination rule (line 58).

For exemplification one may refer to Fig. 4, where contrary to previous illustrations

we depicted now true ZDDs. Zunex represents state (1, 0, 0, 1, 0) and (0, 1, 0, 1, 0) of

the SPN of Fig. 1. Let Zl encode now the transitions as induced by submodel S

consisting of activity c and d and their pre- and post-sets of SVs. This gives that

K. Lampka / Electronic Notes in Theoretical Computer Science 223 (2008) 137–151 147

f

k

Zunex Z′
unexZl := Z{c,d}

g

h

l

0 001 1

s1

s2

s3

s4

s5

s6

t1

t2

t3

t4

t5

t6

λ μ

Figure 4. Source state, submodel-local transition function and one-step reachability set

Standard scheme Partitioned RA 1-step RA
N #states #trans. |V|

t sec. # nod. t sec. # nod. t sec. # nod.

Fault-tolerant Multi-processor System (FTMP)
6 9.9082E + 15 1.7463E + 17 390 828.42 2,181,962 8.32 2,986,912 5.96 1,919,094

8 1.7189E + 21 4.0150E + 22 520 50604.99 5,203,296 22.75 7,594,248 16.34 4,821,764

Courier Protocol (CP)
10 2.4967E + 9 1.7673E + 10 166 290.53 9,753,753 26.95 7,539,173 23.84 5,584,394

15 4.5538E + 10 3.4397E + 11 166 3937.39 72,332,345 391.16 45,941,998 677.99 42,531,553

Kanban Manufacturing System (Kanban)
10 1.0059E + 9 1.2032E + 10 128 73.60 6,480,273 11.51 5,669,753 10.56 5,210,304

12 5.5199E + 9 6.8884E + 10 128 311.35 16,289,378 29.97 14,189,631 27.30 13,383,554

Flexibe Manufacturing System (FMS)
15 7.2428E + 8 7.3780E + 9 124 193.62 1,809,266 6.93 2,100,353 5.09 1,333,056

20 8.8313E + 9 9.4968E + 10 150 1057.28 4,293,513 26.50 4,682,673 18.60 3,042,104

Cyclic Server System (Polling)
21 6.6060E7 7.4868E8 168 0.18 72,040 0.10 63,769 0.10 51,220

25 1.2583E9 16.7772E9 200 0.17 101,178 0.21 89,723 0.13 72,016

Table 1
Run-times and peak memory consumptions of BDD-based symbolic reachability analysis

the variables {s1, . . . , t2} are non-function variables for Zl, whereas {s3, . . . , t6} are

its input variables. Within the first recursive call the else-branch takes node l and

f as argument, and the then-branch takes node h and f as argument. As one can

see, it is often also not necessary to stop for each variable in V, since when return-

ing from the recursion sometimes no node will be allocated at the respective level,

e.g. between node k of ZDD Z′
unex and the nodes at level s2 and s1 no nodes are

allocated, which gives way for optimization of the algorithm as illustrated above.

K. Lampka / Electronic Notes in Theoretical Computer Science 223 (2008) 137–151148

4 Emperical Evaluation

In previous work the Möbius modeling tool was extended with a ZDD-based sym-

bolic engine [11]. As standard for semi-symbolic methods this engine also executes

explicit SG exploration and encoding, but most likely for a limited number of tran-

sitions only. The large majority of transitions is generated by executing a symbolic

composition scheme. which requires also the execution of a symbolic reachability

scheme for identifying non-reachable transitions within the symbolic structures. As

for pure symbolic schemes, the major CPU time - and memory consumption is

therefore here also imposed by the symbolic reachability analysis. Consequently

this framework is highly suited for benchmarking the new algorithm. Table 1 shows

the different run-times when analyzing standard benchmarking models from the

literature, where we employed a standard bfs symbolic reachability analysis scheme

(stand. scheme), the partitioned quasi-dfs. scheme (partitioned RA) as introduced

in [11] and our new algorithm (1-step RA). We give the model scaling parameter

N , the columns of #states and #trans. report the size of the model’s underlying

CTMCs and V refers to the number of Boolean variables employed for encoding

each system transition. For benchmarking the new algorithm the run-times of the

schemes are given in sec. (t), as well as the peak memory consumption, where we

recorded the max. number of nodes allocated (#nod.). As indicated by the data

of Table 1, the new algorithm improves the run-time and lowers the peak memory

consumption in almost all cases, –up to this end we can not really explain the be-

havior of the CP model for N = 15.– The data makes clear that the partitioning

of the transition relations has the largest impact on the run-time and memory re-

ductions. But nevertheless, combining the different steps of symbolic reachability

analysis within a single BDD-operator and making the explicit insertion of iden-

tity structures obsolete improves the situation further, where the new algorithm in

particular works well for models with very large state descriptors as demonstrated

by the FTMP model. Finally one may note that in case we do not construct the

transition rate matrix of the overall model, which is required for solving the model’s

underlying CTMC, peak memory consumption could even be reduced further up to

a factor of 0.5 in case of the FTMP model. However, this seems to be insignificant

for the run-time of the scheme, since this clearly stems from reachability analysis

and not from computing the overall transition rate matrix which can be constructed

by evaluating
∑

l∈Act Zl × 1⊥(V I

l) × Zreach.

