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1. INTRODUCTION

Let Pn denote the set of all algebraic polynomials of degree at most n,
n�0, and let Rn be the class of all rational functions r=p�q, p, q # Pn ,
q�0. For any f # C[&1, 1], we denote by

En( f ) := inf
p # Pn

& f&p&[&1, 1] , Rn( f ) := inf
r # Rn

& f&r&[&1, 1] ,

the errors in best approximation of f on [&1, 1] by elements of Pn and Rn ,
respectively. Here and in what follows, & }& stands for the uniform norm on
an indicated interval.

In the following, c0 , c, C, etc. denote positive constants, possibly different
at each occurrence, which are either absolute or depend on certain parameters.
When necessary, this dependence will be indicated.

Given sequences an>0, bn>0, we write an �� bn if there exist c1 , c2 such
that c1bn�an�c2 bn , for n�1.

The famous theorem of D. J. Newman [7] states that

c1e&9 - n�Rn( |x| )�c2e&- n, (1.1)

while it is a well-known result of S. Bernstein that En( |x| ) �� n&1. Newman's
surprising result (which was later refined by Vyacheslavov [17] and Stahl
[11]) stimulated numerous investigations, and various classes of functions
were found for which Rn( f ) tends to zero substantially faster than En( f ).
In this paper we consider two of these classes.

The first is the class of piecewise analytic functions. Recall that f is
piecewise analytic on [&1, 1] if there exists a partition

&1=x0<x1< } } } <xs&1<xs=1, s�2, (1.2)

such that the restriction of f to each [xj , xj+1], 0� j �s&1, has an
analytic continuation to a neighborhood of this closed interval, but f itself
is not analytic at x1 , ..., xs&1. For such f, it is known that En �� n&k, for
some k�1 (cf. [14]). On the other hand, it was shown by Tura� n and
Szu� sz [16] that

Rn( f )�Ce&c - n, n�0. (1.3)

The second class that we shall investigate was originally considered by
Gonchar [3] and, in the general case, by Szabados [12, 13]. Let f # C[&1, 1]
and assume there exists a partition (1.2) such that the restriction of f to
each open interval (xj , xj+1) has an analytic and bounded continuation to
some open rhombus Dj with opposite vertices xj , xj+1 , 0� j �s&1. Then
we say that f belongs to the Gonchar�Szabados class ( f # GS).
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Further, let |f denote the modulus of continuity of f # GS on [&1, 1].
Then (cf. [13, Theorem 3])

Rn( f )�C|f (e&tn ), (1.4)

where tn satisfies the relation

|f (e&tn )=tne&cn�tn, c=c( f ). (1.5)

Note that the Gonchar�Szabados class contains all functions piecewise
analytic on [&1, 1]. Moreover, if f is piecewise analytic, then |f ($) �� $
and it can be seen that (1.4) and (1.5) yield (1.3). Gonchar also proved (cf.
[2, 4]) that the bounds (1.3), (1.4) are, in general, sharp.

In view of the structures of the above functions, it is reasonable to expect
that a sequence of polynomials (or rational functions) exists, such that it
converges to f with a global rate close to the best one, and at the same time
converges to f much faster (say, geometrically) at points of analyticity of f.
This problem was investigated for the polynomial case in [1, 5, 10, 15].
For example, the following result was obtained by Saff and Totik.

Theorem 1.1 [10]. Let f be piecewise analytic on [&1, 1] and belong to
Ck&1, for some k�1. Then given ;>1, there exist constants C, c and
polynomials pn # Pn , n=1, 2, ..., such that

| f (x)&pn(x)|�Cn&k exp(&cn[d(x)] ;), x # [&1, 1], (1.6)

where d(x) is the distance from x to the nearest singularity xj of f on
(&1, 1).

Moreover, (1.6) does not in general hold with ;=1.

Since En( f ) �� n&k for f in Theorem 1.1 (provided f � Ck[&1, 1]), we see
that it is possible to construct ``near best'' polynomial approximants that
converge to f geometrically fast at every regular point of f on [&1, 1].
Hence, to maintain the advantage of rational approximants with respect
to polynomial ones, it is desirable to construct rational functions con-
verging to f with the global rate (1.3) and geometrically at regular points
of f.

In Section 2, we examine Newman's approximants to |x| and show that
they do not converge geometrically for x{0. We modify Newman's con-
struction in Section 3 and apply this to the approximation of the signum
function. Having done this, we immediately get the desired approximation
for |x|. We show, for example (this is a special case of Theorem 4.1 proved
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in Section 4), that given ;>1, there exist rn # Rn , n=1, 2, ..., and positive
constants C, c depending only on ; such that

| |x|&rn(x)|�Ce&c - n exp \&cn<\log
2

|x|+
;

+ , x # [&1, 1]. (1.7)

Note that the second exponential factor in (1.7) decreases much faster than
exp(&cn |x| ;). Therefore (see (1.6)), the local geometric rate is also much
better (for x close to the singularity x=0 of |x| ) than in the polynomial
case. We also show that (1.7) is impossible with ;=1 (this is a special case
of Theorem 4.2). Finally, in Section 5, we consider functions of the Gonchar�
Szabados class.

