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Sclerotium rolfsii, the causal organism of stem rot or

southern blight of groundnut, is widely distributed and

has been reported to cause disease in over 500 plant

species throughout the world and at least 30 in South

Africa. The disease is a problem in most groundnut pro-

ducing areas in South Africa and no efficient control

strategy has yet been developed in this country.

Previous studies on the fungus have indicated that

diversity within populations of S. rolfsii can be defined

by placing isolates into mycelial compatibility groups

(MCGs). A total of 121 S. rolfsii isolates were collected

from 15 localities and seven plant species throughout

South Africa and paired against each other. Thirteen

MCGs were identified, some containing isolates from the

same host plant or geographic area, suggesting a possi-

ble relationship between MCG and host plant or locality.

Other MCGs, however, contained isolates from a variety

of hosts from various localities. The population of the

fungus in South Africa is diverse, with vague associa-

tions between MCG, host and geographical distribution.

Sclerotium rolfsii Sacc., the causal organism of southern

stem rot (SSR) or southern blight of groundnut (Arachis
hypogaea L.), is widely distributed and was first recorded in

South Africa on tobacco (Nicotiana tabacum L.) in 1926

(Moore 1926) and on groundnut in 1931 (Doidge and

Bottomley 1931). Punja and Grogan (1983a, b) showed that

Sclerotium rolfsii isolates can be placed into mycelial com-

patibility groups (MCGs) based on mycelial interactions

(Glass and Kuldau 1992) between isolates. According to

Kohn et al. (1991) mycelial compatibility is an important

event in the formation of stable heterokaryons in fungi

through vegetative compatibility. The role of MCGs and

VCGs (vegetative compatibility groups) is thus important in

defining field populations of fungi and facilitating genetic

exchange in fungal species, where the teleomorph stage of

the life cycle has a minimal impact on the disease cycle

(Kohn et al. 1991, Leslie 1993).

Population studies of S. rolfsii have investigated genetic

variation within and between MCGs. Nalim et al. first sur-

veyed MCGs in specific fields and in individual plants in

Texas in 1995. In their study isolates could be placed into 25

MCGs. DNA amplification patterns resulting from the use of

the 18-base oligonucleotide primer NK2, and from restriction

digests of the internal transcribed spacer (ITS) region of the

rDNA, were examined in a subset of 80 isolates, represent-

ing 12 MCGs. Isolates from a single MCG had identical pat-

terns for each marker, and some MCGs shared the same

ITS and NK2 patterns. The study further indicated that

MCGs having the same DNA patterns were often collected

from the same field. Other studies have suggested that

MCGs may be associated with either geographical area or

host plant (Harlton et al. 1995, Punja and Sun 1997). Harlton

et al. (1995) screened a worldwide collection of S. rolfsii iso-

lates and identified 49 MCGs from 119 isolates. Isolates

from the same geographical area or host often grouped in

the same MCG, but in some cases widely diverse isolates

grouped in the same MCG.

Punja and Sun (1997) paired 128 isolates from 36 host

species and 23 geographical regions against each other and

identified no less than 68 MCGs. No relationship between

host of origin and MCG was found, except that many iso-

lates from the same hosts belonged to the same MCG.

Conversely, isolates in a specific MCG could have originat-

ed from many different hosts. An UPGMA (a cluster analysis

by the unweighted paired group method using arithmetic

averages) analysis revealed that isolates within the same

MCG were genetically diverse, as were isolates from the

same geographical area (Punja and Sun 1997). Isolates

from the same MCG did, however, group closer together

suggesting greater genetic similarity. Isolates from widely

distant geographical locations were more distantly related

and isolates with identical RAPD patterns grouped in the

same MCG and it was suggested that these were probably

clonally derived (Punja and Sun 1997).