5 Conclusion

In this paper we presented a new scheme for carrying out symbolic reachability

analysis. The newly introduced algorithm computes the one-step reachability set

for a set of states and with respect to a (local) transition function within a sin-

gle BDD-operation. Contrary to existing approaches the here presented algorithm

makes symbolic composition unnecessary, which is achieved by defining an identity

semantics within the (local) transition functions on the positions of non-function

variables. As demonstrated by the collected run-time data the new algorithm may

K. Lampka / Electronic Notes in Theoretical Computer Science 223 (2008) 137–151 149

reduce the run-time and memory requirement of contemporary BDD-based schemes.

The approach can be easily adapted to the case of standard BDDs and their multi-

terminal derivatives. It could find therefore its application in contemporary quanti-

tative symbolic model checkers such as Caspa [8] or Prism [14]. However, the success

of tools such as Prism [14], Caspa [8] (both based on MTBDDs) and Möbius with

its ZDD-based engine, is largely due to the efficiency of the employed symbolic data

structures.In the context of high-level model descriptions, a model’s state commonly

consists of many state counters, each referring to the state of a local process, to the

current value of a specific process parameter, to the number of tokens in a specific

place of a Petri net, etc.. When making use of BDD-based structures in such a

setting, each state counter is encoded in binary form by n bits, leading to a large

number of bit positions filled with zeroes and to a possible small number of encod-

ings of reachable states with respect to all possible 2n state labelling. In such a

setting MTBDDs and especially ZDDs have shown to be very helpful, as long as

their space complexity is restricted. In such an area the here proposed algorithm

seems to be a useful innovation. However if other BDD-based approaches it will

also fail in cases of highly populated DDs, due to its recursive nature and due to

the finiteness of operator caches.

References

[1] Formal Methods in System Design: Special Issue on Multi-terminal Binary Decision Diagrams, Volume
10, No. 2-3, April - May 1997.

[2] S.B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers, C-27(6):509–516, June
1978.

[3] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE Transactions on
Computers, C-35(8):677–691, August 1986.

[4] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic Model Checking with Partitioned Transition
Relations. In A. Halaas and P.B. Denyer, editors, International Conference on Very Large Scale
Integration, pages 49–58, Edinburgh, Scotland, 1991. North-Holland.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. The MIT Press, Cambridge, MA (USA),
1999.

[6] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic Model Checking
for Probabilistic Processes using MTBDDs and the Kronecker Representation. In S. Graf and
M. Schwartzbach, editors, Proc. of the 6’th Int. Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’00), Berlin (Germany), LNCS 1785, pages 395–410,
Berlin, 2000. Springer.

[7] M. Kuntz and M. Siegle. Deriving Symbolic Representations from Stochastic Process Algebras. In
Process Algebra and Probabilistic Methods (PAPM-PROBMIV’02), LNCS 2399, pages 1–22, 2002.

[8] M. Kuntz, M. Siegle, and E. Werner. Symbolic Performance and Dependability Evaluation with the
Tool CASPA. In Proc. of EPEW, pages 293–307. Springer, LNCS 3236, 2004.

[9] K. Lampka. A symbolic approach to the state graph based analysis of high-level Markov reward models.
PhD thesis, University of Erlangen-Nuremberg, Erlangen (Germany), 2007.

[10] K. Lampka and M. Siegle. Symbolic Composition within the Moebius Framework. In Proc. of the
2nd MMB Workshop, pages 63–74, September 2002. Forschungsbericht der Universität Hamburg
Fachbereich Informatik.

[11] K. Lampka and M. Siegle. Activity-Local State Graph Generation for High-Level Stochastic Models.
In Meassuring, Modelling, and Evaluation of Systems 2006, pages 245–264, April 2006.

K. Lampka / Electronic Notes in Theoretical Computer Science 223 (2008) 137–151150

[12] K. Lampka, M. Siegle, J. Ossowskis, and C. Baier. Partially-shared zero-suppressed Multi-Terminal
BDDs: Concept, Algorithms and Applications, 2008. Article submitted for publication, a preliminary
version can be downloaded as technical report from ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-
289.pdf.

[13] O. Lhoták, S. Curial, and J.N. Amaral. Using ZBDDs in Points-to Analysis. In Proc. of the 20th
International Workshop on Languages and Compilers for Parallel Computing, October 2007.

[14] PRISM. http://www.cs.bham.ac.uk/∼dxp/prism/.

[15] Oriol Roig, Jordi Cortadella, and Enric Pastor. Verification of asynchronous circuits by BDD-based
model checking of Petri nets. In 16th International Conference on the Application and Theory of Petri
Nets, volume 815, pages 374–391, 1995.

[16] W.H. Sanders. Construction and solution of performability models based on stochastic activity
networks. PhD thesis, University of Michigan, 1988.

[17] C.S. Shannon. Eine symbolische Analyse von Relaisschaltkreisen. Verlag Brinkmann + Bose, 2000.
The article originally appeared with the title: A Symbolic Analysis of Switching Circuits in Transactions
AIEE, 57 (1938), 713.

[18] M. Siegle. Advances in model representation. In Luca de Alfaro and Stephen Gilmore, editors, Process
Algebra and Probabilistic Methods, LNCS 2165, pages 1–22. Springer, September 2001. Proc. of the
Joint Int. Workshop, PAPM-PROBMIV 2001, Aachen (Germany).

[19] F. Somenzi. Binary decision diagrams. Calculational System Design, 173:303–366, 1999.

K. Lampka / Electronic Notes in Theoretical Computer Science 223 (2008) 137–151 151

	Introduction
	Contribution and related work
	Organization

	Background Theory
	Model world
	Zero-suppressed MTBDDs (ZDDs)
	Symbolic SG representation

	New operator fo symbolic image computation
	Preliminaries
	The new scheme

	Emperical Evaluation
	Conclusion
	References