2. NONGEOMETRIC CONVERGENCE OF
NEWMAN'S APPROXIMANTS

We first recall Newman's construction [7]. Let

Nn(x) := `
n&1

j=0

(` j+x), ` :=exp(&1�- n) (2.1)

and set

rn(x) :=
Nn(x)&Nn(&x)
Nn(x)+Nn(&x)

# Rn . (2.2)

Then, for x�0, there holds

|x&xrn(x)|=2x
|Nn(&x)�Nn(x)|

1+Nn(&x)�Nn(x)
�x }Nn(&x)

Nn(x) } , (2.3)

since |Nn(&x)�Nn(x)|<1, for x>0.
Next, fix = # (0, 1) and split the product in (2.1) as

Nn= `
j # I(=)

(` j+x) `
j � I(=)

(` j+x)=: N (1)
n N (2)

n ,

where I(=) :=[ j : ` j<=�n]. Since

} `
j&x

` j+x }�1&
2
n

, x # [=, 1], j # I(=),
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we have

|N (1)
n (&x)�N (1)

n (x)|�\1&
2
n+

n

, x # [=, 1]. (2.4)

Furthermore, ` j�=�n implies j�- n log(n�=), and so deg N (2)
n =O(- n log n).

Therefore, for any [=, ']/[=, 1] we have, by Newman's inequality (cf. [7,
Lemma 3]),

max
[=, ']

[log |N (2)
n (&x)�N (2)

n (x)|]�
1

log('�=) |
'

=
log }N

(2)
n (&x)

N (2)
n (x) } dx

x

�&c(=, ') - n log n. (2.5)

Applying (2.4), (2.5), we deduce from (2.3) that

lim
n � �

&|x|&xrn(x)&1�n
[=, ']=1.

Thus, the Newman sequence [xrn(x)] does not converge geometrically to
|x| on any fixed interval [=, ']/[0, 1]. Since xrn(x) is even, the same is
true for [&', &=]/[&1, 0].

As the above argument reveals, the lack of geometric convergence is an
inevitable consequence of the extreme crowding of Newman's nodes, ` j,
near 0. To gain geometric convergence, the idea is to use, for a given n,
only one-half of these nodes (to retain an exp(&c - n) rate) and then
choose the remaining n�2 nodes in order to get geometric rates for x{0.
This technique will be employed in subsequent sections. (In a subsequent
paper [6] we shall give a finer analysis for the possible global rate of
convergence when geometric rates hold for x{0.)

One may naturally ask whether the best uniform rational approximants
to |x| on [&1, 1] have the desired geometric convergence property. However,
it was shown by Saff and Stahl [9] that the extreme points (alternation
points) for this best approximation problem are dense in [&1, 1], and so
(1.1) implies that geometric convergence fails to hold on any subinterval.

3. RATIONAL APPROXIMATION OF sgn x

The importance of the signum function, sgn x, in both polynomial and
rational approximation, is well known. Once a good approximation is
obtained for sgn x, we easily get one for any step-function, and the exten-
sion to continuous functions is standard (see Section 4). A glance at the
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equality in (2.3) (divided by x) shows that given any polynomial Pn

satisfying

|Pn(&x)�Pn(x)|�{$n(x),
1,

x # [=, 1]
x # [0, =)

(3.1)

and

1+Pn(&x)�Pn(x)�:>0, x # [0, 1], (3.2)

the rational function

rn(x) :=
Pn(x)&Pn(&x)
Pn(x)+Pn(&x)

(3.3)

is odd and satisfies

|sgn x&rn(x)|�{2:&1$n( |x| ),
2:&1,

=�|x|�1
|x|�=.

(3.4)

Therefore, given n, = and a desired error bound function $n on [=, 1], it
suffices to construct Pn with the above properties.

According to a result of Gonchar [2],

Rn(sgn x, [=�|x|�1])�
1
2

exp \&?2n�2 log
1
=+ .

Therefore, the best one can hope for is to construct, for given =, n, a
polynomial Pn that satisfies (3.1) with

$n(x) �� exp {&cn \ 1
log 1�=

+.(x)+= , x # [=, 1],

where . is some positive increasing function on (0, 1], such that

.(=) �� 1�log
1
=

, as = � 0.

Unfortunately, this goal cannot be achieved (see Theorem 4.2 below), but
we can come close.