In a recent study on the genetic structure on MCGs of S.
rolfsii in South Africa, it was shown for the first time that all
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isolates within an MCG can be distinguished from each

other using AFLP analysis (Cilliers et al. 2000). In the latter

study, isolates from two different MCGs were compared

using four primer pairs. Additional studies using 10 primer

pairs identified polymorphisms between all tested isolates

within a specific MCG. Nine different MCGs were also com-

pared using 20 primer pairs and all were found to be genet-

ically dissimilar.

The aim of this study was to investigate the mycological

diversity within a larger population of S. rolfsii in South Africa

and to establish the relationship between MCG, geographi-

cal area and host plant. No such study has yet been under-

taken on the population of this fungus in South Africa. This

study, in combination with the genetic study of the popula-

tion diversity (Cilliers et al. 2000), will increase our under-

standing of the pathogen which could eventually lead to

more effective disease control.

During the 1997/1998, 1998/1999 and the 1999/2000

growth seasons isolates of S. rolfsii were collected from host

plants and geographical locations as indicated in Table 1.

The areas from which the isolates were collected were

diverse, representing six of the nine provinces in South

Africa. Sclerotia or mycelium was collected from various

crop plants as well as other plant species.  One to four iso-

lates were collected from each infected plant. Sclerotia or

fungal mycelium from infected plants were placed on 50%

malt extract agar (MEA) plates and incubated at room tem-

perature (23°C). Single hyphal tips were transferred from

germinating sclerotia or growing mycelium to potato dex-

trose agar (PDA) (Difco Laboratories, Detroit). Cultures were

incubated for 10 days at 23°C until numerous sclerotia had

formed. All cultures were transferred to PDA slants and

stored at 5°C until the MCGs were determined.

Single sclerotia from stored S. rolfsii cultures were placed

on PDA (100 x 15mm) plates in order to determine the MCG.

A system was developed whereby each isolate was paired

at least once against itself as a control and against six other

isolates. All pairings were conducted twice. Isolates were

placed in different MCGs based on the presence of an

antagonistic zone, which indicates incompatibility between

two paired fungal isolates.

A total of 121 isolates from hyphal tips were collected from

15 localities throughout South Africa (Table 1). Most of the

isolates (34) originated from the Potchefstroom area.

Between one and thirteen isolates were collected from the

other localities (Table 1). Isolates were obtained from the

host plants as indicated in Table 1. Pairing of isolates result-

ed either in the formation of clear barrier zones or the lack

thereof (Figure 1). Mycelia of isolates in the same MCG

intermingled and developed a white ridge indicating a com-

patible reaction. Mycelia of isolates from different MCGs

formed a clear antagonistic zone in the area of mycelial con-

tact, indicating an incompatible reaction (Figure 1). Isolates

could be assigned to one of 13 MCGs which were then num-

bered from A through M. Replicated pairings produced iden-

tical results. Reference isolates are stored at Plant

Protection Research Institute, Pretoria and preserved under

reference numbers PPRI 7018 to PPRI 7030.