Lemma 3.1. Let .(x) be a right continuous, nondecreasing function on
[0, 1], with .(0)=0, that satisfies

|
1

0

.(x)
x

dx<�. (3.5)
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Then, given any = # (0, 1�2) and any n�1, there exists a polynomial Mn=
Mn, = # Pn such that

}Mn(&x)
Mn(x) }�c1 exp {&cn \ 1

log 1�=
+.(x)+= , x # [=, 1] (3.6)

and

1+Mn(&x)�Mn(x)�:>0, x # [0, 1] (3.7)

where c, c1 , and : are independent of =, n.

Proof. A slight modification of Newman's construction produces (cf.
[3, Lemma 2]) a polynomial Pn # Pn of the form

Pn(x)=Pn, =(x)= `
n

j=1

(` j+x), ` :==1�n,

such that

|Pn(&x)�Pn(x)|�c2 exp \&c3n<log
1
=+ , x # [=, 1] (3.8)

and

0<Pn(&x)�Pn(x)�1, x # [0, =). (3.9)

Here, the constants c2 , c3 are independent of = and n; moreover, one can
take c2=1 in (3.8), provided n�log 1�=.

Next, we note that

|
2&k

2&k&1

.(x)
x

dx�.(2&k&1) log 2, k=0, 1, ...,

since . is increasing. Therefore

s :=:
�

0

.(2&k)�.(1)+
1

log 2 |
1

0

.(x)
x

dx<�,

by our assumption (3.5).
Suppose first that n is large enough, namely

n�max {log
1
=

,
s

.(1)= . (3.10)
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Define N�0 by

n
s

.(2&N&1)<1�
n
s

.(2&N ) (3.11)

and consider the polynomial

Qn(x) := `
N

k=0

(2&k+x)mk, mk :=_n
s

.(2&k)& , (3.12)

where [ } ] denotes the greatest integer function. Then Qn # Pn . Now, for
2&k&1�x�2&k, k=0, 1, ..., N, we have

}Qn(&x)
Qn(x) }� } 2

&k&x
2&k+x }

mk

�\1
3+

mk

<exp {&_n
s

.(2&k)&=
<exp {1&

n
s

.(x)= ,

so that

|Qn(&x)�Qn(x)|<exp {1&
n
s

.(x)= , x # [2&N&1, 1]. (3.13)

We also have

|Qn(&x)�Qn(x)|� 1
3<e&1, x # [2&N&1, 1]. (3.14)

For x # [0, 2&N&1 ] it follows from (3.11) that

}Qn(&x)
Qn(x) }�1<exp {1&

n
s

.(2&N&1)=�exp {1&
n
s

.(x)= . (3.15)

Now, define M2n :=PnQn # P2n . Then (3.13), (3.15), and (3.8) give the
required bound (3.6). Moreover, (3.14) and (3.8) (with c2=1, since
n�log(1�=) by our restriction (3.10)) yield

}M2n(&x)
M2n(x) }�max[e&1, e&c3 ], for 1�x�min[=, 2&N].

For 0�x<min[=, 2&N], the ratio M2n(&x)�M2n(x) is positive (see (3.12),
(3.9)), so that (3.7) holds on [0, 1] with : :=1&max[e&1, e&c3 ]>0. The
passage from M2n to Mn # Pn is obvious, so that the lemma is proved,
provided n satisfies (3.10).

The remaining case is simpler. If n<min[log(1�=), s�.(1)], put Mn#1.
If log(1�=)�n<s�.(1), put Mn :=Pn . Then (3.8) (with c2=1) and (3.9)
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give the desired result. Finally, if s�.(1)�n<log(1�=), put Mn :=Qn , and
apply (3.13)�(3.15), and the positivity of Qn(\x) on [0, 2&N ]. K

We mention two simple facts concerning the behavior of Mn(&z)�Mn(z)
in the complex plane C. By construction, this is a Blaschke product for the
right half-plane, so that

|Mn(&z)�Mn(z)|=1 � Re(z)=0. (3.16)

Next, this Blaschke product includes the factor (see (3.12))

\1&z
1+z+

m0

, m0=_n
s

.(1)&�cn,

and its other factors are less than 1 (in absolute value) if Re(z)>0.
Therefore, if we define, for 0<$<1,

K$ :=[z: $�Re(z)�$&1, |Im(z)|�$&1],

we obtain the bound

|Mn(&z)�Mn(z)|�e&c$n, z # K$ , (3.17)

where c$>0 is independent of n, =.
We are now ready to prove

Theorem 3.2. Let . be as in Lemma 3.1. Then given any = # (0, 1�2) and
any n�1, there exists a rational function rn=rn, = # Rn with poles on the
imaginary axis such that

|sgn x&rn, =(x)|�C exp {&cn \ 1
log 1�=

+.( |x| )+= , =�|x|�1, (3.18)

and

|rn, =(x)|�C, |x|�=. (3.19)

The constants C, c are independent of n, =.

Proof. Define

rn, =(x) :=
Mn, =(x)&Mn, =(&x)
Mn, =(x)+Mn, =(&x)

,

where Mn, = is the polynomial constructed in Lemma 3.1. The discussion at
the beginning of this section then yields (3.18) and (3.19). The poles of rn, =

lie on the imaginary axis due to (3.16). K
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The next result should be compared with Theorem 1 in [10].

Theorem 3.3. Let . be as in Lemma 3.1. Then there exists Rn # Rn ,
n=1, 2, ..., such that

|sgn x&Rn(x)|�C exp[&cn.( |x| )], x # [&1, 1]. (3.20)

Moreover, as n � �,

Rn(z) � {1,
&1,

Re(z)>0
Re(z)<0

uniformly (and geometrically fast) on compact subsets of C"[z: Re(z)=0].

Proof. Given n�1, set Rn :=rn, =n
, where =n=e&n and rn, =n

is the rational
function of Theorem 3.2. Then (3.18) yields (3.20) for |x|�e&n. Next, since
.(x) is increasing and satisfies (3.5), we obtain for any 0<x<1,

.(x) log
1
x

�|
1

x

.(t)
t

dt<|
1

0

.(t)
t

dt,

that is

.(x) log
1
x

�C, x # (0, 1). (3.21)

Therefore,

n.(x)�n.(e&n)�C, if x # [0, e&n]

and we see that (3.19) of Theorem 3.2 yields (3.20) for |x|�e&n.
The second assertion of Theorem 3.3 follows from (3.17). K

With the aid of Theorem 3.2, we can approximate the characteristic
function /[a, b] of any interval.

Corollary 3.4. Let [a, b]�[&1, 1] and . be as in Lemma 3.1. Then,
given any = # (0, 1) and any n�1, there exists rn=rn, a, b, = # Rn such that for
x # [&1, 1] there holds:

|/[a, b](x)&rn(x)|�c1 exp {&c0n \ 1
log 1�=

+.(d(x))+= , if d(x)�=,

(3.22)

where

d(x) :=min[ |x&a|, |x&b|].
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Also,

|rn(x)|�c2 , if d(x)�=.

The constants c, c1 , and c2 are independent of a, b, n, =.

Proof. First, we observe that

/[a, b](x)= 1
2 (sgn(x&a)&sgn(x&b)), x{a, b.

Next, define

.~ (x) :={.(2x),
.(1),

0�x<1�2,
1�2�x�1,

and apply Theorem 3.2 with .~ instead of ., with =�2 instead of =, and with
n replaced by [n�2] to get a corresponding r~ (x). Then the function

rn(x) :=
1
2 \r~ \x&a

2 +&r~ \x&b
2 ++

has the desired properties. K

Remark 1. If we apply Theorem 3.2 with the original ., we obtain the
required estimate with .(x�2) instead .(x). Since .(x�2) may not be �� .(x),
the passage to .~ was needed.

Remark 2. Let [=n], 0<=n<1, be an arbitrary sequence, and let rn=
rn, a, b, =n

be as above. Then (3.16), (3.17) show that the poles of rn lie on the
vertical lines Re(z)=a, Re(z)=b and that rn(z) � /[a, b](x), x=Re(z),
uniformly (and geometrically fast) on compact subsets of C"[z: Re(z)=a
or Re(z)=b].

4. RATIONAL APPROXIMATION OF PIECEWISE
ANALYTIC FUNCTIONS

In this section, we construct a sequence of rational functions having the
properties described in the Introduction. Namely, we prove the following.

Theorem 4.1. Let f be piecewise analytic on [&1, 1] and belong to
Ck&1[&1, 1], and let . be as in Lemma 3.1. Then there exist rational
functions Rn # Rn , n=1, 2, ..., such that for all x # [&1, 1]

| f (x)&Rn(x)|�C exp[&c - kn&cn.(d(x))], (4.1)
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where d(x) denotes the distance from x to the nearest singularity of f on
[&1, 1]. The constants c, C are independent of x and n, and c is also
independent of k.

Proof. A simple argument (cf. [10, Proof of Theorem 3]) shows that it
suffices to verify the theorem for piecewise analytic functions of the form

f (x)={g(x),
0,

x # [a, b]
otherwise,

(4.2)

where g(i )(a)=g (i )(b)=0 for i=0, ..., k&1. Note that for such f we have

d(x)=min[ |x&a|, |x&b|]. (4.3)

We consider the case &1<a<b<1 (if either a=&1 or b=1, the proof
is similar). Let

f *(x) :=f (x)�[(x&a)(x&b)]k :={g*(x),
0,

x # [a, b]
otherwise

. (4.4)

By our assumptions, g* is analytic on [a&2{, b+2{], for some {>0.
Therefore, there exist polynomials pn # Pn , n=1, 2, ..., such that

| g*(x)&pn(x)|�C1 e&c1n, x # [a&{, b+{]. (4.5)

In particular, the pn are uniformly bounded on [a&{, b+{] and so, by
Bernstein's inequality (cf. [14]), we have

& pn&[&1, 1]�ec2n. (4.6)

We note for future reference that the constants c1 , c2 are independent of k.
The same will be true for all lower case constants that appear below.