Locality Host plant Number of isolates Date of collection MCG

Potchefstroom Peanut 13 February 1998 B

1 March 1998 E

6 April 1998 4 X B, 2 X E

Potchefstroom Sunflower 5 February 1998 1 X D, 4 X B

Potchefstroom Lupin 8 February 1998 7 X C, 1 X B

Lichtenburg Peanut 7 February 1998 A

Viljoenskroon Peanut 7 March 1998 4 X E, 1 X D 2 X M

Barkly West Peanut 2 March 1998 C

Bushbuck Ridge Peanut 4 March 1998 D

Brits Peanut 1 March 1998 C

Vaalharts Peanut 2 March 1998 B

Makathini Peanut 3 March 1998 F

Makathini Sunflower 5 May 1998 4 X F, 1 X G

Bergville Soybean 9 June 1998 I

Bloemfontein Beetroot 1 August 1999 J

Vaalharts Peanut 1 January 2000 D

Jacobsdal Carrot 1 January 1999 E

Jacobsdal Peanut 3 February 2000 B

Viljoenskroon Peanut 2 January 2000 1 X F, 1 X E

Ottosdal Peanut 11 March 1999 7 X C, 2 X B 1 X H, 1 x F

Brits Peanut 4 March 1999 2 X H, 1 X E1 X L

Hoopstad Peanut 6 November 1998 4 X E, 1 x B1 X D

Krugersdorp Valerian 2 December 1998 1 X C, 1 X J

Potchefstroom Sunflower 1 March 2000 K

Vaalharts Peanut 9 April 2000 8 X C, 1 X B

Vaalharts Peanut 1 February 2000 B

Viljoenskroon Peanut 5 May 2000 2 X C, 1 X D1 X G, 1 X H

George Carrot 1 Unknown H

Table 1: Geographic distribution of isolates, host plant, number of isolates per locality, date of collection and number of isolates from each

mycelial compatibility group (MCG) of isolates from the population of Sclerotium rolfsii in South Africa
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A substantial degree of genetic variation exists within

South African isolates of S. rolfsii, as reflected by the MCGs

identified from different hosts at different localities. This is

consistent with the genetic variation identified in an earlier

study (Cilliers et al. 2000). It has since been reported that a

number of MCGs can occur within a specific geographic area

or on the same host. Conversely, distribution may be limited

to a specific group for a specific area (Punja and Grogan

1983a, Stenlid 1985, Brayford 1990, Leslie 1993, Punja and

Sun 1997). South African MCGs do not appear to be strictly

linked to a specific host or geographical area. A number of

isolates, however, grouped according to host or locality.

Isolation of the same MCG from diverse geographical

areas or hosts could be attributed to spread by agricultural

practices (Harlton et al. 1995), in particular via soil or seed.

Results from this study could support this suggestion since

there was generally a greater variety of MCGs collected

from areas with high agricultural activity, such as

Potchefstroom and Viljoenskroon. MCGs represented by

single isolates could have resulted from either geographic

isolation (as is possible in the case of MCG I and MCG A) or

recent colonisation, as suggested by Harlton et al. (1995).

It may also be true that an isolate could fall into a specific

MCG according to host plant or survival strategy (either par-

asitic or saprophytic). An isolate growing saprophytically

may, by virtue of the genes expressed in its survival strate-

gy, fall into a specific MCG while the same isolate growing

parasitically may group into another MCG. This could explain

why Harlton et al. (1995) found diverse isolates from their

worldwide collection grouping in the same MCG and why

there were no clear-cut groupings according to host plant or

geographical area in either their or the present study.

Genetic diversity could have occurred through the phe-

nomenon of parasexuality which has been reported in fungi

such as Fusarium and Aspergillus (Kendrick 1985). The

mechanism occurs in non-sexually differentiated organs and

follows the sequence of plasmogamy, karyogamy and meio-

sis (Ulloa and Hanlin 2000). According to Kendrick (1985)

this phenomenon is probably common among conidial fungi,

but the frequency of occurrence is rare (occurring in fewer

than one conidium in a million). At present the occurrence

and role, if any, of parasexuality in S. rolfsii is unknown.

Using MCGs as criterion, there clearly is a degree of

genetic diversity within the South African population of this

Figure 1: Mycelial interactions between three isolates of Sclerotium rolfsii. A compatible reaction occurs between ‘top left’ and ‘top right’ (same

mycelial compatibility group) and an incompatible reaction occurs between ‘top right’ and ‘bottom’ and ‘top left’ and ‘bottom’ (different mycelial

compatibility groups)
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fungus. There appear to be vague associations between

MCG and geographical distribution and host, as has been

found by other researchers (Harlton et al. 1995, Punja and

Sun 1997). All isolates from South Africa showed some

degree of genetic dissimilarity, whether they were from the

same MCG or not (Cilliers et al. 2000). Since there appeared

to be vague associations between host plant, geographical

area and MCG, this implies that the genetic structure is

another factor that could be linked to host plant or geo-

graphical area.
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