Applying Corollary 3.4 with the above a, b and with = :=e&- n�k, we get
rn # Rn , n=1, 2, ..., such that for all x # [&1, 1]

|/[a, b](x)&rn(x)|�C exp[&c3 - kn&c3 n.(d(x))], if d(x)�e&- n�k,

(4.7)

and

|rn(x)|�C, if d(x)�e&- n�k. (4.8)

Set

r*(x) :=pn(x) rcn(x), (4.9)

where the constant c will be chosen later.
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Case 1: d(x)�e&- n�k. First, let x � [a&{, b+{]. Then d(x)�{�
e&- n�k provided n�k log2(1�{). Applying (4.6), (4.7) we obtain:

|r*(x)|�C exp[&c3 - kcn&c3cn.(d(x))+c2n]. (4.10)

Choose c large enough to ensure that

c3c.({)�2c2 .

With such a choice for c we get from (4.10) that

|r*(x)|�C exp[&c4 - kn&c4n.(d(x))].

Note that this relation persists on [a&{, b+{]"[a, b], since | pn(x)|�C
there, by (4.5). Also, f*(x)=0 for x � [a .b], and we conclude that

| f*(x)&r*(x)|�C exp[&c4 - kn&c4 n.(d(x))]. (4.11)

For x # [a, b] we have (recall (4.9))

| f*(x)&r*(x)|�| f*(x)(1&rcn(x))|+|( f*(x)&pn(x)) rcn(x)|.

Applying the estimates (4.5), (4.7) we see that the relation (4.11) persists
for x # [a, b] (possibly, with a different c4).

Case 2: d(x)�e&- n�k. Then x # [a&{, b+{] (see the restriction on n,
made at the beginning of Case 1), so that | pn(x)|�C. Then (4.8), (4.9)
yield a trivial estimate:

| f*(x)&r*(x)|�& f*&[&1, 1]+|r*(x)|�C. (4.12)

Next, set

R(x) :=r*(x)(x&a)k (x&b)k # Rn(1+c)+2k (4.13)

and note that |(x&a)(x&b)|k�4k, x # [&1, 1], while |(x&a)(x&b)|k�
2k exp(&- kn) if d(x)�exp(&- n�k). Therefore, by multiplying (4.11) and
(4.12) by |(x&a)(x&b)|k and recalling (4.4) we obtain

| f (x)&R(x)|�C exp(&c4 - kn&c4 n.(d(x))), d(x)�e&- n�k (4.14)

and

| f (x)&R(x)|�C exp(&- kn), d(x)�e&- n�k. (4.15)

Finally, (3.21) implies that

n.(d(x))�n.(e&- n�k )�C - kn, if d(x)�e&- n�k.
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This inequality, together with (4.15), (4.14), shows that R satisfies the
required estimate (4.1), except that R is a rational function of order �� n
(see (4.13)) and is not of precise order n. This difficulty can be circum-
vented by using a standard argument. K

Remark 3. If g* of (4.4) is entire, one can use Maclaurin polynomials
to replace (4.5), (4.6) by

| g*(z)&pn(z)|�c\\&n, |z|�\

| pn(z)|�c~ \ , |z|�\,

where \>1 is arbitrary. Applying Remark 2 at the end of Section 3, we see
that the rational functions constructed above (with above choice of pn)
converge to

f� (z)={g(z),
0,

a<Re(z)<b
Re(z)>b or Re(z)<a.

The convergence is uniform (and geometrically fast) on compact subsets of
C"[z: Re(z)=a or Re(z)=b]. Similar remarks apply to any piecewise
entire function f.

Our next result shows that the condition (3.5) imposed on . is necessary
in order to get geometric convergence of Rn to a given f.

Theorem 4.2. Let f be continuous and piecewise analytic on [&1, 1],
but not analytic on [&1, 1]. Given a right-continuous, nondecreasing
function . on [0, 1] with .(0)=0, assume there exist Rn # Rn , n=1, 2, ...,
such that

| f (x)&Rn(x)|�C exp[&n.(d(x))], x # [&1, 1]. (4.16)

Then (3.5) holds.

Proof. Assume first that (4.16) holds with f (x)=|x| 2k+1, for some
integer k�0. Then (4.16) becomes

| |x| 2k+1&Rn(x)|�C exp(&n.( |x| )), x # [&1, 1]. (4.17)

Replacing Rn by R2n(x) :=(Rn(x)+Rn(&x))�2, we see that

|x2k+1&R2n(x)|�Ce&n.(x), x # [0, 1], (4.18)
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and R2n is even. Applying the classical Newman's method we deduce from
(4.18) that a polynomial p # P2n+2k+1 exists such that

x2k+1 } p(&x)
p(x) }�Ce&n.(x), x # [0, 1]. (4.19)

(See [8, pp. 75�76] for details. The proof is given there for k=0, but it
remains the same for k�1.) Now, take the log of both sides of (4.19),
divide by x, and integrate from e&- n to 1 to obtain

&(2k+1)
n
2

+|
1

e&- n
log } p(&x)

p(x) } dx
x

�(log C ) - n&n |
1

e&- n

.(x)
x

dx.

Since p # P2n+2k+1 , we obtain via Newman's inequality (cf. Section 2) that

|
1

e&- n

.(x)
x

dx�c1+O(n&1�2), as n � �.

Therefore �1
0 (.(x)�x) dx converges.

The case of general f can be reduced to the case just considered. By our
assumption, f has a singularity at some x0 # (&1, 1). Then, by restricting
(4.16) to x # [x0&$, x0+$], with $>0 small enough, and applying the
transformation x&x0=$t we obtain

| f� (t)&R� n(t)|�Ce&n.~ ( |t| ), t # [&1, 1], (4.16$)

where .~ (t) :=.($t),

f� (t) :={ f� +(t),
f� &(t),

0�t�1
&1�t�0,

and f� + , f� & both are analytic on [&1, 1] and agree at 0. Next, replacing
f� by ( f� (t)+f� (&t))�2 and R� n by (R� (t)+R� (&t))�2, we may assume that f�
in (4.16$) is even. Therefore, the above analyticity properties imply

f� (t)=|t| 2k+1 g(t2)+h(t2), t # [&1, 1], (4.20)

where k�0, g(0){0, and g, h are analytic on [&1, 1]. We may assume
g{0 on [&1, 1] (otherwise, we restrict (4.20) to some [&$, $] and stretch
it back to [&1, 1]). Thus, we may divide (4.16$) by g and approximate h�g
by an even polynomial pn of order n and 1�g by an even polynomial qn of
order n to obtain

| |t| 2k+1+pn(t)&q (n)(t) R� n(t)|�c1e&c2n+ce&n.~ ( |t| )�c3e&n.~ ( |t| ).

Therefore, we get (4.17) for some Rn of order �� n and . replaced by .~ .
Thus condition (3.5) holds for .~ and hence for .. K
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5. FUNCTIONS OF THE GONCHAR�SZABADOS CLASS

In this section we extend Theorem 4.1 to a collection of functions in the
GS class described in the Introduction. Let f # C[&1, 1] and assume
f # GS, that is, there exists a partition &1=x0<x1< } } } <xs=1 such that
the restriction of f on each open interval (xj , xj+1) has an analytic and
bounded continuation in an open rhombus Dj with opposite vertices xj ,
xj+1 . If s�2, we assume that every interior point xj is a singularity of f,
but f may be regular at the endpoints \1. If s=1, one of the endpoints
may be regular, but not both. In other words, the exact set of singularities
of f on [&1, 1] is [x0 , ..., xs], with the possible exception of x0 , xs . We
denote this set by Sf .

Further, we assume that the extended function f is not only bounded in
D :=�s&1

0 Dj , but is continuous on the closure D� . We define the local
modulus of continuity of f on Sf , with respect to D� , by

|f*(t) :=max
xj # Sf

max
|z&xj |�t, z # D�

| f (z)&f (xj )|, (5.1)

and impose the following restriction on |f*:

|
1

0
|f*(t)

dt
t

<�. (5.2)

If f satisfies all the above assumptions, we write f # GS*.
Finally, the local modulus of continuity of f on Sf , with respect to

[&1, 1], is defined by

|~ f (t) :=max
xj # Sf

max
|x&xj |�t, x # [&1, 1]

| f (x)&f (xj )|. (5.3)

Theorem 5.1. Let . be as in Lemma 3.1, and assume additionally that,
for x small enough,

.(2x)�(2&:) .(x) (5.4)

for some 0<:<1. Then, given f # GS*, there exist Rn # Rn , n=1, 2, ..., such
that

| f (x)&Rn(x)|�C exp[&cn(t&1
n +.(d(x)))], x # [&1, 1], (5.5)

where tn is defined for n large enough by

|~ f (e&tn )=exp(&c1 n�tn) (5.6)

and d(x) is the distance from x to Sf .
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Remark 4. |~ f (t) may be much smaller (as t � 0) than the ordinary
modulus of continuity, |f (t). In such a case, even the uniform part of (5.5)
improves the estimate given in (1.4). For example, it can be shown that, for
;>0,

Rn(exp(&|x|&;))�C exp(&c;n�log n).

Proof of Theorem 5.1. As in Section 4, we may assume that f has two
singularities, say at a, b, &1<a<b<1, while f=0 on [&1, a] _ [b, 1].
Since f # GS*, there exists a +>0 such that f is analytic in the open
rhombus D, bounded by the lines

z=x+iy, y={+(&1)k (x&a),
+(&1)k (x&b),

a�x�(a+b)�2
(a+b)�2�x�b

, k=0, 1,

and f is continuous in D� . By Cauchy's formula,

f (x)=
1

2?i |�D

f ({)
{&x

d{, x # [&1, 1]. (5.7)

(Note that (5.7) holds at x=a and x=b because of (5.2).) Thus our problem
is reduced to the approximation of Cauchy-type integrals

F(x) :=|
#

f ({)
{&x

d{, x # [&1, 1], (5.8)

where # is one of the sides of D, say the side

# :={t++i(t&a) : a�t�
a+b

2 = .

Since the linear transformation x � (x&a)�2 transforms [&1, 1] into
[&(1+a)�2, (1&a)�2]/[&1, 1], it is enough to approximate the function

F� (x) :=|
#~

f� ({)
{&x

d{, x # [&1, 1], (5.9)

where F� (x) :=F(2x+a), f� ({) :=f (2{+a), and #~ :=[(1++i ) t : 0�t�
(b&a)�4]. To this end, we need the following generalization of Lemma 3.1
which will be proved later.
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Claim. Denote by z* the reflection of z # C about #~ . Given = # (0, 1�2)
and n�1, set `=e1�n and

M(z) := `
n

j=1

z&` j

z&(` j )*
`
N

j=0
\ z&2&j

z&(2&j )*+
mj

# R2n . (5.10)

Then M(z) satisfies

C exp {&c1 n \ 1
log 1�=

+.(x)+= , x # [=, 1]

|M(x)|�{C, x # [0, =] (5.11)

C exp {+c2 n \ 1
log 1�=

+.(x)+= , x # [&1, 0],

where C, c1 , c2 are independent of n, =.

Obviously, we also have

|M(z)|=1, z # #~ . (5.12)

Next let

S({, z) :=
1

{&z
M({)&M(z)

M({)
=

1
{&z

&
1

{&z
M(z)
M({)

.

This is a rational function of z, of degree 2n, whose poles coincide with
those of M(z), which interpolates the Cauchy kernel at the zeros of M(z).
It can be easily verified that

?~ (z) :=|
#~

S({, z) f� ({) d{

is a rational function (of degree �2n). Since

|{&x|�Im({)=
+

- 1++2
|{|, { # #~ , x real,

we obtain from (5.9), (5.12), and (5.2) that for all x # [&1, 1],

|F� (x)&?~ (x)|�|M(x)| |
#~

| f ({)|
|{&x|

|d{|�C1 |M(x)| |
#~

|f*( |2{| )
|{|

|d{|

�C2 |M(x)|. (5.13)
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Applying a similar procedure to the integrals (5.8) along the other three
sides of D, and making the corresponding inverse substitutions in (5.13),
(5.11), we obtain a rational function ?(x) # R8n that satisfies for all x # [&1, 1]

C exp {&c1n \ 1
log 1�=

+.(d(x))+= ,

x # [a, b], d(x)>2=
| f (x)&?(x)|�{C, x # [a, b] d(x)�2= (5.14)

C exp {+c2n \ 1
log 1�=

+.(d(x))+= ,

x � [a, b],

where d(x) :=min[ |x&a|, |x&b|].
Next, let a$ :=a+3=, b$ :=b&3=, d$(x) :=min[ |x&a$|, |x&b$|], and let

rn=rn, a$, b$, = be the rational function of Corollary 3.4. Consider the function

R(x) :=rcn(x) ?(x) # R (c+8)n ,

where c�1 will be chosen later. To estimate the difference f&R we
proceed as in proof of Theorem 4.1, but now we use (5.14) instead of (4.5),
(4.6). First, let x # [&1, a] _ [b, 1]. Then, f (x)=0, while d$(x)�3= and
also d$(x)�d(x). Applying (3.22), (5.14), and setting

c :=(c2+1)�c0 ,

we obtain

| f (x)&R(x)|=|R(x)|�C exp {&n \ 1
log 1�=

+.(d(x))+= . (5.15)

For x # [a, b], write

| f (x)&R(x)|�| f (x)| } |1&rcn(x)|+|rcn(x)| } | f (x)&?(x)|=: L.

If x # [a, a+2=] _ [b&2=, b], then d(x)�2=, d$(x)�= and we get the
estimate

L�C1 _|~ f (2=)+exp {&c0n \ 1
log 1�=

+.(d$(x))+=&
�C2 _|~ f (2=)+exp {&c0n<log

1
==& . (5.16)
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If x # [a+2=, a+4=] _ [b&4=, b&2=], then d(x)>2=, d$(x)<=, so that

L�C _|~ f (4=)+exp {&c1 n<log
1
==& . (5.17)

Finally, if x # [a+4=, b&4=], then d$(x)� 1
4d(x) and we obtain

L�C exp {&c3 n \ 1
log 1�=

+. \1
4

d(x)++= . (5.18)

In view of (5.4) we have, for t small enough, .(t) �� .(t�4), t # (0, 1], and
we may replace d(x)�4 in (5.18) by d(x). Applying (5.15)�(5.18) with =
replaced by =�4 and n replaced by n�(c+8), we obtain Rn # Rn , which
satisfies, for all x # [&1, 1],

| f (x)&Rn(x)|�{exp {&c4n \ 1
log 1�=

+.(d(x))+= , d(x)�=

|~ f (=)+exp[&c5n�log 1�=], d(x)<=.

Therefore, on choosing = :=e&tn, with tn as defined by (5.6), we get the
required estimate (5.5). (Recall from (3.21) that .(t)�C�log(1�t).)

It remains to prove the estimate (5.11). It is easy to see that for x real
and t>0, there holds

} t&x
t&x* }= } x&t

x&t* }�{e&c1u,
ec2u,

if x>0
if x<0,

(5.19)

where u :=min[t&1 |x|, t |x| &1] and c1 , c2 depend only on +. Let

r(1)
n (x) := `

n

j=1

[(` j&x)�((` j )*&x)], ` :==1�n.

For x # (=, 1] define 1�k�n from the condition x # (`k, `k&1] and let
k :=n+1, if x # [0, =]. Then (5.19) yields

|r (1)
n (x)|�exp {&c1 \x :

k&1

j=1

`&j+x&1 :
n

j=k

` j+=
(one of the sums may be empty)

=exp {&c1 \ x
`k&1

1&`k&1

1&`
+

`k

x
1&`n&k+1

1&` += .
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Applying the estimates (cf. [2])

1&` �� log
1
`

=
1
n

log
1
=

, if n�log
1
=

(that is, if `�e&1), and

1&` �� 1, if n<log
1
=

,

we obtain

|r (1)
n (x)|�{

C exp \&c3n<log
1
=+ ,

C exp \&c3nx<= log
1
=+ ,

x # [=, 1]

x # [0, =].
(5.20)

For x # [&1, 0] we proceed similarly and get estimates

|r(1)
n (x)|�{

C exp \c4n<log
1
=+ ,

C exp \c4 n |x|<= log
1
=+ ,

x # [&1, &=]

x # [&=, 0],

�C exp \c4 n<log
1
=+ , x # [&1, 0]. (5.21)

Next, set

r(2)
n (x) := `

N

j=0

[(x&2&j )�(x&(2&j )*)]mj .

The estimate

|r(2)
n (x)|�C exp(&c5n.(x)), x # [0, 1], (5.22)

follows exactly as in the proof of Lemma 3.1 (apply (5.19) and we note
that |(x&2&j )�(x&(2&j )*)|<1 for x>0). Given x # [&1, 0], define k
(0�k�N&1) from the condition |x| # (2&k&1, 2&k], if |x| # (2&N, 1];
and set k=N if |x| # [0, 2&N ]. Then, from (5.19),

|r (2)
n (x)|�exp {c2 |x| :

k

j=0
_n

s
.(2&j )& 2 j+c2 |x| &1 :

N

j=k+1
_n

s
.(2&j )& 2&j =

=: exp[L1+L2 ].
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In L2 , .(2&j )�.( |x| ), so that

L2�c2 |x|&1 .( |x| )
n
s

2&k�2c2

n
s

.( |x| ).

Next,

.(2&j ) 2 j�|
2&j

2&j&1

.(t)
t2 dt.

Therefore,

L1�c2

n
s

|x| |
1

2&k&1

.(t)
t2 dt. (5.23)

Since we may alter . on any fixed interval [$, 1], $>0, getting .* �� .,
we may assume that our assumption (5.4) holds everywhere on [0, 1].
Then a straightforward estimation yields

|
1

{

.(t)
t2 dt�C:

.({)
{

.

Putting here {=2&k&1, we get from (5.23)

L1�c3 n |x| .(2&k&1) 2k+1�2c3 n.(2&k&1)�2c3n.( |x| ),

provided |x|�2&N ; that is, 0�k�N&1. If |x|<2&N, we may replace the
lower limit in (5.23) by |x| and then proceed as above. We have thus
proved that

|r (2)
n (x)|�C exp(c6n.( |x| )), x # [&1, 0]. (5.24)

Collecting the estimates (5.20)�(5.22), and (5.24), we get (5.11). K
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